GenNI: Human-Al Collaboration for Data-Backed Text Generation

Hendrik Strobelt, Jambay Kinley, Robert Krueger, Johanna Beyer, Hanspeter Pfister, Alexander M. Rush
I

Global Forecast

F IS L G661 LAAT
FEuKLscLooTASTUS T

Forecast FEoKLSES L6661 LART
FEJKEC LGOS I LAK
FESES | LAALGGG
FRJKLSECcLGGcG 1 LAAT
F RACLGGG T

FFJIEECLGG\LAAT

FRIKLSECRIALGGG T
EEJ

LslEcLG66 1 LAST

Refine

00 [the [phoenix is|a [french [pub n

/the [plough isa family friendly chin

Fig. 1. GenNTI’s forecast-refine loop applied to an example of a table2text model for generating restaurant descriptions of different
forms. The right side shows the Generation Forecast Component with examples of unconstrained generation. The left side shows the
Constraint Refinement Component with the construction of a potential new constraint graph.

Abstract—Table2Text systems generate textual output based on structured data utilizing machine learning. These systems are
essential for fluent natural language interfaces in tools such as virtual assistants; however, left to generate freely these ML systems
often produce misleading or unexpected outputs. GenNI (Generation Negotiation Interface) is an interactive visual system for high-level
human-Al collaboration in producing descriptive text. The tool utilizes a deep learning model designed with explicit control states.
These controls allow users to globally constrain model generations, without sacrificing the representation power of the deep learning
models. The visual interface makes it possible for users to interact with Al systems following a Refine-Forecast paradigm to ensure that
the generation system acts in a manner human users find suitable. We report multiple use cases on two experiments that improve over
uncontrolled generation approaches, while at the same time providing fine-grained control. A demo and source code are available at

https://genni.vizhub.ai.

Index Terms—Tabular Data ; Text/Document Data ; Machine Learning, Statistics, Modelling, and Simulation Applications .

<+

1 INTRODUCTION

Artificial intelligence methods for text generation are becoming increas-
ingly advanced, with systems demonstrating convincing output in many
surprising domains such as news and story generation. Machine learn-
ing based systems can learn how to generate text from seeing a massive
amount of examples of human writing and interaction in the wild [45].
Underlying the systems are large models that process textual input and
learn how to mimic the word-use, syntax, and high-level knowledge for
generic generation. These tools can also be adapted to environments
where they are tasked with generating specific conditioned textual out-
puts. For instance, in this work, we consider the problem of generated
textual description of structured data, i.e., the Table2Text setting.
However, the ability to generate fluent output is often not sufficient
for real-use cases. Many settings that use textual generation, such
as user assistants (e.g., tools like Alexa) or automated response and

* Hendrik Strobelt - IBM Research & MIT-IBM Watson Al Lab, Cambridge,

Massachusetts, United States. Email: hendrik.strobelt@ibm.com.

Jambay Kinley - Cornell University, New York, New York, United States.

* Robert Krueger - Visual Computing Group, Harvard University, Cambridge,
Massachusetts, United States.

e Johanna Beyer - Visual Computing Group, Harvard University, Cambridge,

Massachusetts, United States.

Hanspeter Pfister Visual Computing Group, Harvard University, Cambridge,

Massachusetts, United States.

o Alexander M. Rush - Cornell University, New York, New York, United States.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

search, require systems that can generate specific responses in a high-
precision manner. Generic free generation systems cannot directly
be deployed in these scenarios since they often “go off-script” and
generate information that is not supported by their conditioning [60]. It
is a non-trivial challenge to ensure that these systems stick to a specific
type of conditioned generation, even when a user clearly knows the
goals and targets of the system. Given this issue, many approaches use
human-crafted rule-based systems as opposed to machine learning.

GenNI is a prototype and a framework that facilitates Human-Al
collaboration for the challenging domain of data-backed text generation
with machine learning systems. The goal is to achieve the benefits of
ML based generation, while ensuring the precision of human crafted
control by using visual means. GenNI supports three targeted aspects
of the collaboration process:

* Refinement of Model Constraints GenNI allows users to im-
pose model constraints that ensure specific high-level properties
hold during generation.

* Forecasting of Model Outputs GenNI makes it easy to see how
these constraints affect real generation examples across a repre-
sentative range of inputs.

* Deployable Model Corrections The GenNI prototype utilizes a
rigorous constraint-graph method that makes it easy to view the
model update and utilize it in production use cases.

The system design is based on the collaborative framework of
Gehrmann et al. [16], who argue that it is critical to design ML systems
that take the end-user user control scenario into account during the
model design process. GenNI incorporates a controlled text generation

https://genni.vizhub.ai

model trained to interact with human users through explicit control
states. The tool facilitates an interactive and visual negotiation where
a human user refines the set of possible generations through a con-
straint graph and then explores the system’s actual outputs through a
global forecasting procedure. The tool allows the user to cycle through
concrete examples to build up the constraint graph as they go.

In Sect. 2 we introduce controllable text generation formally, describ-
ing the model and modes of user interaction. We then provide in Sect. 3
a guiding example for how a user might use the interactive tool for
table2text description. Sect. 4 introduces the goals and tasks required
for building the prototype called GenNI for data-backed generation
through Human-AlI collaboration. Sect. 5 presents the design decisions
made to follow these guidelines and Sect. 7 describes the implemen-
tation details of the tool. Further use cases for GenNI are given in
Sect. 6. Sect. 8 reviews the related work in this research domain to
provide some context for our work. We conclude the paper in Sect. 9
by outlining ideas for future directions.

2 MODEL: TABLE2TEXT WITH CONTROLS

Underlying GenNI is a model designed for controllable text generation
to enable visual interaction. The model extends standard ML models
for text generation with explicit control states (i.e., discrete latent
variables) that allow an end-user to alter the model’s output through
constraints. Additionally, given an input and output, the model provides
a method for inferring the control states. These control states are the
main interface used by GenNI.

Table2Text generation aims to produce a textual description con-
sisting of word tokens y;.7 from an input of data x represented as a
table. While one could generate this description directly from the data,
we distinguish controllable systems as ones that provide intermediate
control states for directing the structure of the description. We use
one control state for each word, 2.7, that are generic discrete values
from a small label set, for example, represented as letters A to Z. Each
control state corresponds to a high-level cluster of the corresponding
word’s semantics learned by the model for the problem. An underly-
ing assumption of this work is that an end-user can craft higher-level
constraints with these states than by acting directly on words.

Formally, the model outputs control states and one word at a time.
Starting from data a, the model generates the description y auto-
regressively (left-to-right) by first generating a state z and then the
corresponding word.

y1 ~p(z1 | z,21)
Y2 NP(Z’JZ | 33,217y17z2)

z1~p(z | z)
z2 NP(zz | w,zlayl)

This process produces the probability of the description and states given
the data p(y, z|x). Each part is implemented using a deep learning
model. We utilize a recurrent neural network to predict both the z and
y outputs and an attention based encoder to condition on the input @.
Specifically the probabilities are given as:

P(zi|z<t,y<i) = softmax(Woh(x,y<1,2<)))]
P(Yi|z2<1,y<r) = softmax(Wi[h(x, y<1, 2<;) + 9(2)]) (2)

where h is the output of a recurrent neural network over the input,
previous words, and control states, W are parameters, and g is a
function of the current control state.

A key aspect of the system will be the reverse process, i.e. inferring
control states z from examples tables and sentences «,y . Unfortu-
nately, the posterior distribution p(z|x,y) is intractable to compute
exactly. We therefore employ variational inference to approximate this
distribution using a parameterized inference network q(z|x,y). We
train this approximation jointly with the forward model in the standard
variational autoencoder framework [30,41,50].

