
Performance Optimization of Distributed
Primal-Dual Algorithms over Wireless Networks

Zhaohui Yang∗, Mingzhe Chen†‡, Kai-Kit Wong§, Walid Saad¶, H. Vincent Poor†, and Shuguang Cui‡
∗Department of Engineering, King’s College London, WC2R 2LS, UK.
†Electrical Engineering Department, Princeton University, NJ, 08544, USA.

‡Shenzhen Research Institute of Big Data and School of Science and Engineering, the Chinese University of Hong Kong,
Shenzhen, 518172, China.

§Department of Electronic and Electrical Engineering, University College London, London, UK.
¶Wireless@VT, Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24060, USA.

Emails: yang.zhaohui@kcl.ac.uk, mingzhec@princeton.edu, kai-kit.wong@ucl.ac.uk, walids@vt.edu,
poor@princeton.edu, robert.cui@gmail.com.

Abstract—In this paper, the implementation of a distributed
primal-dual algorithm over realistic wireless networks is investi-
gated. In the considered model, the users and one base station
(BS) cooperatively perform a distributed primal-dual algorithm
for controlling and optimizing wireless networks. In particular,
each user must locally update the primal and dual variables and
send the updated primal variables to the BS. The BS aggregates
the received primal variables and broadcasts the aggregated
variables to all users. Since all of the primal and dual variables as
well as aggregated variables are transmitted over wireless links,
the imperfect wireless links will affect the solution achieved by
the distributed primal-dual algorithm. Therefore, it is necessary
to study how wireless factors such as transmission errors affect
the implementation of the distributed primal-dual algorithm and
how to optimize wireless network performance to improve the
solution achieved by the distributed primal-dual algorithm. To
address these challenges, the convergence rate of the primal-
dual algorithm is first derived in a closed form while considering
the impact of wireless factors such as data transmission errors.
Based on the derived convergence rate, the optimal transmit
power and resource block allocation schemes are designed to
minimize the gap between the target solution and the solution
achieved by the distributed primal-dual algorithm. Simulation
results show that the proposed distributed primal-dual algorithm
can reduce the gap between the target and obtained solution by
up to 52% compared to the distributed primal-dual algorithm
without considering imperfect wireless transmission.

Index Terms—Dual method, convergence rate, resource allo-
cation.

I. INTRODUCTION

Recently, the security and privacy concerns as well as the
availability of abundant data and computation resources in
wireless networks are pushing the deployment of optimization
algorithms towards the network edge [1]. This has led to
a significant interest in distributed optimization methods. In
distributed optimization, each node can compute on its own
data and sends the results to its neighbours or a center
node. Distributed optimization has many applications, such
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as user selection optimization, resource allocation optimiza-
tion, trajectory optimization, and distributed machine learning
algorithm design [2]–[4].

Distributed optimization algorithms fall within two main
classes: distributed primal algorithms [5]–[8] and distributed
primal-dual algorithms [9]–[13]. In [5], the authors proposed
fast distributed gradient algorithms to minimize the sum of
individual cost functions. The decentralized gradient descent
method was proposed in [8], where all agents collaborate with
their neighbors through information exchange. Compared to
the distributed primal algorithm, it was shown that a distributed
primal-dual algorithm converges rapidly [9]. The distributed
alternating direction method of multipliers (ADMM) was
proposed in [9] for solving separable optimization problems.
For distributed optimization with global inequality constraints,
the authors in [10] studied deterministic and stochastic primal-
dual sub-gradient algorithms. To reduce the communication
cost of a decentralized algorithm, the work in [11] proposed
a communication-censored ADMM. A variant ADMM algo-
rithm was proposed in [12] to reduce the communication
overhead. To further reduce the communication overhead, the
authors in [13] investigated the use of coding techniques for a
stochastic incremental distributed primal-dual algorithm. How-
ever, most of these existing works [9]–[13] do not consider
the effect of imperfect wireless transmission of primal and
dual variables on the implementation of distributed primal-
dual algorithm over realistic wireless networks. For example,
due to the limited transmit power of each user, the transmitted
primal and dual variables may contain errors thus affecting the
convergence of the distributed primal-dual algorithms and the
solution achieved by the distributed primal-dual algorithms.

