
EXTRA: An Experience-driven Control Framework
for Distributed Stream Data Processing with a

Variable Number of Threads
Teng Li∗†, Zhiyuan Xu∗†, Jian Tang†, Kun Wu†, and Yanzhi Wang�

†Department of Electrical Engineering and Computer Science, Syracuse University
�Department of Electrical and Computer Engineering, Northeastern University
†{tli01, zxu105, jtang02, kwu102}@syr.edu �yanz.wang@northeastern.edu

Abstract—In this paper, we present design, implementation
and evaluation of a control framework, EXTRA (EXperience-
driven conTRol frAmework), for scheduling in general-purpose
Distributed Stream Data Processing Systems (DSDPSs). Our design
is novel due to the following reasons. First, EXTRA enables a
DSDPS to dynamically change the number of threads on the fly
according to system states and demands. Most existing methods,
however, use a fixed number of threads to carry workload (for
each processing unit of an application), which is specified by a
user in advance and does not change during runtime. So our
design introduces a whole new dimension for control in DSDPSs,
which has a great potential to significantly improve system
flexibility and efficiency, but makes the scheduling problem much
harder. Second, EXTRA leverages an experience/data driven
model-free approach for dynamic control using the emerging
Deep Reinforcement Learning (DRL), which enables a DSDPS
to learn the best way to control itself from its own experience
just as a human learns a skill (such as driving and swimming)
without any accurate and mathematically solvable model. We
implemented it based on a widely-used DSDPS, Apache Storm,
and evaluated its performance with three representative Stream
Data Processing (SDP) applications: continuous queries, word
count (stream version) and log stream processing. Particularly, we
performed experiments under realistic settings (where multiple
application instances are mixed up together), rather than a
simplified setting (where experiments are conducted only on a
single application instance) used in most related works. Extensive
experimental results show: 1) Compared to Storm’s default
scheduler and the state-of-the-art model-based method, EXTRA
substantially reduces average end-to-end tuple processing time by
39.6% and 21.6% respectively on average. 2) EXTRA does lead
to more flexible and efficient stream data processing by enabling
the use of a variable number of threads. 3) EXTRA is robust in
a highly dynamic environment with significant workload change.

I. INTRODUCTION

General-purpose Distributed Stream Data Processing Sys-
tems (DSDPSs) (such as Apache Storm [33] and Spark Stream-
ing [31]) have attracted extensive attention from industry and
academia in recent years. They are capable of processing
unbounded big streams of continuous data in an distributed
and real (or near-real) time manner, which, however, have
quite different programming models or runtime systems, com-
pared to MapReduce-based batch processing systems (such as

∗Both authors contributed equally to this work.

Hadoop [3] and Spark [30]) that deal with static big data in
an offline manner. The scheduling problem is a fundamental
problem in a DSDPS, i.e., the problem of assigning threads
(carrying workload) to workers/machines with the objective of
minimizing average end-to-end tuple processing time (which
we may simply call tuple processing time). Currently, with
most existing methods, a user specifies the number of threads
to carry workload for a (logic) Processing Unit (PU) in an
application in advance without knowing much about runtime
needs, which, however, does not change during runtime. We
aim to develop a control framework for scheduling, which
is capable of using a variable number of threads on the fly.
This design introduces a whole new dimension for control in
DSDPSs, which has a great potential to significantly improve
system flexibility and efficiency, but makes the scheduling
problem much harder.

The current practice of scheduling includes two kinds of
approaches : 1) The simple load-balancing approach (such
as the default scheduler of Storm [33]): It evenly distributes
threads over machines in the cluster with a round-robin
manner. 2) The model-based approach (such as [15]): It builds
a mathematical model to estimate end-to-end tuple processing
time or some other important metrics for a given scheduling
solution and then uses the model to guide scheduling. The first
approach is obviously not effective due to lack of consideration
for runtime states such as communication delays between
machines/processes/threads, which have been shown to have
a significant impact on end-to-end average tuple processing
time [38]. The second approach may not work well too since
it is very hard and challenging to mathematically model a
DSDPS, which usually has a very complicated architecture,
and highly time-variant runtime states. Specifically, queueing
theory has been employed to model distributed stream database
systems [24]. However, we doubt it can work well for a
DSDPS because: 1) The queueing theory still cannot well
handle a queueing network (rather than a single queue), while
a DSDPS represents a very complicated queueing network
with a multi-point to multi-point structure where tuples from a
queue is distributed to multiple different downstream queues,
and a queue receives tuples from multiple different upstream
queues. 2) The whole theory was built based on a few strong

assumptions (e.g, Poisson distribution for the arrival process,
etc), which, however, may not hold in a complicated DSDPS
(e.g. the tuple arrival process between threads). An interesting
model was presented in a recent work [15] to estimate end-to-
end tuple processing time in a DSDPS by summing up delay
at each component (including processing time at each PU and
communication delay between two PUs and predicting such
delays using a supervised learning algorithm. A scheduling
algorithm was also developed based on estimates provided
by this model. Even though it has been shown to outperform
the simple load-balancing approach, we suspect that it is still
far away from an ideal solution because the prediction for
each individual component may not be accurate; and more
importantly, end-to-end tuple processing time involves many
factors in a complex DSDPS, which are not fully captured by
the model. In addition, we are facing a much more challenging
scheduling problem of jointly determining the number of
threads and their assignment here. None of methods in related
works [15], [17] can be directly applied to solve this problem
since they only work for the case with a fixed number of
threads.

To overcome these issues, we aim to develop a data/
experience model-free approach that can fully embrace the
extra power and flexibility brought by a variable number of
threads, and learn the best way to control a DSDPS from its
own experience rather than any accurate and mathematically
solvable system model, just as a human learns a skill (such as
driving and swimming). We believe that the emerging Deep
Reinforcement Learning (DRL) [22] is a promising technique
for archiving the above goal because 1) it enables model-
free control that does not rely on any accurate mathematical
model; 2) it can better handle a sophisticated state space
(e.g., AlphaGo [29]), compared to traditional Reinforcement
Learning (RL) [34]; and 3) it is able to deal with highly
time-variant environments. Even though DRL has been shown
to deliver superior performance on a series of game-playing
applications [22], its applicability on controlling and manag-
ing complex distributed computing systems such as DSDPSs
remains unknown. The basic DRL technique, such as Deep
Q Network (DQN) [22], does not work here since it can
only deal with control problems that have a limited action
space but the scheduling problem in a DSDPS usually has
an enormous action space (worker threads, worker processes,
virtual/physical machines, and their combinations, see Sec-
tion II). When considering the scenario with a variable number
of threads, the scheduling problem becomes much harder
(See Section II-B) and the correlations between a scheduling
solution and the average tuple processing time become more
sophisticated, which further justify the necessity of using a
learning (especially deep learning) approach. However, it is
more challenging because the action space becomes much
larger.

To the best of our knowledge, we are among the first to de-
velop a highly-effective experience-driven control framework
for scheduling in DSDPSs based on DRL, which minimizes
average end-to-end tuple processing time with a variable

number of threads. In summary, we made the following
contributions:
• We develop a control framework, EXTRA, for a DSDPS,

which enables dynamic use of a variable number of
threads at runtime; while the methods proposed in most
related works (such as [15], [17], [38]) can only work
with the case with a fixed number of threads, which
therefore cannot directly applied here.

