PnP-DRL: a Plug-and-Play Deep Reinforcement
Learning approach for Experience-Driven
Networking

Zhiyuan Xu, Kun Wu, Weiyi Zhang, Jian Tang, Yanzhi Wang, Guoliang Xue

Abstract—While Deep Reinforcement Learning has emerged
as a de facto approach to many complex experience-driven
networking problems, it remains challenging to deploy DRL into
real systems. Due to the random exploration or half-trained
deep neural networks during the online training process, the
DRL agent may make unexpected decisions, which may lead to
system performance degradation or even system crash. In this
paper, we propose PnP-DRL, an offline-trained, plug and play DRL
solution, to leverage the batch reinforcement learning approach
to learn the best control policy from pre-collected transition
samples without interacting with the system. After being trained
without interaction with systems, our Plug and Play DRL agent
will start working seamlessly, without additional exploration
or possible disruption of the running systems. We implement
and evaluate our PnP-DRL solution on a prevalent experience-
driven networking problem, Dynamic Adaptive Streaming over
HTTP (DASH). Extensive experimental results manifest that 1)
The existing batch reinforcement learning method has its limits;
2) Our approach PnP-DRL significantly outperforms classical
adaptive bitrate algorithms in average user Quality of Experience
(QoE); 3) PnP-DRL, unlike the state-of-the-art online DRL
methods, can be off and running without learning gaps, while
achieving comparable performances.

Index Terms—Experience-driven Networking, Deep Reinforce-
ment Learning, Batch Reinforcement Learning.

I. INTRODUCTION

Recent years have witnessed dramatic increases in the
complexity and dynamics of modern communication net-
works. Due to the essence of highly dynamic time-variant
of communication networks, traditional pre-defined and fixed
control policies [1], [2], [3] may lead to poor performances
because of failing to adapt to run-time states of the network
environment. Optimization-based control policies [4], [5], [6],
which have been proposed to consider system dynamics,
rely on accurate mathematical environment model or pre-
assumptions about the environment. The recent breakthrough
of Deep Reinforcement Learning (DRL) enables model-free
experience-driven networking to train control policies that
outperform human-engineered heuristics for a wide range of
tasks in computer systems and networking, such as routing

Zhiyuan Xu, Kun Wu, and Jian Tang are with the Department of Com-
puter Science and Engineering, Syracuse University, USA. Email: {zxul05,
kwul02, jtang02}@syredu. Weiyi Zhang is with the Network Evolution
Strategies, LLC, Holmdel, NJ, USA. Email: zhzing@pm.me. Yanzhi Wang
is with the Department of Electrical and Computer Engineering, Northeastern
University, USA. Email: yanz.wang@northeastern.edu. Guoliang Xue is with
the School of Computing, Informatics, and Decision Systems Engineering,
Arizona State University, USA. Email: xue@asu.edu.

This research was supported in part by NSF grants 1704662 and 1704092.
The information reported here does not reflect the position of the government.

and traffic engineering [7], [8], [9], video streaming [10], [11].
Compared with other learning-based methods [12], [13], [14],
such as supervised learning, which are more concerned with
predictions on some key factors, DRL is more suitable to
deal with sequential decision making tasks with the objective
of optimizing long-term performance in the face of system
dynamics and changes along with each decision. In DRL, the
agent learns the best policy to control the system or allocate
resources through interacting with the environment in a trial-
and-error manner. Practical deployment of these RL policies,
however, faces justified skepticism about their robustness when
they face unusual situations. One significant barrier to applying
online methods on real-world problems is the difficulty of
large-scale online data collection. Safety with online RL is
another critical issue as RL fundamentally must explore and
make mistakes in order to learn from them. While these
necessary mistakes are not problem in an offline simulator,
they are dangerous to a running system, and may cause
unexpected consequences which disrupt a functional system.
For example, it would be unreasonable to allow RL agents
to explore, make mistakes, and learn while controlling an
autonomous vehicle or treating patients in a hospital. Even for
non-life-threatening applications, like video streaming, online
DRL could still be unacceptable. According to a survey [15],
the slow startup of a video, due to data collection and online
training, will cause user abandonment. The authors observed
that “After 10 seconds of startup delay, more than half of your
audience has left, and only 8% of users will return to your
website within 24 hours after experiencing a video failure”.
Besides, if the video experience were not satisfying, most users
will close the video [16], among them only 49% would try
again immediately, meaning that another half of the audience
will be lost. Even more, 29% of the audience would seek
different service providers, so the website will loose nearly
one third to competitors.

This makes learning from pre-collected experience a
promising idea. Batch Reinforcement Learning (batch RL)
was proposed to learn from a fixed dataset without further
interactions with the environment. To utilize existing large
datasets for networking applications, the ability for batch RL
algorithms to learn offline from these datasets has an enor-
mous potential impact in shaping the way we build machine
learning systems for the future. However, Batch RL has its
own limits when applying to networking problems: (1) large
data are commonly cheaply collected and sub-optimal; (2) in
real-world datasets, it is common that data distributions are



narrow and more often, biased, i.e., only cover a (limited)
subset of state and action space of DRL; (3) some data are
not representable by policies, such as human demonstrations,
hence, cannot be observed by offline agents. These limits will
lead to extrapolation error [17] that prevents the DRL agent
from adapting to the environment when plugged to online
systems.

To address such limitations, many batch RL algorithms
have been proposed. For example, Fujimoto [17] recently
introduced Batch-Constrained deep Q-learning (BCQ), which
aims to minimize the mismatch between the state-action visi-
tation of the current policy and the state-action pairs contained
in the dataset. Although these algorithms were demonstrated
well in video gaming applications [17], [18], our investigation
found out that a straightforward application of it to networking
problem does not work. The reason for the unsuccessfulness
of these batch RL algorithms in the networking domain is
twofold: In theory, a simple fully-connected or convolutional
neural network (e.g., used in BCQ [17]) often fails to capture
the hidden features from the high-dimensional time-series state
of networking systems; In practice, it is highly likely that the
numbers of collected transition samples for various control
actions are severely imbalanced, thus may cause serious bias
to the DRL agent during the training. In this paper, we propose
PnP-DRL, an offline-trained, plug and play DRL solution,
which consists of two new techniques to solve the aforemen-
tioned two issues: 1) a Long-Short-Term-Memory (LSTM)
based state representation network for better feature extraction
ability; and 2) a novel weighted loss function to train a
generative model G(-), adapting the BCQ approach to practical
networking systems. Intuitively, LSTM-based representation
network is capable of handling temporal data in state, i.e.,
analyzing the relationship between time-series data, which
provides more powerful learning ability to the DRL agent.
Meanwhile, a weighted loss function could help to mitigate
the issue of biased/narrow data distributions by encouraging
to learn more from less seen actions, thus improving the
generalization ability of the DRL agent. Combining these
two mechanisms is able to further potentially improve the
performance of current batch RL algorithm in networking
control tasks.

To the best of our knowledge, this is the first work to
apply and refine the emerging batch RL algorithm to address
experience-driven networking problems. We summarize our
contributions as follows:

o We demonstrate that online DRL solution could be un-

stable and even dangerous to functioning systems.

o We propose to use offline training for a plug and play
DRL agent, which can be applied into networking sys-
tem seamlessly and take effect promptly without further
interactions with environment.

o We present two new techniques, LSTM-based represen-
tation network and transitions imbalanced training, to
improve BCQ so that a plug and play DRL agent can
be enabled.