The main contribution of this paper is a novel framework
that enables the implementation of a primal-dual algorithm
over a realistic wireless network. In particular, we consider
a realistic wireless network that consists of multiple users
and one base station (BS) which cooperatively perform a
distributed primal-dual algorithm for controlling and opti-
mizing network performance. Here, each user must locally
update the primal and dual variables and send the primal
variables to the BS, which aggregates the received primal



and broadcasts the aggregated variables to all users. Since all
of the primal and dual variables as well as the aggregated
variables are transmitted over wireless links, the imperfect
wireless links will affect the solution achieved by the dis-
tributed primal-dual algorithm. Therefore, it is necessary to
study how wireless factors such as transmission errors affect
the implementation of the distributed primal-dual algorithm
and how to optimize wireless network performance to improve
the solution achieved by the distributed primal-dual algorithm.
To address these challenges, we first derive the convergence
rate of the primal-dual algorithm while considering the impact
of wireless factors such as data transmission error. Given the
derived convergence rate, we design an optimal transmit power
and resource block allocation scheme so as to enable the
distributed primal-dual algorithm to find an optimal solution.
Simulation results show that the proposed distributed primal-
dual algorithm can reduce the gap between the target and the
obtained solution by up to 52% compared to the distributed
primal-dual algorithm without considering imperfect wireless
transmission.

II. SYSTEM MODEL AND PROBLEM FORMULATION
Consider a network in which a set N of N users and one BS

jointly implement a distributed primal-dual algorithm. Each
user n has a local dataset Dn. Due to data privacy issue, only
user n can access dataset Dn.

A. Primal-Dual Model

The users and the BS use the distributed primal-dual al-
gorithm for solving the following optimization problem [11]:

min
x

f(x) ,
1

N

N∑
n=1

fn(x,Dn) (1)

s.t. gm(x) ≤ 0, ∀m ∈M, (1a)

where fn(x,Dn) and gm(x) are convex functions, M =
{1, · · · ,M}, and M is the number of constraints. For sim-
plicity, we use fn(x) to represent fn(x,Dn) in the following.

Using the distributed primal-dual algorithm, the Lagrange
function of problem (1) can be given by

L(x,λ) =
1

N

N∑
n=1

fn(x) +
M∑
m=1

λmgm(x)

=
1

N

N∑
n=1

(
fn(x) +

M∑
m=1

λmgm(x)

)
, (2)

where λ = [λ1, · · · , λM ]T is the Lagrange multiplier associ-
ated with constraint (1a). For each user n, we define the local
Lagrange function as

Ln(x,λ) = fn(x) + λTg(x), (3)

where g(x) , [g1(x), · · · , gM (x)]T . The sub-gradients of
local Lagrange function can be given by

∇xLn(x,λ) = ∇fn(x) + λT∇g(x), (4)

and
∇λLn(x,λ) = g(x). (5)

Algorithm 1 Distributed Primal-Dual Algorithm
1: Initialize primal variable x(0) = 0 and dual variable λ(0) = 0.
2: for t = 0, 1, · · · , T
3: parallel for user n ∈ N
4: Update the dual and primal variables:

λ(t+ 1) = λ(t) + α(t)g(x(t)), (7)
yn(t+ 1) = x(t)− α(t)∇xLn(x(t),λ(t)). (8)

5: Each user sends yi(t) to the BS.
6: end for
7: The BS computes

x(t+ 1) =
1

N

N∑
n=1

yn(t+ 1) (9)

and broadcasts the value to all users.
8: Set t = t+ 1.
9: end for

10: Output weighted average value of the primal variable

x̂(T ) =

∑T−1
t=0 α(t)x(t)∑T−1

t=0 α(t)
. (10)

Based on the definition of the local Lagrange function,
the distributed primal-dual algorithm is proposed to solve the
following maximin problem [10]:

max
λ

min
x

1

N

N∑
n=1

Ln(x,λ). (6)