• We conducted a comprehensive performance evaluation
and showed via extensive experiments with representative
Stream Data Processing (SDP) applications that EXTRA
significantly outperforms the commonly-used baseline as
well as the state-of-the-art. It is worth mentioning that
we performed experiments under realistic settings (where
multiple application instances are mixed up together),
instead of a simplified setting (where experiments are
conducted only on a single application instance) used in
most related works (such as [15], [17], [38]).

II. DESIGN AND IMPLEMENTATION OF THE PROPOSED
FRAMEWORK

A. Overview
In a DSDPS, logically, a Processing Unit (PU) is used to

consume and process tuples from external data sources (or
other PUs). A task is defined as an instance of a data source
or a PU. For each data source or PU, multiple tasks can be
created and executed in parallel on a cluster. Physically, a
task is normally mapped to a worker thread at runtime, which
processes incoming data tuples using user code. A DSDPS
usually runs on a computer cluster with multiple physical or
virtual machines, and a master node serving as the central
control unit, which handles the distribution of user code over
the cluster, scheduling and fault tolerance. Each machine can
be used to host multiple worker processes, and each worker
process can host multiple worker threads.

In a DSDPS, a scheduling solution specifies the assignment
of worker threads to worker processes, and worker processes
to machines. Current DSDPSs typically include a default
scheduler, which can be replaced by a custom scheduler.
The default scheduler usually applies a simple scheduling
algorithm, which evenly distributes workload by assigning a
pre-configured number of worker threads to worker processes
and further to machines in a round-robin manner.

To enable dynamic use of a variable number of threads at
runtime and realize online scheduling in a DSDPS, we present
a DRL-based experience-driven control framework, EXTRA,
which mainly consists of three components:

1) DRL Agent: As the central part of EXTRA, this com-
ponent applies a DRL-based method with the input of a
state, produces an action (Section II-B) and translates it
into corresponding scheduling solution, which is further
pushed to the custom scheduler.

2) Data Store: This component leverages a database for
storing transition samples (for the training purpose),
including information about the state, action and reward
(Section II-B).

3) Custom Scheduler: Upon receiving a scheduling solution
from DRL agent, this component deploys it on the
DSDPS via its master, which specifies the number of
threads of each PU or data source, and their assignment.

The design of our framework leads to several desirable
features, which makes EXTRA superior to existing methods.
First, EXTRA is capable of varying the number of threads
for each PU during runtime, which leads to more flexible and
effective control thus offers a DSDPS an extra leverage to
better handle a highly dynamic environment. This is a desir-
able feature that most scheduling methods (such as [15], [17],
[38]) do not have. For most of them (including Storm’s default
scheduler), in an application, the number of threads of each PU
is pre-defined by its user with limited or almost no knowledge
about runtime states and demands, and remains unchanged
throughout the whole data processing procedure. Second, our
design features experience-driven model-free control powered
by emerging DRL (Section II-B), which gradually discovers
the best way to control a DSPDS from its own experience;
while the current practice employs a rather trivial method that
equally distributes workload over all available machines; and
some existing optimization-based methods (e.g. [16]) perform
online scheduling based on mathematical models that may
not able to accurately characterize a complex DSDPS at
runtime. In addition, we strongly emphasize user transparency
(Section II-C) in our design so that a user do not need to
make any changes to their original code in order to run their
applications on the new DSDPS with EXTRA.

B. DRL-based Scheduling

In this section, we present the proposed DRL-based schedul-
ing algorithm in EXTRA, which targets at minimizing the end-
to-end average tuple processing time via jointly determining
the number of threads and their assignment. First, we summa-
rize the major notations below for quick reference.

TABLE I
MAJOR NOTATIONS

Notation Description
M and M The set of machines and the total number of machines
P The set of processes

N and N The set of threads and the maximum number of threads
C and C The set of components and the total number of components
Ci and ci The maximum and actual number of threads from component i

H The number of application instances
s and S The state and state space

a, â and A The action, proto-action and action space
r The reward

θ and φ Weights of actor and critic networks p(·) and Q(·)

Suppose that we are given a set of machines M, processes
P and threads N , a scheduling solution specifies the mappings
of N 7→ P and P 7→M, which represents the assignment of
each thread to a process of a machine. Similar as [38], [15], our
design ensures that threads from the same application instance
are assigned to only one process on a machine, which leads to
better performance than the solution that may assign them to
more than one process due to additional but unnecessary inter-
process communications [38]. Based on this design, we only

need to specify how to assign each thread to a machine, i.e.,
mapping of N 7→M. Note that we call it application instance
(i.e., topology in Storm) instead of application because there
can be more than one concurrent instances of a common
application in a DSDPS.

We consider a realistic scenario where there are H appli-
cation instances running on a DSDPS simultaneously, which
consist of a set of components C (data sources or processing
units). C is the total number of components and ci is the actual
number of active threads of component i, which is bounded
by a maximum value of Ci. So ci ∈ {1, · · · , Ci} since each
component needs to have at least one thread.

The problem of scheduling with a variable number of
threads seeks a solution that specifies how many threads of
each component in C is assigned to each machine inM. Note
that this problem is much harder than that in [17]. According
to [15], because of different tuple processing time and trans-
fer delays between threads at runtime, different scheduling
solutions may lead to different end-to-end tuple processing
times There are several state-of-the-art DRL methods has
been proposed before in [22], [18], [5], particularly, here
we introduce how to leverage DDPG [18] for solving the
above scheduling problem. We first define the state, action
and reward as follows.
ACTION: An action is defined as a =< aij >, ∀i ∈
{1, · · · , C}, ∀j ∈ {1, · · · ,M}, where aij ∈ {0, · · · , Ci}, ∀i, j
and 1 ≤ ∑M

j=1 aij ≤ Ci, ∀i, and aij = a means assigning
a threads of component i to machine j. The constraints
ensure that the total number of threads from each component
does not exceed the corresponding maximum value, and each
component needs to have at least one thread. Note that aij
could be 0, which means no thread of component i is assigned
to machine j. The action space A contains all feasible actions,
whose size is exponentially large.
STATE: A state s = (a,w) consists of two parts: the current
thread assignment a =< aij > as described above, and the
workload w. Here, w = [w1, · · · , wh, · · · , wH], where wh is
the tuple arrival rate (the number of tuples per second) of the
hth application instance.
REWARD: The reward is defined to be the negative value
of the sum of average tuple processing time over all running
application instances so that maximizing this reward is equiva-
lent to minimizing the sum of average tuple processing times.
Note that weights can be assigned to application instances to
indicate their priorities, then the reward becomes the weighted
sum of the average tuple processing times.

