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Abstract

To determine the importance of merging galaxies to galaxy evolution, it is necessary to design classification tools
that can identify the different types and stages of merging galaxies. Previously, using GADGET-3/SUNRISE

simulations of merging galaxies and linear discriminant analysis (LDA), we created an accurate merging galaxy
classifier based on imaging predictors. Here, we develop a complementary tool, based on stellar kinematic
predictors, derived from the same simulation suite. We design mock stellar velocity and velocity dispersion maps
to mimic the specifications of the Mapping Nearby Galaxies at Apache Point (MaNGA) integral field spectroscopy
(IFS) survey, and utilize an LDA to create a classification, based on a linear combination of 11 kinematic
predictors. The classification varies significantly with mass ratio; the major (minor) merger classifications have a
mean statistical accuracy of 80% (70%), a precision of 90% (85%), and a recall of 75% (60%). The major mergers
are best identified by predictors that trace global kinematic features, while the minor mergers rely on local features
that trace a secondary stellar component. While the kinematic classification is less accurate than the imaging
classification, the kinematic predictors are better at identifying post-coalescence mergers. A combined imaging +
kinematic classification has the potential to reveal more complete merger samples from imaging and IFS surveys
such as MaNGA. We note that since the suite of simulations used to train the classifier covers a limited range of
galaxy properties (i.e., the galaxies are of intermediate mass, and disk-dominated), the results may not be
applicable to all MaNGA galaxies.

Unified Astronomy Thesaurus concepts: Galaxy evolution (594); Galaxy mergers (608); Galaxy kinematics (602);
Stellar kinematics (1608); Galaxy interactions (600)

1. Introduction

Observations of galaxies have revealed that they evolve over

cosmic time from smaller, bluer, more irregular star-forming

galaxies at higher redshifts, to larger, redder, more elliptical

galaxies in the local universe (e.g., Glazebrook et al. 1995;

Lilly et al. 1995; Giavalisco et al. 1996). Moreover, the
bimodality of galaxy properties such as color, mass, and star

formation rate at low redshift implies that galaxies are

quenching, or shutting down their star formation, in the local

universe as well (e.g., Schawinski et al. 2009; Masters et al.

2010; Weigel et al. 2017). Galaxy evolution, or changes in the
size, structures, and star formation properties of lower mass

(log (M*/Me)< 10.5) galaxies is largely driven by the

accretion of gas and/or the prevention of this gas from forming

stars (Robotham et al. 2014). Many different processes can

drive this evolution, from internal processes, dependent on
specific galaxy properties, to external processes, which are

related to the surroundings of the galaxy. Examples of internal

processes include feedback from active galactic nuclei (AGNs;

Croton et al. 2006; Fabian 2012; Heckman & Best 2014), star

formation driven outflows (Rupke 2018 and references
therein), and morphological quenching due to structures such

as bars or stellar bulges (Sheth et al. 2005). External processes
include galaxy interactions with a hot intracluster medium that
removes or heats gas (Gunn et al. 1972), “cold flow” accretion
from the cosmic web (Dekel et al. 2009), and galaxy mergers
(Silk & Rees 1998; Di Matteo et al. 2005; Kaviraj 2014).
While the current ΛCDM framework for structural formation

in the universe points to the importance of mergers in
assembling dark matter halos (White & Rees 1978; White &
Frenk 1991; Cole et al. 2008), the relative contribution of
mergers to galaxy evolution via processes such as star
formation, AGN activity, and/or morphological transformation
remains unclear. This disagreement stems largely from the
difficulty of building large, unambiguous samples of merging
galaxies. Galaxy mergers are inherently difficult to identify;
they persist for ∼few Gyr, and exhibit a diversity of identifying
characteristics that vary with merger stage, mass ratio, gas
fraction, orbital parameters, and other merger initial conditions.
The difficulty of identifying merging galaxies also con-

tributes to uncertainty regarding the merger rate (Rmerg), which
is a key measurement for quantifying the role of mergers in
galaxy evolution, and comparing observations to simulations
(e.g., López-Sanjuan et al. 2008). The merger rate can either be
measured directly from simulations, or empirically, using the
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observed merger fraction, and assuming a merger “observa-
bility” timescale (Lotz et al. 2011). Both techniques show large
scatter between different estimates of merger rate; semi-
analytic models and hydrodynamical simulations can result in
discrepancies of about an order of magnitude (see Hopkins
et al. 2010 and references therein), while observations have
also not converged, due to uncertainties with respect to merger
timescales, and the completeness of the different methodolo-
gies. Recently, however, Mantha et al. (2018) have demon-
strated that different empirical estimates of the merger rate can
be brought into agreement. This work demonstrates the
importance of a careful calibration of the completeness of the
merger identification methodology, as well as the observability
timescale.

Clean and complete samples of merging galaxies are
therefore needed to address the contributions of mergers to
evolutionary processes in galaxies, and to reduce systemic
uncertainties in the galaxy merger rate. This in turn necessitates
a thorough understanding of the limitations and observability
timescale of the techniques used to identify merging galaxies.
A variety of imaging techniques exist to identify merging
galaxies, all of which are susceptible to their own biases. These
often rely upon individual imaging tools, or predictors, such as
the Gini−M20 methodology, or the asymmetry of galaxy light
in imaging. One approach to overcome these biases is to utilize
simulations of merging galaxies to better understand the
shortcomings of individual tools, and to characterize the
observability timescales of these methods. For example, Lotz
et al. (2008, 2010a, 2010b) use simulations of merging galaxies
to measure the length of time for which a major merger is
observable by the Gini−M20 and asymmetry metric. They find
0.3–0.5 Gyr observability timescales, meaning that merging
galaxies are only visible as mergers using these techniques for a
short time during the ∼few Gyr duration of the merger.
Another strategy is to combine the predictors to create a single
classification tool, which dramatically lengthens the observa-
bility timescale by capitalizing on the strengths of individual
methods (e.g., Goulding et al. 2018; Snyder et al. 2019).

In Nevin et al. (2019) (henceforth N19), we pursue both of
these approaches, and utilize GADGET-3/SUNRISE simulated
galaxies to build a merger identification technique. This
technique combines seven imaging predictors to create one
more accurate and precise classifier, incorporating the strengths
of all of these predictors, and lengthening the observability
timescale to >2 Gyr. Using this approach to simulate merging
galaxies, we achieve a high temporal resolution (relative to
cosmological simulations), which enables us to construct a
more complete picture of the different stages of a merger. The
suite of simulated mergers also provides a known sample of
merging and nonmerging galaxies, on the basis of which we
can identify the limitations of the identification technique
before it is applied.

Recent years have witnessed an increase in the quantity and
quality of integral field spectroscopy (IFS) data sets. With these
advancements, kinematic predictors provide a promising
addition to imaging predictors in the merger identification
toolkit. Kinematic predictors are able to directly probe the
dynamical histories of galaxies by tracing baryonic and dark
matter (Glazebrook 2013). Disturbances in the stellar kine-
matics are dynamically long-lived, and can identify a merger
long after the imaging signatures have faded. For instance,
morphological disturbances such as tidal tails can fade on a

∼500Myr timescale following final coalescence, and are faint
compared to the light of the galaxy (e.g., Hung et al. 2014;
Wen & Zheng 2016), whereas kinematic disturbance in the
stars of a galaxy can persist for longer (up to ∼Gyr after final
coalescence; Hung et al. 2016).
Kinematic predictors may clear up ambiguities in imaging.

For instance, some clumpy star-forming galaxies can appear to
be mergers, based on imaging, due to their disturbed
morphologies (Miralles-Caballero et al. 2011; Petty et al.
2014), yet galaxies with clumpy morphologies may prove to be
nonmerging spiral galaxies with clumps of star formation at
their centers or in their spiral arms (Alonso-Herrero et al. 2006;
Haan et al. 2011). Kinematics have shown promise as an
additional tool for determining whether or not a star-forming
galaxy is disk-like (e.g., White et al. 2017).
This type of clumpy star-forming galaxy is even more

abundant at intermediate and high redshifts, where a higher
fraction of galaxies are expected to be actively merging, yet
many isolated (nonmerging) galaxies are also inherently
clumpy (e.g., Guo et al. 2015). In addition to their clumpy
and rapidly evolving morphologies, high redshift galaxies also
exhibit distinct kinematic features, such as high velocity
dispersions, regardless of whether they are actively merging
or isolated (e.g., Law et al. 2012a, 2012b). The decreasing
spatial resolution and surface brightness dimming of high
redshift galaxies also confound the identification of mergers.
Since high redshift galaxies present a host of additional
complications, in this work, we focus on local galaxies in order
to develop the groundwork for a method that could eventually
be extended to the more distant universe.
As with every other merger identification tool, kinematic

predictors have their own set of ambiguities and limitations.
For instance, in gas-rich mergers, disks are able to survive the
merger, and these recently merged galaxies can masquerade as
isolated disk galaxies (e.g., Robertson et al. 2006). Hung et al.
(2015) found that relying upon kinematics alone to classify a
sample of ULIRGs led to many merging galaxies being
identified as isolated disks, and provided a false-negative
merger identification for up to 50% of ULIRGs. Moreover, the
identification technique depends strongly on the merger stage,
and the choice of kinematic predictor. Other works have
confirmed that some mergers with highly disturbed visual
morphology exhibit a distinct lack of disturbance in the stellar
kinematics (Bellocchi et al. 2013; Hung et al. 2016). It is
therefore important to probe the kinematics of merging galaxies
using simulations in order to understand the biases and
limitations of these tools before applying them to real galaxies.
There is currently a wealth of work dedicated to the imaging

approach to identifying merging galaxies from large surveys.
While there are many detailed case studies of the kinematics of
individual local mergers (e.g., Dasyra et al. 2006; Piqueras
López et al. 2012), there is a lack of detailed statistical-sized
kinematic studies of local mergers. Recent years have seen a
revolution, with the prevalence of more and more capable IFS
surveys, creating opportunities to identify merging galaxies
using kinematic signatures. Surveys such as ATLAS-3D
(Cappellari et al. 2011), CALIFA (Sánchez et al. 2012), SAMI
(Croom et al. 2012), MaNGA (Bundy et al. 2015), and
HECTOR (Bryant et al. 2016) offer a promising avenue for the
study of the spatially resolved spectral properties of an
astounding number of galaxies. Here, we focus on the
nearing-completion Mapping Nearby Galaxies at Apache Point
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Observatory (MaNGA) survey. MaNGA is an IFS survey of
>10,000 local galaxies (with a median redshift of z∼ 0.03),
with a spectral resolution of R∼ 2000, and a spatial sampling
of 1–2 kpc (Bundy et al. 2015). One of MaNGA’s secondary
scientific goals is to help disentangle the evolutionary pathways
of galaxies, and to focus on incorporating simulations of
merging galaxies with observations. It is thus uniquely well-
suited to our project, where the goal is to create a merger
classification technique from the kinematics of simulated
galaxies, which we will then apply to the kinematics of the
>10,000 galaxies in the MaNGA survey in order to identify
mergers in future work.

This paper is organized as follows: In Section 2 we review
the GADGET-3/SUNRISE simulations from N19, describe the
process of creating mock stellar kinematic maps from the
synthetic spectra of the galaxy merger simulations, introduce
the kinematic predictors, and review the linear discriminant
analysis (LDA) technique used in N19 and in this work. In
Section 3 we describe the results of the LDA classification,
including the coefficients of the LDA, the observability
timescales, and the accuracy and precision of the method. In
Section 4 we describe the LDA coefficients in the context of
previous work on mergers, and how the classification changes
with mass ratio; we also examine the performance of the
kinematic classification technique in the context of other tools
and statistical methods. We present our conclusions in
Section 5. In this work, we focus on creating kinematic
classifications based on simulated galaxies. In future work, we
plan to apply these classifications to galaxies in the MaNGA
survey. A cosmology with Ωm= 0.3, ΩΛ= 0.7, and h= 0.7 is
assumed throughout.

2. Methods

In order to construct a merger identification framework using
the kinematics of simulated galaxies, we follow a detailed
procedure to mimic observations from the MaNGA survey. We
introduce the galaxy merger simulations in Section 2.1, and
describe the process of preparing mock kinematic maps of the
simulated galaxies in Section 2.2. Finally, we introduce the
kinematic predictors utilized in our kinematic classification in
Section 2.3.

We dedicate several appendices to discussions that are
informative, but ancillary to the goals of this paper. We make
the deliberate choice to extract the stellar kinematics from the
SUNRISE spectra, as opposed to relying directly on particle
velocities. We discuss the implications of this choice, and
compare the extracted stellar velocity and velocity dispersion

maps to the inherent velocity of the simulation particles, in
Appendix A. In Appendix A we also discuss the effects of dust
on the simulated observations. In Appendix B, we include
further details regarding the addition of noise to the mock
spectra. In Appendix C we address AGN contamination, and
how we extract stellar kinematics from galaxies hosting AGN.