For the inference network, we use a linear-chain conditional random
field (CRF) with a neural parameterization. This family of distributions
is particularly suited for labeling segments of the text with control

Generation

Z4 Y1 Z Y2 Z3 Yr <eos>
X Decoder Network
<s0s> | Z4 Y1 Zy Yo Z7 Yt

M1: Free Generation Input: x —> Output:y, z

M2: Controlled Generation

z-constraint:

X
O

Posterior Inference

M3: Inferred Control State Input: x,y —> Output: z

z4 b2 Zy zr

Y1 Yo Y3 Y1

Fig. 2. The different modes (M1-M3) of the model which are the building
blocks that enable visual interaction for GenNI. Modes M1 and M2 are
outputs y and z inferred from x by free and controlled generation. Mode
M3 describes the inference of control states z from data = and text y.
(see Sect. 2.1)

states, and has been used effectively in similar tasks [14,33]. To train
this part of the system, we use the Gumbel-CRF method proposed by Fu
et al. [14] which allows us both to learn the variational approximation
and also train the rest of the model with concrete control states.

Finally, during training we enforce a soft correspondence between
control states and table properties. These constraints enforce weak
supervision in the form of a heuristic alignment between data and text,
i.e. whether some part of the sentence is describing a table field using
identical text as in the table. Following Li et al. [33], we use a technique
known as posterior regularization which allows the model to follow or
ignore these alignments. We find this can produce more human-legible
control states for some of our tasks.

2.1 Model Interaction

Directly visualizing deep learning models is challenging [20]. Instead
of visualizing the internals of the model, we interact with it through
its outputs and control states through three distinct modes shown in
Fig. 2: (M1) free generation where the model searches for the most
likely textual output given the input data; (M2) controlled generation
where the model searches for an output that obeys a constraint graph;
(M3) inferred control a reversed version of generation, where the user
provides a goal text, and the control states are inferred. These three
modes will act as the building blocks for the interactive system.

Free Generation (M1): The most basic operation is to allow the Al
model to generate freely. This mode produces the highest-scoring
output from the model, formally argmaxy, > p(y, z|x). Note, though,
that high scores from the model often do not correspond to generated
text that a human user would have wanted.

Practically, computing this argmax is a search problem over a very

large search space. It is common to utilize an algorithm known as
beam search as an approximation. Beam search works by exploring
the search tree using a fixed number of hypotheses per time step, i.e.,
considering five different hypothesis sentences of ¢ words long before
moving on to five different hypothesis sentences of # + 1 words. We can
extend the beam search for controlled generation to alternate between
exploring the best succeeding control state and the best next word. This
search is shown in Fig. 2 (top).
Controlled Generation (M2): An alternative to free generation of the
output text is to control the generation to fit specific cases of an end-
user application. For this mode, the user provides an explicit constraint
graph to the model. These constraints are applied to the control states
z, which act to restrict the word outputs y. For controlled generation,
we solve argmaxy .z p(Y, z|x) where Z is the constrained set of
possible outputs.

Formally, the constraint graph is equivalent to a regular expression
on control states restricting the set Z. Regular expressions allow a
user to encode complex sets for shaping the space of possible outputs.
To leverage this control, we use a constrained beam search algorithm
where the constraint graph ensures that z is correct for the model
output (Fig. 2 (middle)). For instance, given the constraint A.B*, during
generation, we ensure that the control state of the first word is A, the
second is unconstrained ., and the remaining words must have control
state B.

It is important to note that these constraints do not directly constrain

the words generated y. Each control state can generate many possible
words. This can be seen in Fig. 6 (g) where, given a control state, the
model has options over the word to generate.
Inferred Control (M3): As described above, the system is trained to
also allow for reverse computation of control states, using an inference
network. This mode allows for the inferred control where the user can
write an expected output sentence, and the model will produce plausible
control states argmax, p(z | «,y). While generation allows us to infer
output given an input, this term allows us to find the control states for a
human written input and output (Fig. 2 (bottom)).

3 MOTIVATING CASE STUDY: COLLABORATIVE GENERATION

We now consider a motivating case study of human-Al collaboration
for text generation in GenNI. Alice is a user building an ML-based
chatbot system. She is designing a module that generates a restaurant
description from a table [43] such as the following:

name eat type food area
the phoenix pub french | city center

Alice first tried developing a system using free generation (M1)
but found that the generated text is highly variable and does not suit
her specific use case, which requires high precision constraints. In
particular, Alice wants the system to focus exclusively on the cuisine
(food) and the type of establishment (eat type). However, she found
that, under free generation, the model would use all of the fields, e.g.,
generating:

near
cafe sicilia

the phoenix is a french pub near cafe sicilia in the
city centre

the |phoenix is |a |french pub near café sicilia in the |city centre .
(@ -Step1

Manual Output (&)

the |phoenix 'is |a |french |pub . ADD TO EXAMPLES +

FORECAST]

(b) - Step 2

Global Forecast

ERE J B C T
FFJKECT
EREl J B C T
FFJKECT
FFJKECT
ERE J B C T
ERE J ISEIC T
BRE J B C T
EE| JJSEIC T
BRE EIC T

(c) -Step 3

eattype :pricerange area Efamilyfriem‘lly near

name
| i i] H ;
ithe phoenixirestaurant:less than £20city centre ino raja indian cuisine

the |phoenix is |a |city restaurant .

[name eattype :pricerange

customer_rating : familyfriendly near
ithe mill i restaurant :less than £20 ;low yes

icafé rouge;

the |mill is |a |café restaurant .

jname eattype food pricerange area o

ithe mill‘pub ;english‘lessthan £201ri+

“inla lanalieh =t

Fig. 3. Motivating use case, steps 1-3. (a) Model output during free
generation (M1). The control states are indicated by color below the
produced output tokens. (b) Alice provides the custom output “the
phoenix is a french pub .” The matching control states are inferred
and mapped to colors (M3). (c) The constraint “FFJKECT” is applied to
other random inputs (M2).

To benefit from our controllable system, Alice needs to provide

specific constraints on the control states to produce high-precision
outputs that fulfill her specified goals. Concretely, she will want to
develop a constraint graph that ensures that her system outputs are
correct. We describe her use of GenNI to achieve this goal.
Step 1: Observing Control States on an Example To begin to gain
intuition into model prediction and the control states, Alice starts with
a specific example input x, e.g., the table row shown above. GenNI
produces text in free model generation (M1) while also showing the
control states for each word token — Fig. 3a.

This step grounds the collaboration process in a specific starting

point. This visual representation maps concrete textual outputs to the
underlying control states. For this example, Alice infers that the model
has allocated the blue state for the restaurant name, red for food type,
and cyan for location.
Step 2: Inferring Control States for Manual OQutput Next, Alice
can actively posit a counterfactual: “What would the control states have
been for a user-generated target output?”” To do this, Alice can provide
her own textual description (“the phoenix is a french pub .”)
to the system in the form of the sequence y;.7. Utilizing the model’s
inference mode (M3), the model will infer the control states that would
have most likely lead to that output — Fig. 3b.

This step is the start of the refinement procedure that allows Alice
to build up a constraint graph on the model itself. Specifically, if she
is happy with the control states that the model assigned, she can add
this sequence of control states to the constraint graph. This refinement
tells GenNI that this sequence of control states is appropriate for the Al
model to generate.