It is worth mentioning that the success of DRL methods
highly depends on the definition of state space, action space
and reward. In our problem, the definition of action space
and reward are relatively straightforward. For the state space,
there are many different ways available because a DSDPS
includes various runtime information (features) [15], e.g. av-
erage tuple processing latency at each thread/PU, average
tuple transfer latency between threads/PUs, workload at each
thread/process/machine, CPU/memory/network usages of ma-
chines, etc. We, however, choose a simple design. Among

v ari o us r u nti m e i nf or m ati o n, w e pi c k t h e s c h e d uli n g s ol uti o n
a , w hi c h l e a ds t o diff er e nt v al u es f or ot h er f e at ur es (m e nti o n e d
a b o v e) a n d e v e nt u all y diff er e nt a v er a g e e n d-t o- e n d t u pl e pr o-
c essi n g ti m es, a n d t h e i n c o mi n g t u pl e r at es at t h e d at a s o ur c es
w r e fl e ct t h e r e al-ti m e w or kl o a d of t h e D S D P S, w hi c h is als o
n e c ess ar y a n d m e a ni n gf ul. A c c or di n g t o o ur o bs er v ati o n, t h e
pr o p os e d D N Ns c a n w ell m o d el c orr el ati o ns b et w e e n a st at e
a n d a r e w ar d aft er tr ai ni n g. O ur d esi g n of t h e st at e s p a c e c a n
si g ni fi c a ntl y r e d u c e c o ntr ol o v er h e a d si n c e o nl y v er y li mit e d
r u nti m e i nf or m ati o n n e e ds t o b e c oll e ct e d at e a c h d e cisi o n
e p o c h, w hi c h c a n b e e asil y d o n e i n a D S D P S (e. g., b y usi n g
t h e St or m R E S T A PI).

T h e b asi c D R L t e c h ni q u e, t h e D Q N- b as e d m et h o d [2 2],
a d o pts a v al u e it er ati o n a p pr o a c h, t a ki n g st at e s a n d a cti o n
s p a c e A as i n p ut a n d r et ur n v al u e Q = Q (s, a |θ) f or e a c h
a cti o n a ∈ A (wit h p ar a m et ers θ). A gr e e d y m et h o d c a n t h e n
b e a p pli e d t o s el e ct a n a cti o n i n e a c h e p o c h. I n or d er t o a p pl y
t his m et h o d, t h e a cti o n s p a c e A n e e ds t o b e r estri ct e d t o b e
p ol y n o mi al-ti m e s e ar c h a bl e. H o w e v er, t h e a cti o n s p a c e h er e
is e x p o n e nti all y l ar g e. H e n c e, w e d o n’t s e e a str ai g htf or w ar d
e xt e nsi o n t o a d dr ess o ur pr o bl e m.

A ct or N et w or k Criti c N et w or k

D S D P S

R e w ar d A cti o n

St at e

O pti mi z er

(EX T R A- N N)

Pr ot o - a cti o n

T hr e a d s

K - N N A cti o n s

U p d at e

â

p (·)

s

Q (·)

A K

r a

M a c hi n e s

C o m p o n e nt s

N M

C

Fi g. 1. T h e a ct or- criti c- b as e d m et h o d

I n o ur d esi g n, w e t a k e s o m e st at e- of-t h e- art R L t e c h ni q u es,
i n cl u di n g a ct or- criti c m et h o d [3 4], [5] a n d t h e d et er mi nisti c
p oli c y gr a di e nt m et h o d [2 8], t o s ol v e t h e s c h e d uli n g pr o bl e m
i n a D S D P S. N ot e t h at si n c e t h es e t e c h ni q u es o nl y pr o vi d e a
g e n er al fr a m e w or k, n o n e of t h e m c a n b e dir e ctl y a p pli e d t o a
D S D P S, w e still n e e d t o c ar ef ull y d esi g n a s p e ci fi c s ol uti o n
t o o ur pr o bl e m. T h e o v er all ar c hit e ct ur e of t h e pr o p os e d
m et h o d is pr es e nt e d i n Fi g ur e 1, w hi c h m ai nl y c o nsists of
t hr e e c o m p o n e nts: a n a ct or n et w or k, a n o pti mi z er a n d a criti c
n et w or k. I n s h ort, t h e a ct or n et w or k t a k es t h e st at e as i n p ut
a n d o ut p uts a c o nti n u o us pr ot o- a cti o n â (b as e s ol uti o n), t h e
o pti mi z er d eri v es a s et of K- N e ar est N ei g h b ors (K- N N) A K

of a gi v e n pr ot o- a cti o n â i n t h e a cti o n s p a c e, a n d t h e criti c
n et w or k t a k es t h e st at e a n d K- N N a cti o ns A K as i n p ut a n d
o ut p uts t h e Q v al u e f or e a c h a cti o n a ∈ A K .

S p e ci fi c all y, t h e a ct or n et w or k p (s|θ) is a f u n cti o n wit h
p ar a m et ers θ . Si n c e t h e o ut p ut of t h e a ct or n et w or k â (e. g.
t h e pr ot o- a cti o n) is c o nti n u o us, w e c a n k n o w t h at â /∈ A (i. e.,
n ot a f e asi bl e a cti o n) t h us it c a n n ot b e dir e ctl y c o nsi d er e d as
a s c h e d uli n g s ol uti o n.

T h e n e xt a n d m ost criti c al st e p is t o d eri v e t h e K- N N of
a gi v e n pr ot o- a cti o n, w hi c h h as n ot b e e n w ell dis c uss e d i n

pr e vi o us w or ks, li k e [5]. It is k n o w n t h at fi n di n g K- N N c a n
e asil y b e d o n e i n li n e ar ti m e. H o w e v er, t h e i n p ut si z e is t h e
t ot al n u m b er of a cti o ns h er e, w hi c h is e x p o n e nti all y l ar g e.
T h er ef or e, it m a y t a k e a n e x p o n e nti all y l o n g ti m e t o e n u m er at e
all a cti o ns a n d d o a li n e ar s e ar c h f or t h e s et of K- N N. I n or d er
t o li mit t h e s e ar c hi n g ti m e, w e pr o p os e a n o pti mi z er b as e d
o n Mi x e d-I nt e g er Q u a dr ati c Pr o gr a m mi n g (MI Q P), w hi c h is
d e fi n e d as:
E X T R A- N N:

mi n
a

: a − â 2
2

s.t.:
M

j = 1

a i j ≥ 1 , ∀ i ∈ { 1 , · · · , C} ;

M

j = 1

a i j ≤ C i , ∀ i ∈ { 1 , · · · , C} ;

a i j ∈ { 0 , · · · , Ci } , ∀ i ∈ { 1 , · · · , C} , ∀ j ∈ { 1 , · · · , M} .
(2. 1)

S ol vi n g E X T R A- N N c a n fi n d t h e n e ar est n ei g h b or a of t h e
pr ot o- a cti o n a cti o n â . T h e c o nstr ai nts e ns ur e t h e f e asi bilit y of
a cti o n a , i. e., a ∈ A (S e e t h e d e fi niti o n of a n a cti o n). K- N N of
â c a n b e o bt ai n e d b y it er ati v el y s ol vi n g E X T R A- N N K ti m es.
I n e a c h it er ati o n, o n e n ei g h b or of t h e pr ot o- a cti o n is o bt ai n e d
a n d t h e c orr es p o n di n g < a i j > is fi x e d, t h e n MI Q P- N N is
u p d at e d a n d s ol v e d a g ai n t o fi n d t h e n e xt n e ar est n ei g h b or.
I n pr a cti c al a p pli c ati o ns, si n c e C , < C i > a n d M ar e n ot
t o o l ar g e, t h e MI Q P pr o bl e m c a n b e ef fi ci e ntl y s ol v e d. I n
o ur e x p eri m e nts, w e s ol v e d E X T R A- N N usi n g t h e G ur o bi
O pti mi z er [1 2] a n d f o u n d t h at s ol vi n g a pr o bl e m i nst a n c e
c o ul d us u all y b e d o n e i n r e al ti m e (wit hi n a b o ut 1 0 ms usi n g a
r e g ul ar d es kt o p). F or v er y l ar g e i n p ut c as es, w e c a n i m pr o v e
c o m p ut ati o n al ef fi ci e n c y b y r el a xi n g t h e E X T R A- N N pr o bl e m
t o a c o n v e x pr o gr a m mi n g pr o bl e m [9] a n d usi n g a r o u n di n g
al g orit h m t o o bt ai n a p pr o xi m at e s ol uti o ns.

