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A B S T R A C T   
 

Preventing declines of native and historically-abundant tree species is an important aspect of sustainable forest 
management, but predicting future forest composition is challenging when succession does not tend to follow a 
well-defined path. We evaluated the implications of site-level interactions between timber harvesting and forest 
succession on the regional landscape dynamics of the complex and species-rich northern Acadian Forest Region. 
Our expectation was that forest composition would trend away from long-lived and shade-tolerant species, 
because rates of landscape disturbance from timber harvesting are high relative to historic rates of natural 
disturbance. We used a novel modeling approach that combined Landsat-derived time series of forest disturbance 
to inform realistic simulations of timber harvesting across many individual commercial forest landowners using 
LANDIS-II, and evaluated changes in tree species’  distributions and abundance with and without harvesting. 
Detailed descriptions of initial forest conditions were derived from maps of relative tree species abundance, 
developed using Landsat satellite imagery, regional inventory data, and an innovative machine learning algo- 
rithm. If recent harvest rates persist, simulations suggest timber harvesting will generally be sustainable in our 
study area; however, projected rates of site-level species turnover were high, predominantly favoring species that 
were less abundant under the region’s natural disturbance regime. As a result, broad-scale patterns of projected 
species co-occurrence shifted, destabilizing important regional forest types. Our results highlight both the re- 
gion’s capacity for forest growth and the importance of accurately capturing the local effects of land management 
when projecting forested regions dominated by commercial ownership. 

 
 

 
1. Introduction 

 
Managing for tree species that are native and historically dominant 

to a region is an important aspect of sustainable forest management 
(Amos-Binks  et al., 2010). In contrast, there is growing evidence that 
extensive or selective harvesting has contributed to an “unmixing” or 
homogenization of many of the mixed conifer-deciduous forests of the 
northern U.S. and southern Canada (Amatangelo et  al.,  2011; 
Boucher et al., 2009; Hanberry et al., 2013). In these situations, long-
lived, shade-tolerant conifers associated with late succession are 
usually the losers, while less shade-tolerant, typically broad-leaved trees 
associated with early succession are often the winners. In the mixed 

Laurentian forests of the Great Lakes-St. Lawrence region, for example, 
many areas historically dominated by site limited conifers like eastern 
hemlock (Tsuga canadensis) have shifted towards dominance by adapt- 
able hardwoods such as red maple (Acer rubrum) following high-
intensity harvesting (Amatangelo et al., 2011; Boucher et al., 2009). 
These regional shifts in species composition coupled with a reduction 
in forest diversity threaten forest resilience, particularly in landscapes 
facing a complex assembly of threats (e.g., climate change, insect 
outbreaks, invasive species) (Messier et al., 2019). Predicting how 
harvesting will influence succession, thereby making it possible to 
avoid unwanted species shifts, can be a significant challenge for forest 
managers, however, particularly when they are reliant on natural 
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regeneration and the conditions that ensure self-replacement of desired 
species are limited (Gould et al., 2005; Taylor et al., 2009). 

Within the Acadian Forest Region (AFR) of northeastern U.S., lon- 
gitudinal studies suggest that maintaining some native conifers in 
northern mixedwood forests will be challenging even with targeted or 
intensive management (Bataineh et al., 2013; Olson and Wagner, 
2010). Although the AFR shares many tree species in common with the 
Great Lakes-St. Lawrence region, an important distinguishing feature of 
the AFR is the presence of red spruce (Picea rubens Sarg.). Pre-settlement 
forests in Maine, for example, were dominated by red spruce and other 
long-lived conifers (e.g., eastern hemlock), which often also occurred in 
mixedwood associations with shade-tolerant hardwoods such as sugar 
maple (Acer saccharum), American beech (Fagus grandifolia), and yellow 
birch (Betula alleghaniensis) (Mosseler et al., 2003). Historically, stand 
dynamics were driven by windfall and the creation of small canopy gaps. 
Gap-creating wind events occurred with a return interval of approxi- 
mately 100 years; large or catastrophic disturbances were rare (i.e., >1, 
000 year return interval) (Lorimer,  1977; Seymour  et al., 2002). As a 
consequence, shorter-lived shade tolerant species (e.g., balsam fir, Abies 
balsamea) or shade intolerant species (e.g., paper birch, Betula papy- 
rifera), although occasionally in high abundance, occurred predomi- 
nantly in the understory (Mosseler et al., 2003). In recent decades, 
however, those types of species have become increasingly abundant as 
rates of landscape disturbance, now driven primarily by timber har- 
vesting, have increased. 

Statistical and empirically-derived models are a commonly used tool 
in forest planning, but planning for novel environmental and forest 
conditions will require more dynamic tools capable of large-scale 
application. Although generally developed for research purposes, for- 
est landscape models (FLMs) are increasingly being used for decision 
support because they can simulate forest response to changing condi- 
tions (Gustafson et al., 2011). FLMs that are phenomenological and 
stochastic are particularly well-suited to application to forest systems in 
which succession at a given site does not tend to follow a well-defined 
path, but rather has many potential endpoints. Previous studies of 
regional forest dynamics using an FLM have included the AFR 
(Duveneck et al., 2017; Duveneck and Thompson, 2019; Wang et al., 
2017), but in each the effects of timber harvesting were either ignored, 
in lieu of focusing on climate change, or generalized based on broad-
scale information about harvest rates (Harris et al., 2016). Tim- ber 
harvesting is, however, the dominant forest disturbance factor in 
northeastern forests (Brown et al., 2018) and in the U.S. The spatial 
resolution of the projections was also coarse (250 m or 270 m). Forest 
projections that discount the spatially-varied and temporally dynamic 
effects of timber harvesting in northeastern forests, particularly those 
areas dominated by commercial forestlands, potentially obscure 
important details about local feedbacks, as well as cross-scale in- 
teractions, affecting regional processes. 