« Extensive experiments demonstrate that our plug and
play DRL agent (1) behaves consistently without any
disruption of the system (2) outperforms baseline ABR

algorithms while achieving comparable performance to
the online DRL solutions.

The rest of the paper is organized as follows. We introduce
the necessary background about DRL and batch reinforcement
learning in Section II. The overview and design of PnP-DRL
is presented in Section III. We introduce a case study in Sec-
tion IV, and present experimental results and corresponding
analysis in Section V. We review related works and conclude
the paper in Section VI and VII, respectively.

II. BACKGROUND AND CHALLENGES
A. Online Deep Reinforcement Learning

In a common online DRL setting, a DRL agent needs con-
tinuous interaction with an environment in discrete decision
epochs. At decision epoch ¢, the agent observes the state
of the environment s; € S and makes an action decision
a; € A based on the observed state and its control policy
7(-) : § — A. After executing the action on the environment,
the DRL agent receives an immediate reward r, € R, and the
environment transfers to a new state s;;;. The goal of DRL is
to find a policy 7 (-) that can maximize the sum of discounted
rewards Ry = >.°°, , 7'r;, where v € (0,1] is a discount
factor determining how much the agent cares about future
rewards. A pair of {s¢,as,7¢,8¢11} is also called a transition
sample.

Mnih et al. [19] proposed Deep Q-Network (DQN) to
estimate the expected discounted cumulative reward (called
Q value), which extended Deep Neural Network (DNN) into
traditional tabular-based Q-learning as the function approxima-
tor. More specifically, given a pair of state and action (s, a;),
DQN can derive the corresponding Q value:

Q(si,a4;0) :E[Rt|st,at}, (D

where 6 represent the weights of DQN. The optimal control
policy m(-) is then defined as:

m(s¢) = argmax, . 4Q(s;, a; ). 2)

The weights 6 of DQN Q(-) are updated by minimizing the
mean square error (MSE) loss function:

L(0) = E[(re + 7Q(st41,m(5141);0) — Q(st, m(s:); 8))?].
3

Moreover, Mnih et al. [19] further presented the experience
replay buffer and target networks to improve the learning
stability of DQN.

Challenges: In reality, most of the DRL methods require
training on enough transition samples before getting ready to
use (i.e., finding a good control policy). Hence it typically
takes a long time for a control decision to take effect and
collect feedbacks to the DRL agent [20]. This is not endurable,
especially in real commercial systems. Because it is impossible
to expect real systems to halt and wait for a reasonable solu-
tion. Moreover, during the online training, it is unavoidable
for DRL agents to make random decisions because of 1)
neural networks used by DRL agents are usually required
to be initialized randomly at the beginning of trainings; 2)
DRL agents will try random explorations, i.e., trying different



potential actions under various states to check whether these
actions can lead to high/low rewards, such as e-greedy in
DQN [19] and Ornstein-Uhlenbeck (OU) process in Deep
Deterministic Policy Gradient (DDPG) [21]. However, in most
of the practical systems, these random decisions can be costly
or possibly unsafe. A functioning system can be impacted and
may even get crashed due to unexpected actions.

—+—Naive -»--DRL-based
< S \ ]
:§ 1.0 “ I’
s \ /
g 054  Te=all \-_",\ ______ s N/

60 80 100 120 140
& 4000 4 PN
a - N
= el ~ -
820001 wp--p"" ST >
s .‘..‘_'k'h —k, —k ek kK
3 : iSSP S e el
60 80 100 120 140
0 I T Tk R T kR R Rk RR e R AR
\\‘\ »
-50 1 ~ o
< AN - >
~100 1 Sl T
T T > T T T
60 80 100 120 140
time (sec)

Fig. 1: System disrupted during online training process

We use Fig. 1 to demonstrate our observations with
an example of Dynamic Adaptive Streaming over HTTP
(DASH) [11]. When network bandwidth starts dropping from
60s to 100s (as shown in the first row), it indicates the network
condition is getting worse. To ensure the user’s QoE, the rule-
based baseline Adaptive BitRate (ABR) algorithm [6] (i.e.,
in red line), naturally, keeps selecting a low bitrate for each
video chunk. However, due to the random exploration, the
DRL agent (i.e., in red line), counterintuitively, chooses a large
bitrate regardless of the current network condition (as shown
in the second row). Consequently, we can observe a significant
performance degradation with DRL-based algorithm during
this time period (as shown in the third row).

Therefore, it remains a challenge to train a DRL agent to
achieve state-of-the-art performance while avoid disrupting the
system during training.

B. Batch Reinforcement Learning

Batch reinforcement learning [22] was proposed for scaling
reinforcement learning to tasks where the online training
procedure is costly, risky, or time-consuming. In batch rein-
forcement learning, the agent tries to learn control policy di-
rectly from pre-collected datasets (trajectories) without further
interactions with the environment. However, as shown in [23],
a directly supervised behavioral cloning from pre-collected
datasets (sub-optimal or even expert-level trajectories) could
not lead to satisfying performance. One of the main causes is
due to the aforementioned extrapolation error, a phenomenon
in which unseen state-action pairs are erroneously estimated
to have unrealistic values.

To mitigate the above issue and enable learning from sub-
optimal trajectories in Batch RL, Fujimoto et al.[l17] pro-
posed Batch-Constrained deep Q-learning (BCQ). In BCQ,

the DRL agent learns to maximize reward while minimizing
the mismatch between the state-action derived by its control
policy and the state-action pairs contained in trajectories. More
specifically, BCQ proposes a state-conditioned Generative
Network (GN) G(a;|s;; &) with weights € to calculate the
probability of each action under a given state s;. Then BCQ
uses a threshold § to filter out all potential actions for the state.
To adapt and adjust the threshold, the output probabilities of
each action are scaled by the maximum probability from the
GN over all actions.

Ap = a|G(alsi; §) /maxac 4G (als; §) > 6, )

where ¢ is the selection threshold indicating how much we
trust these actions, § = 0 equates to the normal Q-learning
and 0 = 1 represents the normal imitation learning. A is the
whole action space. The optimal control policy 7(-) is then
modified to:

m(s¢) = argmaxge 4, Q(st, &;0), (5)

while DQN is updated by the same way as Eq. (3), the
GN is updated in a standard supervised manner, the actions
in trajectories will be used as ground-truth labels. More
specifically, the GN is updated by minimizing the negative
log-likelihood (NLL) loss function:

L(€) =E[ —logG(ay|ss; €)]. 6)

Compared with the vanilla DQN that iterates the whole action
space to select the action with the maximal Q value, BCQ
reduces the searching space to the state-related actions and
eliminates the actions which are unlikely to be selected by the
control policy 7 (+), thus improving the learning efficiency.

Occurrence
N w B
o o o
o o o

=
o
o

o

2 3 4 5
Action Index

Fig. 2: Transition imbalance

Challenges: However, BCQ is not without issue, when it
comes to networking problems. Based on our investigation,
there are two major issues which cause BCQ cannot be applied
for experience-driven networking.

o Network Representation: In BCQ [17], for robotic
control applications, the authors just applied a two layer
fully-connected neural networks as the function approxi-
mator, which is sufficient for their data analysis. How-
ever, in a practical networking environment, the state



of a system is relatively high-dimensional and time-
dependent. BCQ is not effective to capture the state of
networking systems with time-variant data. For better
network representation, a more powerful neural network
is needed.

o Transition Imbalance: In BCQ [17], the application
studied happened to have evenly distributed transitions.
However, in practical network systems, transitions col-
lected from an existing control policy may have im-
balanced distributions. For example, in an un-congested
network, a sender may always choose a maximal sending
rate to send data. Thus, in the transitions collected from
such an environment, we may hardly see a low sending
rate action (and its corresponding state). In this case, for
BCQ, trained with imbalanced dataset, its DRL agent may
fail to adapt to the system dynamic.