T h e l ast st e p is t o s el e ct a n a cti o n fr o m A K usi n g t h e
criti c n et w or k. T h e criti c n et w or k Q (s, a |φ) is a f u n cti o n wit h
p ar a m et ers φ , w hi c h o ut p uts Q v al u e f or e a c h a cti o n a ∈ A K .
T h e f e asi bl e a cti o n c a n b e s el e ct e d b y:

π Q (s) = ar g m a x
a ∈ A K

Q (s, a |φ). (2. 2)

We f or m all y pr es e nt t h e D R L- b as e d al g orit h m f or s c h e d ul-
i n g as Al g orit h m 1. B ot h e x p eri e n c e r e pl a y a n d t ar g et n et-
w or ks [2 2], [1 8] ar e a d o pt e d i n o ur al g orit h m t o i m pr o v e
l e ar ni n g st a bilit y a n d a v oi d di v er g e n c e. F or e x p eri e n c e r e pl a y,
s a m pl es ar e first st or e d i nt o a r e pl a y b uff er B , t h e n a mi ni-
b at c h of tr a nsiti o n s a m pl es ar e r a n d o ml y s el e ct e d fr o m B t o
tr ai n t h e a ct or a n d criti c n et w or ks, i nst e a d of usi n g i m m e di-
at el y c oll e ct e d tr a nsiti o n s a m pl e at e a c h d e cisi o n e p o c h t (li n es
1 3 – 1 4). N ot e t h at t h e ol d est tr a nsiti o n s a m pl e will b e dis c ar d e d
w h e n B e x c e e ds its m a xi m u m c a p a cit y. Tar g et n et w or ks h a v e
t h e s a m e n et w or k str u ct ur e as t h e ori gi n al a ct or n et w or k or
criti c n et w or k, b ut t h eir w ei g hts θ a n d φ ar e sl o wl y u p d at e d
b y a p ar a m et er τ (li n e 1 9). I n o ur i m pl e m e nt ati o n, w e s et t h e

size of experience replay buffer |B| = 1000 and mini-batch
L = 32. τ is set to 0.01.

Algorithm 1 The DRL-based scheduling algorithm
1: Randomly initialize actor network p(·) and critic network
Q(·) with weights θ and φ respectively;

2: Initialize target networks p′(·) and Q′(·) with weights
θ′ ← θ, φ′ ← φ; /**Offline Training**/

3: Initialize and load the historical transition samples into
experience replay buffer B, pre-train p(·) and Q(·) offline;
/**Online Learning**/

4: for episode = 1 to E do
5: Initialize a random process X for exploration;
6: Receive an initial observation state s1;

/**Decision Epoch**/
7: for t = 1 to T do
8: Derive proto-action â from p(·);
9: Apply exploration policy to â: X (â) = â + εI;

10: Obtain K-NN actions AK of â from EXTRA-NN;
11: Select action at = argmaxa∈AK

Q(st, a);
12: Deploy the scheduling solution according to at, then

observe the reward and the new state;
13: Store transition sample (st, at, rt, st+1) into B;

/**Updating the networks**/
14: Randomly sample a mini-batch of transition samples

(si, ai, ri, si+1) with size L;
15: Obtain K-NN Ai+1,K of p′(si+1) from EXTRA-NN;
16: Compute target values by Equation 2.3;
17: Update φ to minimize the loss by Equation 2.4:
18: Update θ with the sampled gradient by Equation 2.5:
19: Update θ′ and φ′ as follows:

θ′ := τθ + (1− τ)θ′, φ′ := τφ+ (1− τ)φ′;
20: end for
21: end for

The actor and critic networks are first pre-trained in an
offline manner using historical transition samples (line 3).
By introducing pre-training, more possible states and actions
can be explored so that online learning can be accelerated.
The pre-training process is almost the same as the online
learning procedure (lines 14–19). In our implementation, for
each experiment setup, 10, 000 transition samples were first
collected with random actions. The actor and critic networks
were then pre-trained using those samples. In our implemen-
tation, the actor network consists of 2-layer full-connected
neural network, which contains 64 and 32 neurons with the
hyperbolic tangent activation function respectively. The same
neural network structure is applied to the critic network.

An online exploration policy is applied to the proto-action
X (â) = â + εI (line 9), where ε is a decay parameter and
I is a random noise sampled from [0, 1] uniformly in our
implementation. Like the ε-greedy method in [27], rather than
directly taking the derived action from the actor network, ε
determines the probability of adding a random noise to the
proto-action. Moreover, ε decreases with decision epoch t, that
is, as the training continues, it is more likely that derived

actions will be taken instead of random ones. A trade-off
between exploration and exploitation is thus achieved.

To train the actor and critic network, we first sample a mini-
batch of transition samples from B (line 14); for each transition
sample (si, ai, ri, si+1), we can find the K-NN actions Ai+1,K

of the proto-action p′(si+1) from the solution of EXTRA-NN
(line 15). Note that the proto-action p′(si+1) for the next state
si+1 is derived from the target actor network p′(·) instead of
the original one; then, the target values for the critic network
can be calculated by (line 16):

yi := ri + γ max
a∈Ai+1,K

Q′(si+1, a), (2.3)

finally, the critic network can be trained by the loss function
(line 17), which is defined by a common used mean squared
error:

L(φ) = 1

L

∑
i

[yi −Q(si, ai)]
2, (2.4)

and the actor network is trained by the gradients from the
critic network and the chain rule (line 18), which is known as
the deterministic policy gradient method [28], [5].

∇θJ =
1

L

∑
i

∇aQ(s, â)|â=p(si) · ∇θp(s)|s=si . (2.5)

C. Implementation Details

The proposed framework, EXTRA, was implemented based
on Apache Storm [33]. The DRL agent was implemented as a
separate program running independently from Storm. Note that
in Storm, data source, PU, application graph, master, worker
process and worker thread are called spout, bolt, topology,
Nimbus, worker and executor, respectively. We use these terms
interchangeably in the following sections.

In Storm, ZooKeeper [40] is used as a coordination ser-
vice to maintain it’s own scheduling solution and distributed
synchronization among machines. The master node, Nimbus,
provides interfaces to fetch or update Storm’s mutable configu-
rations. A Storm topology contains a topology-specific config-
uration (including the number of threads for each spout/bolt),
which will be loaded before the processing starts. When a tuple
emitted from a data source successfully traverses all the PUs
of an application, a special thread (called acker in Storm) is
usually called to acknowledge that it has been fully processed.
The end-to-end tuple processing time is the duration between
when the data source emits a tuple and when this tuple is
acknowledged. Note that we only focus on the processing
times of those tuples that are emitted from data sources, which
represent the overall end-to-end processing delay on the entire
application instance.