2.1. GADGET-3/SUNRISE Overview

As in N19, we utilize GADGET-3/SUNRISE simulations of
merging galaxies. GADGET-3 (Springel & Hernquist 2003;
Springel 2005) is a smoothed particle hydrodynamics (SPH)
and N-body code, modeling processes such as radiative
heating, radiative cooling, star formation, supernova feedback,
and the multi-phase interstellar medium (ISM), using sub-
resolution prescriptions. GADGET-3 also includes SMBH
accretion, as well as AGN feedback (this is achieved by
coupling 5% of the accreted luminosity to the gas as thermal
energy). GADGET has been used for many different astro-
physical applications, including widespread use in studies of
merging galaxies (e.g., Di Matteo et al. 2005; Cox et al. 2006;
Hopkins et al. 2006, 2008, 2013a; Robertson et al. 2006;
Blecha et al. 2011, 2013b; Hopkins et al. 2013b).
We present the five galaxy merger simulations and their

matched isolated simulations in Table 1. The framework for
these simulations is established in Blecha et al. (2018), and the
simulations themselves are presented in N19. Three of the
simulations are major mergers (where the mass ratio, q, of the
progenitors is greater than q= 0.25, or 1:4; Rodriguez-Gomez
et al. 2015; Nevin et al. 2019) and two of the simulations are
minor mergers. The major mergers have mass ratios of 1:2, 1:3,
and 1:3. We define the gas fraction of these simulations as
fgas=Mgas,disk/(Mgas,disk+M*,disk). The 1:2 and 1:3 mass ratio
major mergers have a relatively high gas fraction of 0.3, and
one of the 1:3 mass ratio major mergers has a relatively low gas
fraction of 0.1.
We verify that the different gas fractions of the simulations

(0.1 and 0.3) cover the full range of the gas fractions in the
MaNGA galaxies. The mean gas fraction in MaNGA is defined
by Barrera-Ballesteros et al. (2018) as

m
s

s s
=

+
,gas

gas

gas *

where σgas is the gas mass density, and σ* is the stellar mass

density. The stellar mass density is derived from the stellar

template fitting and the gas mass density is derived from CO

measurements in the EDGE-CALIFA survey (Bolatto et al.

2017; Barrera-Ballesteros et al. 2020).

Table 1

Key Simulation Parameters and Matched Isolated Galaxies

Simulation Mass Ratio Gas Fraction Stellar Mass of Primary Matched Isolated Galaxies

[1010 Me]

q0.5_fg0.3 1:2 0.3 3.9 m0.5_fg0.3, m1_fg0.3

q0.333_fg0.3 1:3 0.3 3.9 m1_fg0.3

q0.333_fg0.1 1:3 0.1 4.7 m0.333_fg0.1, m1_fg0.1

q0.2_fg0.3_BT0.2 1:5 0.3 4.2 m1_fg0.3_BT0.2

q0.1_fg0.3_BT0.2 1:10 0.3 4.2 m1_fg0.3_BT0.2

Note. The simulations are named for the mass ratio, gas fraction, and bulge-to-total mass ratio of the merging galaxies. For instance, q0.5_fg0.3 is a 1:2 mass ratio

merger, where each progenitor galaxy has a gas fraction of 0.3, and an initial B/T ratio of 0. The stellar mass of the primary (more massive) galaxy is 3.9 × 1010 Me.

The matched isolated galaxies are mass-matched to the merging galaxies, and are named based on which merging galaxy they are matched to (i.e., m0.5_fg0.3 is

matched to the smaller of the two merging galaxies in the q0.5_fg0.3 merger).

3
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Barrera-Ballesteros et al. (2018) find that the mean gas
fraction for the MaNGA sample ranges from 0.16 to 0.32. A
fgas value of 0.1 is therefore below the mean for MaNGA
galaxies, and as such is relatively gas poor, while fgas= 0.3 is at
the top of the range of mean values for the sample, and
relatively gas-rich.

These simulations are named for their mass ratio and gas
fraction; for instance, the gas-rich 1:2 mass ratio major merger
is q0.5_fg0.3, the gas-rich 1:3 mass ratio major merger is
q0.333_fg0.3, and the gas-poor 1:3 mass ratio major merger is
q0.333_fg0.1. All of the major merger progenitors have a
bulge-to-total (B/T) mass ratio of 0, meaning that they are a
pure disk initially. Both of the progenitor galaxies of the minor
mergers have a B/T ratio of 0.2, and both are gas-rich. These
simulations are q0.2_fg0.3_BT0.2, which is the 1:5 mass ratio
minor merger, and q0.1_fg0.3_BT0.2, the 1:10 mass ratio
minor merger.

We build the matched sample of isolated galaxy simulations
for each merger simulation based on two sources. Firstly, we
use a standalone sample of isolated galaxies, matched for mass
and gas fraction to each of the simulations. Some simulations
have more than one matched isolated galaxy, but for a case
where there is only one isolated galaxy, it is matched to the
mass of the larger merging galaxy from the corresponding
merger simulation. Secondly, we define snapshots of each
simulated merger falling before the first pericentric passage,
or>0.5 Gyr after final coalescence, as isolated galaxies. We
refer to those isolated galaxies from snapshots occurring prior
to the first pericentric passage as “pre-merger” isolated
galaxies, and those snapshots occurring> 0.5 Gyr after final
coalescence as “post-merger” isolated galaxies. This distinction
is useful, as the properties of these two populations differ.

We couple GADGET-3 with SUNRISE in order to directly
compare the simulated galaxies with observations. SUNRISE is
a 3D polychromatic Monte Carlo dust radiative transfer (RT)
code (Jonsson 2006; Jonsson et al. 2010), which is used to
model a wide range of isolated and merging galaxies (e.g.,
Narayanan et al. 2010; Hayward et al. 2011, 2014; Blecha et al.
2013a; Snyder et al. 2013). The full details of the SUNRISE

prescription are presented in Blecha et al. (2013b, 2018)
and N19. Briefly, SUNRISE performs Monte Carlo radiative
transfer on a 3D adaptively refined grid to compute the
emission from stars, H II regions, and AGN. SUNRISE uses the
STARBURST99 stellar population synthesis models (Leitherer
et al. 1999) to calculate the age- and metallicity-dependent
spectral energy distributions for each star particle. The
treatment for dust includes dust self-absorption and thermal
re-emission, as well as polycyclic aromatic hydrocarbon
absorption and emission. In addition, we include kinematic
(Doppler) effects, which requires very high spectral resolution.
Ultimately, SUNRISE calculates the emergent, attenuated,
resolved UV-to-IR spectra (3300–6990Å, Δλ= 0.3 Å) for
seven isotropically positioned viewing angles.

We utilize a data cube of SUNRISE optical synthetic spectra
for the seven isotropically positioned viewpoints from each
merger snapshot to produce the mock data cubes. In N19, a
“snapshot” is the SUNRISE image; in this work, we use the
term “snapshot” to refer to the full data cube from a specific
point in time. These snapshots occur at 50–100Myr intervals
during each merger, and we refer to them as early-stage, late-
stage, and post-coalescence stage snapshots. We define these
stages using the r-band images from N19. The early-stage

mergers occur after the first pericentric passage, and have
(viewpoint) average stellar bulge separations of Δx� 10 kpc,
late-stage mergers have separations of 1 kpc<Δx< 10 kpc,
and post-coalescence mergers are no longer resolvable with
separations Δx� 1 kpc until 0.5 Gyr after final coalescence.
With a 50–100Myr cadence for snapshots, we therefore have
5–10 snapshots for each of these stages. In total, there are ∼20
snapshots per simulation, and seven viewpoints per snapshot,
which amounts to 100–200 observations per merger simulation.
We further discuss the importance of running RT, and

incorporating dust attenuation and scattering into the merger
snapshots in Appendix A; briefly, the stellar kinematic maps
are affected by both the presence of dust, and dust scattering.
The implication is that for this type of kinematic analysis, it is
important to use velocities derived directly from the RT
product (synthetic spectra), as opposed to the original
SPH particle velocities.

2.2. Preparing Mock MaNGA Kinematic Maps

To produce stellar kinematics for our sample of simulated
galaxies, we use the specifications of MaNGA to create a data
cube of spectra, and then we mimic the MaNGA Data Analysis
Pipeline (DAP) to extract stellar kinematics for use in our
kinematic classification. Examples of finalized “MaNGA-ized”
stellar velocity, and stellar velocity dispersion maps, are
presented in Figure 1. In this section, we describe how we
mimic the specifications of MaNGA. This involves reducing
the spatial and spectral resolution of the simulations to create a
MaNGA-ized data cube, placing an appropriately sized fiber
bundle over each galaxy, and fitting each spaxel with ppxf

(a penalized pixel fitting method from Cappellari & Emsellem
2004; Cappellari 2017) to obtain the velocity and velocity
dispersion of the stars at each spatial position.
SDSS-IV/MaNGA is an IFS survey, targeting a sample of

>10,000 nearby galaxies, and selected to span a wide range of
environments and stellar masses (Gunn et al. 2006; Smee et al.
2013; Bundy et al. 2015; Drory et al. 2015; Law et al. 2015;
Blanton et al. 2017). Spectra are obtained using the BOSS
spectrograph on the 2.5 m telescope at Apache Point
Observatory (Gunn et al. 2006), which has a spectral resolution
of R∼ 2000. Fibers are bundled into integral field units (IFUs);
MaNGA has five different fiber bundles, equipped with 19, 37,
61, 91, and 127 fibers (the largest fiber bundle is known as
the “frankenbundle”); each individual fiber has a 2 0 diameter
with 2 5 spacing between fibers (Smee et al. 2013; Drory et al.
2015; Yan et al. 2016a; Wake et al. 2017). These fiber bundles
range from 12 5 to 32 5 in diameter.
MaNGA has a median point-spread function (PSF) of 2 5,

which roughly corresponds to a spatial resolution of 1–2 kpc.
The primary sample of galaxies (which is 2/3 of the full
sample) has coverage out to 1.5 times the r-band effective
radius (Re), and the secondary sample has coverage to 2.5 Re

(Yan et al. 2016a; Wake et al. 2017). The redshift range of the
MaNGA survey is 0.01� z� 0.15.
The most recent internal MaNGA product launch (MPL-9)

includes 8000 unique galaxies, observed and reduced by the
Data Reduction Pipeline (DRP; Law et al. 2016). The publicly
available version is released as DR-15, which includes 4621
unique galaxies (Aguado et al. 2019). The derived properties
(including the stellar kinematics) are produced by the DAP
(Belfiore et al. 2019; Westfall et al. 2019) in the format of a
single data cube per galaxy (Yan et al. 2016b). The MaNGA
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team also creates and maintains Marvin, which is a useful tool

for visualizing MaNGA data (Cherinka et al. 2019).
To create the mock data cubes, we begin with the

SUNRISE synthetic spectra, which we extract at the median

redshift of the MaNGA survey (z= 0.03). We also use the

SUNRISE SDSS r- and g-band images to construct the mock

data cubes, as these are essential for certain steps in the process.

We follow this procedure (which mirrors the MaNGA DAP

whenever possible):

1. Convolve the data cube with the 2 5 MaNGA PSF.

Here we use a 2 5 Gaussian kernel, which is a good

approximation of the effective PSF of the MaNGA data

cubes. A model of the effective PSF is automatically

computed for each data cube as part of the MaNGA DRP,

which convolves a simulated point source with the fiber

footprint of a given set of observations, incorporating as-

observed details of seeing, transparency, differential

atmospheric refraction, dithering, and other instrumental

effects (Law et al. 2016). We briefly investigate the

difference between using our simplified Gaussian kernel

and the effective PSF model provided by the DRP, and

find that there are small differences in the maps when the

reconstructed PSF is used, in particular a slight increase
in the spread of values in the velocity dispersion maps.
This is to be expected, given that the reconstructed PSF
does not have a perfectly Gaussian shape. However, the
differences in the kinematic maps are minimal, and do not
cause significant differences in classification. We define
the classification “significantly different” in Section 3.8.
We therefore conclude that using the 2 5 Gaussian PSF
is adequate for this work.

2. Rebin to match the spatial (0 5 spaxels) and spectral
sampling (R∼ 2000) of MaNGA. The spectral sampling
varies as a function of wavelength.

3. Use a mock g-band image, rebinned to the 0 5 spatial
scale, to mask all spaxels in the data cube that fall below
a g-band signal-to-noise ratio (S/N) cutoff value of 1.