To demonstrate the transition imbalance phenomenon, we
ran a baseline ABR algorithm [6] for DASH, based on a
commonly-used trace Norway 3G dataset [24]. Depending on
the network status, the collected transitions most likely may
not be uniformly distributed. Fig 2 shows the numbers of
collect control transitions from DASH’s six actions. As we can
see from the uneven pattern of the collected transitions, these
transitions are not equally sampled and imbalanced, which
could spoil the training result.

III. ARCHITECTURE AND DESIGN OF PNP-DRL

In this paper, we propose to leverage a state-of-the-art batch
reinforcement learning method, Batch-Constrained Q-learning
(BCQ), to train a DRL agent from pre-collected historical
decision transitions without any further interactions in the
system. In this way, we provide a plug and play agent, which,
after offline training, can be plugged into systems and take
effect immediately, without learning gap and performance
gaffes. Plug and play agent is a general solution for DRL
offline training, independent of system, platform and problems.
Fig. 3 illustrates the architecture of our solution, PnP-DRL,
which consists of three key components:

OFFLINE
TRAINING Batch RL

DRL Agent Networking System

ONLINE AGENT PLUG

Transitions
Database

GN G(-)

DATA
PRE-PROCESSING

DATA
COLLECTION

DATA
1 COLLECTION
Third-Party Systems

Fig. 3: The architecture of PnP-DRL

« Data Collection: Data collection is a continuous oper-
ation which collects all related information, based on

existing control policies, from a running networking sys-
tem. It worth noting that this data collection component
is independent to specific network problems. Based on
the policy setup, it collects all the information which is
general for various applications. For example, for a net-
working system, this component can continuously collect
size of congestion window, estimated network bandwidth,
data arrival rate, user’s QoE, signal-to-noise ratio, buffer
size etc. Also, the data is not necessarily collected from
the current system (that we want to optimize). Instead, the
data can come from any existing third-party system that
provides useful information. When a learning problem
is identified, PnP-DRL will retrieve related data from the
transitions database, process and sanitize it, and then feed
into the offline training component.

o Offline Training: Without interacting and potentially
disrupting a networking system, this component only
analyzes a dataset of transition samples {s;,as,r¢,s}},
which are collected from existing control policies. Each
transition sample records that after executing the action a;
at a discrete decision epoch %, the state of the environment
s; transfers to a new state s;yj, and the DRL agent
receives a reward r,. The DRL agent offline learns
the best networking control policy from these transition
samples. At this step, no further interactions with the
system, nor new generated transition samples are needed.

e Online Agent Plug: After training, we can directly plug
the DRL agent into the system, and expect it to achieve
state-of-the-art performance and adapt to the dynamics of
the system.

The architecture of PnP-DRL demonstrates the processing
steps to deploy a plug and play agent: 1) collect statistical
data from the current system or third-party systems; 2) pre-
process the transition samples according to the definition of
state, action, and reward of the DRL agent; 3) train the DRL
agent offline with those collected transition samples; 4) plug
the DRL agent into a running networking system and make
online decisions without interruption.

IV. DASH: A CASE STUDY

To demonstrate how the proposed plug and play DRL
approach works, we use Dynamic Adaptive Streaming over
HTTP (DASH) as a case study. DASH is one of the most
dominant solutions for video transmission nowadays [25]. The
DASH server is essentially an HTTP server that hosts the
media segments, such as all video chunks with all potential
bitrates, and records their information and URLSs into a Media
Presentation Description (MPD) file. Meanwhile, the DASH
server makes the MPD file and these video chunks available
to its clients as HTTP resources, and clients sequentially
download each video chunk from the DASH server. Extensive
research efforts have been made to develop Adaptive Bit
Rate (ABR) algorithms, which aim to fully utilize network
resources and optimize user Quality of Experience (QoE)
for the whole video. In ABR algorithms, the client takes
current network status and video content information into
consideration, and then decides to fetch the video chunk with
the most proper quality (such as bitrate).



Recently, DRL-based ABR algorithms have been pre-
sented [10], [11]. Unlike traditional rule-based or heuristic-
based solutions, DRL-based methods do not rely on accurate
mathematical model of the system. Instead, online DRL solu-
tions try to learn the best control policy via interacting with
the system in a trial-and-error manner, enabling experience-
driven control. Though these work showed promising final
results, such practice can be risky and may not be feasible
to explore in real environment. We observed that the online
DRL-based ABR algorithm, which gradually learns to make
better ABR decisions through reinforcement, in the form of
reward signals that reflect user QoE for past decisions, could
experience severe performance degradation during the training.
For example, as shown in Fig. 1, an online training agent may
suggest to try a long-time buffering and learn the rewards
of such behavior. However, users usually will not tolerate
such long buffering time and may directly close the video
player instead of keep waiting. Therefore, in reality, it may
be necessary to learn control policies from the offline dataset
instead of directly interacting with the system.

In DASH, we first collect transition samples from existing
ABR algorithms. Since these algorithms are already imple-
mented in the system, and we just collect the data, there is no
extra burden on the system. It is worth noting that in DASH,
these existing DRL-based ABR algorithms do not always make
good decisions. In some circumstances, they may achieve sub-
optimal or even non-satisfactory performance. Therefore, the
collected transition samples are not perfect and most of time
sub-optimal. Consequently, we noticed that, shown in our
experiments, the state-of-the-art batch RL does not work well
for DASH, better solution is needed.

A. Proposed Plug and Play DRL Approach

We first present the definition of state, action and reward
for the DRL agent in DASH.
State: at each decision epoch ¢, the state is defined as
St = (ft, CZ;, ﬁt7 bt, Ct, lt), where J?t = {thl, QZ‘%, ceny Jﬁf} and
d; = {d},d2,...,d*} are the measured network throughput
and download time for the past £ video chunks, respectively;
iy = {ni,n?,...,n"} consists of m available sizes for the
next video chunk; b; is the size of current buffer; c¢; is the
remaining number of video chunks; and [; is the selected
bitrate for the last downloaded video chunk.
Action: the action at each decision epoch a; indicates the
choice of the bitrate for the next video chunk. Note that the
available bitrates for the video are pre-defined by the video
server, the DRL agent has m available choices for the next
video chunk.
Reward: we use the following widely-used QoE metric as the
reward, which is consistent with most existing work [11], [6].

r=M; — T, — po| My — M;_4], @)

where M; is the selected bitrate of video chunk at decision
epoch ¢, T; is the rebuffering time, and the last term en-
courages smooth transition between chunks and penalties the
sudden changes of video quality. 1 and po are two variables
to balance the relative importance of rebuffering time and

quality change. The QoE metric reflects user preferences for
the system. For example, in DASH, during the video playing,
the user prefers a larger video bitrate, less re-buffering time,
and smooth transition between video chunks, which are all
considered in the defined QoE metric (reward for the DRL
agent). In this paper, we focus on the offline training of a
DRL agent, by following the same definition of state, action
and reward in work [11] for the DASH problem.