At each decision epoch, the DRL agent calls the Storm
REST API to remotely obtain the state and reward (Sec-
tion II-B). Then the proposed DRL-based scheduling algorithm
(Algorithm 1) is applied and the action is generated by the
DRL agent. The action is further translated into the corre-
sponding Storm-recognizable scheduling solution, which in-
cludes the desirable number of executors and their assignment.
The scheduling solution is then pushed to the custom scheduler

through a socket between the custom scheduler and the DRL
agent, which we implemented for the communication purpose.
Running within Nimbus, the custom scheduler has access to
various runtime state information of Storm. Upon receiving the
scheduling solution from the DRL agent, the custom scheduler
changes the number of executors for each component (if
needed) using the rebalance command from Storm CLI, then
updates the number of tasks accordingly to match the number
of executors, and re-submits it to the system. After that, the
Nimbus starts to deploy the executors to the worker nodes
(i.e. machines) according to the scheduling solution. Note that
during the deployment, in order to minimize the overhead,
we only re-schedule those executors which have different
assignments from the previous ones while keeping the rest
unchanged (instead of freeing all executors first and then
assigning them to the worker nodes one by one from scratch,
which is Storm’s default way for re-assignment). Moreover, to
ensure accurate data collection, the proposed framework waits
for several minutes till the captured data stabilizes after a new
scheduling solution is applied. The average of 5 consecutive
measurements is taken with a 10-second interval in between.

In addition, both offline training and online learning were
performed to train the DRL agent in EXTRA. During the
offline training, we collected transition samples from our
Storm cluster. Note that this only needs to be done once.
After offline training, the DRL agent can quickly reach good
scheduling solutions and keep improving itself during online
learning.

III. PERFORMANCE EVALUATION

A. Experimental Setup

In this section, we present the experimental settings and
results of our DRL-based experience-driven control framework
(EXTRA). We implemented the whole framework based on
Apache Storm [33], and particularly, we implemented and
trained the DNNs with TensorFlow [35]. In order to evaluate
the performance of EXTRA, we conducted the experiments
on a cluster, which includes 1 Nimbus node and 10 worker
nodes. Each node has 4GB memory and an Intel Xeon Quad-
Core 2.0GHz CPU.

Similar as in [17], we used 3 representative SDP ap-
plications to test EXTRA: continuous queries, word count
(stream version) and log stream processing. Due to space
limitation, we describe the experimental settings here but omit
the description for the functions and structures of the three
topologies, which can be found in [15], [17]. As aforemen-
tioned, EXTRA collects transition samples through interacting
with the environment (e.g., DSDPS), and the DRL agent learns
the best scheduling policies from these collected transition
samples.

Continuous Queries Topology: This topology represents
one of the most popular SDP applications. It is a select query
that works by initializing access to a database table in memory
and looping over each row to check if there is a hit [6]. The
topology consists of one type of spout and two types of bolts.
The spout randomly generates queries, emitting and sending

them to a Query bolt. The database table was created in the
memory of each worker node. Upon receiving queries from the
spout, the Query bolt starts to scan over the database table,
and if the Query bolt find the matching records, it will emits
them to the File bolt. The file bolt will writes those records
into files. In this topology, a database table which contains
vehicles’ plates and owner information including owner names
and SSNs was randomly generated. Besides, random queries
were generated to search the database table for speeding
vehicles (with vehicle speeds randomly generated and attached
to every entry) and their owners’ information. To perform a
comprehensive evaluation, we proposed 3 different scenarios:
small-scale, medium-scale and large-scale. In every setup, 3
continuous queries topologies (i.e., application instances) were
configured to run simultaneously. In the small-scale experi-
ment, for each topology, the maximum number of executors
were set to N = 20, including a maximum number of 2 spout
executors (i.e., C1 = 2), 9 Query bolt executors and 9 File bolt
executors respectively. In the medium-scale and large-scale
experiments, for each topology, we had a maximum number
of 50 and 100 executors in total, including a maximum number
of 5 and 10 spout executors, 25 and 45 Query bolt executors
and 20 and 45 File bolt executors respectively.

Word Count Topology (stream version): Widely known
as a classical MapReduce application, the original version of
the topology counts every word’s frequency of occurrence in
one or multiple files. We modified it into an SDP application
running a similar processing routine but with a stream version
data source. One type of spout and three types of bolts form
a chain-like topology. We used LogStash [21] to read data
from input source files. LogStash submits lines of the input
file as separate JSON values to a Redis queue. Then they
are further consumed and emitted into this topology. We used
the text file of Alice’s Adventures in Wonderland [1] as the
input file. The spout produces a data stream when the input
file is pushed into the Redis queue, which is first directed to
the SplitSentence bolt. This bolt splits each input line into
individual words and further sends them to the WordCount
bolt which counts the frequency of occurrence. Finally, the
Database bolt stores the results into a Mongo database. In
the experiment, 3 word count topologies were configured to
run simultaneously. Each topology was configured to have
a maximum number of 100 executors in total, including a
maximum number of 10 spout executors, 30 SplitSentence
bolt executors, 30 WordCount executors and 30 Database bolt
executors respectively.

Log Stream Processing Topology: In this topology, log
lines are sent to a Redis queue emitting output to the spout.
Microsoft IIS log files collected from computers at our uni-
versity were used as the input data. Based on the rule, the
LogRules bolt performs analysis on the log stream, and then
delivered values that contains a pre-defined type of log entry
instance. The analysis results are delivered to 2 different bolts
simultaneously: Counter bolt is used to perform counting
actions on log entries; Indexer bolt is used to perform indexing
actions. To include two separate database bolts after the

0 5 10 15 20
2.5

3

3.5

4

4.5

5

5.5

6

Running time (min)

A
v

e
ra

g
e

 t
u

p
le

 p
ro

c
e

s
s

in
g

 t
im

e
 (

m
s

)

Default

Model−based

EXTRA

(a) Small-scale

0 5 10 15 20
2.5

3

3.5

4

4.5

5

5.5

6

6.5

Running time (min)

A
v

e
ra

g
e

 t
u

p
le

 p
ro

c
e

s
s

in
g

 t
im

e
 (

m
s

)

Default

Model−based

EXTRA

(b) Medium-scale

0 5 10 15 20
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

Running time (min)

A
v

e
ra

g
e

 t
u

p
le

 p
ro

c
e

s
s

in
g

 t
im

e
 (

m
s

)

Default

Model−based

EXTRA

(c) Large-scale

Fig. 2. Average tuple processing time over 3 continuous queries topologies

Counter and Indexer bolt respectively, we modified the original
topology [2]. Results are stored into separate collections in a
Mongo database for the purpose of verification. In the ex-
periment, 3 log stream processing topologies were configured
to run simultaneously. Each topology was configured to have
a maximum number of 100 executors in total, including a
maximum number of 10 spout executors, 20 LogRules bolt
executors, 20 Indexer bolt executors, 20 Counter bolt executors
and 15 executors for each Database bolt.