Step 3: Forecasting AI Generations Under Constraints The con-
straint graph allows Alice to ensure that the model generates outputs
from a set of acceptable control state sequences. However, it can be

difficult to tell how constraints will generalize across examples. GenNI
allows users to do this through forecasting, applying controlled genera-
tion (M2) across a set of different diverse inputs. In this case, GenNI
allows Alice to randomly sample different inputs with different proper-
ties to observe generations from the system or, alternatively, probe a
range of targeted inputs — Fig. 3c.

Alice can then view all these outputs simultaneously to observe

patterns and relationships. She confirms her hypothesis about the
control states for the restaurant name (blue) and food type (red). The
forecasting feature of GenNI makes it easy for her to see specific
regions where the Al failed to generate the correct output.
Step 4: Precision Refinement of Constraints: The set of control
states obtained in Step 2 can be applied as a constraint for other inputs
(see Step 3). However, this constraint is specific to the input used to
obtain it and may not generalize well. Alice can use a regular expression
editor to refine the constraint so that it may generalize better.

When browsing through the forecast results, Alice spots a particular
problem. The model copies the establishment name “strada” twice
from the input and also fantasizes a food type — Fig. 4a.

Alice knows from her exploration that the blue control state instructs
the model to copy the establishment name. However, her current
constraint is too rigid, since some restaurants like “strada” are only a
single word (vs. “the phoenix”). Similarly, some tables do not reveal
the food type. By switching to this example and correcting (using step
2) for the repetition, Alice can include the corrected sequence of control
states into the constraint graph to allow for both outputs — Fig. 4b.

Alternatively, using the constraint editor, Alice can manually replace
the sequence of two blue boxes to a variable length repeat of blue boxes
and make the red box optional — Fig. 4c.

After applying the newly created constraint, she can forecast again

and confirm that the issue has been fixed — Fig. 4d.
Step 5: Building Constraints into a Model: Alice can repeat this
process of forecasting and refinement to obtain a constraint that gen-
eralizes well. She repeats Steps 1-4, each time alternating between
observing generation, inferring control states for custom outputs, trans-
ferring across input types, and merging constraints. In each iteration,
the constraint graph grows with the addition of more rules. Finally,
Alice can save the constraints to use the constrained model on a more
extensive test set and in production.

4 GOALS, TASKS AND USER GROUPS

GenNI aims to support the collaborative development of data-backed
generation systems. Al tools for generation can efficiently produce
textual outputs on a variety of inputs; however, without close inspection
of these free generations, it is difficult for a human user to find issues or
correct errors. Alternatively, human users can produce careful example
outputs, but each is slowly crafted and hard to generalize.

At each alternating round of GenNI’s use, either the user can for-
mulate explicit constraints on the Al system, or the Al system can
generate a set of outputs based on its current state. In this manner,
the user can quickly observe that the system is over-constrained or
under-constrained while at the same time having assistance from the
Al system to help produce generalizable constraints. When the col-
laboration is over and both sides reach an equilibrium, the full set of
constraints produced in the process can be incorporated into the Al
system.

To act as a tool for reaching this human-Al equilibrium for con-
straints, GenNI was designed with three high-level user goals in mind
(Fig. 5):

G1: Ensure controlled generation Al systems with free generation
can produce unexpected outputs which do not follow the guidelines that
the user prefers. The goal is to provide feedback controls in the form of
constraints. The language of control states may be difficult for a user
to apply directly, so the tool must convey how these work and make it
easy for the user to link these to specific examples. Once constraints
are created, a user needs to be able to manipulate the constraints in an
intuitive and precise manner.

G2: Demonstrate model constraint generalization Upon specifying
constraints, the user needs to understand how the Al will apply and

me ?eattype customer_rating :near

(a) - strada strada radaépub 1 outof 5 all bar oneé

strada |strada is “3‘ all ‘pub .

Edit Constraint

history: F(FIKE|JK)CT .

constraint: | F(FJKE|JK)CT FORECAST o ‘ MAP TO GRAPH § ‘ GET FROM GRAPH ¢

(b) - merge

[] .

[F) <y € |

Edit Constraint

history: (F)+JK(E)?CT (F)+(JKE|JK)CT F(FIKE|JK)CT .x

constraint: | (F)+JK(E)?CT FORECAST & ‘ MAP TO GRAPH § ‘ GET FROM GRAPH & ‘

(c) - edit
® F | ® ® a oM e
‘name | eattype | customer_rating near
istrada pub Toutof5 ‘all bar one
(d) - fixed

strada is |a |pub .

Fig. 4. Motivating use case, step 4. (a) Alice observes that “strada” is
copied twice and no information about cuisine is available. (b) The se-
lected example sequences of control states are merged into a combined
constraint graph shown in the Constraint Editor view. (c) The constraint
graph can be edited in the Constraint Editor by either using the text editor
or the visual editing tool. (d) After applying the refined constraint, Alice
observes the correct output: “strada” is copied once and no food type is
mentioned.

interpret them in a global manner. While the user may have an intuitive
sense of the constraints, they will not know whether they will act
consistently and naturally across any input the Al receives. As such, a
tool needs to provide guidance about general outputs such that a user
can build intuition and trust the system.

G3: Deploy as a controlled Human-Al system Many approaches
for debugging neural models find issues but do not provide a path for
remediation. The final goal of GenNI is to produce a constraint set
that can be packaged and deployed as part of a production model. The
constructed constraint graph contains all of the final information about
the appropriate controlled use of the system, and controlled generation
can be efficiently run on real systems. After deployment, if an issue
comes up in production use, new constraints can be refined into the
model.

The case study in Sect. 3 takes advantage of these goals. The user is
interested in the targeted use of the generation system in Step 1. Step
2 is a step towards defining constraints based on the user goals (G1).
These constraints need to be explored on a larger set of examples (G2)
in Step 3. However, upon observation, further refinement is needed in
step 4 (return to G1). Finally, the negotiation leads to a model in Step 5
that can be deployed in a production system (G3).

These three domain goals motivate the main interaction and tasks of
the system:

Task 1: Browse and Modify AI Generations by observing the textual
output y and control states z for possible inputs . The user should
be able to modify outputs manually or by using alternative model

Goals Tasks Users
Browse and modify AI Generations (T1)
Create output by Create output by
modifying beam tree manual edits
Ensure controlled
generation o Derive constraint from control sequences (T2) é’ Technical
(G1) S 2 Editor
3 Modify constraint graph (T3) o P
by visual edits by textual edits (End-User) P
: © Model
. Architect

Produce AI outputs on general examples (T4)

by random sampling

Q

Understand how
model constraints
generalize

(G2)
inx and y space

Deploy a controlled
human-AI system
(G3)

by range sampling

Evaluate cluster alignments

Export controlled model (T5)

Fig. 5. Overview of GenNI domain goals, interaction tasks, and addressed user groups. GenNI aims at supporting goals for working with control
state models: (G1) ensuring controlled generation, (G2) evaluating these constraints on subsets of relevant data and demonstrate model constraint
generalization, and (G3) deploying the outcome as a controlled Human-Al system. From these high-level goals, a series of interaction tasks (middle
part) is inferred. These tasks are the building blocks for the main interaction loop of forecasting constraint effects and refining constraints as a result.