If we collect enough transition samples {s;, a;,7;,s}} from
the existing control policies in a running system, we can start
to offline train a DRL agent without interactions with the
system. However, as explained in Secton II, a straightforward
application of state-of-the-art batch reinforcement learning al-
gorithm (i.e., BCQ) to the DASH problem can not necessarily
lead to a satisfactory performance. To solve these two issues,
we propose two new techniques: (1) a LSTM-based state
representation network for better feature extraction ability;
and (2) a weighted loss function to train the generative model
G(+) of BCQ. It is worth noting that although these proposed
techniques are designed for the DASH problem in this work,
they are generic and can be easily applied to other systems
with similar issues.

B. Representation Network

: Left Chu
§

| Last Selected Bitrate ”” ; : |
' R . 1
' ' ' " 1
' ' ' - '
1 ' M '

Input Layer

Fig. 4: LSTM-based Neural Network Structure

To have a better representation for the state, we pro-
pose a novel LSTM-based neural network to extract features
from high-dimensional time-series state. Compared with fully-
connected neural networks, LSTM is capable of learning long-
term dependencies from time-series input. The state is split
into two sets:

1) the time-series set (7, d;, 7i¢) that includes historical or

future information; and

2) the flat set (b, ct, ;) that includes other constant infor-

mation.
As illustrated by Fig. 4, the first set is connected to three
LSTM layers and the second set is connected to fully-
connected layers, then the output of these two paths are



concatenated together as a hidden layer to further connected to
a fully-connected layer to get the representation. All the LSTM
layers and fully-connected layers will be trained together in
an end-to-end manner.

C. Training with Transitions Imbalance

It is well known that imbalanced dataset will degrade
the generalization of DNN models, making it hardly adapt
to unknown circumstances [26]. Therefore, to improve the
generalization ability of the DRL agent, we propose to use
a weighted loss function to alleviate this issue. Instead of
directly applying the NLL loss function defined in Eq. (6)
to train GN, we add a weight to each training target,

1K
LE) =% ;w -logGl(als; ), (8)
where the weight w; is calculated based on collected transi-
tions: (@)
ola;
w; =1 N
where o(a;) is the number of transitions that contain the action
a; in the whole dataset, /N is the total number of transitions in
the dataset. Eq. (9) assigns more weights to the less sampled
actions, hence encourages the DNN not to ignore, but rather
to learn more from the less-sampled transitions.

For the completeness of the presentation, we formally
present our PnP-DRL in Algorithm 1. After collecting tran-
sition samples from the running system and storing them into
the replay buffer (Lines 1-2), the offline training procedure
starts with randomly initializing DQN and GN, and copying
the weights of DQN to its target network (Lines 3-4). For
each training epoch and each mini-batch of sampled transitions
(Line 6), we first filter out the potential actions based on their
probability and a threshold with Eq. (4) (Line 7). Then the
target action and its corresponding target value for training
DQN can be computed by Eq. (3) (Lines 8-9). DQN then will
be trained with minimizing the mean square error (MSE) loss
function (Line 10), and GN is set to be trained by minimizing
the weighted Negative Log-Likelihood (NLL) loss function,
defined in Eq. (8), to mitigate the transition imbalance issue
(Lines 11-12). The target network of DQN is slowly updated,
with a small target update rate 7 (Line 13) as the control
parameter. After the offline training, the DRL agent will be
directly plugged into a running system (Line 15), seamlessly
start monitoring run-time system state, and promptly make
decisions and execute actions without learning gap and further
interacting with the system (Lines 17-19).

(€))

V. PERFORMANCE EVALUATION
A. Implementation
We implemented the proposed PnP-DRL using Py-
Torch [27]. For DQN and GN, we used 64 neurons on each
LSTM layer and 64 neurons on each ReLu-activated [28]

fully-connected layer. During the offline training, we used
Adam [29] as the optimizer, and the learning rate is set to

Algorithm 1: PnP-DRL
Input: The number of training epochs 7', replay buffer
B, the size of a mini-batch K, action filter
threshold ¢, target update rate 7, DQN Q(-)
with weights @ and its target network Q’(-)
with weights 8, GN G(-) with weights &.
Output: Q(-) and G(-) with weights 0 and &.

Sdstckckckkckckskolek Datg Collection e sksskskskoksksk sk

1 Collect desirable information from the running system
with existing control policies;

2 Pre-process and store the transition samples into the
replay buffer B;

Sdkckckskckckk ok Offline Training sfeoskeosieseoskoskeoskeoskoskoskoskosk

3 Randomly initialize the weights @ and &;

4 Update the target network 6’ := 0;

5 for training epoch 1 — T do

6 Sample K transitions (s;,a;,r;,s;) from B;

7 Filter out potential target actions with threshold ¢
A; = G(al|s]; &) /maxa,c aG(4;]s}; &) > J;

8 Compute the target action for each transition
aj := argmaxy . 4, Q(s}, a;; 0);

9 Compute the target value for each transition

yi =1 +7Q'(s},a;;6');

10 Update weights 6 of DQN with loss function

£(0) = % S (i — Q(si.ai:0))*

11 Compute the sample imbalance weight w,;

12 Update weights & of GN with loss function
K

L(&) = —% > w; - logG(as]s;; €);

13 Update the weights of target network

0 =70+ (1—-71)0";

14 end
s sfe sk sk sk sk sk skoskoskokor Online Agent Plug sk sfe s sk sk sk sk sk skoskosk
15 Plug DQN and GN to into the running system;
16 while Observed state s; from the system do
17 Filter out potential actions with threshold §
Ay = G(ag|st; &) /maxa, caG(at]se; &) > 05
18 Select the action with the highest Q value
a; = argmaxy ¢ 4, Q(st, a4; 0);
19 Execute the action a; in the system;
20 end

0.001. Following the commonly-used settings for all experi-
mental scenarios, the reward discount factor ~ is set to 0.99,
the target network updating rate 7 is set to 0.005, the action
filter threshold § is set to 0.45, and the mini-batch size is set
to 256. The QoE weights p; and po are set to 4.3 and 1,
respectively.

PnP-DRL is implemented as a standalone HTTP server
(a.k.a., DRL server) using Python BaseHTTPServer, same
as in [11]. At each decision epoch, the DASH client sends
statistical information to the DRL server, PnP-DRL derives an
appropriate action based on the received statistical informa-
tion. It is worth noting that for simplicity, we place the DRL
server on a local machine. In practice, the DRL server can
be easily deployed either locally or remotely, like in a cloud
center or on a video server.