Follow the procedure from N19 to convolve, rebin,
and introduce noise characteristic of SDSS imaging to the
mock g-band images, to match the 0 5 spatial binning of
the MaNGA cubes. Next, find the average g-band S/N
per spaxel, and mask all spaxels that fall below an S/N
cutoff value of 1. This procedure directly follows the
MaNGA DAP (Westfall et al. 2019), which masks all
spaxels using the same g-band S/N cutoff.

Figure 1. Snapshots of images (left column), stellar velocity maps (middle column), and stellar velocity dispersion maps (right column) from different epochs of the
q0.5_fg0.3 simulation. The r-band image is the log-scaled full-resolution simulation prior to the mock-up process, in order to show all of the features of the merger.
The colorbar for the middle and right columns is given in km s−1. The spatial position for all panels is given in arcsec, and the stellar velocity and stellar velocity
dispersion columns have the same spatial coverage. We include snapshots of an early-stage merger (first row), a late-stage merger (second row), and a post-
coalescence merger (third row). The stellar kinematics change over the course of the merger. For instance, the stellar velocity map is distorted due to the superposition
of two merging galaxies, while the velocity dispersion map undergoes a global enhancement with time.
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4. Use the MaNGA procedure to select which size of fiber
bundle to use for each mock data cube, and mask all
spaxels that are external to this hexagonal footprint.

We use statmorph (Rodriguez-Gomez et al. 2019)
to measure the effective radius of the mock r-band images
from N19. We then determine the smallest fiber bundle
needed to cover each galaxy to 1.5 Re (this is how
MaNGA’s primary sample is defined). We select the
smallest fiber bundle if the total angular extent of the
galaxy (2× 1.5 Re) is smaller than 12 5, and the largest
fiber bundle if the angular size exceeds 32 5.

5. We introduce noise to each spaxel to produce a data cube
with noise, and a sqrt(variance) data cube (from here on,
“error data cube”).

We first produce a typical noise spectrum to
demonstrate how the noise trends with wavelength for
MaNGA observations. We then normalize this noise
spectrum, using the g-band S/N value for each spaxel.
The end result is a sqrt(variance), or error spectrum,
which we use to introduce random noise to each spaxel in
the data cube. The noisy spectra, and the accompanying
error spectra, are the inputs to ppxf. Further details of
this process can be found in Appendix B.

To verify that the S/N of the simulated spectra are
representative of the MaNGA sample, we use the peak g-
band S/N as a comparison statistic, defined as the
maximum value of the g-band S/N (per pixel) from a
single galaxy observation. The peak g-band S/N ratio of
a sample of MaNGA galaxies spanning the full range of
sizes, surface brightnesses, and stellar masses of the
MaNGA sample ranges from 10–60, with a median of 25.
The same statistic for the simulation suite ranges from
10–100, with a median of 30. In Section 3.9, we
experiment with changing the S/N of simulated spectra,
and investigate how this affects the classification.

Since the MaNGA data cubes oversample the
effective PSF, they also contain significance covariance
in the errors between adjacent spaxels, such that the S/N
ratio of binned spectra does not increase as N . This
covariance is irrelevant for the fitting of individual
spectra, but we account for it in our Voronoi binning by
following the analytic approximation given by Law et al.
(2016), as discussed below.

6. Having completed the masking steps, we further exclude
regions that are background dominated.

At this stage, we note that the data cubes have
“patchy” outskirts, or regions of low S/N data,
surrounded by masked regions. The MaNGA data cubes
do not have this feature; instead, they exclude regions that
could be characterized as “background dominated.” This
patchiness does not affect the results of the classification;
instead, we choose to correct it for cosmetic purposes. To
do this, we mask spaxels where the g-band signal is less
than 3σ above the background value, where σ is the
standard deviation of the noise given above. This
produces the desired effect, whereby the mask has a
sharper cutoff, matching the appearance of the MaNGA
cubes.

7. Rebin spatially, using a Voronoi binning scheme with a
g-band S/N of 10 (Cappellari & Copin 2003).

We create spatial bins with a g-band S/N of 10,
reproducing the procedure described in Westfall et al. (2019).

When a Voronoi bin contains more than one spaxel, the new
spectrum is the masked average of all constituent spectra,
while the error spectrum for that bin is determined by co-
adding the error spectra. It is important to account for
covariance between neighboring spaxels in our Voronoi bin
calculation. In order to avoid the computational cost of
calculating the covariance matrix for all spaxels, we instead
use the correction given in Law et al. (2016). This correction
is an analytic function of the number of spaxels in a bin
(Nbins):

( )= + ´n n N1 1.62 log ,measured no covar bins

where nmeasured is the corrected noise level after the correction
is applied to the co-added error, where covariance is not
considered (nno covar), and Nbins is the number of spaxels in
a bin.

The final step in the creation of mock kinematic maps is to
pass the Voronoi binned spectra through ppxf (Cappellari &
Emsellem 2004; Cappellari 2017). ppxf is a penalized pixel
fitting method, which assumes that a galaxy spectrum is a
combination of stellar templates, convolved with line-of-sight
velocity distribution (LOSVD).
To run ppxf, we follow these steps from the DAP:

1. Normalize the flux data so that the mean over all
templates is unity.

2. Mask the spectra to match the wavelength range of the
MILES-HC library (3600–7400Å).

3. Mask the emission lines using the DAP module
StellarContinuumBitMask().

4. Use the 42 template MILES-HC spectral library to
globally fit each data cube.

These templates are first convolved to the spectral
resolution of MaNGA.13

5. We use the “NZT,” or non-zero template iteration mode to
fit all bins with ppxf.

In this mode (which is also used in the DAP), we first
fit the masked average of all spectra in the data cube, and
use this global fit to isolate the subset of templates that
are allocated non-zero weights. This template subset is
then used to individually fit each bin.

6. Each fit iteration of ppxf uses an additive eight-order
Legendre polynomial, and a Gaussian line of sight
velocity dispersion (LOSVD) with two moments. As in
the DAP, due to limited spectral resolution, we do not
solve for the higher order moments, h3 and h4 (Westfall
et al. 2019).

The final product of our MaNGA-izing procedure is the first
two moments of the LOSVD, or a stellar velocity map and a
stellar dispersion map, both with associated error maps from
the fit to the stellar continuum.

2.3. Preparing Kinematic Predictors

Here, we define and describe the predictors extracted
from the stellar kinematic maps. The goal is to create a set of
kinematic predictors to adequately describe the different
types of merger-induced kinematics in the velocity and velocity
dispersion maps.

13
This is a departure from the DAP. However, as noted in Westfall et al.

(2019), there is no mathematical difference between our approach and a later
subtraction of the difference in resolution in quadrature from the ppxf result.
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To develop this kinematic identification tool, we use stellar
kinematics, rather than warm ionized gas kinematics (hence-
forth, “gas kinematics”). The stellar and gas kinematics trace
different physical regions and processes in the merging
galaxies. We select the stellar kinematics because they directly
trace the assembly history of a galaxy’s stellar population. On
the other hand, gas kinematics can be subject to a number of
non-gravitational forces. Stellar and gas kinematics diverge in
the presence of shocks, inflows, and/or outflows, all of which
are processes not limited to merging galaxies. An analysis built
on gas kinematics is a compelling direction for future work, but
falls beyond the scope of this paper (i.e., see Khim et al. 2020
or Feng et al. 2020). For an analysis comparing the gas
kinematics and the stellar kinematics of non-merging and
merging galaxies in CALIFA, see Barrera-Ballesteros et al.
(2014) and Barrera-Ballesteros et al. (2015), respectively.14

The kinematic predictors are based on previous work to
identify merging galaxies from the stellar kinematics of
observed and simulated galaxies. All of these predictors are
sensitive to the different orientations, merger stages, mass
ratios, and/or gas fractions of merging galaxies. Our goal is to
combine them into one LDA classification in order to best
identify a variety of different types and epochs of merging
galaxies. In total, we extract the following predictors (which

are all introduced in Table 2): A, A2, ΔPA, vasym, σasym, resid,
lRe, ò, ΔxV, Δxσ, μ1,V, μ1,σ, μ2,V, μ2,σ, |μ3,V|, |μ3,σ|, μ4,V, and
μ4,σ. We include a brief definition of all predictors in Table 2,
but focus the remainder of this section on those kinematic
predictors selected by the random forest term selection
technique described in Section 3.3: A2, ΔPA, resid, lRe, μ1,V,
μ1,σ, μ2,V, μ2,σ, |μ3,V|, |μ3,σ|, μ4,V, and μ4,σ. These terms are the
most informative for identifying the merging galaxies, and we
discuss them throughout the remainder of this paper. We
further describe those kinematic predictors that were not
selected in Appendix D.
To define the asymmetry in the kinematic position angle

(A2), we utilize the Radon Transform from Stark et al. (2018).
We transform the velocity maps into circular coordinates (ρ,θ),
where ρ is the distance from the spaxel to the center of the
velocity map, which is the kinematic center (defined below),
and θ is the angle between the positive x-axis and the line
segment from the kinematic center to the spaxel. The angle θ
ranges from 0 to 180 in the CCW direction. Positive values of ρ
are regions of the velocity map above the x-axis, and negative
values of ρ are below the positive x-axis.
The Radon Transform is defined as

( ) ( ) ( )òr q =R v x y dl, , , 1
L

0

where the velocity is summed along line integrals centered on

the point (ρ, θ), and perpendicular to the kinematic center of the

Table 2

Synthesis of All Kinematic Predictors Measured in This Paper

Predictor Name Description Derivation

A The weighted asymmetry in the position angle,
ˆ

= dqå
A w

N i j2 ,
i i

i j,

calculated from the Radon profile where q̂ is the best-fit kinematic position angle

A2 The error-weighted asymmetry in the position angle
ˆ

ˆ
= å dq

sdq
A i2

i

i,

ΔPA The difference between the global kinematic and ΔPA = |PAkin − PAimg|

photometric position angles, measured

based on kinemetry and the g-band image

σasym Describes the degree of smoothness of the s =
å = k

A
r

asym

5
n v

v

1
5 n,

0,

velocity dispersion map which is the sum of the higher

order coefficients from kinemetry

vasym The deviation of the velocity dispersion map =
å =v

k

B
r

asym

4
n v

v

2
5 n,

1,

from ordered rotation as above, but excluding the k1,v term

resid The residual between the best-fit kinemetry ∣ ∣

=
å -

resid
V V

N

i j
N
, model*

model and the velocity map

lRe
The approximate spin parameter lRe

∣ ∣
=

s

å

å +

=

=

F R V

F R V

n
N n n n

n
N n n n n

1

1
2 2

ò Galaxy ellipticity Measured using statmorph from the r-band imaging

ΔxV The spatial distance between the center of the The imaging center is measured from the r-band image, and

velocity map and the imaging center in kpc the kinematic center is based on the Radon Transform

Δxσ Same as above, but for the velocity dispersion map The center of the velocity dispersion map is determined

using a low-pass filter

μ1,V and μ1,σ The mean distribution of the The distributions for each map are created

velocity and velocity dispersion maps by collecting the values of all spaxels

μ2,V and μ2,σ The variance of the distributions

|μ3,V| and |μ3,σ| The skewness of the distributions

μ4,V and μ4,σ The kurtosis of the distributions

Note. We bold those predictors designated as important. We include a brief description and derivation for each predictor. For further details, see Section 2.3 for those

predictors designated as important, and Appendix D for predictors not used in the classification.

14
Gas kinematics are not available for many MaNGA galaxies (since many

are non-star-forming), but are easier to obtain than stellar kinematics for many
high redshift galaxies, and could be a more compelling direction to pursue in
this context.
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galaxy. The Radon Transform is a 2D array, calculated at all

values of ρ and θ.
We then calculate the bounded Absolute Radon Transform,

RAB, which is integrated over a distance Re, and denotes the
absolute value of the difference between the velocity at each
point, and the mean value along the line segment.

We present the bounded Absolute Radon Transform and the
Radon profile in Figure 2. The Radon profile is computed by

determining the minimum value of θ (q̂, where the hat operator
denotes an estimated value) for each value of ρ from the

bounded Absolute Radon Transform. The value of q̂ traces the
direction of maximal rotation in the stellar velocity maps at
each radial position.

We follow the procedure of Stark et al. (2018) to determine
the galaxy’s kinematic center, which we describe in more detail
in Appendix D.