The goal of our study was to better understand the regional impli- 
cations of local interactions between timber harvesting and forest suc- 
cession for the AFR. Our primary research objectives were to use a novel 
implementation of the LANDIS-II FLM to expressly emulate recently 
observed harvest rates and patterns across individual landowners in 
Maine, and to project cumulative changes in future tree species’ distri- 
butions and abundance stemming from land use and forest dynamics. 
Regionally, Maine has the highest harvest rates in the AFR (Brown et al., 
2018; Canham et al., 2013; Duveneck and Thompson, 2019). In 
northern Maine, land is almost entirely owned by commercial forest 
companies, and forest management is almost entirely dependent on 
partial harvesting and natural regeneration (Bataineh et al., 2013; 
Brissette, 1996; Canham et al., 2013). Locally, the median annual 
harvested area in that region is approximately 2% with substantial 
spatiotemporal variation between landowners, which has resulted in 
distinct landscape-scale patterns associated with forest composition and 
age (Legaard et al., 2015). Our expectation was that under the current 
forest  management  regime  total  live  aboveground  biomass  would 

 

 
Fig. 1. 30,760 km2 study area located in the Acadian Forest Region (AFR) of 
the northeastern U.S. AFR boundary obtained from Olson et al., (2001). 

 
remain relatively steady but species relative abundances would change, 
with a decline in long-lived, shade-tolerant species such as red spruce 
(Olson and Wagner, 2010). 

2. Methods 

2.1. Study area 
 

We evaluated land use and forest dynamics across a study area that 
encompassed approximately 30,760 km2 of the AFR in Maine (67.76–
70.61◦ E, 45.16–47.44◦ N; Fig. 1). Virtually all forestland in this area is 
considered commercially productive and approximately 90% is 
private, primarily owned by large (>40 km2) landowners with highly 
contrasting management objectives, including industrial forest products 
companies, family-owned corporations, and investment entities. Small 
forest landowners (also known as family forests) are few in this region of 
Maine.  Parcels owned by the  State  (managed  or held in reserve) also 
occurred in this area, including Maine’s largest forest reserve, Baxter 
State Park (847 km2). Population density (0–65 people/km2) and urban 
or residential development are all exceptionally low throughout this 
region (McWilliams et al., 2005). 

Climate in this region is characterized by warm, humid summers and 
cold, snowy winters. Erosion and glaciation have shaped the topog- 
raphy, which is mostly flat or rolling with elevations ranging from sea 
level to over 1,500 m (Seymour, 1995). Maine is covered by an exten- 
sive network of rivers, streams, lakes, swamps and wetlands. Forest type 
distributions are generally associated with topographically related 
climate and soil gradients (Seymour, 1995). Commonly occurring tree 
species include: balsam fir (Abies balsamea), white (Picea glauca), red 
(P. rubens), and black (P. mariana) spruce, white pine (Pinus strobus), 
white (Betula papyrifera) and yellow (B. alleghaniensis) birch, red (Acer 
rubrum) and sugar (A. saccharum) maple, and American beech (Fagus 
grandifolia). Tree advance regeneration is often highly abundant in this 
region with high species richness, high stem densities, and limited ef- 
fects of herbivory (Bose et al., 2016) 

 
2.2. Forest landscape model 

 
We modeled forest change using LANDIS-II version 6.0. LANDIS-II 
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and its predecessor LANDIS have both been described extensively in the 
literature (Mladenoff et al., 1996; Mladenoff and He, 1999; Mladen- 
off, 2004; Scheller and Mladenoff, 2004; Scheller et al., 2007). 
LANDIS-II is a raster-based forest landscape model; a landscape is rep- 
resented by a grid of cells aggregated by user-defined ecoregions. The 
successional processes of tree establishment, growth, and mortality are 
simulated for each cell at the level of tree cohorts characterized by 
species and age. Multiple cohorts can be present in a cell and inter-
cohort competition is driven by life history attributes (e.g., shade 
tolerance, longevity, regeneration strategy). Cells are spatially linked by 
the processes of seed dispersal and disturbance. 

The LANDIS-II software system is composed of a core program and 
user-selected extensions that have been developed to simulate a variety   
of disturbances. We used the Biomass Succession extension (version 
3.1.1) (Scheller and Mladenoff, 2004) to simulate succession,  the  
Biomass Harvest extension (version 2.1) (Gustafson et al., 2000) to 
simulate timber harvesting, and the Base Wind (Scheller and Mladenoff, 
2004) to simulate wind events. Extensions can be run with different 
temporal intervals; we used a 5-year time step for all. Based on past 
experience and a global sensitivity analysis of LANDIS-II (Simons-
Legaard  et al., 2015), a novel formulation of parameterizing   and 
initialization was used to ensure robust  model  behavior,  as described 
below. 

2.3. Model initialization 
 

LANDIS-II requires as part of its initialization two input maps, 
ecoregions and initial forest conditions, and accompanying text files. For 
both ecoregions and initial conditions, we used observations and mea- 
surements collected at US Forest Service (USFS) Forest Inventory and 
Analysis (FIA) field plots within our study area (2006–2010; n   1,521) 
as reference data. We derived our ecoregions from a combination of 
climate zones delineated by Briggs and Lemin (1992) and DEM-derived 
slope to capture the effects of relative landscape position on individual 
species establishment (See Section 2.4.1). The majority of FIA plots in 
our study area are categorized as mesic, occurring either in flat lowlands 
(Condition Table; Physiographic class code or PHYSCLCD 21) or 
hilly upland areas (PHYSCLCD 22). Percent slope is recorded for  
each subplot (Subplot Table), and to identify a threshold slope to use for 
classifying all forest within our study area as lowland or upland, we 
calculated the value at which histograms of slope grouped by the two 
PHYSCLCD categories intersected (i.e., ~5% slope). We combined our 
upland/lowland delineation with the 3 major climate zones associated 
with our study area for a total of 6 ecoregions. 