The distributed primal-dual algorithm used to solve problem
(6) is given in Algorithm 1. In Algorithm 1, each user updates
the dual variable λ(t + 1) and obtains a copy of the primal
variable yn(t + 1). Note that α(t) is a dynamic step size
for the sub-gradient descend procedure. The BS aggregates
the obtained copies of primal variables from all users and
broadcasts the aggregated vector x to all users. After a
sufficient number of iterations, such as T iterations, each user
can obtain the primal variable solution as in (10).
B. Wireless Communication Model

For the uplink transmission, orthogonal frequency division
multiple access (OFDMA) technique is applied and each user
can occupy only one resource block (RB). Assume that the
total number of RBs is N . Let aln ∈ {0, 1} denote the RB
association index, i.e., aln = 1 implies that RB l is assigned
to user n and aln = 0 otherwise. Since each user can occupy
only one RB and each RB should be occupied by only one
user, we have

N∑
l=1

aln = 1,
N∑
n=1

aln = 1. (11)

When user n is assigned with RB l, the uplink transmission
rate of user n is

rln = B log2

(
1 +

pnβld
−ζ
n on

Il +BN0

)
, (12)

where B is the bandwidth of each RB, pn is the transmission
power of user n, βl is the reference channel gain between the
user and the BS on RB l at the reference distance 1 m, dn is



the distance between user n and the BS, ζ is a pathloss factor,
and on ∼ exp(1) is the small scale fading.

Due to the randomness of wireless communication channel,
the user may transmit data with errors. For user n with RB l,
the error rate is defined as

qln = P(rln < R), (13)

where R is the minimum rate for transmitting the updated
primal variables to the BS. To calculate the value of qln, we
have the following lemma.

Lemma 1. The data error rate of user n with RB l is

qln = 1− exp

(
−Dln

pn

)
, (14)

where Dln = (2R/B−1)(Il+BN0)

βld
−ζ
n

.

Proof: Based on (12) and (13), we have

qln = P(rln < R)

= P
(
on <

(2R/B − 1)(Il +BN0)

pnβld
−ζ
n

)
= 1− exp

(
− (2R/B − 1)(Il +BN0)

pnβld
−ζ
n

)
, (15)

where the last equality follows from on ∼ exp(1).
Since user n can occupy any one RB, the data error rate of

user n is

qn =
N∑
l=1

alnqln. (16)

In the considered system, if the received primal variable
yn from user n contains errors, the BS will not use it for
the update of the aggregated primal variables. Let Cn(t) ∈
{0, 1} indicate that whether user n transmits primal variable
yn in time t contains error or not. In particular, Cn(t) = 1
shows that yn received by the BS does not contain any data
error; otherwise, we have Cn(t) = 0. The BS computes the
aggregated primal variable as1

x(t+ 1) =

∑N
n=1 Cn(t)yn(t+ 1)∑N

n=1 Cn(t)
, (17)

where

Cn(t) =

{
1, with probability 1− qn
0, with probability qn

. (18)

C. Problem Formulation
We aim to jointly optimize the RB allocation and power

control for all users to minimize the gap of the solution
achieved by the distributed primal-dual algorithm and the
optimal solution that the distributed primal-dual algorithm

1Note that the denominator in (17) is zero only for the case that Cn(t) = 0
for all n with probability ΠN

n=1qn. Since the probability ΠN
n=1qn approaches

zero when the number of users is large, we ignore the case that Cn(t) = 0
for all n.

targets to achieve, which is given as

min
A,p

E(f(x̂(T ))− f(x∗)) (19)

s.t.
N∑
l=1

aln = 1, ∀l ∈ N , (19a)

N∑
n=1

aln = 1, ∀n ∈ N , (19b)

N∑
n=1

pn ≤ Pmax, (19c)

aln ∈ {0, 1}, ∀l, n ∈ N , (19d)
0 ≤ pn ≤ Pn, ∀n ∈ N , (19e)

where A = {aln}N×N , p = [p1, · · · , pN ]T , E(f(x̂(T )) −
f(x∗)) denotes the gap of the solution x(T ) achieved by the
distributed primal-dual algorithm with T iterations and the
optimal solution x∗ that the distributed primal-dual algorithm
targets to achieve, Pmax is the maximum total transmit power
of all users, and Pn is the maximum transmit power of user n.
Constraints (19a) and (19b) indicate that each user can occupy
only one RB and each RB can be assigned with only one user.
Constraint (19c) shows that the sum transmit power of all users
cannot exceed a given value, which guarantees that the energy
consumption of the whole system is limited.