GenNl targets end-users and model architects alike for most tasks (right).

predictions. The user should develop an intuition about the control
states and about the variety of outputs the model generates [G1, G2].
Task 2: Derive Constraints from Control Sequences in order to
produce controls on the Al system. The user should be able to define
an initial constraint graph from various preferred examples [G1]

Task 3: Modify Constraint Graph to allow for finer grained control
of the final constraints. Some generalizations cannot be derived from
examples directly but require user adjustments. These should be given
enabled via a textual and a visual interface. [G1]

Task 4: Produce AI Outputs on General Examples to observe the
generalization behavior and to confirm the correctness of the systems.
A user should be able to forecast what the current change of model
constraints would mean on a more global scale. This should be at close
to interactive rates. [G2]

Task 5: Export controlled model to allow deployment of the model
in production or for broader testing. [G3]

GenNI targets two user groups (see [55]). One group is a technically
versed end-user that does not need to know about the underlying model,
just about the task at hand. We call this group technical editors. The
other group is model architects that want to evaluate their model under
real human constraints. See Fig. 5 for reference.

5 DESIGN

GenNlI is an interactive prototype for facilitating collaborative interac-
tion for controlled generation. The visual layout and the interactions are
the results of an iterative design process between visualization experts,
NLP researchers developing controllable models, and users aiming to
deploy these models in practice.

The GenNI interface is constructed out of two meta components that
immediately reflect the domain goals G1 and G2. These components
are juxtaposed to facilitate the continuous iteration between forecasting
constraints on global examples and refining the constraint as a result of
observing global effects. Accordingly, the left half collects Refine Con-
straint views. (Sect. 5.1) The right half provides Generation Forecast
views. (Sect. 5.2)

(see Sect. 4)

5.1 Constraint Refinement Component

The Constraint Refinement component (Fig. 6a) facilitates the con-
struction and exploration of constraints by the user (G1). It allows
direct editing of constraints and constructing constraints from well-
crafted examples. This component has three supporting views: 1) a
Constraint Editor (6¢) which allows direct textual and visual modifica-
tion of constraints, 2) a Refine-by-Example (6d) view to collect and
utilize examples for constraint refinement, 3a) an Example Creation
view (6e) to construct output examples by manual edits (6f), and 3b) to
generate examples utilizing alternative model decisions (6g).

The Constraint Editor (Fig. 6¢) encodes the entire collaborative
state of the system, i.e., all information collected to constrain the
generation procedure. A user can add multiple different valid control
state sequences, and they will be merged into this graph [T2]. The
constraint graph is represented in two ways. First, it is encoded as
an editable node-link diagram. The user can modify and update the
constraint by visually adding, deleting, and modifying nodes and meta-
nodes (like OR) [T3]. Secondly, the constraint graph is represented
by a simple language borrowing the syntax from regular expressions.
At the top of the Constraint Editor, this textual representation can be
modified directly [T3]. For keeping track of provenance, a history field
collects previous iterations of constraint formulations in textual form.
On click, they are available for re-editing.

To develop new constraints from user preferred examples, the user
needs a place to collect examples and merge them into complex con-
straints. The Refine-by-Examples view (Fig. 6d) provides these func-
tions. Each example represents y as text and z as a color. Their origin
(i.e., human-generated or model alternative) is encoded as a postfix
symbol (Fig. 6d1) followed by buttons to trigger propagation to the
Constraint Editor [T2] or forecasting in the Global Forecast view [T4]
(see Fig. 6h). If multiple examples are selected, the Merge Constraints
button attempts to merge all of them into one combined constraint
graph for the Constraint Editor [T2].

Examples are created by using the Example Creation view [T1]
(Fig. 6e). The user starts by first setting a reference input 2. This input
can be acquired by selecting an input ID to point to one item in the

GenNI (D CHECK LATENT MODEL

Refine Constraint

Generation Forecast 0

Edit Constraint e

history: F(FIKE[JK)CT .x

constraint: | F(FJKE |JK)CT ‘ FORECAST = ‘ MAP TO GRAPH & ‘ GET FROM GRAPH ¢ l

Refine by Examples

l MERGE SELECTED CONSTRAINTS ¢ | RESET LIST]

the |phoenix is |a |french pub .
FF J ke c Tlal
strada ist pub . B

the |strada | pub near all bar one , hash customer rating of 1 out of 5 .

Global Forecast

®)

f‘familyfriendly‘f near

‘fname ?eanype?food ‘fpricerange .farea
iraja indian cuisine

jthe millipub f_english_}less than EZchity cemrezyes

EM ish english |pub .

iname eattype customer_rating:near

‘stradaj pub 1outof5 jall bar onej
strada TSE pub .
‘fname ?eaﬂype Efood ?pricerange }familyfriendly}near

}the wrestlers restaurant; japanese more than £30;yes iraja indian cuisine:

| N I:
the is E
L_ —
name ieanype food
jlhe ploughipub |chinese high

E plough ist chinese pub .

.. (shortened output for editorial purposes)

zfamilyfriendly near

\pricerange |area ‘area
iraja indian cuisine

{city centre [riverside|yes

Create Example

Select Input ID : -1 $ | SELECT OR:[SELECT RANDOM | SELECT FROM GLOBAL

?customerJaling .feattype‘f name near
i i i i i
{Toutof 5 ipub :strada;all bar one

@

Manual Output (&)

strada ish pub

Alternative Model Outputs (=)

RESET

the |strada pub near |all 'bar one |, hash customer rating of 1 out of 5 .
Select a token to see alternatives
10—outC
customerO rating O (’:? of e
hasO——a0- .
oneO- '(.} and-+ eOUt of -« 5 -mms .
: stare ¢
barO-
allo—g s onee hase customere ratings — ofe e outs
bar-+-
. . ustomer « rating « of « J-e——oute
nearO: ;o has § iy
. . o hes-
thee——all-e— bar-—one ' ande

one-e
>~ theOstradaO puhoirves +—food+—and-
offers-+—food-+

be-+-found-+—near-+

can-s-

Range Forecast @

customer_rating: Toutof 5 eattype: pub

name: strada, homer near: all bar one

[GENERATE | GENERATE WITH CONSTRAINT]

{customer_rating] eattype \name near
i : i i |
{Toutof 5 ipub istradaall bar one

strada Tsh pub .

i customer_rating eattype \name | near
}1 outof 5 ipub homer;all bar one

_UNK ish pub .

Test Constraint against Test Corpus
0)

Control States

AsCEBESH ' v A vNoBacrE T

input: eatType name priceRange customer rating

output: restaurant coffee shop pub

Fig. 6. The GenNI user interface is split into a Constraint Refinement component (a) and a Generation Forecast component (b). A user can edit
constraints directly in the Constraint editor (c) or derive them from a set of examples (d). Examples can be created (e) by inferring control states
from a user output (f) or from the model’s beam tree (g). The effect of specific constraints can be forecast on random samples (h) or tested on
data ranges (i). The controlled model code can be exported for deployment or further testing (j). Model architects can investigate the control state

alignments for each control state (k). Details are given in Sect. 5.

model’s test set directly or randomly. Alternatively, examples can be
selected from the Global Forecast view.

To produce a matching output, the user can write a custom freehand
text y (Manual Output, Fig. 6f) and derive the matching control states
z from the inference network (M3) of the model.

A second way to produce outputs is by meaningfully interacting with
the model internals to modify its predictions (6g). The user can create
these alternative model outputs by constraining the beam tree (lower
part) from the visual tree representation or by selecting alternative
tokens by clicking on a token. The beam tree tool allows the user to see
the paths taken by the model during beam search, probe its decisions
at specific locations and even alter its decisions (when choosing the
control state) to see in real-time the effect of changes to the constraint

graph. While this view might be complex for the end-user group, it
provides a way to generate outputs that the model can reproduce.