B uffer-Based = BCQ MM RobustMPC mEmBOLA M PP-DRL M DRL m=Buffer-Based

BCQ mmmRobustMPC M BOLA M PP-DRL M DRL

mmmBuffer-Based i BCQ MMM RobustMPC MENBOLA M PnP-DRL M DRL

.
)

-

)

o

®
4
£

o

o
e
o

o
IS

Normalized average QoE
o
IS

)
N
Normalized average QoE

o
N

0. 0.0

0 Buffer-Based BCQ RobustMPC BOLA PnP-DRL  DRL

(a) On Norway-3G network

" Buffer-Based BCQ RobustMPC BOLA PnP-DRL  DRL

(b) On AWS network

IS o 4 =
> o © )

Normalized average QoE

I
N

00 Buffer-Based BCQ RobustMPC BOLA PnP-DRL  DRL

(c) On Unseen network

Fig. 5: Performance of all the methods on different networks

101 — Buffer-Based 101 — Buffer-Based 101 —— Buffer-Based
BCQ BCQ BCQ
sl T robustMPC 08l robustMPC 08l robustMPC
—— BOLA ) —— BOLA ) —— BOLA
—— PnP-DRL —— PnP-DRL —— PnP-DRL
06] — DRL 06] — DRL 06] — DRL
w w w
o [a) o
O O o
0.4 04 0.4
0.2 02 02
0.0 0.0 0.0
-2 -1 [ 1 2 3 12 14 16 18 2.0 000 025 050 075 100 125 150 175 2.00
Ave QoE Ave QoE Ave QoE

(a) On Norway-3G network

(b) On AWS network

(¢) On Unseen network

Fig. 6: CDF of average QoE from all methods on different networks

B. Experiment Setup

To evaluate the performance of PnP-DRL on realistic net-
work environments, we conducted extensive experiments on
two widely-used network traces, Norway 3G dataset [24] and
AWS trace [30]. We applied the same pre-processing [11] to the
original traces. The long-time traces are split into small traces,
with each representing a 320s duration. Trivial traces whose
throughput are either too small to support any available bitrate
or larger than maximum bitrate are filtered out to simplify the
process. We conducted experiments with both Mahimahi [31]
emulation and chunk-level simulation [11] environments. For
a comprehensive evaluation, we compared PnP-DRL with four
popular ABR algorithms,

1) Buffer-Based [1]: This is a rule-based method, which
directly maps the current level of buffer occupancy to a
bitrate based on a pre-defined fixed rule.

2) BOLA [4]: It selects bitrates by Lyapunov optimization
which considers the level of buffer occupancy.

3) RobustMPC [6]: It predicts the future throughput based
on the harmonic mean of the measured throughput for
the last 5 video chunks, then it selects the bitrate with the
objective of maximizing the QoE metric over 5 future
chunks based on the buffer occupancy and the predicted
throughput. Each measured throughput is normalized by
the maximum error observed in the last 5 video chunks.

4) DRL-Based [11]: We use an online DRL-based ABR
algorithm, called Pensieve, which uses A3C [32] for
parallel online training.

In addition, we applied the original BCQ algorithm [17] for
offline training of the DRL agent.

We used the defined reward (e.g, QoE value) as the
performance metric for comparisons. Before training, we first
collect transitions from the existing policies on varies of
network conditions. On Norway-3G and AWS traces, we
totally collected 19,120, and 11,179 transition samples, re-
spectively. We then trained the DRL agent on each trace to
get a ready-to-use PnP-DRL agent. It should be noted that to
evaluate the generalization of PnP-DRL, we reserved 20% of
the Norway-3G traces as unseen scenarios, which means that
no transition samples were collected on these traces. After
offline training on the rest traces and being pluged to the DRL
server, PnP-DRL can, promptly and seamlessly, make proper
action decisions based on states of the system in these unseen
scenarios.

C. Evaluation Results

The experimental results are shown in Figs. 5 - 8. Evaluating
from multiple perspectives, we make the following observa-
tions.

1) Average QoE performance: From Fig. 5, we can observe
that PnP-DRL significantly outperforms other non-DRL base-
line ABR algorithms in terms of average QoE on all networks.
Specifically, PnP-DRL achieves 834%, 74.06%, 17.65%, and
4.98% more average QoE on the Norway-3G network, com-
pared with Buffer-Based (BB), BCQ, RobustMPC, and BOLA,
respectively. It is not surprising to observe that Buffer-Based



mmmBuffer-Based BCQ MEmIrobustMPC EESIPnP-DRL MESIDRL Based BCQ

[PnP-DRL EESIDRL Based BCQ

mEPnP-DRL EESIDRL

° ° -
> ® >

Normalized average QoE
°
s

Normalized average QoE

°

robustMPC  PnP-DRL DRL

0.0 0.0
Buffer-Based BCQ Buffer-Based BCQ

(a) without noise in transitions

robustMPC  PnP-DRL DRL

(b) with 5% random noise in transitions

° ° ° o
b > © °

Normalized average QoE

°

robustMPC  PnP-DRL DRL

0.0
Buffer-Based BCQ

(c) with 50% random noise in transitions

Fig. 7: Performance of all the methods with imperfect transition samples

ABR algorithm does not perform well on highly-variant cel-
lular networks, since it makes decisions based on fixed-rule
and fails to adapt to dynamic network environment. Moreover,
PnP-DRL consistently performs better than vanilla BCQ on all
networks, which well proved the effectiveness of our newly
designed features. These results validated the effectiveness and
superiority of PnP-DRL. Fig. (5c) illustrates that PnP-DRL can
adapt to unknown environment, compared with other baseline
solutions, with better results. Specifically, PnP-DRL achieves
355%, 67.53%, 10.68%, and 31.64% more average QoE, com-
pared with BB, BCQ, RobustMPC, and BOLA, respectively.
Last but not least, PnP-DRL delivers similar and often better
QoE performance than the online DRL solution. Recall that in
a typical DRL setting, the agent could progressively improve
its control policy with new transition samples, which are
collected continuously by interacting with the environment (a
system) in a trial-and-error manner. By contrast, PnP-DRL,
as a batch RL algorithm, learns the policy only from a given
offline dataset, which may limit its learning ability (although
it still outperforms most of the non-DRL methods). Therefore,
in general, the performance of online DRL algorithms is better
than batch RL algorithms. This phenomenon can also be
observed in recent batch RL works [33], [34].

2) Cumulative distribution function (CDF) of QoE: The CDFs
of average QOE results of algorithms are shown in Fig. 6,
which provide more details about the decisions. The distribu-
tion of BCQ has long tails on negative QoE on both Norway-
3G and unseen networks while RobustMPC shows similar
negative skewness on AWS network. In contrast, PnP-DRL is
robust to network conditions changes, and performs well on all
traces, hardly ever suffering any negative QoE. As for the AWS
network, because the network condition is relatively stable, we
can observe from the Fig. 6b that the range of achieved average
QoE under different traces is relatively small.

3) Robustness of solutions: To evaluate the robustness of
PnP-DRL, we conducted experiments to see how PnP-DRL can
adapt to noisy data, i.e., learning from imperfect transitions.
To introduce noisy transitions, we added 5% and 50% random
noise uniformly to the selected actions. The results shown
in Fig. 7 proved that PnP-DRL is robust to the noisy data.
Even with 50% random noise, PnP-DRL can still learn a good
control policy that outperforms other baselines. Specifically,
PnP-DRL achieves 17.17% and 2.83% more average QOoE,

compared with BB and BCQ, respectively. Both our method
and BCQ learn from a generative model in a batch-constrained
way, thus they can both learn a better-than-baseline policy even
from noisy transitions. However, due to our particular neural
network design, PnP-DRL consistently performs better under
different noise levels. The DRL method shown in Fig. 7 is fully
online trained and makes decision without any random noise.
Therefore, online DRL is supposed to delivery a (near-)best
performance, which can be regarded as upper bound results.
As we can see from Fig. 7b and 7c, when there exists minor
noise in the dataset, PnP-DRL can maintain the performance.
However, if noise level gets significant, where the quality of
collected transition samples cannot be ensured, PnP-DRL fails
to learn a satisfying policy. It is worth noting that learning from
imperfect dataset is still an open question in the research area
of batch RL [23], [35], which is beyond the scope of this work.