III. CONVERGENCE ANALYSIS AND RESOURCE
ALLOCATION

A. Convergence Analysis

To solve problem (19), we first analyze the convergence of
Algorithm 1. To analyze the convergence rate of Algorithm 1,
we make the following three assumptions:

Assumption 1. Compact Feasible Set: The feasible set of
primal variable x satisfying (1a) is non-empty, compact, and
convex. Denote R as the smallest radius of the `2 ball with
original center that contains the feasible set, i.e., ‖x‖ ≤ R for
all x satisfying (1a). Furthermore, this feasible set is known
by all users.

Assumption 2. Slater Condition: There exists a solution x
such that gm(x) < 0, ∀m ∈M.

Assumption 2 indicates that the primal problem in (1) and
the dual problem (6) have the same optimal objective value,
and the optimal dual variable λ∗ has a finite value. Denote S
as the finite maximum value for λm(t), i.e., λm(t) < S.

Assumption 3. Lipschitz Continuous: Both functions fn(x)
and gm(x) are convex on the feasible set, and the first-order
derivative of functions fn(x) and gm(x) are bounded by L,
i.e.,

∇fn(x) ≤ L,∇gm(x) ≤ L, ∀n ∈ N ,m ∈M, (20)

where L <∞ is a constant.

Based on the above assumptions, the convergence of Algo-
rithm 1 is shown in the following theorem.



Theorem 1. If the BS and the users implement Algorithm 1
over T iterations, the upper bound of E(f(x̂(T )) − f(x∗))
can be given by

E(f(x̂(T ))− f(x∗))≤
R2 +

∑N
n=1 d1(1− qn)

d2(1− q0)
(21)

where d1 =
∑T−1
t=0 (L + LMS + ML2R2)α(t)2, d2 =

2N
∑T−1
t=0 α(t) and q0 = maxn∈N qn.

Proof: Seen in Appendix A.
Theorem 1 provides an upper bound of the gap between

f(x̂(T )) and f(x∗). If we let the step size α(t) (for example
α(t) = 1/t) satisfy

∑∞
t=0 α(t) = ∞ and

∑∞
t=0 α(t)2 < ∞,

we have limT→∞ E(f(x̂(T )) − f(x∗)) = 0, which implies
that x̂(T ) approaches the optimal solution.
B. Resource Allocation

Based on Theorem 1, problem (19) can be reformulated as

min
A,p

R2 +
∑N
n=1 d1(1− qn)

d2(1−maxn∈N qn)
(22)

s.t. (19a)− (19e), (22a)

To solve problem (22), we first analyze the optimal condi-
tion.

Lemma 2. For the optimal solution of problem (22), we have

q∗1 = · · · = q∗N . (23)
Proof: Assume that the optimal solution of problem (22)

is (A∗,p∗) and there exist i and j such that q∗i < q∗j . We
construct a new solution (A∗, p̄) with

p̄n = p∗n, p̄i = p∗i − ε, ∀n 6= i, (24)
where ε > 0 is a small positive constant that satisfies
q∗i < q̄i < q∗j . Since the new solution (A∗, p̄) is feasible and
has lower objective value compared to the solution (A∗,p∗),
which contradicts that solution (A∗,p∗) is optimal. As a
result, the optimal condition (23) always holds for problem
(22).

Based on Lemma 2, the objective function in (22) is
equivalent to R2+

∑N
n=1 d1(1−qn)

d2(1−maxn∈N qn)
= R2

d2(1−maxn∈N qn)
+ Nd1.