In both cases, the control states sequence of the produced outputs
defines a simple constraint and can be tested by forecasting it, or it can
be added to the Refine-by-Example collection to create a new constraint
graph.

5.2 Generation Forecast Component

The right-hand component of the GenNI (Fig. 6b) visualizes the
model’s response to the constraints. It presents a global insight into the
Al system by providing either free or controlled generation on a more
extensive set of examples [T4].

The Global Forecast view (Fig. 6h) conveys a global perspective on

ayémonthéyear
14 19 12015

the date is |september [the fourteenth|, [2015 .

HJ Jlc H B E|D |@

Fig. 7. On click, the control states are represented by letters to support
formulation of constraint graphs and to support color-blind users.

the effect of constraints and utilizes random sampling from the test set
to produce different & values, which are input to constrained generation
and produce y and z values. This sampling and generation results are
shown as a tuple of two rows containing input table and output text with
color highlighting. Each tuple can become the next reference example
for the Example Creation view and, in this way, contribute to the
refinement of the constraint. All z values are summarized in a heatmap
on top of the view to better see an alignment between constraint outputs.

The Range Forecast view (Fig. 6i) provides the same features like
the Global Forecast view, but the @ values are selected from value
ranges or lists of values. This allows more systematic testing in a local
neighborhood of examples. E.g., for the use case of producing date
strings (see Sect. 6), a user could test which influence the day value has
by producing x and generations for all days of a specific month.

5.3 Encodings

The concept of a control state is central to the functioning of the collab-
oration and provides a shared space between the human user and the
underlying Al system. All constraints are developed on these states, and
they are the single unit of transfer between the two views (see Fig. 6).
As such, GenNI uses a visual encoding of control states as colors in
all locations, both in the constraint formulation and the evaluation side.
Unlike words, which are very fine-grained, control states allow for a
high-level color encoding. This visual encoding makes it easier for a
user to see differences and anomalies in sequences quickly.

The use of color as a central encoding poses some design challenges.
Legibility is drastically decreased if the contrast between background
and text color is low. That restricts the use of colors to either very dark
or very light palettes. To be less restricted in color choices, we changed
our encoding for the combination of y and z from full background
coloring to only color underlines. Only in the very space-limited beam
tree view, we use color bleeding.

Since color encoding is a core part of our prototype, we also thought
about methods to support two scenarios where the color encoding might
not be sufficient: 1) when modifying the constraint graph by textual
input, the user has to refer to the colors in a meaningful way; 2) our
color choices are not colorblind-safe. To address these issues, we added
an optional representation of control states as letters. On click, the user
can reveal the letters for single generation tuples. See Fig. 7.

The selection and arrangement of all functional parts of the GenNI
interface underwent many iterations. E.g., during the experimentation
phase, all views were organized as rows to a single vertical list. The
idea of juxtaposing Constraint Definition and Generation Forecast and
arranging the subviews to support this bifold character results from
understanding the interplay between forecast and refinement as a forth-
and-back loop and not as a strict sequential order first-a-then-b.

6 UsE CASES

We apply the GenNI prototype to build controllable generation systems
for two different domains. In both cases, a model architect utilized
the system and explored the insights it gives for the problem and the
underlying model. First, we build a model for a date conversion prob-
lem, where the model is simple enough such that all constraints can
be explored. Next, we apply it to a real-world system using the E2E
restaurant recommendation dataset [43].

Date Generation The first model is a synthetic date generation dataset
where the input « is a table representing a date consisting of (day,
month, year). The corresponding output text is a sentence y describing

Global Forecast (a) - date freegen

7]

H

OFrOO0OOOO
POPPIPIDP
m I8 T > oO>mIoD
- I mI I «[g
B e~ o e —

J i
DI

I I I IIIITITIIIT

J J
J J
JJ
J J
J J
JJ
J J
JJ
JJ
J J

m I — I I ® I I mMm

7]

H

day month year
14 9 2015

the date is september the fourteenth , 2015 .

day: month year
18 1 2005

the date is january eighteen in the year| 2005

day: month year
04 8 2013

the date is august the fourth of the year|2013 .

day: month: year
29 4 2019

the date is april twenty nine|in the year|2019 .

Manual Output (&) (b) - inferred states

the date is september the fourteenth |, (2015 .

(c) - edited constraint graph

Fig. 8. Date Generation use case. (a) Model outputs during free gen-
eration [T1]. (b) Inferred control states for provided text output [T2]. (c)
Constraint graph inferred and edited for this output format [T3].

the date. Eight different formats of representing the same date data
were created using nominal or ordinal days, changing the order of day
and month, and deciding to use commas or not before the year. For
example, consider the input:

day | month | year
14 9 2015

This date can be generated as “today is the fourteenth
of september, 2015 .” or “today is september the
fourteenth in the year 2015 as well as six other formats.
Model control is used to select the preferred output form, e.g., the
ordering of the days and months, use of commas, and ordinal vs.
numerical ways of writing the day.

Under this well-specified task, the goal is to test if GenNI allows
for reasonable clusters of words for the control states. We also want to
see if we can construct constraint graphs for formats that generalize as
expected. In particular, the text format allows for variable day lengths,
so the constraint graph must allow for this output. GenNI provides tools
for performing these tests through interactions with the Al system.

Using the Forecast Generation component for free generation [T1],
we can confirm from Fig. 8a that the model has learned reasonable
clusters for the control states. We can see that the model uses red for
year, purple for month, yellow for ordinal day, light blue for nominal
day, and so on. This view confirms the model structure is correct and
that the system will alternate between different styles of generation.

Furthermore, the Example Creation view in Fig. 8b shows us that the
control states inferred by the model [T2] also agree with the clustering

’

Fig. 9. Final constraint graph produced in the Restaurant use case. Section (a) ensures generation of a location either in the order (area, near) or
(near, area). Section (b) forces the use of family-friendly allowing an optional state for not. Section (s) is the seed that allows for additional

descriptive information.

input: Near area customer rating
input: Bréa nea sailpe neme

output: café the bar by rouge express holiday inn portiand
output: riverside city centre hoss

vegetarian all one siclia rice plaza boat crowne hotel rnch hall

Fig. 10. Alignment between control states, table field and text. Cyan is
the control state for area. Orange for the near.

name food iarea familyfriendly near

the wrestlers italian city centre yes raja indian cuisine

the |wrestlers 'serves |italian |food in the |city centre near |raja |indian cuisine

name eattype food pricerange :area familyfriendly: near :
the plough: restaurant: chinese high city centre . yes raja indian cuisine’

the |plough is |a family |friendly |chinese restaurant near raja indian cuisine in the city centre .

Fig. 11. Generation output for constraint graph section (a) in Fig. 9. Note
that the first output does not utilize the family-friendly field. This will
be corrected in section (b) of the graph.

observed. (Anecdotally, in early testing, the model architect was able
to find an error in the model implementation based on the interaction
mode through this process.)

Finally, the Constraint Graph view can be used to enforce that

output text obeys a specified format. We consider the constraining
to the format “the date is september the fourteenth, 2015
.”. Note, that the yellow state has been edited to add a repeat loop
allowing for variable length (in practice, one or two) day output text.
See Fig. 8c.
Restaurant Recommendation For more complex use-cases, we turn
to the problem of refining text for an assistive agent or bot. The
E2E dataset [43] is a standard data set designed for benchmarking
Table2Text generation systems to simulate conversational responses
in a constrained environment. Here the input @ is a table containing
information about a restaurant (subset of eight different possible fields).
The corresponding sentence y is a description of the data table .