Initial forest conditions are provided by the user in the form of a 
thematic map and associated text file, which LANDIS-II uses to populate 
each cell with information about species presence and forest age. For 
each cell, we determined which species were present in high relative 
abundance using maps of percent biomass (live aboveground). Percent 
biomass ca. 2010 was modeled and mapped for each of the 13 most 
abundant species in our study area (Supplementary Table 1). Following 
the methods of Legaard et al. (2020), predictive models were con- 
structed for each species using support vector machines (SVMs) with 
model specification determined by a multi-objective genetic algorithm 
(GA) designed to simultaneously minimize total prediction error and 
systematic error. Estimates of percent biomass from FIA plots were used 
as reference and potential predictor variables included spectral variables 
from Landsat Thematic Mapper (TM) images acquired throughout the 
growing season (i.e., late April through mid-October); terrain variables 
generated from the National Elevation Dataset and National Hydrogra- 
phy Dataset; and climatological variables obtained from the USFS Rocky 
Mountain Research Station (Rehfeldt, 2006). Using the cross-validation 
procedure  described  by  Legaard   et  al.   (2020),  RMSE  (root mean 
squared error) and systematic RMSE for the final models ranged from 
4–17% and 0.5–3%, respectively, across species. From the 13 percent 
biomass maps we 1) identified the 3 most abundant species for each cell, 

2) rescaled percent abundances for those 3 species to sum to 100%, and 
3) assigned cohorts to species based on relative abundance (i.e., 1–
33%     1 cohort, 33–66%     2 cohorts, and 66–100%     3 cohorts). If, 
for example, after rescaling the relative abundances of the top 3 
species in a given cell were 60%, 30%, and 10%, they were assigned 2, 1, 
and 1 cohort(s), respectively. This strategy ensured that cohort assign- 
ment to a cell represented relative species abundance based on empirical 
data, maintained dominant patterns of species co-occurrence, and 
resulted in a total number of cohorts that was computationally tractable 
for simulations. 

We assigned age(s) to each species cohort based on disturbance 
history and FIA plot data. Forest disturbance and % basal area removal 
were mapped for our study area from 1973 to 2010 in 2–4 year intervals 
using the same modeling framework that produced the percent biomass 
maps (Legaard, 2018). Reference data were obtained from visual 
interpretation of satellite images and air photos (disturbance occur- 
rence) and from re-measured FIA plots (% basal area removed). Poten- 
tial predictor variables were derived from Landsat Multispectral Scanner 
(MSS) and TM images. User’s and producer’s accuracies ranged from 
86–92% and 78–87%, respectively, across the intervals. For cells that 
had received a stand-replacing harvest, which we defined as ≥70% basal 
area removal, age was assigned based on time since harvest (i.e., 5–40 
years old). For the remaining cells, which were a combination of cells 
with no history of harvest 1973–2010 and those that had received a 
partial harvest (i.e., harvest resulting in <70% biomass removal at the 
cell level), we assigned overstory age randomly to contiguous neigh- 
borhoods in conformance with the age distribution for FIA plots in our 
study area with stand age >40 years old. Finally, for a given species we 
assigned understory cohorts randomly to the subset of cells in which a 
species occurred based on the proportion of FIA plots with >2.54 cm (1 
inch) trees of a given species that also had seedlings of that species. A 
spatial resolution of 30 m was retained throughout the mapping pro- 
cesses; ultimately, the total number of unique combinations of spe- 
cies/age cohorts (i.e., initial communities) modeled was 9,273. 

2.4. Model parameterization and calibration 
 

2.4.1. Succession 
For each species, LANDIS-II users must also provide values for gen- 

eral life history characteristics as well as growth-related parameters to 
model succession and live aboveground biomass (AGB) with the Biomass 
Succession extension. We derived species-specific values for life history 
traits from the peer-reviewed literature including previous LANDIS-II 
studies. With respect to growth, AGB for a cohort is modeled as a 
function of annual net primary productivity (ANPP) and mortality 
(Scheller and Mladenoff,  2004). Sensitivity analyses have determined  
that predictions of AGB using Biomass Succession are most sensitive to 
the parameters maximum ANPP (ANPPmax) and maximum aboveground 
biomass (Bmax) (Scheller and Mladenoff, 2004; Simons-Legaard et al., 
2015; Thompson et al., 2011). We determined Bmax  for  each  species 
from USFS FIA plot data by first calculating total plot biomass and then 
identifying the maximum value for the subset of plots where a given 
species was one of the top three most abundant. 

We used the process-based PnET-II model (Aber et al., 1995) to 
derive ANPPmax for each of our ecoregions in a manner similar to pre- 
vious LANDIS-II studies (e.g., Scheller and  Mladenoff,  2004; 
Scheller et al., 2008; Thompson et al., 2011). PnET-II is a forest carbon 
and water balance model that predicts monthly changes in whole can- 
opy photosynthesis and estimates live ANPP (foliar and wood). We used 
species-specific  estimates  of  foliar  nitrogen  concentrations  (mg  N  g-1 

leaf) and specific leaf mass for our 13 species (Supplementary Table 1), 
and for other parameters used generic values for northern hardwood, 
spruce-fir, and pine (Aber et al., 1995; Ollinger and Smith, 2005). 
Climate inputs into PnET-II include monthly averages for max- 
imum/minimum temperatures, precipitation, and photosynthetically 
active radiation (PAR). We generated 100 random points within each of 
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our ecoregions and extracted monthly values for temperature and pre- 
cipitation from 30-year normal PRISM maps. We used the open source 
software SAGA-GIS (http://www.saga-gis.org/) to calculate monthly 
insolation values for each of the points and converted those values to 
PAR (umoles m-2  sec-1). We then ran PnET-II for each point and each 
species to estimate species-specific ANPPmax values for each ecoregion. 