We quantify the asymmetry of the Radon profiles using the
kinematic predictor A2, defined in Stark et al. (2018):

ˆ
( )

ˆ
å dq
s

=
dq

A , 2
i i

2

,

where ˆdq is the absolute magnitude of the difference between

the values of θi on one side of the Radon profile and the other

(same ρ, different sign), ˆsdq is the uncertainty on ˆdq, and the

expression is summed over the i values of q̂.
The A2 predictor incorporates the absolute magnitude of the

difference between the measured kinematic PA on one side of
the galaxy from the other. We therefore expect that A2 will be
enhanced for merging galaxies, since mergers can cause warps
in the stars of a galaxy (e.g., Shapiro et al. 2008).

We use kinemetry to measure both ΔPA and residuals
(resid) from the LOSVD (Krajnovic et al. 2006). Functionally,
kinemetry measures the kinematic asymmetry from the line
of sight velocity maps by dividing them into a set of nested
elliptical rings. The best-fit model at each radius is determined
using a ring defined by the kinematic PA, and the flattening
factor qf= 1-e, where e is the ellipticity of the ring in the plane
of the sky. These models use a decomposition of the moment

maps into harmonic Fourier coefficients in polar coordinates.
For instance, a velocity map, K(r, ψ), can be expanded into a
finite number of harmonic frequencies:

( ) ( ) ( ) ( ) ( ) ( )

( )

åy y y= + +
=

K r A r A r n B r n, sin cos ,

3
n

N

n n0

1

where r is the semimajor axis of the ellipse, ψ is the azimuthal

angle, A0(r) is the systemic velocity, N is the number of ellipses

fit, and An and Bn are the coefficients of the harmonic

expansion. The best-fitting ellipses are obtained by minimizing

χ2 for the linear combination of the An and Bn coefficients.
An ideal rotating disk can be described using only the B1

term, which represents the cosine term for the circular velocity
of a galaxy’s rotating disk:

( ) ( ) ( )y y=V r V r i, sin cos , 4c

where r is the radius in the plane of the galaxy, ψ is the

azimuthal angle, Vc(r) is the circular velocity, and i is the

inclination of the galaxy disk.
To determine the best-fit Fourier coefficients, we run

kinemetry multiple times. We first allow the best-fit
kinematic PA and value of qf to vary for each radius. We
define the kinematic position angle (PAkin) to be the median
value of the best-fit kinematic PAs. We then allow the value of
qf to vary and determine the median value. After determining
the global values for kinematic PA and qf, we do a final run to
determine the values of the higher order kinematic moments
and therefore the best-fit disk model. We then compare PAkin to
the imaging major axis (PAimg, measured using statmorph

from the r-band imaging) to create the predictor, ΔPA. Since
ΔPA traces the recent global misalignments of stars, it should
be elevated for those merging galaxies with misaligned stellar
disks.
We use the global kinematic position angle from kine-

metry to measure ΔPA, rather than the median of the
kinematic position angles from the Radon Transform. The main
motivation for this choice is that kinemetry uses an adaptive

Figure 2. Stellar velocity map (left), bounded Absolute Radon Transform (middle), and Radon profile (right) for a snapshot during the late stages of the q0.5_fg0.3
merger. In this case, the primary galaxy is blueshifted at the center of the velocity map (systemic velocity is ∼–100 km s−1, and the secondary galaxy approaches from
the right, and is redshifted relative to the primary galaxy. To compute the Radon Transform, the velocity field is transformed into θ and ρ coordinates, where θ ⊆ [0,
180] and ρ ⊆ [−∞ , +∞ ], with θ measured CCW from the top of the map. The bounded Absolute Radon Transform is then calculated by creating line integrals over
a grid of (ρ,θ) positions, where the line is perpendicular to the kinematic center of the map. It is “bounded” because the line integral is limited to the length, Re. In the
left panel, the kinematic center is a yellow star, and the magenta and purple line segments demonstrate the calculation of the Absolute Radon Transform at θ ∼ 45 for
positive and negative ρ values, respectively. The magenta and purple regions in the middle panel have large and small values, respectively, demonstrating that the
value of the Absolute Radon Transform is smaller in those regions where the spaxel velocities vary less along the line integral. We find the minima (shown in lighter
yellow) of RAB at each value of ρ, to measure the Radon profile (right), which is used to calculate the error-weighted asymmetry in the kinematic position angle, A2.
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binning scheme; at each step outwards, the ellipses are larger,
which gives less weight to the kinematic confusion at the
outskirts of the galaxy. The Radon Transform, however, is
equally sampled in ρ (see Figure 2), and can therefore be more
influenced by the measurement of the kinematic PA at the
outskirts of the galaxy. In most cases, the two measurements
agree within error, but in cases where the kinematic maps are
disturbed, the global kinematic PA from kinemetry more
closely matches our by-eye assessment of the kinematic PA.

We also extract “resid,” or the kinemetry residuals
between the best-fit rotating disk and the velocity map. This
predictor is defined as

∣ ( )∣
( )=

å - YV V r

N
resid

,
, 5

i j
N
, model*

where V* is the observed velocity map, Vmodel(r, Ψ) the circular

velocity model from kinemetry, and N is the number of

fitted spaxels. We include this normalization factor in order to

penalize those fits that converge to a very inclined galaxy. For

these galaxies, the fit is attempting to avoid fitting disordered

kinematics in the exterior regions of the galaxy by fitting a

smaller region. We show an example of a simulated galaxy

snapshot from the q0.5_fg0.3 simulation fit with kinemetry

and its velocity residuals in Figure 3.
We measure lRe, the approximate spin parameter, from the

stellar velocity and velocity dispersion maps, as defined by
Emsellem et al. (2007):

∣ ∣
( )l

s
=

å

å +
=

=

F R V

F R V
, 6R

n
N

n n n

n
N

n n n n

1

1
2 2

e

where Fn is the (r-band) flux of a spaxel, Rn is the distance from

the kinematic center, Vn is the stellar velocity, and σn is the

stellar velocity dispersion. We measure lRe to the r-band

effective radius. Since the fiber bundles are designed to provide

coverage of each galaxy to 1.5Re, if a secondary nuclei falls

toward the outside edge of the hexagonal FOV, it is excluded

from the measurement of lRe. This effect is more relevant to

minor mergers, where the secondary component covers a

smaller effective area of the hexagonal FOV.
We measure the ellipticity of a galaxy, ò, based on r-band

photometry, using statmorph. This is distinct from the

ellipticity parameter used by kinemetry to fit rotation
curves. We do not use ò as a kinematic predictor. Instead, we
use it to construct the lRe–ò diagnostic diagram in Section 4.1,
where the division between fast and slow rotators is as defined
by Cappellari (2016):

( )l = + 0.08 4, 7Re

where slow rotators fall below this line.
In the lRe–ò diagram, lRe is the more predictive of the two

axes; it decreases dramatically for the “slow-rotating” popula-
tion of galaxies, which are dynamically disordered and
dispersion-dominated. We predict that lRe will decrease for
merging galaxies, since mergers are kinematically disordered,
and can contribute to bulge growth, which is associated with
enhanced velocity dispersion.
In addition to the kinematic predictors utilized in previous

works, we define a new set of predictors, based on the
distributions of values in the velocity and velocity dispersion
maps. These predictors include μ1,V/μ1,σ, μ2,V/μ2,σ, |μ3,V|/|μ3,σ|,
and μ4,V/μ4,σ, which are the standardized moments of the stellar
velocity/velocity dispersion maps. These predictors are similar to
the formulation given by Sweet et al. (2020), which calculates the
moments of PDF(s), where s is the normalized specific angular
momentum.
To determine the values of these predictors, we measure the

four standardized moments of the distribution; mean (μ1),
variance (standard deviation; μ2), skewness (μ3), and kurtosis
(μ4). This produces eight different predictors (four each from
the velocity and velocity dispersion distributions). These
quantities are different from the higher order moments, h3 and
h4, which are typically measured by ppxf. We show an
example of these predictors, measured from a velocity
dispersion map, in Figure 4.
We expect to see an offset in the mean velocity (μ1,V) from

the systemic for merging systems, and an enhanced mean
velocity dispersion (μ1,σ). The spread in the velocity distribu-
tion (μ2,V) and the dispersion of the velocity dispersion
distribution (μ2,σ) could identify superpositions of dynamically
distinct stellar components. This could include a secondary
merging galaxy, or features such as a stellar bulge.
The higher order moments could be useful for identifying

subtler features of mergers, beyond bulk shifts in μ1,V, for
example. The skewness of a distribution is sensitive to the tails;
we take the absolute value to treat positive and negative skew

Figure 3. Sample kinemetry fit to a snapshot of the q0.5_fg0.3 merger simulation, with observed stellar velocity map (left), best-fit kinemetry model (middle),
and the model velocity, subtracted from the stellar velocity map (right). Note that this is the same snapshot as that shown in Figure 2. The color bars show the velocity
in km s−1. In the left panel we overplot the contours from the r-band imaging, and the imaging position angle. The kinematic position angle (from kinemetry) is the
straight line in the middle panel. We utilize the normalized residuals as a predictor (right), which we refer to as “resid,” i.e., the sum over all spaxels of the absolute
value of the difference of the stellar velocity and the model velocity, normalized by the number of spaxels in the model.
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identically. A skewed velocity or velocity dispersion distribu-
tion (|μ3,V| and |μ3,σ|) could have a faint secondary source in
the field of view, where the distribution is actually a
combination of two galaxy rotation curves. Kurtosis measures
how peaked a distribution is, relative to normal; a flatter
distribution has a negative kurtosis, and a more peaked
distribution has a higher peak. A smoothly rotating velocity
dispersion field has a normally shaped distribution, whereas a
disturbed field may have a negative (flatter) kurtosis (μ4,σ). On
the other hand, post-coalescence mergers with recent bulge
growth could have a positive kurtosis in the velocity dispersion
distribution.

To summarize, we extract the following kinematic predictors:
A, A2, ΔPA, vasym, σasym, resid, lRe, ò, ΔxV, Δxσ, μ1,V, μ1,σ, μ2,V,
μ2,σ, |μ3,V|, |μ3,σ|, μ4,V, and μ4,σ. We then use the techniques
described in the following sections (Sections 3.1–3.3) to select the
most informative of these predictors. We ultimately use the
following predictors in the LDA classification: A2, ΔPA, resid,
lRe, μ1,V, μ1,σ, μ2,V, μ2,σ, |μ3,V|, |μ3,σ|, μ4,V, and μ4,σ.

3. Results

Having created mock MaNGA data cubes for the five
simulations of merging galaxies (and matched isolated
galaxies), we extract the kinematic predictors introduced in
Section 2.3. We then prepare the input data, select those
predictors that are most informative, and create and assess the
classification itself.

In Section 3.1, we describe the LDA technique. We then
provide an overview of our process for preparing and
examining the data, in the context of the assumptions made
by the LDA in Section 3.2. Prior to running the LDA
classification, we perform an initial term selection, using a
random forest regressor, which we describe in Section 3.3. We
present the classification results in Section 3.4, and measure
performance statistics in Section 3.5. We present the LDA
observability time in Section 3.6. Next, in Section 3.7, we
explore some failure modes of the classification. Finally, we
analyze how the classification changes with redshift and

decreasing signal-to-noise (S/N) in Section 3.9. Further details
of the classification are discussed in the appendices, where we
analyze possible biases in classification in Appendix E.

3.1. Linear Discriminant Analysis

The classification in this work relies on an LDA technique
that separates nonmerging galaxies from merging galaxies,
based on a combination of input predictors (for a review of
LDA, see James et al. 2013). This approach was first presented
in N19 for imaging predictors; here, we use this approach for
kinematic predictors.
LDA is one of many statistical learning tools for performing

classification tasks. Using pre-defined features (predictors) as
inputs, LDA solves for the hyperplane in multi-dimensional
predictor space that maximizes the separation between different
classes of objects (i.e., mergers and nonmergers). The solution
is a linear combination of the input predictors; the classification
is therefore relatively easy to interpret, since its complexity is
low. Recent works have employed other techniques to identify
merging galaxies, such as random forest regressors (e.g.,
Goulding et al. 2018; Snyder et al. 2019), and convolution
neural networks (CNNs; e.g., Bottrell et al. 2019). These
techniques have various advantages and disadvantages, based
on the data set at hand, and the goals of the work. Since we aim
to optimize the interpretability of the method, we select LDA
over, e.g., a CNN. CNNs may increase the number of correct
classifications, but they achieve this using complex nonlinear
features, which are not easily interpreted.
In this work, we have made several important changes to the

technique employed in N19. As such, we review the relevant
details from the LDA in N19, prior to discussing these changes.
Relevant details of the LDA technique from N19 include:

1. All predictors are linearly standardized prior to the LDA
technique, meaning that predictors with large numerical
values (such as A2) do not have an outsized effect on the
analysis.