For this use case, we assume the challenge is to constrain the output
to highlight the location of the restaurant and whether it is family-
friendly. There are several challenges that make this difficult. In the
beginning, we do not know the right alignments between the control
states and the relevant table fields. We also need to allow for different
possible orderings of these fields. Additionally, we do not know how
fields like family-friendly with yes,no values that cannot be copied
directly are described.

Let us start with the location of the restaurant. There are two table
fields area and near related to location and we would like to include
both of them. Using the Control States (see Fig. 10) section of the
Generation Forecast view we can determine how these fields are used.
This section shows overall alignment between control states, table fields
(inputs) and text (output). We can see that the model uses cyan (A)
control states for area, outputting words such as city and riverside
from this state, and orange (G) control states for near.

We can now ensure that these fields are both used. We observe

Range Forecast

area: city centre customer_rating: 3outof 5
eattype: pub familyfriendly: no, yes
food: french name: strada near: café sicilia

pricerange: £20-25

GENERATE -‘ GENERATE WITH CONSTRAINT ‘

area customer_rating : eattype : familyfriendly food name :near pricerange
city centre 3 out of 5 pub no french strada: café sicilia: £20-25

strada is |a city pub near|café sicilia . it is not kid friendly .

area customer_rating : eattype : familyfriendly: food :name :near pricerange
city centre 3 out of 5 pub yes frenchi strada café sicilia: £20-25

strada is |a |french [pub near café sicilia in city centre . it is family friendly .

Fig. 12. Outputs of Range Forecast for the constraint graph. By providing
the range no, yes for family-friendly, the system generates multiple
tables with different values and uses these to produce text under the
constraint graph. The output shows reasonable results for both values.

that location fields can appear in either order - (area, near) or (near,
area). We encode this in a constraint graph shown in Fig. 9a. The
(a) section of this graph ensures that some descriptive text comes first
(seed s), and then the model can fork to generate the location in either
order. Upon constructing this section of the graph, we can check that
this constrained generation is looking correct. The generation results
in Fig. 11 show that the generation with constraints works as expected,
producing initial text followed by full location descriptions such as
near raja indian cuisine in the city centre.

However, this constraint graph does not yet ensure that the text
mentions whether the restaurant is family-friendly. To first determine
how the system might encode this property, we use the Manual Output
tool in the Refine Constraints section. Ignoring the rest of the text, we
manually type out the phrases it is family friendly . and it
is not family friendly .. The system then finds the best control
states for each of the input tokens. In this case, the system produces
the same control states for family friendly but differs in the not
state. We can then combine these two control paths using the Refine
by Examples tool. This effectively creates an optional not state in the
graph, allowing both possibilities.

Finally, we combine this section (b) into the full constraint graph
in Fig. 9. Together this ensures we have both the location and the
description of family friendliness. We can ensure this works using
the Range Forecast tool. This tool allows us to generate a range of
possible input tables to test the output text. The outputs in Fig. 12 for
yes and no values for the family friendly table field shows that
our constraint works well in both cases and even generates text in a
different manner (kid friendly) than our manual input.

7 IMPLEMENTATION

GenNI requires interaction with a live model designed to facilitate
interactive visualization and refinement. To support this, it uses tight

integration of a model with the visual client. We based the interface
between both parts on a REST API, and we used a custom generation
system for the underlying model framework using Torch-Struct [51].
We designed an API to allow easy access of free generations, controlled
generation, inferred control, and interaction with the model’s beam tree.
Both the backend and frontend communicate constraints only through
the z control states that form the central white-box component of the
model.

The model framework works within a FastAPI server to deliver
content via a REST interface to the client. The client is written in
Typescript. Most visualization components are using the d3js library.
Source code, a demo instance, and a descriptive webpage are available
athttps://genni.vizhub.ai.

8 RELATED WORK
8.1 Table2Text Generation Models

Methods for table2text generation are commonly divided into rule-
based approaches, statistical methods, and neural models. Rule-based
approaches merge domain knowledge into the text generation sys-
tems [1,2,22,42,49]. The domain knowledge can be encoded using
hand crafted templates that map the data directly to language [18,37,57]
or through rule-based transformations of semantic representations to
produce the output text [4,47-49]. Some systems combine template-
based methods with standard rule-based approaches [3]. Our system
does not use manual rule-based approaches; however, the learned con-
trol states are reminiscent of templates since the codes learn to align
with specific characteristics of the text output. In this way, our ap-
proach has some similarities to statistical approaches that learn rules
from training data [12,23,31]. Dou et al. [11] built a model called
Data2Text Studio for automated text generation from structured data by
extracting templates. Like our system, it provides the user tools to edit
templates for models and APIs to generate text. However, our system
uses a neural model and also constructs constraint graphs rather than
hard-coded templates.

As with most tasks involving language modeling, neural network
models have become popular in conditional text generation. These
models have provided significant improvements in performance as
compared to rule-based and statistical models. The most popular
models are seq2seq models that use recurrent neural networks, es-
pecially LSTMs, [56] and transformer-based models that replace re-
currence with multi-headed attention in a feed-forward set-up [58].
These seq2seq models have been used for conditional text generation
by encoding the data as a source sequence and employing standard
transduction methods [13,27,32,38]. Transformer-based models that
have been trained on huge corpus of data [10,27,45] such as GPT2 and
BERT are commonly used to warm-start such models [46,62]. Recently,
transformer-based models similar to BERT [10] have been pre-trained
on table dataset [19]. Our system uses recurrent network models for
its different components. However, since the working of our system
depends on the probabilistic generative model (similar to a statistical
modeling approach) and not the underlying implementation, it should
be able to leverage larger transformer-based models, pre-trained or not.

8.2 Controllable Text Generation

Standard neural network models trained end-to-end are black-box text
generators, and it is difficult to control the generated text. To this
extent, recently developed methods allow injecting control into these
models. The controllable attributes can vary from topic, sentiment,
politeness, tense, ordering of information, content, etc. These models
learn control codes [29] that only moderate high-level attributes such
as sentiment [24,35] and style [44,52], and thus can still generate text
that differ at the word and phrase levels. Other models manipulate the
syntactic structure of generated text [7-9,26].

For more fine-level properties, some models learn templates [61],
alignment between data and text [6,53]. Our system, which is built
upon the model proposed by Li et al. [33] with a linear chain conditional
random field in the inference network and trained using Gumbel ap-
proximation following Fu et al. [14] is most similar to these approaches.
The control states learned to control some high-level semantics of the

words generated and can be used to extract templates (in the form of
constraint graphs). The semi-supervised training done for posterior
regularization performs soft alignment between the text and the data.

8.3 Interactive Interfaces for Text Generation

Interactive interfaces for free text generation are increasingly popular.
“Write with transformer” [25] completes paragraphs that have been
started by user input using transformer models like GPT-2. Some com-
mercial applications like GMail use language models to improve their
sentence completion. The Google Translate UI uses text generation for
translation. TabNine [34] offers language generation for programming
languages integrated into multiple IDEs. MixingBoard [15] demon-
strates interfaces for knowledge grounded stylized text generation. Text
generation models can also be used to detect if the models have created
an input text themselves [17,63]. Note, though, that these differ from
systems that focus on conditional generation.

CSI:Summary [16] describes a system for text summarization that
uses a controlled generation model. Outputs can be constrained as a
response to user interactions. Data2Text Studio [11] allows formulation
of constraints as set of Boolean rules. GenNI builds on the work of
CSI:Summary.