Hybrid Scenario: We also came up with a hybrid scenario
with 3 different topologies running simultaneously in the large-
scale setting. Specifically, there were a continuous queries
topology with a maximum number of 100 executors (including
a maximum number of 10 spout executors, 45 Query bolt
executors and 45 File bolt executors); a word count topology
(stream version) with a maximum number of 100 executors
(including a maximum number of 10 spout executors, 30
SplitSentence bolt executors, 30 WordCount executors and
30 Database bolt executors); and a log stream processing
topology with a maximum number of 100 executors (including
a maximum number of 10 spout executors, 20 LogRules bolt
executors, 20 Indexer bolt executors, 20 Counter bolt executors
and 15 executors for each Database bolt) in our experiment.

Significant Workload Change Scenario: To test how
EXTRA performs in a highly dynamic environment, we also
performed experiments with significant workload change: the
incoming data rate was increased significantly by 50% at 20
minute. The experiments were conducted with 3 continuous
queries topologies (the settings were the same as those in the
large-scale continuous queries scenario), as well as with 3
different topologies (the settings were the same as those in
the hybrid scenario).

B. Experimental Results and Analysis

In this section, we present the experimental results and
analysis. To well justify the effectiveness of our framework, we
compared EXTRA with a state-of-the-art model-based method
proposed in a recent paper [15] (labeled as “Model-based”)
and the default scheduler of Storm (labeled as “Default”) in
terms of average (end-to-end) tuple processing time. Both

the model-based method and the default scheduler used the
maximum number of threads in all the experiments. Note that
we could not compare EXTRA with the method presented
in [17] in the experiments because it does not work for
the case with a variable number of threads. We present the
corresponding results in Figures 2–7.

Continuous Queries Topology: As mentioned above, we
performed experiments with 3 concurrent continuous queries
topologies under 3 settings: small-scale, medium-scale and
large-scale, as described above.

As we can see from Figure 2, after deploying a scheduling
solution, the average tuple processing time of all 3 methods
gradually decreases and eventually gets stable at a relative low
value after 8− 10 minutes. For examples, in Figure 2(a), the
default scheduler starts at 5.81ms and stabilizes at 4.06ms; the
model-based model starts at 4.86ms and stabilizes at 3.10ms;
and our EXTRA starts at 4.28ms and stabilizes at 2.67ms. In
this case, compared with the default scheduler and the model-
based method, EXTRA reduces the average tuple processing
time by 34.2% and 14.0% respectively.

From Figure 2(b) (medium-scale), we can see that the
average tuple processing times given by all 3 methods slightly
go up. Specifically, the default scheduler stabilizes at 4.25ms;
while the model-based method stabilizes at 3.31ms; and our
EXTRA stabilizes at 2.77ms. Hence, in this case, EXTRA
achieves a performance improvement of 34.8% over the de-
fault scheduler and 16.2% over the model-based method.

We can observe from Figure 2(c) (large-scale) that the
average tuple processing times of all three methods increase
further compared to small and medium scale but still can
stabilize at acceptable values. This reflects the fact that the
workload for the Storm cluster is much heavier but is not
overloaded in this large-scale case. Specifically, the default
scheduler stabilizes at 5.29ms; while the model-based method
stabilizes at 4.23ms; and our EXTRA stabilizes at 3.12ms.
In this case, EXTRA achieves a more significant performance
improvement of 41.0% over the default scheduler and 26.2%
over the model-based method.

Word Count Topology (stream version): We performed

a large-scale experiment over 3 word count (stream version)
topologies and show the corresponding results in Figure 3.
Since these topologies have the similar complexity to con-
tinuous queries topologies, we got a similar average tuple
processing time for all 3 methods (compared to that of
continuous queries topologies).

In Figure 3, when the default scheduler is used, it stabilizes
at 6.51ms; when the model-based method is employed, it
stabilizes at 4.57ms; and when EXTRA is used, it stabilizes at
3.37ms. EXTRA results in a significant performance improve-
ment of 48.3% over the default scheduler and 26.3% over the
model-based method.

0 5 10 15 20
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Running time (min)

A
v

e
ra

g
e

 t
u

p
le

 p
ro

c
e

s
s

in
g

 t
im

e
 (

m
s

)

Default

Model−based

EXTRA

Fig. 3. Average tuple processing time over 3 large-scale word count topologies
(stream version)

Log Stream Processing Topology: We performed a large-
scale experiment over 3 log stream processing topologies
as described above. We show the corresponding results in
Figure 4. Since this topology is more complicated compared to
the continuous queries topology, it leads to significant longer
tuple processing times no matter which scheduler is applied.

In Figure 4, when the default scheduler is used, it stabilizes
at 19.93ms; when the model-based method is employed, it
stabilizes at 16.15ms; and when EXTRA is used, it stabilizes
at 12.33ms. As expected, EXTRA consistently outperforms
the other two methods. Specifically, compared to the default
scheduler and the model-based method, it reduces the average
tuple processing time by 38.1% and 23.6% respectively.

Hybrid Scenario: For the hybrid scenario with 3 different
topologies, the corresponding results are shown in Figure 5.
When the default scheduler is applied, the average tuple
processing time stabilizes at 10.95ms; when the model-based
method is applied, it stabilizes at 8.42ms; and when EXTRA
is used, it stabilizes at 6.45ms. Hence, EXTRA reduces the
average tuple processing time substantially by 41.1% com-
pared to the default scheduler, and 23.4% over the model-
based method.

In summary, we can make the following observations from
the above results: 1) EXTRA consistently outperforms the
other two methods, which well justifies effectiveness of the
proposed experience-driven approach as well as the use of a
variable number of threads for scheduling in a DSDPS. 2) The

0 5 10 15 20
12

13

14

15

16

17

18

19

20

21

22

Running time (min)

A
v

e
ra

g
e

 t
u

p
le

 p
ro

c
e

s
s

in
g

 t
im

e
 (

m
s

)

Default

Model−based

EXTRA

Fig. 4. Average tuple processing time over 3 large-scale log processing
topologies

0 5 10 15 20
6

8

10

12

14

16

18

20

Running time (min)

A
v

e
ra

g
e

 t
u

p
le

 p
ro

c
e

s
s

in
g

 t
im

e
 (

m
s

)

Default

Model−based

EXTRA

Fig. 5. Average tuple processing time over 3 different large-scale topologies

0 5 10 15 20 25 30 35 40
3

3.5

4

4.5

5

5.5

Running time (min)

A
v

e
ra

g
e

 t
u

p
le

 p
ro

c
e

s
s

in
g

 t
im

e
 (

m
s

)

Fig. 6. Average tuple processing time given by EXTRA over 3 large-scale
continuous queries topologies with significant workload change

performance improvement offered by EXTRA becomes more
and more significant with the increase of the input size, which
shows that EXTRA scales very well. 3) Solving EXTRA-NN
(Section II-B) can lead to an efficient and effective discovery
of the huge action space and thus result in a wise action
selection.

0 5 10 15 20 25 30 35 40
6

7

8

9

10

11

12

Running time (min)

A
v

e
ra

g
e

 t
u

p
le

 p
ro

c
e

s
s

in
g

 t
im

e
 (

m
s

)

Fig. 7. Average tuple processing time given by EXTRA over 3 different
large-scale topologies with significant workload change

Significant Workload Change Scenario: The correspond-
ing results are shown in Figures 6 and 7.