Meanwhile, minimizing R2

d2(1−maxn∈N qn)
is equal to minimize

maxn∈N qn. Introducing a new variable q = maxn∈N qn,
problem (22) can be simplified as

min
A,p,q

q (25)

s.t. q ≥ 1−
n∑
l=1

aln exp

(
−Dln

pn

)
, ∀n ∈ N , (25a)

(19a)− (19e), (25b)

where inequality (25a) holds with equality for the optimal
solution as otherwise the objective value can be further im-
proved. To solve problem (25), we use an iterative method,
which optimizes A and p in an alternating manner.

Give power vector p, problem (25) is a mixed linear integer
problem. By temporally relaxing integer variable aln ∈ [0, 1],
problem (25) with fixed p is a standard linear problem, which

Algorithm 2 Iterative RB Allocation and Power Control
1: Initialize RB allocation A and power contrl p.
2: repeat
3: With fixed power control p, optimize RB allocation with the

simplex method and rounding technique.
4: With fixed RB association A, obtain the optimal p by solving

(27) and (28).
5: until the objective value (25) converges.

can be effectively solved via the simplex method. Then, we can
obtain the integer value of aln by using the rounding method.

With fixed RB association A, problem (25) reduces to
min
p,q

q (26)

s.t. q ≥ 1− exp

(
−Dlnn

pn

)
, ∀n ∈ N , (26a)

N∑
n=1

pn ≤ Pmax, (26b)

0 ≤ pn ≤ Pn, ∀n ∈ N , (26c)

where ln is the assigned RB for user n, i.e., alnn = 1.
According to Lemma 2, constraint (26a) holds with equality
for the optimal solution and we can obtain

p∗n = − Dlnn

ln(1− q∗)
. (27)

Substituting p∗n into constraints (26a)-(26b), the optimal q∗

should satisfy
N∑
n=1

− Dlnn

ln(1− q∗)

∣∣∣∣Pn ≤ Pmax, (28)

where a|b = min{a, b}. Since the left hand-side of (28)
is a decreasing function with respect to q∗, the minimal q∗

satisfying (28) can be obtained by using the bisection method.

C. Complexity Analysis
The iterative algorithm for solving (22) is given in Al-

gorithm 2. The major complexity in each iteration lies in
solving the RB allocation subproblem and the power control
subproblem. With fixed power control, the complexity of using
the simplex method is O(N3) [14] for solving (25). With
fixed RB association, the complexity of solving (28) with the
bisection method is O(N log(1/ε)), where ε is the accuracy
of the bisection method. As a result, the total complexity of
Algorithm 2 is O(T0N

3 + T0N log(1/ε)), where T0 is the
number of iterations in Algorithm 2.

IV. SIMULATION RESULTS
There are N = 50 users uniformly in a square area of size

500 m × 500 m with the BS at the center. The path loss model
is 128.1+37.6 log10 d (d is in km). The bandwidth of each RB
is 1 MHz and the noise power spectral density is N0 = −174
dBm/Hz. The maximum transmit power of each user is set as
Pn = 10 dBm. To show the performance of the primal-dual
algorithm, we consider the similar parameters as in [10].

The convergence of the distributed primal-dual algorithm
is shown in Fig. 1. In the figure, we compare the proposed
algorithm with the conventional algorithm which ignores the
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Fig. 1. Convergence behaviour of the distributed primal-dual algorithm.
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Fig. 2. Maximum transmission error among all user versus the maximum
sum transmit power.

wireless affect. For the conventional algorithm, each user
transmits with equal transmit power and RB allocation is ran-
domly assigned. From this figure, we find that the distributed
primal-dual algorithm has an oscillatory behavior. It is found
that the proposed algorithm achieves up to 52% gap reduction
compared to the conventional algorithm.