—100 4

—200

—300

Average QoE

~400

il

—— PnP-DRL
—— DRL-based

—500 -

—600

0 500 1000 1500 2000 2500
Time Step (Epoch)

Fig. 8: Performance fluctuation during learning

4) Plug and play without learning gap: One of the most
important motivations for our plug and play DRL agent is
to avoid system disruption. In Fig. 8, we show that PnP-
DRL provide a Plug-In-Play method for a real system, without
learning gaps and system disruption after deployment. The
performance of PnP-DRL is consistent and reliable. On the
other hand, Pensieve, an online DRL solution, causes system
performance variation during training. As we can see, the
DRL-based method starts to explore the environment at the
beginning of the training (around 1,000th time step) because
of randomly initialized neural networks, thus the QOE is



fluctuating a lot. While our PnP-DRL works consistently well
right after deployment, demonstrating the idea of plug and
play. More importantly, PnP-DRL not only behaves more
consistently than Pensieve, it also has comparable performance
of average QoE Figs. 5 and 7.

140 1

1204

100 !

801 !

Average total reward

60 1 !

1 2 3 4 8 16 32
Number of past video chunks k

Fig. 9: The impact of historical measurements

5) Impact of historical measurements: In PnP-DRL, we
propose to use an LSTM to analyze the time-series data from
past k video chunks. In Fig. 9, we conducted chunk-level
simulation on the FCC network traces [36] to evaluate that
how many past chunks %k are sufficient to represent the state
space and maintain a satisfying performance. As we can see,
PnP-DRL suffers from serious performance degradation when
considering only a small number of past chunks, e.g., 1, 2, and
3, into the state. On the other hand, using a larger number
of past chunks, e.g., 16 or 32, can provide only a marginal
improvement (around 1%) while causing extra burden to data
collection and offline training. Therefore, in this paper, we
choose to set kK = 8 to balance the performance and cost.

VI. RELATED WORK

Deep Reinforcement Learning: DRL has emerged as a
de facto approach to many complex tasks. As a pioneer
work, Minh et al. [19] proposed DQN that leverages DNNs
as function approximators to directly learn control policies
from high-dimensional raw images of Atari video games.
To further improve the learning ability of DRL, Hasselt et
al. [37] proposed Double Q-learning to reduce the estimation
errors introduced by DNNs. An asynchronous DRL framework
(A3C) that enables parallel training for better data efficiency
was presented by Mnih et al. [32]. Wang et al. [38] proposed
a dueling DNN structure for DRL that work as the state value
function and the state-dependent action advantage function.
However, according to previous works [11], [8], it is usually
not trivial to apply DRL to practical networking problems.

DRL-based Experience-Driven Networking: Recently,
DRL has attracted research attention in the context of
experience-driven networking because of its effectiveness and
model-free property. Mao et al. [39] presented DeepRM,
which enables a cluster system to learn the best re-
source scheduling policy from its control experience.
[40], [41], and [7] proposed DRL-based congestion control

policies that aim at reducing the end-to-end delay as well as
improving throughput. Xu et al. [8] proposed to apply Deep
Deterministic Policy Gradient (DDPG) and prioritized experi-
ence replay to solve the general traffic engineering problem. A
DQN-based framework was presented by Li ef al. [42] to solve
the computation offloading and resource allocation problem in
a mobile edge computing system. Wang et al. [43] applied
DQN to solve the dynamic multichannel access problem in
a wireless network particularly whose channels are corre-
lated and system statistics is unknown. Ayala-Romero [44]
presented vrAln, a dynamic DRL-based resource controller
for the virtualization of radio access network (VRAN). The
results show that vrAln can successfully derive appropriate
compute and radio control actions irrespective of the platform
and context.

However, all the above DRL-based networking methods are
required to online interact with the system during learning,
which, as we have perceived, is not realistic in practical
environments.

Batch Reinforcement Learning: Batch reinforcement
learning [22] has been proposed to offline train a DRL agent
from a fixed batch of data, without directly interacting with
the environment. It is useful in some real-world applica-
tions, particularly where data collection is dangerous or time-
consuming [20]. Many existing off-policy DRL methods, such
as DQN [19], double DQN [37], and DDPG [32], can work
in a batch RL setting [22]. However, these methods fail to
handle the extrapolation error [17], [23], which is introduced
by evaluating state-action pairs that are not contained in the
provided dataset. Recently, extensive research efforts have
been made to eliminate the extrapolation error in batch RL.
Fujomoto er al. [17] proposed the Batch-Constrained deep Q-
learning framework (BCQ). In BCQ, the DRL agent favors
more a state-action visitation that is similar to some subset
of the pre-collected dataset. Based on the core idea of BCQ,
Kumar et al. [45] presented an actor-critic algorithm, Boot-
strapping Error Accumulation Reduction Q-Learning (BEAR-
QL), which samples actions from a learned actor rather than a
generative model. Jaques et al. [46] presented Way Off-Policy
(WOP), which uses KL-control to penalize divergence from
a pre-trained prior model of probable actions, thus reducing
extrapolation error and enabling effective offline learning.

However, even though these works demonstrated that they
can achieve state-of-the-art performance on many Atari game
and robotic control tasks [18], it does not seem that they can be
directly applied into experience-driven networking problems.
As a first step, we presented two techniques to enhance
the BCQ [17], [18] algorithm, LSTM-based representation
network and transitions imbalanced training, which are shown
to achieve better performance in a real-world application.

Dynamic Adaptive Streaming over HTTP: As video
transmission has evolved to dominate today’s Internet traffic in
the last decade [47], Dynamic Adaptive Streaming over HTTP
(DASH) has emerged as a dominant standard for video trans-
mission. Through Adaptive BitRate (ABR) algorithms, DASH
enables the video server to optimize the video quality as well
as improving user’s QoE. Most of the existing ABR algorithms
are rule-based (e.g., Buffer-based [1]) or optimization-based



(e.g., BOLA [4], MPC [6]) solutions. They rely on accurate
mathematical system models, and typically fail to adapt to
the dynamics of networking systems, consequently, are usually
unavailable in complicated real systems. Recent breakthrough
of DRL provides a promising alternative for enabling model-
free experience-driven ABR for DASH. Gadaleta er al. [10]
proposed D-DASH, a framework that applies deep Q-learning
to optimize the QoE for DASH. Mao et al. [11] presented
Pensieve, a system that learns ABR without relying on any pre-
programmed control rules or explicit assumptions about the
networking system. Although rule-based [1] or optimization-
based [4], [6] ABR algorithms, which do not need training, are
easy to deploy, they are usually limited by possible inaccurate
system models. DRL-based ABR algorithms, including both
online and batch RL (e.g., our PnP-DRL), learn the best
control policy from the environment without relying on any
assumed system model. More importantly, compared with
online DRL ABR algorithms [10], [11], PnP-DRL can learn
from a fixed dataset without further interactions with envi-
ronment (running system). Such characteristic helps to avoid
the interruption of running systems, while still achieving a
comparable or even better performance.

While the goal of this paper is not to propose a new or better
ABR algorithm, we used the DASH problem as a study case
in order to illustrate that online DRL may have side-effect to
real-world networking systems. We proposed to train a plug
and play DRL agent with pre-collected samples, which can
outperform traditional ABR algorithms.