In the first experiment with 3 large-scale continuous queries
topologies (Fig. 6), during the first 20-minute period, the
average tuple processing time of EXTRA stabilizes at 3.13ms.
When the workload increases by 50% at the 20th minute,
the result rises sharply to a very high value then gradually
stabilizes at 3.15ms respectively. There is a spike because of
the sudden adjustment to the scheduling solution. However,
once the system gets stable, there is only a very minor increase
in the average tuple processing time. Therefore, when there
is a significant workload change, EXTRA can quickly adjust
the scheduling solution to avoid performance degradation. In
the second experiment with 3 different large-scale topologies
(Fig 7), similar observations can be made. The initial aver-
age tuple processing time is 6.49ms. After the increase of
workload, it stabilizes at 6.50ms, which is almost the same as
before. These results well justify robustness of EXTRA in a
highly dynamic environment with significant workload change.

IV. RELATED WORK

As popular topics in the context of distributed stream
database system and DSDPSs, modeling and scheduling have
received substantive research attention. In an early work [24],
Nicola et al. provided a comprehensive survey of performance
models (especially queueing models) for distributed and repli-
cated database systems. Active Streams [32] was proposed to
enable application-level distributed adaptation, through which,
users can dynamically build/extend applications and services
by attaching location-independent functional units to the data
streams flowing between their applications and network ser-
vices. Dynamic adaptation techniques were also proposed
for distributed continuous query systems [19]. Moreover,
Tusch et al. [36] presented an adaptive distributed multimedia
streaming server architecture (ADMS), which explicitly con-
trols the server-layout. It consists of four types of streaming
server components, which all provide dedicated services in
an arbitrary number of instances on an arbitrary number
of server hosts. Aniello et al. [4] proposed two schedulers

to improve the performance of Storm: an offline scheduler
makes scheduling decisions based on the topology structure;
an online scheduler reschedules executors at runtime based on
the monitored system states. The authors of [38] presented a
traffic-aware scheduling framework, T-Storm, which enables a
fine-grained control on worker node consolidation. It aims at
minimizing inter-node and inter-process traffic in Storm, and
in the meanwhile, it ensures that there is no worker node is
overloaded in the system. A similar system called R-Storm
(Resource-aware Storm) [25] can satisfy both soft and hard
resource constraints as well as minimizing network distance
between components that communicate with each other when
scheduling tasks. Moreover, Heron et al. [13], also developed
at Twitter, was created to overcome many of the shortcomings
(such as resource isolation, resource efficiency and throughput)
that Storm exhibited when running in production at a large
scale. The authors of [8] designed and implemented a priority-
based resource scheduling method in flow-graph-based DS-
DPSs. It allows application developers to enhance flow graphs
with priority metadata. Jiang et al. [14] presented several
scheduling strategies for a data stream management system,
which aim at minimizing the tuple latency as well as the
total memory requirement. They investigated these proposed
strategies both theoretically and experimentally. The authors
of [37] proposed a prediction-based Quality-of-Service (QoS)
management scheme for periodic queries over dynamic data
streams. Based on the prediction of the query workload using
execution time profiling and input data samplings, the scheme
adjusts the query QoS levels. Bedini et al. [7] presented a
set of models that formalize the performance characteristics
of a practical distributed, parallel and fault-tolerant stream
processing system that follows the Actor Model theory. They
also conducted the experimental validation of the described
performance models based on the Storm system. Li et al. [15]
proposed a predictive scheduling framework to enable fast and
distributed stream data processing, which features topology-
aware modeling for performance prediction and predictive
scheduling. Basically, the framework first predicts the average
tuple processing time of a given scheduling solution based
on the application graph and runtime statistics, then it as-
signs threads to machines under the guidance of prediction
results. The authors of [16] proposed a dynamic optimiza-
tion algorithm for Storm based on the theory on constraints
(STDO-TOC), which dynamically eliminates the performance
bottleneck of a topology. In addition, they proposed a real-
time scheduling algorithm based on topology and traffic to
effectively resolve the problem of inter-node load imbalance.

Recently, RL/DRL have been shown to be a useful technique
for resource allocation and control of a big data and cloud
computing systems. In [23], Naik et al.proposed a MapReduce
scheduler in heterogeneous environments based on RL, which
observes the system state of task execution and suggests
speculative re-execution of the slower tasks to other available
nodes in the cluster for faster execution. The authors of [26]
propose a RL approach to automatically tune the configura-
tion of MapReduce parameters, it has an initialization policy

with offline learning to reduce online learn time in different
circumstances. In [20], Liu et al.proposed a hierarchical DRL-
based framework to solve the resource allocation and power
management problem in cloud computing systems. In a recent
work, Li et al. [17] proposed to leverage DRL for scheduling
in general-purpose DSDPSs, with the objective of minimizing
average end-to-end tuple processing time.

Unlike these related works, we aim to develop an ex-
perience/data driven model-free approach for scheduling in
DSDPSs to directly minimize the average tuple processing
time using DRL with a variable number of threads, which
has not been done before. Particularly, the control problems
in MapReduce and cloud systems are quite different from
our problem. Hence, those RL/DRL methods [20], [23], [26]
cannot be applied here. Moreover, adaptive methods proposed
in early works [36], [19] targeted at specific systems (such as
continuous query system and multimedia streaming system);
while we consider general-purposed DSDPSs, which have a
quite different architecture. In addition, we aim to directly
minimize the average tuple processing time, which is usually
more effective than those methods [4], [38] that optimize
indirect objectives (e.g., inter-node traffic load). Compared to
related work [17] that considered the case where each PU has
a fixed number of threads (specified by a user in advance),
we propose to dynamically change the number of threads of
each PU on the fly according to system states and demands,
which makes the scheduling problem become much harder.
Moreover, as mentioned above, we performed experiments
under realistic settings (where multiple application instances
are mixed up together), rather than a simplified single-instance
setting used in most related works including [17].

V. CONCLUSIONS

In this paper, we present design, implementation and eval-
uation of a control framework, EXTRA, for scheduling in
DSDPSs. EXTRA has two desirable features. First, it enables
a DSDPS to dynamically change the number of threads during
runtime according to system states and demands. Second, EX-
TRA leverages an experience/data driven model-free approach
for dynamic control using the DRL, which enables a DSDPS to
learn the best way to control itself from its own experience. We
implemented EXTRA based on Apache Storm, and evaluated
its performance with three representative SDP applications:
continuous queries, word count (stream version), and log
stream processing. Particularly, experiments were performed
under realistic settings where multiple application instances
are mixed up together. Extensive experimental results well
justified effectiveness and robustness of EXTRA. Specifically,
they show: 1) Compared to Storm’s default scheduler and
the state-of-the-art model-based method, EXTRA substantially
reduces average tuple processing time by 39.6% and 21.6%
respectively on average. 2) EXTRA does lead to more flexible
and efficient control by enabling the use of a variable number
of threads. 3) EXTRA is robust in a highly dynamic environ-
ment with significant workload change. Although DRL seems
a promising technique for enabling experience-driven model-

free control in DSDPSs, there are still many challenges to its
real-world application. For example, training with less data is
always a desired feature in large-scale DSDPSs. Many new
techniques, like meta learning [11] and transfer learning [42],
can help to further improve the training efficiency and adapt-
ability of DRL via learning from existing knowledge, rather
than directly learning from scratch in a new environment with
different application topology or scale.