8.4 Explainable Al for Sequence Models

Visualization for explainable Al is a very active research topic resulting
in high-frequent publications. Hohman et al. [20] provide a comprehen-
sive start into this topic. Here, we exclusively focus on approaches for
sequence models.

As the fundamental and earliest building block, RNNs have been
the subject of study. The “unreasonable” effectiveness of RNNs for
encoding sequential information [28] can be interactively explored
by approaches like LSTMVis [55], RNNVis [39] or ProtoSteer [40].
Several methods utilize the model’s gradient and map them to model
input for analysis [5,36].

Current state-of-the-art deep learning NLP methods, like seq2seq
models or transformers, are more complex and require interactive meth-
ods to investigate this complexity. Seq2SeqVis [54] enables interactive
what-if analysis of the five parts of a seq2seq model. BertViz [59]
and exBert [21] allow a deep look into the attention mechanisms of
transformer models. These tools provide interactivity to analyze single
examples. GenNI extends from this idea and aims to generalize from
concrete examples to a set of applicable rules for the whole dataset.

9 CONCLUSIONS AND FUTURE WORK

We present GenNI, a system for collaborative development of data-
backed text generation systems. Unlike many systems developed for
understanding deep learning models for NLP, GenNI is designed to
help users produce actionable constraints that can be used with systems
designed for user control. The system facilitates a collaborative inter-
action with users refining explicit constraints on the model and the Al
system forecasting generations on new data.

This style of controllable model can be designed for many differ-
ent tasks in NLP and related domains. Building models with user
understandable controls opens up the ability for explicitly collabora-
tive systems as opposed to the trade-off of rule-based systems and full
Al-driven outputs. Visual interaction plays a key role for making it
possible for a user to intuit, develop, and apply these constraints in a
test environment as well as deploy them in real systems. In GenNI,
the encodings and structure used were targeted specifically to a class
of controllable generation models, but the approach of a single con-
trol state shared in a refine/forecast setting can be applied much more
broadly. Future work will look to develop shared encodings that can be
applied to a wide class of controllable NLP models.

10 ACKNOWLEDGEMENTS

This work was partially supported by NSF grant III-1901030 and a
Google Faculty Research Award.

https://genni.vizhub.ai

REFERENCES

(1]
[2]

(3]
(4]
[5]

(6]
(7]

(8]
[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

A. Belz. Probabilistic Generation of Weather Forecast Texts. In HLT-
NAACL, 2007.

N. Bouayad-Agha, G. Casamayor, and L. Wanner. Content selection
from an ontology-based knowledge base for the generation of football
summaries. In ENLG, 2011.

S. Busemann and H. Horacek. A Flexible Shallow Approach To Text
Generation. INLG, 1998.

L. Cahill, C. Doran, R. Evans, C. Mellish, D. Paiva, M. Reape, and D. Scott.
In Search of a Reference Architecture for NLG Systems. 2000.

D. Cashman, G. Patterson, A. Mosca, N. Watts, S. Robinson, and R. Chang.
RNNbow: Visualizing Learning via Backpropagation Gradients in Re-
current Neural Networks. IEEE Computer Graphics and Applications,
38(6):39-50, Nov. 2018. arXiv: 1907.12545. doi: 10.1109/MCG.2018.
2878902

A. T.S. Chan, Y. Ong, B. Pung, A. Zhang, and J. Fu. CoCon: A Self-
Supervised Approach for Controlled Text Generation. ArXiv, 2020.

M. Chen, Q. Tang, S. Wiseman, and K. Gimpel. Controllable Paraphrase
Generation with a Syntactic Exemplar. ACL, 2019. doi: 10.18653/v1/P19
-1599

E. Colin and C. Gardent. Generating Syntactic Paraphrases. In EMNLP,
2018. doi: 10.18653/v1/D18-1113

J. Deriu and M. Cieliebak. Syntactic Manipulation for Generating more
Diverse and Interesting Texts. In INLG, 2018. doi: 10.18653/v1/W18-6503
J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT, 2019. doi: 10.18653/v1/N19-1423

L. Dou, G. Qin, J. Wang, J. Yao, and C.-Y. Lin. Data2Text Studio:
Automated Text Generation from Structured Data. In EMNLP, 2018. doi:
10.18653/v1/D18-2003

P. A. Duboué and K. McKeown. Statistical Acquisition of Content Selec-
tion Rules for Natural Language Generation. In EMNLP, 2003. doi: 10.
3115/1119355.1119371

0. Dusek and F. Jurcicek. Sequence-to-Sequence Generation for Spoken
Dialogue via Deep Syntax Trees and Strings. ACL, 2016. doi: 10.18653/
v1/P16-2008

Y. Fu, C. Tan, B. Bi, M. Chen, Y. Feng, and A. M. Rush. Latent Template
Induction with Gumbel-CRFs. 34th Conference on Neural Information
Processing Systems, 2020. arXiv: 2011.14244.

X. Gao, M. Galley, and B. Dolan. MixingBoard: a Knowledgeable Styl-
ized Integrated Text Generation Platform. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, pp. 224-231. Association for Computational Linguistics,
Online, July 2020. doi: 10.18653/v1/2020.acl-demos.26

S. Gehrmann, H. Strobelt, R. Kriiger, H. Pfister, and A. M. Rush. Visual
Interaction with Deep Learning Models through Collaborative Semantic
Inference. IEEE Transactions on Visualization and Computer Graphics,
26(1):884-894, Jan. 2020. Conference Name: IEEE Transactions on
Visualization and Computer Graphics. doi: 10.1109/TVCG.2019.2934595
S. Gehrmann, H. Strobelt, and A. M. Rush. GLTR: Statistical Detection
and Visualization of Generated Text. arXiv.:1906.04043 [cs], June 2019.
arXiv: 1906.04043.

S. Geldof and W. Velde. An architecture for template based (hyper)text
generation. 1997.

J. Herzig, P. Nowak, T. Miiller, F. Piccinno, and J. M. Eisenschlos. TAPAS:
Weakly Supervised Table Parsing via Pre-training. In ACL, 2020. doi: 10.
18653/v1/2020.acl-main.398

F. Hohman, M. Kahng, R. Pienta, and D. H. Chau. Visual Analytics in
Deep Learning: An Interrogative Survey for the Next Frontiers. IEEE
Transactions on Visualization and Computer Graphics, 25(8):2674-2693,
Aug. 2019. doi: 10.1109/TVCG.2018.2843369

B. Hoover, H. Strobelt, and S. Gehrmann. exBERT: A Visual Analysis
Tool to Explore Learned Representations in Transformer Models. In Pro-
ceedings of the 58th Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pp. 187-196. Association for Compu-
tational Linguistics, Online, July 2020. doi: 10.18653/v1/2020.acl-demos.
22

E. Hovy. Automated Discourse Generation Using Discourse Structure
Relations. Artif. Intell., 1993. doi: 10.1016/0004-3702(93)90021-3

B. Howald, R. Kondadadi, and F. Schilder. Domain Adaptable Semantic
Clustering in Statistical NLG. In IWCS, 2013.

Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. Xing. Toward Con-

(25]
[26]

[27]
(28]

[29]

[30]

(31]
[32]
(33]
(34]

[35]

(36]

[37]

(38]

[39]

(40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]
(48]

[49]

(50]

[51]

trolled Generation of Text. In ICML, 2017.

Huggingface. Write With Transformer, Mar. 2021.