VII. CONCLUSION

Though DRL has emerged as a de facto approach to many
complex experience-driven networking problems, practical de-
ployment of these DRL policies faces realistic challenges. In
this work, we first analyzed and demonstrated that online DRL
solutions could be unstable and even dangerous to functioning
systems. We then proposed to leverage batch RL, such as
BCQ, to offline train a plug and play DRL agent, which can
be applied into system seamlessly and take effect promptly
without further interactions with environment. With two pro-
posed new techniques, LSTM-based representation network
and transitions imbalanced training, PnP-DRL improved BCQ
and empower offline DRL agent to be plug and play for
experience-driven networking. Extensive experiments mani-
fested that our plug and play DRL agent behaves consistently
without any disruption of the system, and outperforms baseline
ABR algorithms while achieving comparable performance to
the online DRL solutions.

REFERENCES

[1] T. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service, ACM SIGCOMM’14, pp. 187-198.

[2] Open Shortest Path First (OSPF),
https://en.wikipedia.org/wiki/Open_Shortest_Path_First

[3] R.Z. Shen, Valiant Load-Balancing: building networks that can support
all traffic matrices, Algorithms for Next Generation Networks, 2010.

[4] K. Spiteri, R. Urgaonkar, and R. Sitaraman, BOLA: Near-optimal bitrate
adaptation for online videos, IEEE INFOCOM’16, pp. 1-9.

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]
[17]
(18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]

[26]
(27]
[28]
[29]

[30]

[31]

[32]

(33]

D. Xu, M. Chiang and J. Rexford, Link-state routing with hop-by-
hop forwarding can achieve optimal traffic engineering, IEEE/ACM
Transactions on networking, Vol. 19, No. 6, 2011, pp. 1717-1730.

X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A control-theoretic approach
for dynamic adaptive video streaming over HTTP, ACM SIGCOMM’15,
pp. 325-338.

N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, A deep rein-
forcement learning perspective on internet congestion control, ICML’19,
pp. 3050-3059.

Z. Xu, J. Tang, J. Meng, W. Zhang, Y. Wang, C. H. Liu and D. Yang,
Experience-driven networking: a deep reinforcement learning based
approach, IEEE INFOCOM’18, pp. 1871-1879.

A. Valadarsky, M. Schapira, D. Shahaf, and A. Tamar. Learning to route,
ACMWorkshop on HotNets, 2017, pp. 185-191.

M. Gadaleta, F. Chiariotti, M. Rossi, and A. Zanella, D-DASH: a deep
Q-learning framework for DASH video streaming, IEEE Transactions
on Cognitive Communications and Networking, Vol. 3, No. 4, 2017,
pp. 703-718.

H. Mao, R. Netravali, and M. Alizadeh, Neural adaptive video streaming
with pensieve, ACM SIGCOMM’17, pp. 197-210.

M. Van Der Schaar, D. S Turaga, and R. Wong, Classification-based
system for cross-layer optimized wireless video transmission, /IEEE
Transactions on Multimedia, Vol. 8, No. 5, 2006, pp. 1082-1095.

Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and B.
Sinopoli, CS2P: Improving video bitrate selection and adaptation with
data-driven throughput prediction, ACM SIGCOMM’16, pp. 272-25.
M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, Machine learning
for networking: Workflow, advances and opportunities, IEEE Network,
Vol. 32, No. 2, 2017, pp. 92-99.

S. Krishnan, and R. Sitaraman, Video stream quality impacts viewer be-
havior: Inferring causality using quasi-experimental designs, IEEE/ACM
Transactions on Networking, Vol. 21, No. 6, 2013, pp. 2001-2014.
https://www.conviva.com/research/consumer-survey-report-2015-how-
consumers-judge-their-viewing-experience/

S. Fujimoto, D. Meger, and D. Precup, Off-Policy deep reinforcement
learning without exploration, /ICML’19, pp. 2052-2062.

S. Fujimoto, E. Conti, M. Ghavamzadeh, and J. Pineau, Benchmarking
batch deep reinforcement learning algorithms, arXiv: 1910.01708, 2019.
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S.
Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D.
Wierstra, S. Legg and D. Hassabis, Human-level control through deep
reinforcement learning, Nature, Vol. 518, No. 7540, 2015, pp. 529-533.
T. Li, Z. Xu, J. Tang, and Y. Wang, Model-free control for distributed
stream data processing using deep reinforcement learning, Proceedings
of the VLDB Endowment, Vol. 11, No. 6, 2018, pp. 705-718.

S. Gu, T. Lillicrap, I. Sutskever and S. Levine, Continuous deep Q-
Learning with model-based acceleration, /ICML’16, pp. 2829-2838.

S. Lange, T. Gabel, and M. R. Miller, Batch reinforcement learning,
Reinforcement Learning, Springer, 2012.

S. Levine, A. Kumar, G. Tucker, and J. Fu, Offline reinforce-
ment learning: tutorial, review, and perspectives on open problems,
arXiv: 2005.01643, 2020.

H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, Commute path
bandwidth traces from 3G Networks: analysis and applications, ACM
MMSys’13, pp. 114-118.

T. Stockhammer, Dynamic adaptive streaming over HTTP — standards
and design principles, ACM Conference on Multimedia System, pp. 133-
144, 2011.

J. Johnson, and T. Khoshgoftaar, Survey on deep learning with class
imbalance, Journal of Big Data, Vol. 6, No. 1, 2019, pp. 27.

A. Paszke, S. Gross, S. Chintala, and et al., Automatic differentiation
in pytorch, 2017.

V. Nair, and G. Hinton, Rectified linear units improve restricted boltz-
mann machines, ICML’10.

D. Kingma and J. Ba, Adam: a method for stochastic optimization,
ICLR’15.

Y. Yan, J. Ma, G. Hill, D. Raghavan, R. Wahby, P. Levis, and K.
Winstein, Pantheon: the training ground for Internet congestion-control
research, USENIX ATC’18, pp. 731-743.

R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens,
and H. Balakrishnan, Mahimahi: accurate record-and-replay for HTTP,
USENIX ATC’15, pp. 417-429.

V. Mnih, et al., Asynchronous methods for deep reinforcement learning,
ICML’2016, pp. 1928-1937.

J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, D4rl: Datasets
for deep data-driven reinforcement learning, arXiv: 2004.07219, 2020.



[34] C. Gulcehre, Z. Wang, A. Novikov, T. Paine, S. Gémez, K. Zolna, R.
Agarwal, J. S Merel, D. J] Mankowitz, C. Paduraru, G. Dulac-Arnold.
RL Unplugged: A collection of benchmarks for offline reinforcement
learning, NeurlPS’20.

Y. Wu, and N. Charoenphakdee, H. Bao, V. Tangkaratt, and M.
Sugiyama, Imitation learning from imperfect demonstration, /CML’19,
pp. 6818-6827.

Federal Communications Commission:
research/reports/

H. v. Hasselt, A. Guez, and D. Silver, Deep reinforcement learning with
double Q-learning, AAAI’16, pp. 2094-2100.

Z. Wang, T. Schaul, M. Hessel, H. Van, M. Lanctot and N. De
Freitas, Dueling network architectures for deep reinforcement learning,
ICML’16, pp. 1995-2003.