ACKNOWLEDGEMENTS

This work was supported by US National Science Founda-
tion (NSF) grant 1704662. The information reported here does
not reflect the position or the policy of the federal government.

REFERENCES

[1] Alice’s Adventures in Wonderland,
http://www.gutenberg.org/files/11/11-pdf.pdf

[2] Q. Anderson, Storm real-time processing cookbook, PACKT Publishing,
2013.

[3] Apache Hadoop, http://hadoop.apache.org/
[4] L. Aniello, R. Baldoni and L. Querzoni, Adaptive online scheduling in

Storm, Proceedings of ACM DEBS’2013.
[5] G. D. Arnold, R. Evans, H. v. Hasselt, P. Sunehag, T. Lillicrap, J.

Hunt, T. Mann, T. Weber, T. Degris and B. Coppin, Deep reinforcement
learning in large discrete action spaces, arXiv: 1512.07679, 2016.

[6] P. Bakkum and K. Skadron, Accelerating SQL database operations on a
GPU with CUDA, Proceedings of the 3rd Workshop on General-Purpose
Computation on GPU (GPGPU’10), pp. 94–103.

[7] I. Bedini, S. Sakr, B. Theeten, A. Sala and Peter Cogan, Modeling
performance of a parallel streaming engine: bridging theory and costs,
Proceedings of IEEE ICPE’2013, pp. 173–184.

[8] P. Bellavista, A. Corradi, A. Reale and N. Ticca, Priority-based resource
scheduling in distributed stream processing systems for big data appli-
cations, Proceedings of IEEE/ACM International Conference on Utility
and Cloud Computing, 2014, pp. 363–370.

[9] S. Boyd and L. Vandenberghe, Convex Optimization Cambridge Uni-
versity Press, 2004.

[10] F. Chen, M. Kodialam and T. V. Lakshman, Joint scheduling of pro-
cessing and shuffle phases in MapReduce systems, Proceedings of IEEE
Infocom’2012, pp. 1143–1151.

[11] C. Finn, P. Abbeel, and S. Levine, Model-agnostic meta-learning for fast
adaptation of deep networks, ICML’17, pp. 1126–1135.

[12] Gurobi Optimizer, http://www.gurobi.com/
[13] Heron,

https://apache.github.io/incubator-heron/docs/concepts/architecture/
[14] Q. Jiang and S. Chakravarthy, Scheduling strategies for a data stream

management system, Computer Science & Engineering, BNCOD, 2004,
pp. 16–30.

[15] T. Li, J. Tang and J. Xu, Performance modeling and predicitive schedul-
ing for distributed stream data processing, IEEE Transactions on Big
Data, Vol. 2, No. 4, 2016, pp. 353–364.

[16] C. Li, J. Zhang and Y. Luo, Real-time scheduling based on optimized
topology and communication traffic in distributed real-time computation
platform of storm, Journal of Network and Computer Applications,
2017(87), pp. 100–115.

[17] T. Li, Z. Xu, J. Tang and Y. Wang, Model-free control for distributed
stream data processing using deep reinforcement learning, Proceedings
of the VLDB Endowment, Vol. 11, No. 6, 2018, pp. 705–718.

[18] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver
and D. Wierstra, Continuous control with deep reinforcement learning,
Proceedings of ICLR’2016.

[19] B. Liu, Y. Zhu, M. Jbantova, B. Momberger and E. A Rundensteiner,
A dynamically adaptive distributed system for processing complex
continuous queries, Proceedings of PVLDB’2005, pp. 1338–1341.

[20] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang and Y. Wang, A
hierarchical framework of cloud resource allocation and power manage-
ment using deep reinforcement learning, Proceedings of ICDCS’2017,
pp. 372–382.

[21] Logstash - Open Source Log Management, http://logstash.net/

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S.
Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D.
Wierstra, S. Legg and D. Hassabis, Human-level control through deep
reinforcement learning, Nature, Vol. 518, No. 7540, 2015, pp. 529–533.

[23] N. Naik, A. Negi and V. Sastry, Performance improvement of MapRe-
duce framework in heterogeneous context using reinforcement learning,
Procedia Computer Science, Vol.50, 2015, pp. 169–175.

[24] M. Nicola and M. Jarke, Performance modeling of distributed and
replicated databases, IEEE Transactions on Knowledge Discovery and
Data Engineering, 2000, Vol. 12, No. 4, pp. 645–672.

[25] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, R-storm:
Resource-aware scheduling in storm, Proceedings of the 16th Annual
Middleware Conference, 2015, pp. 149–161.

[26] C. Peng, C. Zhang, C. Peng and J. Man, A reinforcement learning ap-
proach to map reduce auto-configuration under networked environment,
International Journal of Security and Networks, Vol. 12, No. 3, 2017,
pp. 135–140.

[27] M. Restelli, Reinforcement learning - exploration vs exploitation, 2015,
http://home.deib.polimi.it/restelli/MyWebSite/pdf/rl5.pdf

[28] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra and M. Riedmiller,
Deterministic policy gradient algorithms, Proceedings of ICML’2014.

[29] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. Van Den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
toc, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever,
T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel and D. Hassabis,
Mastering the game of Go with deep neural networks and tree search
Nature, 2016, pp. 484–489.

[30] Apache Spark, http://spark.apache.org/
[31] Apache Spark Streaming — Apache Spark,

http://spark.apache.org/streaming/
[32] Active Streams, https://www.cc.gatech.edu/systems/projects/AStreams/
[33] Apache Storm, http://storm.apache.org/
[34] R. Sutton and A. Barto, Reinforcement learning: an introduction, MIT

press Cambridge, 1998.
[35] TensorFlow, https://www.tensorflow.org/
[36] R. Tusch, Towards an adaptive distributed multimedia streaming server

architecture based on service-oriented components, Proceedings of
JMLC’2003, pp. 78–87.

[37] Y. Wei, V. Prasad, S. Son and J. Stankovic, Prediction-based QoS man-
agement for real-time data streams, Proceedings of IEEE RTSS’2006,
pp. 344–358.

[38] J. Xu, Z. Chen, J. Tang and S. Su, T-Storm: traffic-aware online
scheduling in Storm, Proceedings of IEEE ICDCS’2014, pp. 535–544.

[39] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, I. Stoica, Improving
MapReduce performance in heterogeneous environments, Proceedings
of OSDI’2008, Vol. 8, No. 4, pp. 7.

[40] Apache Zookeeper, https://zookeeper.apache.org/
[41] Y. Zhu, Y. Jiang, W. Wu, L. Ding, A. Teredesai, D. Li and W. Lee,

Minimizing makespan and total completion time in MapReduce-like
systems, Proceedings of IEEE Infocom’2014, pp. 2166–2174.

[42] Z. Zhu, K. Lin, and J. Zhou, Transfer learning in deep reinforcement
learning: A survey, arXiv preprint, 2020, arXiv:2009.07888.