2. We utilize priors on the relative fraction of merging and
nonmerging galaxies in nature versus that in the
simulations. This accounts for the presence of a greater
number of merging galaxy snapshots (relative to
nonmerging snapshots) for each simulation. We use the
same priors as given in N19; fmerg= 0.1 for major
mergers, and fmerg= 0.3 for minor mergers. These priors
are based on the fraction of nonmerging and merging
galaxies, taken from both observation and simulations
(e.g., Conselice et al. 2009; López-Sanjuan et al. 2009;
Shi et al. 2009; Lotz et al. 2011; Rodriguez-Gomez et al.
2015).

3. We include interaction terms to explore correlations
between predictors.

4. In order to select which coefficients are necessary for the
classification, we use a forward stepwise selection
technique, which orders and includes only the most
important terms. This technique adds additional terms to
LD1 only if they improve the F1 statistic, which is
defined in Section 3.5. It also protects against the
unnecessary addition of terms by finding the minimum
number of terms that produce an F1 statistic, consistent
with the maximum (within 1σ errors, where σ is the
standard deviation on the F1 statistic, measured from
each k-fold cross-validation set).

Figure 4. Distribution of the velocity dispersion values (in km s−1
) taken from

each spaxel in the velocity dispersion map (inset, velocity dispersion bar is
given in km s−1, and the spatial axis is given in arcsec). This snapshot is also
showcased in Figures 2 and 3. We also include the measured values of the
mean (μ1,σ), dispersion (μ2,σ), skew (|μ3,σ|), and kurtosis (μ4,σ) of this
distribution. A distribution with a larger skew is asymmetric about the mean. A
distribution with a positive kurtosis has a high degree of peakedness, relative to
a normal distribution.
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5. We use k-fold cross-validation to obtain 1σ errors on the
predictor coefficients. At each step of the forward
stepwise selection process, we divide the sample into k

subsets. We then train the LDA on the first k− 1
subsamples, and test on the remaining subsample, which
functions as the “cross-validation” set. We repeat these
steps k times for all combinations of subsamples, and the
variation in predictor coefficient values from the cross-
validation subsamples is the 1σ error.

For complete details, including the full mathematical
formulation for LDA, see N19.

We make several changes to the above technique, motivated
by the additional challenges arising from the kinematic data:

1. Due to the number of predictor terms in this work, instead
of including all of the kinematic predictors in the final
classification, we first utilize the RFR technique as a
selection technique to eliminate uninformative predictors
from our analysis (see Section 3.3).

2. We adjust the model optimization statistic. In N19, we
minimized the number of misclassifications, in order to
both select predictors, and determine their coefficients.
Here, we utilize the F1 statistic defined in Section 3.5
instead; this does a better job of balancing the number of
false negatives and false positives in each classification.

3. We also adjust the k-fold cross-validation, Rather than
using k= 10, we find that a value of k= 5 improves the
performance of the LDA, creating a training set,
constituting 80% of the sample, and a cross-validation
set, constituting 20% of the sample (as opposed to the
90%/10% divide in N19). We then train the LDA on nine
of the subsamples, and test on the tenth sample. We
repeat this procedure ten times, and the mean number of
misclassifications across all ten test samples allows us to
determine which set of input predictors to select

We use the LDA both as a term selector, and to determine
the coefficients and standard errors for each selected predictor.
In order to directly compare imaging classification to kinematic
classification, we utilize the same snapshots from all simula-
tions, and we rerun the imaging analysis using all the same
methods as for the kinematic classification.

3.2. Data Preparation and LDA Assumptions

Prior to term selection and classification, we examine the
distributions of predictor values. We screen for outliers and
examine the data in the context of the assumptions made by the
LDA. The goal is to gain an understanding of the properties of
the data, prior to classification.

Firstly, we remove outliers by transforming the distribution
of each predictor into log space. We define data points falling
more than 5σ above or below the mean of the distribution for
each predictor as outliers. This combination of log transforma-
tion and 5σ cutoff allows us to identify outliers caused by
errors in the creation of the mock maps, and not simply related
to very disturbed kinematics. There are ∼4 outliers per
simulation, amounting to 4 out of 100 or 200 data points.

Secondly, we check the input data for significant violations
of the LDA’s assumptions. LDA operates under the assump-
tions that the predictors are normally distributed (multivariate
normality), the covariance among the merging and nonmerging

classes is equal (homoscedasticity), and the predictors are not
strongly correlated with one another (multicollinearity).
Here, we test these three assumptions by closely examining

the data. We carry out the same statistical tests described
in N19 to test for normality, homoscedasticity, and multi-
collinearity. We find that the data violates all three assump-
tions. In addition, we plan to introduce interaction terms into
the LDA classification, which will further increase the
multicollinearity.
As discussed in N19, LDA has proven to be robust to

violations of multivariate normality and homoscedasticity
(Duda et al. 2001; Li et al. 2006). To ensure that the LDA
technique used in this work is robust to these violations, we
directly compare the LDA results to those of a logistic
regression. The logistic regression and the LDA produce
similar results, both in terms of the relative importance of the
predictors for each simulation, and in the performance of the
method. This is an indication that the LDA is converging, even
though it nominally violates several assumptions.

3.3. Random Forest Regressor Term Selection

In N19, we used a forward stepwise selection technique
within the LDA to select informative predictors. Here,
motivated by both an increase in the number of initial terms,15

and a decrease in the predictive power of these terms, we
modify the term selection procedure. We introduce a random
forest regressor (RFR) into the methodology to select a subset
of predictors for each simulation, which will then be presented
to the LDA classifier.
An RFR (Ho 1995) is an ensemble learning technique that

aggregates the result of many individual decision trees, run in
parallel. We specifically utilize the scikit-learn imple-
mentation of RFR (Pedregosa et al. 2011). In an RFR, the
number of features that can be used to split at each node of the
decision tree is limited to a percentage of the total number of
features, ensuring that the ensemble model does not rely too
heavily on any one feature. This means that the RFR is able to
combine all potentially predictive variables in a fair way. It is
also able to incorporate nonlinear features to capture some
higher order interaction terms. In practice, we find that the RFR
is an efficient method of initially identifying useful features in
the data set from an extensive list of kinematic predictors.16

In order to select the informative terms from the RFR, we
include an additional predictor. This predictor is assigned a
random number for each galaxy snapshot, and therefore shows
no significant difference between nonmerging and merging
galaxies. We use this technique to eliminate all terms with a
feature importance lower than the random term for all
simulations. In this step, we eliminate the vasym, σasym, A,
ΔxV, and Δxσ predictors. Next, for each individual simulation,
we additionally eliminate predictors with an importance lower
than the random value prior to initiating the LDA classification.
The terms eliminated in this step vary from simulation to
simulation.

15
This is partially due to a dearth of historically utilized kinematic predictors,

so we initially introduce many more terms, so as to determine which are
informative.
16

We do not use it as the primary classification technique, because its features
can be highly nonlinear, and more opaque to interpretation. Moreover, this
technique is designed to directly complement the LDA technique in N19 for the
purpose of comparison.
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3.4. Classification Results

Having utilized RFR term selection to narrow the number of
kinematic terms down to 11 (ΔPA, resid, lRe, A2, μ1,V, μ2,V,
μ2,σ, |μ3,V|, |μ3,σ|, μ4,V, and μ4,σ), we then run the LDA
classification for each individual simulation. We also combine
the three major mergers into a combined major merger
classification, and the two minor mergers into a combined
minor merger classification. We run the LDA with interaction
terms; the result is a linear combination of selected predictors
and coefficients which is unique for each simulation. We
present the term coefficients and standard errors for the four
most important terms and the intercept term in Table 3. Finally,
we briefly discuss the main results of the LDA classification for
each simulation, which we will examine in more detail in
Section 4.

We first introduce the mechanics of the classification. LD1,
which is the first linear discriminant axis, is formed from the
linear combination of coefficients, multiplied by the standar-
dized predictors and an intercept term:

= * +C X BLD1

where C is the matrix of coefficients, X is the standardized

values of the selected predictors, and B is the intercept term.
LD1 is the hyperplane that best separates the populations of

merging and nonmerging galaxies for each simulation. We use
the result from the major merger classification as an illustrative
example of how to interpret the LDA results. The LD1 for the
major merger combined run (truncated after seven terms) is
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where LD1 is a linear combination of all selected terms, which

comprise a coefficient (positive or negative), followed by

the standardized value of a predictor. The last term is the

intercept term.
The higher the value of LD1, the more likely the galaxy is to

be classified as merging. We calculate the values of LD1 for all
snapshots from the major and minor combined simulations in
Figure 5. The horizontal line at an LD1 value of zero is the
decision boundary, corresponding to a pmerg value of 0.5; all
galaxies with an LD1 value greater than zero would be
classified as merging, using a threshold value of 0.5.17 We find

that the classification is better able to separate the merging and
nonmerging classes for the major merger simulations; this is
reflected in Figure 5.
There are important nuances to the interpretation of the

selected predictors and their coefficients in Equation (8),
because the interaction terms complicate the analysis. For
instance, in Equation (8), the first selected predictor is lRe,
which has a negative coefficient. Ignoring the rest of the
equation, this means that if the lRe value is large, then the
probability that a given galaxy is merging will decrease.
However, there are other lRe terms in the equation that are
coupled with other predictors in interaction terms. This means
that tweaking the value oflRe will not linearly change the value
of LD1. While the interaction terms complicate the analysis,
they are an integral part of the classification. Many of the most
important terms for LD1 in Table 3 are interaction terms, and
including them significantly improves the performance of the
LDA. As we discuss in more detail in Section 4.4, these terms
are able to capture the non-monotonic movement of mergers
through predictor parameter space.
While it may be difficult to untangle many of the

contributing terms, we can use Table 2 to determine which
predictors are most prevalent, and therefore informative, for
each simulation. For instance, the μ2,σ and μ1,σ predictors are
selected as either primary or interaction terms for all
simulations. They are therefore universally useful kinematic
predictors (for a full discussion of why these terms are
important, see Section 4.2.2). The selected predictors from
the q0.333_fg0.1 simulation are similar to those of the
q0.333_fg0.3 simulation. These two simulations are matched
for mass ratio, but not for gas fraction. However, the difference
between a gas fraction of 0.1 and 0.3 is insignificant, so we
hesitate to form any conclusions regarding the impact of gas
fraction on stellar kinematics. On the other hand, the minor
merger simulations differ from the major merger simulations in
the selected predictors. We find thatlRe and |μ3,σ| are important
for the major mergers, whereas the minor mergers are more
reliant on certain higher order terms, such as μ4,V and μ4,σ.
We explore the implications of these findings, in terms of the
physical nature of the kinematics of mergers, in Section 4.

3.5. Performance Statistics and Hyperparameter Tuning

Here, we define and measure the accuracy, precision, recall,
and F1 statistic of the simulations (for a review, see
Fawcett 2006). We present these results using a confusion
matrix for the major and minor combined simulations in
Figure 6, which shows the relative fraction of known mergers
and nonmergers in the cross-validation samples, classified by

Table 3

Final LD1 Predictor Coefficients (ŵ) with 1σ Confidence Intervals after Term Selection for the First Four Most Important Terms, and the Intersect (ŵ0 ) for All
Simulations

Simulation ŵ ŵ0

1 2 3 4

All Major −6.76 ± 0.45 lRe 4.99 ± 0.6 |μ3,σ| 4.54 ± 0.36 μ1,σ ∗ lRe −4.44 ± 0.51 μ1,σ ∗ |μ3,σ| −1.21 ± 0.07

All Minor −4.99 ± 0.74 μ2,σ −4.97 ± 0.59 μ2,σ ∗ μ4,V 3.47 ± 0.62 μ4,V ∗ μ4,σ 2.44 ± 0.38 μ4,V −0.76 ± 0.04

q0.5_fg0.3 −7.15 ± 0.78 μ1,σ ∗ |μ3,σ| −6.7 ± 0.63 μ1,σ ∗ μ2,σ 6.65 ± 0.53 μ2,σ 5.75 ± 0.2 μ1,σ −2.57 ± 0.05

q0.333_fg0.3 8.27 ± 0.35 μ1,σ −7.84 ± 0.71 μ1,σ ∗ μ2,σ 5.92 ± 0.52 μ2,σ 5.21 ± 0.73 |μ3,σ| −0.77 ± 0.18

q0.333_fg0.1 −7.78 ± 0.91 μ1,σ ∗ μ2,σ 7.09 ± 0.59 μ2,σ 5.97 ± 0.61 μ1,σ L −0.26 ± 0.28

q0.2_fg0.3_BT0.2 −6.51 ± 1.09 μ1,σ −6.2 ± 0.93 μ2,σ ∗ lRe −5.75 ± 1.65 A2 5.5 ± 0.67 μ1,σ ∗ lRe −0.79 ± 0.05

q0.1_fg0.3_BT0.2 25.06 ± 5.11 μ1,σ ∗ μ4,V 16.02 ± 3.19 μ1,σ −12.88 ± 2.51 μ4,V 6.8 ± 0.99 μ4,σ −1.06 ± 0.07

17
This decision boundary can be moved, either before the creation of the

LDA, or after, to be more or less tolerant of false negatives and false positives.
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the LDA as merging and nonmerging. These quantities are

derived by taking the mean of the performance statistics

measured on each of the cross-validation samples. We quantify

the accuracy, precision, recall, and F1 score for all simulations

in Table 4.
The accuracy for a given simulation is defined as the number

of correct classifications of mergers as mergers (true positives),

and the number of correct classifications of nonmergers as

nonmergers (true negatives), divided by the number of total

classifications:

( )=
+

+ + +
A

TP TN

TP TN FP FN
, 9

where FP is the number of false positives, or nonmerging

galaxies classified as mergers, and FN is the number of false

negatives, or mergers classified as nonmerging. A classifier has

a higher accuracy when it is able to increase the number of true

classifications relative to false classifications.
Precision is defined as the number of true positive

classifications over the total number of positive classifications:

( )=
+

P
TP

TP FP
. 10

A precise classifier maximizes the fraction of true positive

classifications relative to false positives. Precision is also

known as the “positive predictive value.” In this work, we seek

to eliminate false positives from the sample, i.e., nonmerging

galaxies, incorrectly classified as mergers.
Recall is defined as the number of true positive classifica-

tions over the total number of known mergers:

( )=
+

R
TP

TP FN
. 11

A classifier with high recall is also known as “complete,”

because it correctly identifies the majority of mergers as such.