We compare the proposed Algorithm 2 to solve problem
(25) with two baselines: the fixed power control algorithm
with only optimizing RB allocation (labelled as ‘FPC’) and
the fixed RB allocation algorithm with only optimizing power
control (labelled as ‘FRBA’). Fig. 2 illustrates the maximum
transmission error among all user versus the maximum sum
transmit power. From this figure, the maximum transmission
error decreases for all schemes as the maximum sum transmit
power varies. This is because high transmit power can decrease
the transmission error. It is observed that the proposed algorith-
m achieves the best performance, which shows the superiority
of the joint RB allocation and power control design.

V. CONCLUSIONS

In this paper, we have investigated the convergence opti-
mization problem of a distributed primal-dual algorithm over
wireless communication networks via jointly optimizing RB
allocation and power control. We have derived a closed-form
expression for the expected convergence rate of a distributed
primal-dual algorithm that considers the transmission errors
over wireless communications. Based on this convergence
rate, we have first obtained an optimal condition for the
resource allocation. Then, an iterative algorithm has been
proposed, where a closed-form solution has been obtained for

the power control subproblem. Simulation results have shown
the superiority of the proposed solution.

APPENDIX A
PROOF OF THEOREM 1

To prove Theorem 1, we first obtain the minimum mean
square error between x(t+ 1) and x∗, i.e.,

E‖x(t+ 1)− x∗‖2

(17)
=E

∥∥∥∥∥
∑N
n=1 Cn(t)yn(t+ 1)∑N

n=1 Cn(t)
− x∗

∥∥∥∥∥
2

(8)
=E

∥∥∥∥∥
∑N
n=1 Cn(t) (x(t)− α(t)∇xLn(x(t),λ(t)))∑N

n=1 Cn(t)
− x∗

∥∥∥∥∥
2

(a)
≤

N∑
n=1

E

(
Cn(t)∑N
i=1 Ci(t)

)
‖x(t)− α(t)∇xLn(x(t),λ(t))− x∗‖2

=‖x(t)− x∗‖2 +
N∑
n=1

E

(
Cn(t)∑N
i=1 Ci(t)

)
×
(
α(t)2‖∇xLn(x(t),λ(t)‖2

− 2α(t)(x(t)− x∗)T∇xLn(x(t),λ(t))
)
, (A.1)

where inequality (a) follows from the fact that squared
norm is a convex function. To obtain an upper bound of
E
(

Cn(t)∑N
i=1 Ci(t)

)
, we define κn = Cn(t)∑N

i=1 Ci(t)
. Based on (18),

we have

κn =

{
1

1+
∑N
i=1,i6=n Ci(t)

, with probability 1− qn
0, with probability qn

(A.2)

Since 1
N ≤

1
1+

∑N
i=1,i6=n Ci(t)

≤ 1, we can obtain E(κn) ≤
1− qn. Combining (A.1) and E(κn) ≤ 1− qn yields

E‖x(t+ 1)− x∗‖2

≤‖x(t)− x∗‖2 +
N∑
n=1

(1− qn)
(
α(t)2‖∇xLn(x(t),λ(t)‖2

− 2α(t)(x(t)− x∗)T∇xLn(x(t),λ(t))
)
. (A.3)

According to the recursion in (A.3) with x(0) = 0, we have

E‖x(T )− x∗‖2

≤‖x∗‖2 +
T−1∑
t=0

N∑
n=1

(1− qn)
(
α(t)2‖∇xLn(x(t),λ(t)‖2

− 2α(t)(x(t)− x∗)T∇xLn(x(t),λ(t))
)
. (A.4)

Due to the non-negativity of left-hand side in (A.4), we have

‖x∗‖2 +
T−1∑
t=0

N∑
n=1

(1− qn)α(t)2‖∇xLn(x(t),λ(t)‖2 ≥

2
T−1∑
t=0

N∑
n=1

(1−qn)α(t)(x(t)−x∗)T∇xLn(x(t),λ(t)). (A.5)

According to Assumption 3, Ln(x,λ) is convex with re-
spect to x. Hence, we have



(x(t)−x∗)T∇xLn(x(t),λ(t)) ≥ Ln(x(t),λ(t))−Ln(x∗,λ(t)).
(A.6)