In the absence of disturbance, the Biomass Succession model assumes 
that an equilibrium condition will develop over time as annual age- 
related mortality increases and eventually offsets annual growth as a 
cohort approaches Bmax. Two shape parameters interact with ANPPmax 
and Bmax; the growth shape parameter (r) determines the age at which a 
species achieves ANPPmax and the mortality shape parameter (d) expresses 
the relationship between age-related mortality and Bmax as a cohort 
nears its longevity age. These shape parameters, which range from 0-1.0 
(r) and 5-25 (d), have no empirical basis but can used be to express 
relative differences in life history strategies between species (e.g., faster 
growth by less-shade tolerant species in a high light environment). 
Projections of aboveground biomass, particularly initial biomass and in 
the first few simulated intervals, can be especially sensitive to small 
changes in r (Thompson et al. 2011; Simons-Legaard et al., 2015) so 
we adopted a conservative approach, ultimately setting r (0.62-0.87) 
and d (9-15) over a relatively narrow range across species. Finally, the 
model includes an additional calibration parameter (i.e., Spin-up mor- 
tality fraction) that can be used to modify AGB estimation during the 
model spin-up phase to better align initial estimates with available 
reference data. We incrementally increased this parameter from zero, 
with the goal of matching the total AGB projected at year 0 to the esti- 
mate for our study area calculated from FIA data (2006–2010). 

In addition to cohort growth, LANDIS-II models the establishment of 
new cohorts. Any reproductively mature cohort within a user-specified 
neighborhood can act as a potential seed source, but the probability of 
successful dispersal to a cell declines rapidly with distance from source 
(Mladenoff and He, 1999; Ward et al., 2005). Given a seed source, the 
likelihood of success is determined by a species’ shade tolerance and the 
probability of establishment (Pest) as specified by the user. Pest ranges from 
0.01–1 and can be varied by ecoregion (He et al., 1999; Mladenoff and 
He,  1999). We estimated Pest separately for lowland and upland forest, 
as defined in the ecoregion map (See Section 2.3), by comparing the 
number of FIA plots with seedlings of a given species to the number of 
plots with seedlings and 2.54 cm (1 inch) saplings of that species. 

To evaluate our initialization, parameterization and calibration of 
the Biomass Succession extension, we performed a multi-scale compar- 
ison of biomass estimates from FIA data (2006–2010) to LANDIS-II 
predictions at year 0. The FIA sampling design provides approximately 
one sample location every 2,428 ha (or 6,000 ac) across the U.S. We first 
generated a tessellated dataset of 2,428 ha squares overlapping our 
study area in ArcMap and then identified the FIA plot nearest to each 
square’s center. For each square, we estimated total AGB based on the 
identified FIA plot (scaled to the 2,428 ha square) and compared it to 
total AGB predicted by LANDIS-II for the same area (i.e., summing the 
30 m cell-level predictions within the 2,428 ha square). We then sys- 
tematically combined neighboring squares (3       3, 6       6, 12       12, 
24 24) into square areas of increasing size (21,852 ha, 87,408 ha, 
349,632 ha, 1,398,528 ha), and compared FIA and LANDIS-II estimates 
at  each  scale  using  a  Pearson’s  correlation  coefficient.  Finally, we 
compared the relative abundance at year 0 for the 13 species between 
FIA and LANDIS-II for the study area. Although it is relatively common 
to compare LANDIS-II predictions to FIA plot data, comparisons are 
generally only made at the level of the individual plot or the entire study 
area, which can obscure scale-dependent patterns of disagreement. 

2.4.2. Disturbance 
Calibration of disturbance extensions generally focuses on relevant 

literature for the region of interest to specify disturbance characteristics 
such as frequency, size, and intensity. For example, we calibrated the 
Base Wind extension to simulate a 0.1% rate of annual area disturbed by 

small to moderate wind events (Lorimer, 1977; Lorimer and White, 
2003; Seymour et al., 2002). When calibrating the Biomass Harvest 
extension, previous studies including the AFR have used regional esti- 
mates of harvest rates derived from FIA plot data (Duveneck and 
Thompson, 2019; Wang et al., 2017). In contrast, we were able to use 
the local, spatially-explicit information provided by the Landsat forest 
disturbance time series developed for our study area. For this, we first 
delineated management units based on a map of land ownership 
boundaries ca. 2010, which encompassed >500 parcels and >80 land- 
owners. Ownerships ranged in size from <1 km2  to 4,162 km2. In 
addition  to  commercially-managed  forest,  our  study  area  included 
~179,000 ha of publicly- or privately-owned forest managed as pre- 
serves and ~82,000 ha of forest we identified as inaccessible or ineli- 
gible for timber harvest due to elevation or slope based on current state 
regulations. We then estimated the annual area harvested for each 
landowner based on the observed harvest areas in the three most recent 
intervals  (i.e.,   2001–2004,   2004–2007,  2007–2010)   in   the  forest 
disturbance times series. Estimated rates varied widely between land- 
owners, ranging from <1% to 8.2% of forested area per year, with a 
study-wide average of 2.2% (SD 1.6%). Based on each landowner’s 
average harvest rate, the resulting cumulative target area was 768,379 
ha to be harvested every 10 years. 

Harvesting in LANDIS-II is based on control of harvest area, not 
volume. Harvest area targets for each landowner in our modeled system 
were assigned to two prescriptions: “clearcut” or “partial harvest.” 
Partial harvesting represents >90% of the harvests in Maine, according 
to self-reporting  by Maine  landowners  to the  Maine  Forest   Service 
(Maine Forest Service 2020). We designed our partial harvest pre- 
scription to be variable in intensity based on a post-harvest survey in our 
study area by Rice et al. (2012), which determined that on average the 
area of a partial harvest is comprised of 35% complete overstory 
removal (predominantly in trails and landings) and 45% partial over- 
story removal. Our partial harvest prescription was implemented as a 
2-stage harvest across consecutive periods. Selected stands first received 
a patch cut treatment (to approximate trails) targeting 40% of the stand 
area, followed in the next period by a uniform selection cut of the 
remaining stand area, with removals targeting primarily older cohorts. 
The clearcut prescription was designed to remove all but seedlings. 
Clearcuts were only assigned to a portion of landowners with a recent 
history of conducting stand-replacing harvests. We also calibrated target 
rates to maintain an annual average clearcut rate across ownerships of 
approximately 4% in accordance with annual landowner harvest reports 
to the Maine Forest Service (Maine Forest Service 2020). When iden- 
tifying “stands” for use in the Biomass Harvest extension our minimum 
mapping unit was 9 cells, or approximately 1 ha. 