Finally, we measure the F1 score, or the F1 statistic, which is
the harmonic mean of recall and precision:

( )=
*
+

F
P R

P R
1

2
. 12

F1 ranges in value from 0 to 1, and is strongly penalized if
either precision (P) or recall (R) is small. We maximize the F1
statistic within the LDA during cross-validation, in order to
select the predictor terms used in the classification.
Figure 6 presents the number of true negatives, false

positives, false negatives, and true positives (left to right, top
to bottom) for the combined major and minor merger
simulations. It also quantifies the accuracy, precision, recall,
and F1 score. The major merger classification performs better,
with accuracy/precision/recall values of 0.81/0.95/0.76,
respectively, whereas the minor mergers have values of 0.69/
0.87/0.51, respectively. The imbalance between precision and
recall is due to the priors utilized in the classification (we use
the priors from N19, where fmerg= 0.1 for the major mergers,
and 0.3 for the minor mergers). We have designed the
classification with these strong priors so that when it is applied
to galaxy surveys (where there are fewer mergers), the classifier
will be more balanced. As a result, the classifier produces more
false negatives than false positives when tested on the
training set.
We experiment with adjusting the performance statistics of

the classification, a process also known as “hyperparameter
tuning.” It is possible to increase the number of false positives
while decreasing the number of false negatives, either by
adjusting the decision boundary (i.e., the threshold of pmerg), or
by changing the priors. This could be a direction to pursue in
future work, if we find that we are no longer tolerant of false
negatives, or if we wish to adjust the priors on fmerg. As a test,
we adjust the priors so that fmerg= 0.5, finding that it produces
a similar classification, lower precision, and higher recall for
the major merger classifications, and results in slightly different
selected predictors and higher performance statistics for the
minor mergers. While the classification with adjusted priors
performs better on the training and cross-validation data sets,
we find that it is not a fair representation of the fraction of

Figure 5. Histograms of LD1 for populations of merging and nonmerging galaxies, based on the combined major merger (top) simulation and the combined minor
merger (bottom) simulation. The blue nonmerging samples include both standalone isolated galaxies, and pre- and post-merger isolated galaxies. The nonmerging
galaxies in the top and bottom plots span different ranges in LD1 as they are composed of different samples of nonmerging galaxies, and because the selected linear
combination of predictors is different for the major and minor merger combined simulations. The vertical black line is the decision boundary; it lies at the midway
point between the mean of the nonmerger and merger populations. If the LD1 value of a galaxy falls above this line, the galaxy is more likely to be a merger.
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merging galaxies in nature, so we present the original
classification, where fmerg= 0.1 and 0.3, in this work.
Overall, we find that the kinematic classifications generally

score lower for all performance statistics than the imaging
classifications. This is true for all viewpoints (see Section 3.8
for a discussion of the effect of viewpoint on kinematic
classification). For instance, the accuracy/precision/recall/F1
values for the combined major merger run with the imaging
predictors are 0.88/0.98/0.84/0.90. For the combined minor
merger run with imaging predictors, the values are 0.80/0.89/
0.72/0.80. Another result is that kinematic minor merger
classifications generally score ∼10% lower across all statistics
than major mergers. We discuss the implications of the
performance of kinematic predictors in comparison to imaging
predictors, together with the performance of major versus
minor merger classifications, in Section 4.8.

3.6. Observability Timescale

The LDA observability timescale is defined as the sum of all
consecutive snapshots where the viewpoint-averaged LD1
value for a given snapshot is greater than zero. We present
the observability timescales for all simulations in Table 5,
along with the total merger duration for each simulation, and
the fraction observability, or the fraction of a merger’s duration
observable via the LDA technique. We exclude the combined
major and minor mergers from this table, since they are built
from mergers that progress at different rates.
All of the simulations have a relatively long timescale of

observability (2–6 Gyr). The exception is q0.5_fg0.3, where the
observability timescale is 0.9 Gyr, due to a decline in the LD1
values for a handful of snapshots in the late stages of the
merger. We present a visualization of how the mean values of
LD1 change throughout the lifetime of each merger in Figure 7.
Here, and throughout the remainder of this paper, we show the
q0.5_fg0.3 and q0.2_fg0.3_BT0.2 simulations as examples of
major and minor mergers, respectively. This shows the
viewpoint-averaged value of LD1 for each snapshot, as well
as the 1σ confidence interval on this value, and for the total
range. We also plot the decision boundary for each simulation,
which falls at an LD1 value of zero (horizontal line). The minor
mergers do not fall significantly above this line; even though
the viewpoint-averaged LD1 values for the q0.2_fg0.3_BT0.2
simulation fall above the decision boundary, they overlap the
decision boundary to 1σ confidence at almost all points in time.
This means that not all viewpoints are significantly above this
boundary. On the other hand, the major merger simulations are
significantly above this boundary for the majority of their
duration. While this is not shown in Figure 7, the q0.5_fg0.3
simulation is an outlier with regard to LDA observability time.

Figure 6. Confusion matrices, showing the number of true negatives (upper left
quadrant), false positives (upper right), false negatives (lower left), and true
positives (lower right) for the major merger (top) and minor merger (bottom)

combined simulations. These matrices show the mean number of galaxy
snapshots in each category for the five (k = 5) different CV samples.

Table 4

Accuracy, Precision, Recall, and F1 Score for All LDA Runs

Simulation Accuracy Precision Recall F1

All Major 0.81 0.95 0.76 0.84

All Minor 0.69 0.87 0.51 0.64

q0.5_fg0.3 0.81 0.92 0.60 0.73

q0.333_fg0.3 0.80 0.90 0.79 0.84

q0.333_fg0.1 0.80 0.93 0.80 0.86

q0.2_fg0.3_BT0.2 0.73 0.83 0.62 0.71

q0.1_fg0.3_BT0.2 0.81 0.83 0.69 0.75

Note. We define these statistics in Equations (9)–(12), respectively. The recall

value is much lower than precision in all cases, as there is a much higher

fraction of false negatives, or mergers that are missed by this method, yet there

is a low value of contaminants, or false positives. The performance statistics of

the major merger classifications are ∼10% higher than those for minor merger

classifications.

Table 5

LDA Observability Time, Total Merger Time, and Observability Fraction
(LDA Observability Time/Total Merger Time) for Each Simulation

Simulation LDA Observability Total Merger Observability

Time (Gyr) Time (Gyr) Fraction

q0.5_fg0.3 0.9 2.2 0.4

q0.333_fg0.3 2.2 2.6 0.8

q0.333_fg0.1 2.4 2.8 0.9

q0.2_fg0.3_BT0.2 3.0 3.5 0.9

q0.1_fg0.3_BT0.2 6.6 9.2 0.7

14

The Astrophysical Journal, 912:45 (35pp), 2021 May 1 Nevin et al.



Figure 7 also demonstrates the sensitivity of the LDA
classification to the merger stage. For instance, there are a
number of false negatives at the early stages of mergers, where
the galaxies are more disk-like. Another key finding is that the
sensitivity of the technique gradually decays during the post-
coalescence and post-merger stages. We discuss the implica-
tions of the different observability timescales, and variations
with time, in more depth in Sections 4.5, 4.6, and 4.7.

3.7. Where and Why Does the LDA Fail?

Here, we summarize the factors most likely to lead to false
classifications (false positives and false negatives) for the
different simulations. Our goal is to identify the primary failure
modes of the classification system, and assess whether or not it
is making reasonable choices. In other words, we should be
concerned if our by-eye classification disagrees with the
majority of the false classifications.

We present a visual version of a confusion matrix for the
q0.5_fg0.3 and q0.2_fg0.3_BT0.2 classifications in Figures 8
and 9, respectively. These simulations are representative of the
results for major and minor mergers, respectively. We generate
example velocity and velocity dispersion maps for each
classification category (in rows, top to bottom: TP, TN, FN,
FP) by combining the results of each iteration of the k-fold
cross-validation, then randomly selecting example snapshots
from each category.

In Figure 8, following a by-eye examination, it makes sense

that many of the false negatives and false positives are
incorrectly classified in the q0.5_fg0.3 simulation. The false
negatives (third row) exhibit orderly rotation with relatively

low velocity dispersions. These resemble the pre-merger
isolated population shown in the true negatives row. The
majority of the false positives (fourth row) are post-merger
snapshots with kinematic disturbances.
Incorrect classifications of major mergers can mainly be

attributed to two factors. Firstly, the false negatives are due to a
lack of disturbed features, meaning that it is difficult to
correctly classify many of these snapshots as mergers. Despite

these limitations, the classification correctly identifies the
majority of early-stage snapshots as mergers, meaning that it
is out-performing the by-eye assessment in many cases.
Secondly, kinematic disturbances induced by the merger

persist into the post-merger stages, producing a number of
false positives. These kinematic features are very similar to the
features in the post-coalescence stages, so it makes sense that

these are commonly classified as false positives. As we discuss
in more detail in Section 4.6, our definition of the “end” of the
merger (the dividing line between post-coalescence and post-
merger stages) is somewhat arbitrarily defined, and results in a

number of misclassifications from these two stages.
In Figure 9 we find that it is more challenging to correctly

classify the nonmerging and merging galaxies in the
q0.2_fg0.3_BT0.2 simulation using a by-eye assessment. For

Figure 7. LD1 sensitivity with time for the q0.5_fg0.3 (top) and q0.2_fg0.3_BT0.2 simulations (bottom). These two simulations are chosen because they are
representative of the major and minor merger simulations, respectively. The points represent the viewpoint-averaged value of LD1 for each snapshot in time, along
with shaded 1σ confidence intervals (darker shade), based on the scatter of the LD1 values for each snapshot. We also include the full range of values for each
snapshot (lighter shade). We divide each plot into the early, late, and post-coalescence stages of the merger. The blue lines and shaded 1σ confidence intervals are
associated with isolated galaxies for each simulation. This includes pre- and post-merger isolated galaxies (circles), and standalone isolated galaxies (squares). The
horizontal black line is the decision boundary, which marks the divide between merging and nonmerging galaxies, or pmerg = 0.5. This figure demonstrates that the
major mergers have little to no overlap with isolated galaxies, which produces a more accurate and complete classification (see Section 3.5). The LD1 sensitivity plots
for all simulations will be available in an interactive figure.
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instance, the false negatives are very visually similar to the true
negatives in terms of their kinematic features. The same is true for
the false positives, which are similar to the example true positives.
The exception is a number of obvious merger snapshots (we show
an example of one such snapshot in the upper middle pair of
panels) where the kinematics are dramatically affected. However,
these disturbances are short-lived, so that the majority of the
merging snapshots appear as per the example in the upper right
corner of the diagram. This diagram illustrates the crux of the
problem for minor mergers. While the LDA is able to pick up on a
number of subtle features (such as stellar bulge enhancements), it
ultimately struggles with a number of limitations, related to the lack
of identifiability of all stages of a merger as such. These challenges
contribute to minor merger classification having lower performance
statistics as compared to major merger classification.