M. Iyyer, J. Wieting, K. Gimpel, and L. Zettlemoyer. Adversarial Example
Generation with Syntactically Controlled Paraphrase Networks. NAACL-
HLT, 2018. doi: 10.18653/v1/N18-1170

M. Kale. Text-to-Text Pre-Training for Data-to-Text Tasks. INLG, 2020.
A. Karpathy, J. Johnson, and L. Fei-Fei. Visualizing and Understand-
ing Recurrent Networks. arXiv:1506.02078 [cs], Nov. 2015. arXiv:
1506.02078.

N. Keskar, B. McCann, L. R. Varshney, C. Xiong, and R. Socher. CTRL:
A Conditional Transformer Language Model for Controllable Generation.
ArXiv, 2019.

D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. 2nd
International Conference on Learning Representations, 2014. arXiv:
1312.6114.

I. Langkilde and K. Knight. Generation that Exploits Corpus-Based
Statistical Knowledge. In COLING. doi: 10.3115/980451.980963

R. Lebret, D. Grangier, and M. Auli. Neural Text Generation from Struc-
tured Data with Application to the Biography Domain. In EMNLP, 2016.
doi: 10.18653/v1/D16-1128

X. L. Liand A. M. Rush. Posterior Control of Blackbox Generation. ACL,
2020. doi: 10.18653/v1/2020.acl-main.243

C.D. C. Ltd. TabNine - Code Faster with AI Code Completions.

F. Luo, D. Dai, P. Yang, T. Liu, B. Chang, Z. Sui, and X. Sun. Learning to
Control the Fine-grained Sentiment for Story Ending Generation. In ACL,
2019. doi: 10.18653/v1/P19-1603

A. Madsen. Visualizing memorization in RNNs. Distill, 4(3):e16, Mar.
2019. doi: 10.23915/distill.00016

S. W. Mcroy, S. Channarukul, and S. S. Ali. An augmented template-based
approach to text realization. Natural Language Engineering, 9(4):381-420,
2003. doi: 10.1017/S1351324903003188

H. Mei, M. Bansal, and M. R. Walter. What to talk about and how?
Selective Generation using LSTMs with Coarse-to-Fine Alignment. HLT-
NAACL, 2016. doi: 10.18653/v1/N16-1086

Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song, and H. Qu. Un-
derstanding Hidden Memories of Recurrent Neural Networks. In 2017
IEEE Conference on Visual Analytics Science and Technology (VAST), pp.
13-24, Oct. 2017. doi: 10.1109/VAST.2017.8585721

Y. Ming, P. Xu, F. Cheng, H. Qu, and L. Ren. ProtoSteer: Steering Deep
Sequence Model with Prototypes. IEEE Transactions on Visualization
and Computer Graphics, 26(1):238-248, Jan. 2020. doi: 10.1109/TVCG.
2019.2934267

A. Mnih and K. Gregor. Neural Variational Inference and Learning in
Belief Networks. CoRR, 2014. arXiv: 1402.0030.

J. Moore and C. Paris. Planning Text for Advisory Dialogues: Capturing
Intentional and Rhetorical Information. Comput. Linguistics, 1993.

J. Novikova, O. Dusek, and V. Rieser. The E2E Dataset: New Chal-
lenges For End-to-End Generation. In Proceedings of the 18th Annual
SIGdial Meeting on Discourse and Dialogue, pp. 201-206. Association
for Computational Linguistics, Saarbriicken, Germany, 2017. doi: 10.
18653/v1/W17-5525

S. Oraby, L. I. Reed, S. Tandon, S. SharathT, S. M. Lukin, and M. Walker.
Controlling Personality-Based Stylistic Variation with Neural Natural
Language Generators. SIGDIAL Conference, 2018. doi: 10.18653/v1/
W18-5019

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever.
Language Models are Unsupervised Multitask Learners. p. 24, 2019.

C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou,
W. Li, and P. J. Liu. Exploring the Limits of Transfer Learning with a
Unified Text-to-Text Transformer. J. Mach. Learn. Res., 2020.

E. Reiter. NLG vs. Templates. ArXiv, 1995.

E. Reiter and R. Dale. Building applied natural language genera-
tion systems. Natural Language Engineering, 1997. doi: 10.1017/
S1351324997001502

E. Reiter and R. Dale. Building natural language generation systems.
Cambridge University Press, USA, 2000.

D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic Backpropagation
and Approximate Inference in Deep Generative Models. Proceedings of
ICML, 2014. arXiv: 1401.4082.

A. Rush. Torch-Struct: Deep Structured Prediction Library. In Proceed-
ings of the 58th Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, pp. 335-342. Association for Compu-
tational Linguistics, Online, July 2020. doi: 10.18653/v1/2020.acl-demos.

[52]

[53]

(54

[55]

[56]

[571

[58]

[59]

[60]
[61]

[62]

[63]

38

T. Shen, T. Lei, R. Barzilay, and T. Jaakkola. Style Transfer from Non-
Parallel Text by Cross-Alignment. In NIPS, 2017.

X. Shen, E. Chang, H. Su, J. Zhou, and D. Klakow. Neural Data-to-Text
Generation via Jointly Learning the Segmentation and Correspondence.
ACL, 2020. doi: 10.18653/v1/2020.acl-main.641

H. Strobelt, S. Gehrmann, M. Behrisch, A. Perer, H. Pfister, and A. M.
Rush. Seq2seq-Vis: A Visual Debugging Tool for Sequence-to-Sequence
Models. IEEE Transactions on Visualization and Computer Graphics,
25(1):353-363, Jan. 2019. Conference Name: IEEE Transactions on
Visualization and Computer Graphics. doi: 10.1109/TVCG.2018.2865044
H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush. LSTMVis: A
Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural
Networks. IEEE Transactions on Visualization and Computer Graphics,
24(1):667-676, Jan. 2018. Conference Name: IEEE Transactions on
Visualization and Computer Graphics. doi: 10.1109/TVCG.2017.2744158
I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to Sequence Learning
with Neural Networks. In NIPS, 2014.

M. Theune, E. Klabbers, J. D. Pijper, E. Krahmer, and J. Odijk. From data
to speech: a general approach. Natural Language Engineering, 2001. doi:
10.1017/S1351324901002625

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin. Attention is All you Need. NIPS, 2017.

J. Vig. A Multiscale Visualization of Attention in the Transformer Model.
In Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pp. 37—42. Association for
Computational Linguistics, Florence, Italy, July 2019. doi: 10.18653/v1/
P19-3007

S. Wiseman, S. Shieber, and A. M. Rush. Challenges in Data-to-Document
Generation. In EMNLP, 2017. doi: 10.18653/v1/D17-1239

S. Wiseman, S. Shieber, and A. M. Rush. Learning Neural Templates for
Text Generation. EMNLP, 2018. doi: 10.18653/v1/D18-1356

T. Wolf, V. Sanh, J. Chaumond, and C. Delangue. TransferTransfo: A
Transfer Learning Approach for Neural Network Based Conversational
Agents. ArXiv, 2019.

R. Zellers, A. Holtzman, H. Rashkin, Y. Bisk, A. Farhadi, F. Roesner, and
Y. Choi. Defending Against Neural Fake News. arXiv:1905.12616 [cs],
Dec. 2020. arXiv: 1905.12616.

	Introduction
	Model: Table2Text with Controls
	Model Interaction

	Motivating Case Study: Collaborative Generation
	Goals, Tasks and User Groups
	Design
	Constraint Refinement Component
	Generation Forecast Component
	Encodings

	Use Cases
	Implementation
	Related Work
	Table2Text Generation Models
	Controllable Text Generation
	Interactive Interfaces for Text Generation
	Explainable AI for Sequence Models

	Conclusions and Future Work
	Acknowledgements