 
2.5. Scenario design and data analysis 

 
We simulated forest growth and succession with and without timber 

harvesting. Our start date was 2010 based on the initialization data. 
Total duration for simulations with timber harvesting was 50 years, 
reflecting a typical strategic planning horizon in our region. Total 
duration for simulations without timber harvesting (i.e., succession 
only) was 150 years. We compared results between simulations with and 
without timber harvesting at 50 years. For simulations without timber 
harvesting we also compared results at year 50 to year 150 to further 
verify our calibration of the Biomass Succession extension regarding the 
longer-term outcomes of competitive species interactions and to better 
understand the effects of harvesting on AGB dynamics. Our expectation 
was that if the model was parameterized and calibrated appropriately 
for our forest system, the relative abundance of less shade tolerant 
species would decline over time in simulations without timber har- 
vesting. All simulations included wind disturbance. 

LANDIS-II models stochasticity in some of the successional (e.g., 
dispersal and cohort establishment) and disturbance (e.g., stand selec- 
tion for wind damage or harvest) processes. We replicated each scenario 

http://www.saga-gis.org/
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Table 1 
Comparison of total live aboveground biomass ca. 2010 estimated from LANDIS-II projections (year 0) with USFS Forest Inventory and Analysis plot data (2006–2010) 
at 5 nested scales, including neighborhood size, area (ha) of square sample unit, number of samples (n), Pearson’s correlation coefficient (ρ) between estimates, as well 
as average (x) and standard deviation (σ) of aboveground live biomass (teragrams) for each dataset at each scale. 

LANDIS-II FIA 
Neighborhood Size Area n ρ x σ x σ 

1  × 1 2,428 1,407 0.16 0.18 0.04 0.16 0.10 
3  × 3 21,852 155 0.43 1.50 0.28 1.33 0.43 
6  × 6 87,408 49 0.87 5.09 1.76 4.50 1.74 
12  × 12 349,632 14 0.96 17.69 6.66 15.76 6.24 
24  × 24 1,398,528 4 0.98 61.93 17.31 55.15 15.86 

 
 

Fig. 2. Simulated distribution of aboveground live biomass ca. 2010 based on initial forest conditions derived from maps of relative tree species abundance and 
forest disturbance history developed using Landsat satellite imagery and USFS Forest Inventory and Analysis plot data. Inset area (bold outline) references zoomed-in 
example map. 

 
ten times and evaluated variance in modeled outcomes. For each scenario, we used maps of AGB (g/m2) output by LANDIS-II at each time 

step to calculate projected changes in species AGB and total AGB sum- 
med across species (AGBtotal). We used the Output Biomass Reclass 
extension to classify sites based on species dominance and compared 
initial spatial patterns to projected spatial patterns to evaluate species 
turnover. We also developed forest type maps and calculated the 
changes in forest area by type. Forest was classified as: spruce-fir (≥75% 
AGBtotal composed of balsam fir or spruce sp.), spruce-fir mixed (≥50% 
AGBtotal and <75% AGBtotal composed of balsam fir or spruce sp.), 
maple-beech-birch (≥75% AGBtotal composed of sugar maple, yellow 
birch, or American beech), maple-beech-birch mixed (≥50% AGBtotal 
and <75% AGBtotal composed of sugar maple, yellow birch, or American 
beech), other hardwoods (≥75% AGBtotal composed of red maple, paper 
birch, or white ash), other softwoods ( 75% AGBtotal composed of 
eastern hemlock, northern white cedar, or white pine), or mixed species. 
Finally, for simulations that included harvesting we calculated har- 
vested area and compared to assigned targets. 

        

Fig. 3. Projected total (Tg) live aboveground aboveground biomass, simulated 
without timber harvesting 2010–2160. Complete set of 10 model runs are 
displayed but results are highly overlapping because of low variation (CV range 
0.01–0.02%) between runs. 

3. Results 

Pearson’s correlation between LANDIS-II predictions at year 0 (i.e., 
2010) and total live aboveground biomass (AGBtotal) estimated from FIA 
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Fig. 4. Turnover in site dominance between all 
pairs of species1 after A) 50 and B) 150 years 
without timber harvesting in the Acadian Forest 
Region of northern Maine. Size of the filled 
circle provides a relative measure averaged 
across 10 model runs; a larger circle indicates 
more site turnover from the species on the 
vertical axis to the species on the horizontal 
axis. For example, the circle at bottom left 
corner represents the turnover of sites domi- 
nated by paper birch (BEPA) in 2010 to domi- 
nance by balsam fir 1Balsam fir (Abies balsamea 
ABBA), red spruce (Picea rubens PIRU), white 
spruce (Picea glauca PIGL), black spruce (Picea 
mariana PIMA), northern white cedar (Thuja 
occidentalis THOC2), eastern hemlock (Tsuga 
canadensis TSCA), eastern white pine (Pinus 
strobus PIST), sugar maple (Acer saccharum 
ACSA3), yellow birch (Betula alleghaniensis 
BEAL2), white ash (Fraxinus americana FRAXI), 
American beech (Fagus grandifolia FAGR), red 
maple (Acer rubrum ACRU), paper birch (Betula 
papyrifera BEPA). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

field plots increased with area, achieving 0.87 at the intermediate 
scale of 87,408 ha (Table 1). At the scale of our study area, LANDIS- II 
estimated 262.06 Tg ca. 2010 based on initial forest conditions, which 
was within 0.04% of the AGBtotal estimated from FIA plot data for our 
study area (262.16 Tg). At the cell level, estimates of AGB ranged  widely 
across our study area (233–14,884 g/m2). Spatial patterns were gener- 
ated by variation in forest age and  dominant  species  composition 
(Fig. 2). Patches of lower AGB tended to occur in areas of regenerating 
forest (<40 years old), whereas patches of high AGB occurred in areas of 
residual or reserved mature forest. Species relative abundances esti- 
mated for the study area at year 0 using maps of species biomass from 
LANDIS-II were 2% for all species compared to estimates from FIA plot 
data (Supplementary Table 2). 