Overall, the LDA is not misclassifying obvious (by-eye)
mergers or nonmergers. The lack of identifiability of mergers/
nonmergers given their kinematic maps is therefore the largest
challenge for this technique. Other work highlights this same
challenge with kinematic predictors; Hung et al. (2016) find
that a significant fraction of merging galaxy kinematics remain
indistinguishable by-eye relative to the nonmerging kinematics.
This indicates something fundamental about galaxy kinematics:
namely, that we are not missing obvious features and instead
that merging galaxies are often indistinguishable from
nonmergers.

3.8. The Role of Viewing Angle in the Classification

It is well known that many kinematic predictors, such as lRe,
are correlated with galaxy inclination (e.g., Cappellari et al.
2007; Emsellem et al. 2011; Harborne et al. 2019). In this

section, we examine how the viewing angle, which is a proxy
for inclination, affects kinematic predictors, and ultimately,
the LDA.
As described in Section 2.1, there are seven isotropically

distributed viewpoints (0–6) for each snapshot. Critically, the
inclinations are not an exact match between standalone isolated
galaxies and merging galaxies. For instance, viewpoints 0 and
4 are the most face-on viewpoints for the merging galaxies, but
viewpoints 4, 5, and 6 are the most face-on for the standalone
isolated galaxies.
We first explore how inclination affects the lRe predictor in

Figure 10, where lRe increases as the galaxy inclination
increases. For instance, viewing angles 0 and 4 are the most
face-on, and also have the lowest values of lRe. When the 1σ
error bars are taken into consideration, the difference in lRe
values is marginally significant. This is fully consistent with the
results from Emsellem et al. (2011), who predict that the
measured lRe and ò values of an axisymmetric rotating oblate
spheroid vary, relative to the viewing angle (see Figure 3 of
Emsellem et al. 2011). These error bars represent the standard
deviation in lRe values for all of the different moments in time
of the merger. We observe a larger difference in the lRe values
as a function of time (Section 4.2.1) than as a function of
viewpoint.
We next investigate how the LDA classification changes as a

function of viewpoint. To visualize this, we plot the
distribution of LD1 values in Figure 11. We include the
histograms of the LD1 value for nonmerging (blue) and
merging (red and orange) galaxies in both the q0.5_fg0.3
simulation (left panel), and the q0.2_fg0.3_BT0.2 simulation
(right panel). We then overplot the mean and standard

Figure 8. Correct and incorrect classifications from the cross-validation sets for the q0.5_fg0.3 simulation, which is representative of the major merger simulations.
The correct classifications include true positives (first row) and true negatives (second row) and the incorrect classifications include false negatives (third row) and
false positives (fourth row). We include the number of (non-repeated) galaxies in each category, together with three examples per row of galaxies from the cross-
validation sample. The velocity and velocity dispersion maps for each example galaxy cover two consecutive panels, represented by alternating white and gray
backgrounds.
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Figure 9. As Figure 8, but for the q0.2_fg0.3_BT0.2 simulation, which is representative of the minor merger simulations.

Figure 10. Distribution of the mean values oflRe, and ò as a function of viewpoint (top) and full-resolution r-band images (middle) and stellar velocity maps (bottom)

for all of the different viewpoints from a snapshot in time for the q0.5_fg0.3 simulation. The more face-on viewpoints (i.e., 4), tend toward lower values of lRe and ò,
while the more edge-on viewpoints (i.e., 5) tend to have a larger lRe value. We also include error bars to demonstrate the standard deviation of the spread at each
viewpoint for all of the different moments in time in this simulation. While there is a relationship between inclination and lRe, the trend is borderline significant. This
is consistent with the trend of varying lRe and ò values with viewing angle, as discussed by Emsellem et al. (2011).
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deviation of the LD1 values for all snapshots of each specific
viewpoint. Focusing on the mean LD1 values for the merging
sample, we can determine whether the LDA shows variation as
a function of viewpoint.

Focusing first on the left panel of this figure, which refers to
the q0.5_fg0.3 simulation, the means for both nonmerging and
merging galaxies are not significantly different when consid-
ered as a function of viewing angle. In fact, the mean LD1
values are more similar than the variation we observe in LD1 as
a function of time in Figure 7. The implication is that the major
mergers are LDAs that are fairly robust to changes in viewing
angle. For the q0.2_fg0.3_BT0.2 simulation, we observe
slightly more variation in the LD1 distribution as a function
of viewpoint, and the most face-on viewpoints (0 and 4) have
lower LD1 values, which result in more false-negative
detections at these viewpoints.

To further quantify changes in the LDA as a function of
viewpoint, we iteratively drop the merging galaxies at each
viewpoint from the analysis, and rerun the classification for the
q0.5_fg0.3 and q0.2_fg0.3_BT0.2 simulations. If the classifi-
cation changes, this could indicate that a given viewing angle
and/or inclination is significantly more or less accurate than the
other viewpoints, which would point to inclination itself being
the primary driver of this difference.

From here on, we determine that the LDA is “significantly
different” from the fiducial run if either of the following criteria
are met: firstly, the majority of the selected predictors in the top
four selected terms must change, or secondly, the performance
statistics in Table 4 must change by more than 10% on average.
This quantification of a significantly different classification
applies to this section, where we explore the role of different
viewing angles, and also to Section 3.9, where we experiment
with changes in the data reduction (i.e., changing the S/N or
redshift of the simulated galaxies).

When we rerun the LDA classification for the q0.5_fg0.3
simulation iteratively without each viewpoint, the LDAs are not
significantly different from the fiducial run. This confirms our
findings in Figure 11. For the q0.2_fg0.3_BT0.2 classification,
we find that when viewpoints 2, 5, and 6 are absent, the
classification is significantly different, with lower performance
statistics, and different selected predictors. Our interpretation is
that the minor mergers are best identified when the secondary
nuclei are within the field of view, which occurs most often in
viewpoints 2, 5, and 6. Therefore, the significant changes to the
classification as a function of viewpoint both in Figure 11, and
in the rerun of the LDA without these viewpoints, can be

attributed to the chance positioning of the secondary galaxy as
a function of viewpoint. This means that inclination-related
effects on the intrinsic kinematic properties of the primary
galaxy are not primarily responsible for the differences in the
q0.2_fg0.3_BT0.2 LDA as a function of viewpoint. As a final
note, in Appendix E in our discussion of between-class biases,
we introduce inclination itself as a predictor in the LDA. We
ultimately determine that ò, which we use as a proxy for
inclination, is not an important predictor. This further supports
the finding that changes in the kinematic predictors purely due
to inclination effects do not bias the LDA classification itself.
To conclude, we have determined that while the kinematic

predictors themselves can vary as a function of viewing angle
and/or galaxy inclination, the LDA classification is only
sensitive to viewpoint in the sense of the relative positioning of
the secondary nucleus relative to the line-of-sight vector.

3.9. Limitations of the Technique in z and S/N

As with the imaging identification technique in N19, the
kinematic technique is sensitive to both S/N and resolution,
meaning that as the S/N decreases in the spectra and/or as the
redshift of the galaxy increases, the technique will undergo
significant changes. We test this sensitivity by decreasing the
S/N, and by moving the mock galaxies to a higher redshift.
To test the sensitivity of the classification to decreased S/N,

we decrease the average S/N of q0.5_fg0.3 simulation by
factors of 1.5 and 2, respectively. In Figure 12, we compare a
snapshot with S/N that has been decreased by a factor of 2 to
the same snapshot from the fiducial run. When the S/N is
decreased by a factor of 2, the classification is significantly
different. While many of the predictors remain the same, the
performance statistics decrease overall, and there is an increase
in the number of false negatives during the early stages of the
merger. When the S/N is decreased, the Voronoi bins increase
in size in the exterior regions of the galaxy. This obscures the
large-scale kinematic features, which lowers the performance
of the classification. We therefore predict that MaNGA galaxies
with low S/N are more likely to be misclassified.
We plan to explore two possible approaches to classifying

MaNGA galaxies with different S/N ratios. One option is to
implement an S/N cut when we apply the fiducial classification
to the MaNGA galaxies. However, MaNGA galaxies with
lower S/N need not be excluded from classification. Instead,
another option is to use the classification and completeness
correction from the lower S/N ratio LDA run, so as to classify
these galaxies separately. We predict that we should be able to

Figure 11. As given in Figure 5, histograms of the LD1 value for the q0.5_fg0.3 simulation (left) and the q0.2_fg0.3_BT0.2 simulation (right). We also overplot the
time-averaged LD1 values for each viewpoint, together with error bars to demonstrate the 1σ variation among these values for all moments in time. There is less
variation as a function of viewpoint than as a function of time (shown in Figure 7).
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classify the majority of the MaNGA sample, since the fiducial

(non-decreased) S/N of the simulation suite is representative of

the MaNGA sample.
For the purposes of comparison, in Figure 13 we present a

sample of MaNGA galaxies across a range of surface
brightness, redshift, and stellar mass. The approximate stellar

mass is taken from the NSA catalog, and is estimated using the
kcorrect code (Blanton & Roweis 2007). The simulated

galaxies, whose stellar masses are log M*∼ 10.6, are

intermediate-mass galaxies, relative to the full MaNGA sample.
We also experiment with increasing the S/N by a factor of 2.

The classification undergoes minimal changes, with a slight
increase in the performance statistics. When the S/N is higher,

we predict that the current classification will be better able to

determine whether a galaxy is merging. Since the selected
predictors do not significantly change, we can conclude that the

fiducial run is successfully identifying all relevant kinematic
features.

The mock galaxies are placed at a redshift of z= 0.03, which
is the median redshift of galaxies observed by MaNGA. In

order to understand the limitations of identification over the full

range of redshifts for the MaNGA survey (0.01< z< 0.15), we
experiment with increasing the redshift of the mock galaxies.

To do this, we increase the spaxel size from 0 5 to 1 0, and

1 5, and we increase the PSF size to 5 0 and 7 5. This mimics
the effects of moving the simulated galaxies to a redshift of

z= 0.07 and z= 0.1, respectively. When we artificially redshift

the galaxies, we do not introduce cosmological dimming,
meaning that the galaxies have the same S/N as the sample at

z= 0.03. This is because we want to understand the effects of
the apparent size of galaxies independently of S/N effects.

The classification does not change significantly when the
galaxies are placed at a redshift of z= 0.07. At z= 0.1, the

classification is significantly different; the number of mis-
classifications increases, and the selected terms are different.
However, these results are based on a galaxy–galaxy merger,
where each galaxy has a stellar mass on the order of 1010Me.
While it is a valid conclusion that the technique will struggle
with an intermediate-mass galaxy at z= 0.1, the MaNGA
sample does not tend to include this type of galaxy. Instead,
MaNGA is designed to maintain roughly uniform coverage in
log M* and radial coverage, meaning that higher mass galaxies
(>1011Me), which are more luminous and have larger angular
sizes (i.e., the fourth row of Figure 13), are observed primarily
at higher redshift, somewhat alleviating this concern (Bundy
et al. 2015; Wake et al. 2017).

3.10. Limitations of the Technique in Stellar Mass and B/T

The simulation suite of merging galaxies is limited in stellar
mass and B/T ratio. The mergers can all be characterized as
intermediate-mass disk-dominated galaxies, spanning a range
of (3.9–4.7)× 1010 Me in stellar mass, and 0–0.2 in initial B/T
ratio. These limitations are of particular importance, given that
many of the leading kinematic predictors (lRe, μ1,V, μ1,σ, μ2,V,
and μ2,σ) are related to the intrinsic kinematic properties of
galaxies. For instance, μ1,σ is a proxy for stellar mass, so we are
skeptical if this classification can reliably be applied to galaxies
that differ in properties, i.e., bulge-dominated, elliptical
galaxies.
One possible approach to circumvent these concerns is to

remove these predictors from the classification. We rerun the
LDA for all simulations, without the lRe, μ1,V, μ1,σ, μ2,V, and
μ2,σ predictors, and find that performance significantly

Figure 12. g-band S/N (left), stellar velocity (middle), and velocity dispersion
(right) maps from a snapshot of the q0.5_fg0.3 simulation. We have decreased
the S/N by a factor of 2 (second row) and redshifted the galaxy to z = 0.1
(third row) to demonstrate the point at which the classification begins to
change. The classification has a higher failure rate when the S/N is decreased
by a factor of 2, mostly due to the sparsity of the Voronoi bins. Moreover,
when the spaxel size is increased to mimic a galaxy that is redshifted to z = 0.1,
the classification begins to change, as this is the point at which the larger-scale
kinematic features are distorted by the large spaxel size.