Based on (A.5) and (A.6), we have

‖x∗‖2 +
T−1∑
t=0

N∑
n=1

(1− qn)α(t)2‖∇xLn(x(t),λ(t)‖2

≥2
T−1∑
t=0

N∑
n=1

(1− qn)α(t)(Ln(x(t),λ(t))− Ln(x∗,λ(t)))

(3)
=2

T−1∑
t=0

N∑
n=1

(1− qn)α(t)(fn(x(t))− fn(x∗))

+ 2
T−1∑
t=0

N∑
n=1

(1− qn)α(t)(λ(t)Tg(x(t))− λ(t)Tg(x∗))

(b)
≥2

T−1∑
t=0

N∑
n=1

(1− qn)α(t)(fn(x(t))− fn(x∗))

+ 2

T−1∑
t=0

N∑
n=1

(1− qn)α(t)λ(t)Tg(x(t)), (A.7)

where (b) follows from the fact that gm(x∗) ≤ 0 and λm(t) ≥
0. To derive a lower bound for the last term in the right hand
side of (A.7), we provide the following lemma.

Lemma 3. For all T , the following inequality holds

2

T−1∑
t=0

N∑
n=1

(1− qn)α(t)λ(t)Tg(x(t))

≥−
T−1∑
t=0

N∑
n=1

(1− qn)α(t)2‖g(x(t))‖2. (A.8)

Proof: According to (7), we have

‖λ(t+ 1)‖2 (7)
= ‖λ(t) + α(t)g(x(t))‖2

=‖λ(t)‖2 + 2α(t)(λ(t))Tg(x(t)) + α(t)2‖g(x(t))‖2.

By using the recursion method and λ(0) = 0, we can obtain

‖λ(T )‖2 =2

T−1∑
t=0

α(t)(λ(t))Tg(x(t)) +

T−1∑
t=0

α(t)2‖g(x(t))‖2.

Since ‖λ(T )‖2 ≥ 0, we can obtain (A.8).
Using Lemma 3, (A.8) can be rewritten as

‖x∗‖2 +

T−1∑
t=0

N∑
n=1

(1− qn)α(t)2‖∇xLn(x(t),λ(t)‖2

(c)
≥2N

T−1∑
t=0

(1− q0)α(t)(f(x(t))− f(x∗))

−
T−1∑
t=0

N∑
n=1

(1− qn)α(t)2‖g(x(t))‖2, (A.9)

where (c) follows from the definition q0 = maxn∈N qn and
f(x) = 1

N

∑N
n=1 fn(x).

Recall the definition of x̂(T ) in (10), we have

E(f(x̂(T ))− f(x∗))
(d)
≤
∑T−1
t=0 α(t)(f(x(t))− f(x∗))∑T−1

t=0 α(t)
(A.9)
≤ 1

2N(1− q0)
∑T−1
t=0 α(t)

(
‖x∗‖2

+
T−1∑
t=0

N∑
n=1

(1− qn)α(t)2‖∇xLn(x(t),λ(t)‖2

+
T−1∑
t=0

N∑
n=1

(1− qn)α(t)2‖g(x(t))‖2
)

(e)
≤ 1

2N(1− q0)
∑T−1
t=0 α(t)

(
‖x∗‖2

+
T−1∑
t=0

N∑
n=1

(1− qn)α(t)2‖∇xLn(x(t),λ(t)‖2

+
T−1∑
t=0

N∑
n=1

(1− qn)α(t)2ML2R2
)
, (A.10)

where (d) follows from the convexity of function f(x) and
(e) follows from Assumption 3. To derive an upper bound for
‖∇xLn(x(t),λ(t)‖, we have
‖∇xLn(x(t),λ(t)‖ (3)

= ‖∇fn(x(t)) + λ(t)T∇g(x(t))‖
(f)
≤ L(1 + ‖λ(t)‖1)

(g)
≤ L(1 +MS), (A.11)

where (f) and (g) Assumptions 3 and 2, respectively.
Based on (A.11), (21) can be derived from (A.10).
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