Simulations of forest growth without timber harvesting suggest that 
forest in our study area could accumulate twice as much live above- 
ground biomass within 50-60 years (Fig. 3). Beyond 2070 the simulated 
rate of accumulation slowed, with AGBtotal reaching a maximum of 
629.4 Tg ca. 2130 before declining. Variability in projected estimates of 

AGBtotal was very low (CV range 0.01– 0.02%) between replicates and 
across intervals (Supplementary Table 3). 

After 50 years without timber harvesting, projections suggest species 
would generally maintain their current patterns of site  dominance  
(Fig. 4A), with the exception of paper birch (BEPA) and to a lesser extent 
white pine (PIST). Sites currently dominated by paper birch were pro- 
jected to transition to more shade tolerant species, including balsam fir 
(ABBA), red spruce (PIRU), yellow birch (BEAL2), and red maple 
(ACRU). Approximately equal site turnover rates between balsam fir and 
red spruce were projected, in contrast to red spruce and white pine, for 
which red spruce was projected to gain dominance at many more sites. 
Other notable trends included increasing site dominance of sugar maple 
(ACSA3) and yellow birch at sites currently dominated by a variety of 
northern conifers and hardwoods. After 150 years without timber har- 
vesting a greater magnitude of site turnover was projected, with patterns 
generally favoring more shade tolerant species (Fig. 4B). Site dominance 
by the less shade tolerant hardwoods (i.e., red maple, paper birch, and 
white ash (FRAXI)) was projected to decline. The decline in site 
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Fig. 5. Projected A) total live aboveground aboveground biomass (Tg) with 
timber harvesting 2010–2060, and associated projections of B) total harvested 
live aboveground biomass (Tg) and C) total harvested area (hectares) during 
each 10-year period between 2010 and 2060, averaged across 10 model runs. 
Note the complete set of 10 model runs are displayed in A, but lines are highly 
overlapping because of low variation (CV range 0.02–0.03%) between runs. 

dominance by white pine was also projected to continue. Despite its high 
shade tolerance, maintenance of site dominance by balsam fir was 
projected to decline as sites transitioned to longer lived species, pri- 
marily red spruce. Nonetheless, turnover favoring balsam fir was pro- 
jected to occur at sites currently dominated by a variety of species. 

Emulating average landowner harvest rates, simulations suggested 
forest growth will generally replace biomass removals from harvesting. 
AGBtotal was projected to be relatively stable at approximately 2% of 
the initial estimate from 2010–2060 (Fig. 5A). Average g/m2 of AGB 
increased 2.5% between 2010 and 2060. As with the no-harvest sce- 
nario, variability of AGBtotal was very low (CV range 0.02–0.03%) be- 
tween replicates and across intervals (Supplementary Table 4). 
Harvested biomass ranged from a maximum of 64 Tg during the second 
harvest period (2020–2030) to a minimum of 54 Tg during the last 
harvest period (2050-2060) (Fig. 5B; Supplementary Table 5). Har- 
vested area simulated for each 10-year period averaged 685,482 ha 
(Fig. 5C) with limited variability (STD 22,684 ha or 3.3%) across 
periods and runs (Supplementary Table 6), consistently lower than the 

10-year target area of 768,379 ha. 
Simulations suggested that continued timber harvesting would 

benefit specific species (Fig. 6) compared to the no harvest scenario after 
50 years (Fig. 4A). Most notably, paper birch was projected to maintain 
site dominance to a greater degree, and many more sites were projected 
to transition to dominance by balsam fir or paper birch. Site dominance 
by red spruce was projected to increase at a variety of sites, but it was 
projected to be less successful maintaining dominance at sites where it is 
currently the most abundant. Species projected to be notably less suc- 
cessful at maintaining or gaining site dominance compared to the no 
harvest scenario included northern white cedar (THOC2), eastern 
hemlock (TSCA), and white ash. Although both maples benefitted from 
timber harvesting, turnover favored red maple to a greater degree than 
sugar maple. 

Projections ultimately suggested that the cumulative effects of 
spatial interactions between timber harvesting and forest succession on 
species co-occurrence would be changes in the regional extent of forest 
types, including a loss of northern hardwood forest (Table 2). In 2010, 
the most prevalent forest type in our study area was mixed (28%); 
spruce-fir forest and maple-beech-birch forest each comprised 18% of 
the forested area. Both were broadly distributed across the study area, 
with localized spatial patterns associated with topography and land- 
scape position (Fig. 7A). By 2060, the extent of maple-beech-birch forest 
was projected to decline 31%; in contrast, spruce-fir forest was projected 
to increase 7%. Maple-beech-birch mixed forest was also projected to 
decline (-12%) compared to an increase in spruce-fir mixed forest (33%), 
which expanded its footprint broadly, particularly along edges between 
spruce-fir and maple-beech-birch forest (Fig. 7B). Other hardwood forest 
was projected to increase 12%, whereas other conifer, which had the 
least extent ca. 2010, was projected to decline 53% by 2060. 

4. Discussion 

Spruce trees were once the dominant feature of Maine’s forests and 
beyond (Cogbill et al., 2002). Witness tree data tells a clear story of the 
importance of spruce, which as a group were nearly twice as abundant as 
any other tree species statewide prior to the 1850s, and other long-lived 
conifers (e.g., eastern hemlock) and shade-tolerant hardwoods (e.g., 
yellow birch and American beech) (Barton et al., 2012). Since then the 
relative abundance of many of those species has changed considerably, 
with a general pattern of heavily-utilized species associated with late-
successional forest decreasing in abundance. Our projections 
demonstrated that shifts in forest composition will be an ongoing 
consequence of contemporary timber harvesting in Maine. 