H. Mao, M. Alizadeh, I. Menache, and S. Kandula, Resource manage-
ment with deep reinforcement learning, HotNets’16, pp. 50-56.

S. Emara, B. Li, and Y. Chen, Eagle: Refining congestion control by
learning from the experts, IEEE INFOCOM 20, pp. 676-685.

Z. Xu, J. Tang, C. Yin, Y. Wang, and G. Xue, Experience-driven
congestion control: When multi-path TCP meets deep reinforcement
learning, /EEE JSAC, vol. 37, no. 6, pp. 1325-1336, 2019.

J. Li, H. Gao, T. Lv, and Y. Lu, Deep reinforcement learning based
computation offloading and resource allocation for MEC, IEEE Wireless
Communications and Networking Conference (WCNC), 2018, pp. 1-6.
S. Wang, H. Liu, P. H. Gomes, and B. Krishnamachari, Deep reinforce-
ment learning for dynamic multichannel access in wireless networks,
IEEE Transactions on Cognitive Communications and Networking,
vol. 4, no. 2, pp. 257-265, 2018.

J. Ayala-Romero, A. Garcia-Saavedra, M. Gramaglia, X. Costa-Perez,
A. Banchs, and J. Alcaraz, vrAln: A deep learning approach tailoring
computing and radio resources in virtualized RANs, ACM MobiCom’19,
pp. 1-16.

A. Kumar, J. Fu, M. Soh, G. Tucker, and S. Levine, Stabilizing off-policy
g-learning via bootstrapping error reduction NeurIPS’19, pp. 11784—
11794.

N. Jaques, A. Ghandeharioun, J. Shen, C. Ferguson, A. Lapedriza, N.
Jones, S. Gu, and R. Picard, Way off-policy batch deep reinforcement
learning of implicit human preferences in dialog, arXiv: 1907.00456,
2019.

Index, Cisco Visual Networking, Global mobile data traffic forecast
update, 2016-2021, White Paper, Vol. 7, 2017.

[35]

[36]

https://www.fcc.gov/reports-
[37]

(38]

(391
[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

Zhiyuan Xu is currently pursuing the Ph.D. degree
at the Department of Electrical Engineering and
Computer Science, Syracuse University, Syracuse,
NY, USA. He received the B.E. degree in School of
Computer Science and Engineering from University
of Electronic Science and Technology of China,
Chengdu, China, in 2015. He was an exchange
student in 2013 at Department of Computer Science
and Information Engineering, National Taiwan Uni-
versity of Science and Technology, Taipei, Taiwan.
He was a visiting student in 2015 at Dalhousie
University, Halifax, NS, Canada. His current research interests include deep
reinforcement learning, communication networks, and edge computing.

Kun Wu received his B.S. degree from Beijing In-
stitute of Technology in 2017. He is currently work-
ing towarding his Ph.D degree in the Department
of Electrical Engineering and Computer Science at
Syracuse University. His research interests include
o) L Machine Learning and Computer Vision.

z,

) Al

Weiyi (Max) Zhang is a Senior Consultant at Net-
work Evolution Strategies, LLC, Holmdel, NJ, USA.
His research interests include reinforcement learning
on network planning and optimization, SDN and
network function virtualization for carrier networks,
network traffic demand forecast and analysis, 5G
wireless broadband strategic design. He has pub-
lished more than 100 refereed papers in his research
areas. He received Best Paper Awards from IEEE
ICNP’2017, ICC’2014, GLOBECOM’2007.

Jian Tang (F19) is a Professor in the Department
of Electrical Engineering and Computer Science at
Syracuse University, an IEEE Fellow and an ACM
Distinguished Member. He received his Ph.D degree
in Computer Science from Arizona State University
in 2006. His research interests lie in the areas of
Al IoT, Wireless Networking, Mobile Computing
and Big Data Systems. Dr. Tang has published over
160 papers in premier journals and conferences. He
received an NSF CAREER award in 2009. He also
received several best paper awards, including the
2019 William R. Bennett Prize and the 2019 TCBD (Technical Committee on
Big Data) Best Journal Paper Award from IEEE Communications Society
(ComSoc), the 2016 Best Vehicular Electronics Paper Award from IEEE
Vehicular Technology Society (VTS), and Best Paper Awards from the 2014
IEEE International Conference on Communications (ICC) and the 2015 IEEE
Global Communications Conference (Globecom) respectively. He has served
as an editor for several IEEE journals, including IEEE Transactions on Big
Data, IEEE Transactions on Mobile Computing, etc. In addition, he served as
a TPC co-chair for a few international conferences, including the IEEE/ACM
IWQo0S’2019, MobiQuitous’2018, IEEE iThings’2015. etc.; as the TPC vice
chair for the INFOCOM’2019; and as an area TPC chair for INFOCOM
2017-2018. He is also an IEEE VTS Distinguished Lecturer, and the Chair
of the Communications Switching and Routing (CSR) Technical Committee
of IEEE ComSoc.

Yanzhi Wang is currently an assistant professor in
the Department of Electrical and Computer Engi-
neering at Northeastern University. He has received
his Ph.D. Degree in Computer Engineering from
University of Southern California (USC) in 2014,
and his B.S. Degree with Distinction in Electronic
Engineering from Tsinghua University in 2009. Dr.
Wang’s current research interests are the energy-
efficient and high-performance implementations of
deep learning and artificial intelligence systems. Be-
sides, he works on the application of deep learning
and machine intelligence in various mobile and IoT systems, medical systems,
and UAVs, as well as the integration of security protection in deep learning
systems. His works have been published in top venues in conferences and
journals (e.g. ASPLOS, MICRO, HPCA, ISSCC, AAAL ICML, ICLR, ECCYV,
ACM MM, CCS, VLDB, FPGA, DAC, ICCAD, DATE, LCTES, INFOCOM,
ICDCS, Nature SP, etc.), and have been cited for around 4,000 times according
to Google Scholar. He has received four Best Paper Awards, has another seven
Best Paper Nominations and two Popular Papers in IEEE TCAD. His group is
sponsored by the NSF, DARPA, IARPA, AFRL/AFOSR, and industry sources.



Guoliang Xue (F11) is a Professor of Computer
Science and Engineering at Arizona State University.
He received the Ph.D degree in Computer Science
from the University of Minnesota in 1991. His
research interests span the areas of QoS provision-
ing, machine learning, wireless networking, network
security and privacy, crowdsourcing and network
economics, Internet of Things, smart city and smart
grids. He has published over 300 papers in these
areas, many of which in top conferences such as
INFOCOM, MOBICOM, NDSS and top journals
such as IEEE/ACM ToN, IEEE JSAC, IEEE TDSC, and IEEE TMC. He
has received the IEEE Communications Society William R. Bennett Prize in
2019 (best paper award for IEEE/ACM TON and IEEE TNSM in the previous
three years). He was a keynote speaker at IEEE LCN’2011 and ICNC’2014.
He was a TPC Co-Chair of IEEE INFOCOM’2010 and a General Co-Chair of
IEEE CNS’2014. He has served on the TPC of many conferences, including
ACM CCS, ACM MOBIHOC, IEEE ICNP, and IEEE INFOCOM. He served
on the editorial board of IEEE/ACM Transactions on Networking and the
Area Editor of IEEE Transactions on Wireless Communications, overseeing
13 editors in the Wireless Networking area. He is an IEEE Fellow, and the
Steering Committee Chair of IEEE INFOCOM.