In the absence of timber harvesting, forests in the northern AFR 
would begin to shift back towards their historic composition. With 
increasing shade, the less shade-tolerant hardwoods like red maple and 
paper birch would decline (Fig. 4), eventually outcompeted and 
replaced by northern hardwoods (sugar maple, yellow birch, or Amer- 
ican beech) or northern conifers (balsam fir or spruce). Without har- 
vesting pressure, the balance of site turnover between balsam fir and red 
spruce would eventually shift towards the longer-lived spruce. Although 
it is not as numerous as it once was, red spruce regeneration and growing 
stock are still relatively abundant and well-distributed across the land- 
scape (McCaskill et al., 2011). Nonetheless, balsam fir is a highly 
aggressive competitor in this system and its abundance will likely 
remain elevated relative to presettlement for a considerable time given 
its wide distribution, slowing its replacement by species that were his- 
torically more abundant. 

Under the considerably more likely scenario of ongoing timber 
harvesting, and assuming recent harvest rates and practices persist, 
forest composition will generally continue to shift away from preset- 
tlement conditions. Results support the conclusion of empirical studies 
in the AFR that higher disturbance intensity favors establishment of 
species better adapted to higher light conditions (Bataineh et al., 2013; 
Olson and Wagner, 2010). In this forest system, although pre-harvest 
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Fig. 6. Projected turnover in site dominance between all pairs of species after 50 years of timber harvesting (2010–2060) in the Acadian Forest Region of northern 
Maine. Size of the filled circle provides a relative measure of turnover from the species on the vertical axis to the species on the horizontal axis, averaged across 10 
model runs. See Figure 4 for species codes and additional information. 

 

 
Table 2 
Area (ha) and percent of forested area (% forest) for each forest type ca. 2010 
based on initial conditions and ca. 2060 from LANDIS-II projections of 50-years 
of timber harvesting, averaged across 10 model runs.  

2010 2060 
Forest type 

Spruce-Fir 

ha 

542,922 

% forest 

18% 

ha 

581,351 

% forest 

19% 
Spruce-Fir Mixed 428,214 14% 570,973 19% 
Mixed 860,718 28% 827,087 28% 
Maple-Beech-Birch 540,349 18% 373,864 12% 
Maple-Beech-Birch Mixed 370,316 12% 330,974 11% 
Other Hardwood 254,426 8% 285,171 9% 
Other Conifer 77,309 3% 35,971 1% 

 
canopy composition is generally the best, albeit still relatively weak, 
predictor of regeneration composition, within-stand variability is high 
and developmental pathways tend to migrate away from pre-harvest 
composition. In the context of our study, the 2.2% annual rate of land- 
scape disturbance generated by timber harvesting across our study area 
is clearly high enough to favor species that are better adapted to 
regeneration and rapid growth in more open conditions compared to the 
0.1% wind-driven rate of disturbance that characterizes the region’s 
natural disturbance regime (Lorimer, 1977; Seymour et al., 2002). Our 
study further suggests that shifts in individual tree species distribution 
and abundance post-harvest will drive broad-scale changes in patterns of 
species co-occurrence and co-dominance. As a result, the positive feed- 
backs that reinforce self-replacement and the perpetuation of regional 
forest types may weaken. In this respect, the northern conifer type (i.e., 
spruce-fir) was more resistant than the northern hardwood type (i.e., 
maple-beech-birch), which was projected to decline by 31%. For the 
spruce-fir species, changes in species dominance were typically within 
group (e.g., balsam fir to spruce, not balsam fir to hardwood species), so 
did not result in a change of forest type. In contrast, northern hardwood 
species were more frequently replaced by species associated with a 
different forest type (e.g., balsam fir or red maple), driving changes 
away from the maple-beech-birch type (Table 2). 

Notwithstanding changes in species abundance, our results suggest 
that timber harvesting will generally be sustainable in northern Maine. 
AGB was projected to be relatively stable 2010–2060 at 2% of the 
initial estimate (Fig. 5); average g/m2  of AGB increased 2.5% between 

2010 and 2060. These results contrast with recent LANDIS-II projections 
by (Duveneck and Thompson, 2019) suggesting that removals from 
timber harvesting will exceed forest growth, causing a (14%) decline of 
average g/m2  of AGB in Maine by 2060 under the current climate. One 
likely cause for the difference in the simulated effects of harvesting on 
AGB was the higher rate of annual harvest (~3.2%) as well as the higher 
rate of clearcutting as a percent of harvested area (45%)  that  
Duveneck and Thompson (2019) projected for commercial forests 
owned by corporations in Maine, compared to our 2.2% and 4%, 
respectively. It is also important to note that a different LANDIS-II suc- 
cession extension (PnET-Succession) was used, which may have resulted 
in lower projected growth rates relative to our projections using Biomass 
Succession (de Bruijn et al. 2014). Both the spatial and thematic res- 
olution of the map of initial forest conditions Duveneck and  
Thompson (2019) used were also lower. The cell size of their input map 
was 250 m compared to our 30 m, and the number of initial communities 
in the area overlapping our study area was 2,257 compared to 9,273 in 
our initial communities map. LANDIS-II projections are almost certainly 
sensitive to these differences in input conditions, as was demonstrated 
by Liang et al. (2013) for LANDIS, which has important implications if 
projections are to meaningfully inform future place-based forest policy. 
Policy makers working from the assumption that future carbon stocks 
would be stable in the absence of additional stressors such as climate 
change or insect outbreaks can focus on addressing those stressors, 
rather than considering additional regulation of timber harvesting to 
ensure basic sustainability. 

A common approach to producing the map of initial forest conditions 
required by LANDIS-II, which includes tree species and forest age for 
every cell, is nearest neighbor imputation (e.g., Gradient Nearest 
Neighbor (GNN)) using a reference dataset such as FIA plot data (e.g., 
Dijak, 2013; Duveneck et al., 2015; Scheller et al., 2008). Values are 
assigned to each pixel within the mapped area by averaging reference 
observations from a set of similar pixel locations, with similarity 
determined by spectral or environmental predictors. Nearest neighbor 
methods are convenient in that they can be used to populate pixels with 
an entire suite of observations obtained at reference plot locations, and 
as a result are able to produce reliable community-level outcomes 
(Henderson et al., 2014; Ohmann and Gregory, 2002). However, 
predictive accuracy for individual species can be low and subject to 
strong attenuation bias that causes considerable underestimation where 
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Fig. 7. Simulated distribution of major forest types A) ca. 2010 based on initial forest conditions, and B) ca. 2060 from an example run with timber harvesting. Inset 
areas (bold outlines) reference zoomed-in maps. 

 
observed relative abundance is high and overestimation when relative 
abundance is low (Legaard et al., 2020). In comparison, the mapping 
strategy underlying our initialization map, which is based on a multi-
objective machine learning algorithm, reduces the attenuation bias that 
leads to systematic error while simultaneously maintaining high 
overall accuracy. As demonstrated by Legaard et al. (2020), this 
approach is capable of achieving lower total error for individual species 
(9-44% reduction of RMSE relative to GNN) and much lower systematic 
error (40–69% reduction of systematic RMSE relative to  GNN), while 
also reproducing observed frequencies of species domi- 
nance/codominance to a level approaching that of the GNN method (i. 
e., 6% maximum absolute difference between observed and predicted 
frequencies of dominance/codominance, compared to 4% for GNN). On 
the basis of maps generated using those methods, we were able to obtain 
estimates of initial biomass and species relative abundance for the study 
area from LANDIS-II that compared very well to FIA plot data. More 
importantly, our scaled comparison (Table 1) demonstrated that our 
AGB estimates are robust at scales relevant to landscape-scale forest 
management. 

FLMs like LANDIS-II were designed to simulate forest dynamics as 
emergent properties of process interactions (Gustafson, 2013). Rather 
than being based on predetermined pathways that follow observed 
patterns of community assembly, empirical data are used to define 

 
relationships that drive tree growth and competition. The strength of a 
FLM lies in its lack of determinism and its ability to model ecological 
interactions in both space and time across large areas. As we observed, 
however, and has been previously noted (e.g., Thompson et al., 2011; 
Duveneck et al., 2014), outcome variability between replicates of a 
particular scenario tends to be low. With respect to simulations without 
harvesting, 150 years may not have been long enough for divergence to 
occur between runs given that our forest is predominantly mid-
successional at present and many of the tree species are long-lived (Xu 
et al., 2009). We expected higher variability between replicates under 
the harvest scenario because of the added disturbance, particu- larly 
given the variation in annual harvest rate across owners (i.e., from 
<1% to 8%). The lack of variation (CV range 0.03–0.04%), however, 
suggests that there was a high degree of similarity in which stands were 
selected for harvest between runs, and little variability in which species 
established in a given harvested area. In effect, over the course of each 
model run, all forest available for harvest was harvested at some point. It 
is important to also note that simulated area harvested was also 
consistently lower (6–16% across runs) than our prescribed targets; 
thus, our projections should be considered optimistic. Having knowl- 
edge of the degree to which LANDIS-II simulations of harvesting adhered 
to prescriptions and produced intended outcomes is an important, but 
rarely  reported  detail  for  interpreting  projection  results, particularly 
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when comparing outcomes from alternative forest management 
strategies. 

Our goal was to model local, landscape, and regional forest dynamics 
across the large working forest of the northern AFR. Although our results 
were based on the best available information about timber harvesting 
rates and patterns in this region, projections may not represent the 
future land-use regime in a changing climate. Increasing CO2 and a 
longer growing season are expected to boost forest productivity in the 
AFR (Wang  et al., 2017; Duveneck and Thompson, 2019), but  effects 
will vary by species, which may influence foresters’ decisions about 
which species to target as growing stock. Nonetheless, because timber 
harvesting is the dominant disturbance factor regionally (Brown et al., 
2018) and nationally (Harris et al., 2016), we saw value in an exclusive 
focus on land use, as others in our region have focused on projecting 
climate change and forest growth in the absence of land  use  
(Duveneck et al., 2017). This also provided an opportunity to compare 
different study designs across a common area, which suggested impor- 
tant influences of input data resolution on projection outcomes and in- 
sights into the limits to which a forest landscape model can be used to 
inform forest managers and policy makers in a large commercial 
landscape. 

In this study, we also did not consider other disturbances that may 
become increasingly important in the AFR, specifically forest insects. 
Eastern spruce budworm (Choristoneura fumiferana Clem.) is a native 
defoliator that infests Maine and Atlantic Maritime Canada on average 
every 30–50 years, causing widespread defoliation, growth reduction, 
and mortality of balsam fir  and  spruce  trees  (MacLean,  1980;  
Morin et al., 2007). Rapidly expanding patterns of defoliation in 
Quebec and increasing trap catches of spruce budworm moths in Maine 
suggest that outbreak conditions may emerge in the next few years. 
Dymond et al. (2010) projected that spruce budworm could cause the 
forests of eastern Quebec to switch from a carbon sink to a carbon 
source. Our future simulation studies will include the effects of spruce 
budworm, and potentially other native (e.g., Pine bark adelgid Pineus 
strobi) or emerging invasive defoliators (e.g., Hemlock wooly adelgid 
Adelges tsugae), in concert with the effects of climate change on tree 
productivity and establishment. 

5. Conclusions 

Our projections agreed with empirical studies (Bataineh et al., 2013; 
Olson and Wagner, 2010) indicating that species in our system which 
are better suited to more frequent or higher intensity disturbances (e.g., 
balsam fir, red maple, and paper birch) and which have become more 
abundant in recent decades (McCaskill et al., 2011) will continue to 
benefit from timber harvesting. As a result, broad-scale patterns of 
species co-occurrence will likely shift, challenging the persistence of 
important regional forest types such as northern hardwood forest 
characterized by sugar maple, yellow birch, and American beech. Forest 
management that promotes regeneration of long-lived species such as 
red spruce and sugar maple will benefit ecosystem stability in the AFR. 
Overall, we conclude that forest landscape models such as LANDIS-II 
when carefully parameterized and initialized can provide valuable in- 
formation at relevant scales for working forests concerning their future 
resistance and resilience to changes in species composition. 
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