Figure 13. As Figure 12, but for a sample of MaNGA galaxies across a range
of surface brightness, redshift, and stellar mass. At low S/N (i.e., first and third
rows) the velocity maps have large Voronoi bins, and some kinematic
predictors will be difficult to measure. As discussed in the text, the higher
redshift galaxies (first and fourth row) in MaNGA also tend to be larger and
more massive.
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decreases. Specifically, the accuracy, recall, and F1 score of the
major mergers decrease by 20%–50%. This is unsurprising,
given that the leading predictors presented in Table 2 include
all of the predictors that are tied to the intrinsic kinematic
properties of galaxies (lRe, μ1,V, μ1,σ, μ2,V, and μ2,σ).
Interestingly, when the intrinsic kinematic predictors are
excluded, the performance of the minor merger simulations is
not significantly affected. In fact, the performance of the major
merger simulations is comparable to, or worse than, that of the
minor merger simulations. This highlights the fact that major
mergers undergo a more dramatic global transformation during
the merging process; this is reflected in the intrinsic kinematic
properties of the remnant galaxy.

Since removing these predictors significantly decreases the
performance of the classification, we choose to include all
predictors in this work, and to attach the following caveat to
this paper: Since this analysis focuses on kinematic predictors
that are sensitive to intrinsic galaxy properties, we advise
against applying this classification to all galaxy types in
MaNGA. In Section 4.9, we discuss possible strategies for
carefully applying the classification to MaNGA galaxies.

4. Discussion

In the discussion portion of this paper, we consider the
implications of kinematic LDA classifications for merging
galaxies. We focus on the individual LD1 coefficients in
Section 4.1, where we examine why some of the kinematic
predictors that have been useful in the past are not informative
in relation to this technique. We then examine the most
important kinematic predictors in Section 4.2. In Section 4.3
we explore the impact of mass ratio on the stellar kinematics of
mergers. We consider the physical meaning of the interaction
terms, and their importance with regard to classification, in
Section 4.4. We examine the observability timescale of the
kinematic LDA technique, and how the observability of a
merger varies with time, in Section 4.5. We specifically focus
on the definition of the “end” of a merger in Section 4.6, and
the kinematics of the merger remnants in Section 4.7. In
Section 4.8 we compare the performance of the imaging
classifications to the kinematic classifications. Finally, we end
with a note on applying this technique to MaNGA IFS
observations in Section 4.9.

4.1. Why Are Some Traditionally Utilized Kinematic Predictors
Not Useful in This Classification?

Some of the kinematic predictors traditionally utilized to
identify merging galaxies are uninformative in this analysis. In
this case, “uninformative” means that the predictor is discarded
during the RFR term selection steps, or that it has a small
relative coefficient value in the LDA. The uninformative
predictors are ΔPA, vasym, σasym, ΔxV, and Δxσ.

4.1.1. The Misalignment between Kinematic PA and Imaging PA

(ΔPA) Is Most Sensitive to Galaxy Inclination

A small fraction of the most dramatic mergers have
significantly disturbed stellar kinematic maps. However, this
does not translate to a global kinematic PA that is misaligned
from the PA in imaging, owing to two factors: First, many of
the warps seen in stellar kinematic disks are symmetric, which
can produce a global kinematic PA that is not misaligned.
Second, the PA for both kinematics and imaging is not well

determined during the most disturbed stages of a merger. This
contributes to random deviations around a low ΔPA value.

4.1.2. The Asymmetry in the Velocity and Velocity Dispersion Maps

(vasym and σasym) Is Only Sensitive to the Most Disturbed Times in the

Major Mergers

Previous works based on the gas kinematics of simulated and
observed mergers have found that merging galaxies have
enhanced values for both vasym and σasym (e.g., Shapiro et al.
2008; Bellocchi et al. 2012; Hung et al. 2016; Bloom et al.
2017). These studies define a threshold value in Kasym to

identify merging galaxies, where s= +K vasym asym
2

asym
2 . For

instance, Bellocchi et al. (2012) studied local luminous infrared
galaxies (LIRGs), finding a threshold value of Kasym> 0.135.
Hung et al. (2016) defined a Kasym threshold of 0.15 for the
galaxies in their work, calculated from the velocities of gas
particles for simulated SUNRISE mergers.
The σasym and vasym predictors are ultimately unimportant in

our analysis. We present the viewpoint-averaged values of
σasym-vasym in Figure 14 for the q0.2_fg0.3_BT0.2, and the
q0.5_fg0.3 simulations. We include the Kasym diagnostic lines
used to identify the mergers from Bellocchi et al. (2012) and
Hung et al. (2016). The top panel of the plot demonstrates that
there is minimal time evolution in the predictor values for
minor mergers. The predictor values for major mergers are only
slightly enhanced, falling above the diagnostic line of Hung
et al. (2016) for a few snapshots during the late stages of a
merger. While Figure 14 presents the predictor values in log
space, the standardized predictor values of σasym and vasym used
to construct the classification also have minimal separation
between the merging and nonmerging populations. The
insensitivity of any of the mergers to an enhancement in the
values of these predictors results in their exclusion during the
RFR selection step.
Ultimately, the vasym and σasym predictors are unimportant in

our work, because vasym is only elevated at specific points in
time during the late phases of merging. They are more useful in
studies such as that of Bellocchi et al. (2012), who focused on
LIRGs, which are prototypical gas-rich major mergers, or that
of Hung et al. (2016), where the simulated galaxies include
gas-rich major mergers. It is also of interest to note that Hung
et al. (2016) found that the mergers in their sample exceeded
the Kasym value only during the “strong interaction,” or late
stage of merging.

4.1.3. The Offset between the Center of the Velocity and Velocity

Dispersion Maps and the Imaging Center (ΔxV and Δxσ) Are Not

Very Sensitive to Mergers

We design the ΔxV and the Δxσ statistics to identify galaxies
exhibiting offsets in their kinematic centers. We find that these
values are most elevated during the late stages of a merger,
where there are two visible nuclei. However, since the
kinematic maps are disky throughout the merger, and not
dramatically disturbed at most stages, these two statistics are
not noticeably elevated for the duration of the merger, and are
therefore relatively unimportant.
Statistics such as these have been used in the past for

galaxies such as NGC 4473, which is a “double sigma (2σ)”
galaxy, meaning that it has two peaks in its 2D stellar velocity
dispersion map, which are aligned with the photometric major
axis of the galaxy (Krajnović et al. 2011). This type of velocity
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dispersion map is rare in observations (e.g., Krajnović et al.
2011), and is associated with the co-addition of a counter-
rotating stellar disk, produced via retrograde 1:1 mass ratio
mergers in simulations (e.g., Jesseit et al. 2007; Bois et al.
2011). Therefore, these statistics may not be as useful for
identifying the more typical types of mergers, which are often
more unequal in mass ratio, and do not occur under idealized
conditions.

4.2. What Can We Learn from the Most Important LDA
Predictors about the Kinematics of Stars in Mergers?

Here, we examine the most important predictors in the LDA
for all simulations, and make connections between these
predictors and the dynamical evolution of stars during a
merger. We split the discussion by predictor, and for brevity,
we focus only on the leading predictors presented in Table 3.
The top predictors include lRe, μ1,σ, μ2,σ, |μ3,σ|, and μ4,V.

4.2.1. The Approximate Spin Parameter Tracks a Global “Slowdown”

in the Velocity Maps of the Major Mergers

The approximate spin parameter (lRe) is a key predictor for

all merger simulations, and is especially important for the

major mergers. The angular momentum of merging galaxies is

therefore significantly different from that of the nonmerging

population; this effect is more apparent in major mergers. In

this section, we examine how lRe changes with time for the

various simulations, and how this compares to previous works.
Firstly, we directly examine the pre-standardized values of

lRe and ò for the q0.2_fg0.3_BT0.2 and q0.5_fg0.3 simulations

in Figure 15. In this diagram, we indicate the “slow rotator”

territory, located in the lower left corner. The lRe–ò diagram is

often used to kinematically distinguish the slow rotator

population of early-type galaxies from the fast-rotating

population. This fast-slow rotator distinction probes the

evolutionary histories of galaxies, based on disk assembly

(see Cappellari 2016 for a review).

Figure 14. Time evolution of merging (red and orange) and matched
nonmerging (blue) galaxies for the q0.5_fg0.3 (top, red) and q0.2_fg0.3_BT0.2
(bottom, orange) simulations on the vasym-σasym diagram. The blue squares
indicate the matched isolated sample of galaxies, while the blue circles denote
pre- and post-mergers. Here, we show the pre-standardized predictor values.
The time begins at zero, and progresses in units of Gyr. The Kasym = 0.15
(dotted) and 0.135 (dashed) threshold lines are taken from Hung et al. (2016)
and Bellocchi et al. (2012), respectively, where galaxies above the diagnostic
lines are classified as merging.

Figure 15. As Figure 14, but for the time evolution of merging (red and
orange) and nonmerging (blue) galaxies for the q0.5_fg0.3 (top, red) and
q0.2_fg0.3_BT0.2 (bottom, orange) simulations, on a lRe–ò diagram. As the
merger progresses (red points), the galaxies evolve toward decreased values of
lRe, corresponding to increasing levels of disorder in the kinematic maps. Slow
rotators, defined by Cappellari (2016), fall below the dashed line on these plots.
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Much recent work has focused both on examining the
observed populations of fast and slow rotators, and on making
predictions as to how merging galaxies move through this
territory. For instance, Naab et al. (2014) utilized cosmological
merger tree simulations to show that major mergers signifi-
cantly affect the angular momentum content of a galaxy; they
can either spin up or spin down the remnant. In our case, all of
the simulated galaxies begin with a lRe value of ∼0.7. For the
major mergers, the lRe value dramatically decreases, to the
boundary of the slow-rotator region. This confirms that major
mergers can dramatically affect the kinematic properties of the
remnant, kinematically transforming the galaxy from one that
can be described as disk-dominated to one that is still rotating,
but is dispersion-dominated.

4.2.2. The Mean and Dispersion of the Velocity Dispersion

Distribution (μ1,σ and μ2,σ) Track the Growth of a Stellar Bulge

Component

The overall importance of the μ1,σ and μ2,σ predictors
reflects the fact that the velocity dispersion map is informative
for identifying mergers. We examine how these two predictors
evolve with time during a merger in Figure 16, for the
q0.5_fg0.3 and q0.2_fg0.3_BT0.2 mergers. Here, we present
the average value for all of the viewpoints of a given snapshot.
We also include representative velocity dispersion maps for a
handful of informative snapshots.

For all merger simulations, the μ1,σ value increases
throughout a merger, tracing the assembly of a stellar bulge

component. This increase is more dramatic for the major

mergers, which increase to a μ1,σ value of ∼200 km s−1. Even

for minor mergers, the merger incites growth in the central

velocity dispersion with time. This enhancement is still present

0.5 Gyr after coalescence, such that isolated post-coalescence

stages are mixed with the merger snapshots along the μ1,σ axis
in Figure 16. The signatures of bulge growth are therefore

dynamically long-lived, as opposed to imaging features that

fade quickly with time following a merger (i.e., in N19, the

imaging predictors fade within 0.5 Gyr of final coalescence).
The μ2,σ predictor serves different roles in major versus

minor mergers, as reflected in the differing evolution of μ2,σ
values with time. An increase of μ2,σ with time for major

mergers traces the presence of two kinematic components by

capturing the “bridge” of higher velocity dispersion values

between two merging galaxies. This is formed by two

overlapping counter-rotating features. Moreover, post-coales-

cence, major mergers exhibit more significant bulge growth,

which is reflected both in the enhancement in μ1,σ, and in an

increase in μ2,σ, since the entire distribution is broadened in this
process.
Minor mergers show less change in the value of μ2,σ with

time. While μ2,σ is still informative (since it increases during

the late stages of the merger to track the bridge of higher

velocity dispersion), it does not continue to increase into the

post-coalescence stages. This could indicate that a smaller

fraction of stars are involved in the buildup of the stellar bulge

in the case of minor mergers.

Figure 16. Time evolution of the mean values of μ1,σ and μ2,σ for the q0.5_fg0.3 (left plot) and q0.2_fg0.3_BT0.2 simulations (right plot). We indicate the time
evolution of the merging galaxies with red and orange points, and of the nonmerging galaxies with blue points. The standalone isolated galaxies are squares, and the
pre- and post-merger isolated galaxies are circles. In addition, above each plot, we include representative velocity dispersion maps from key snapshots. We find that
the major mergers (left plot) tend to show a consistent evolution in μ1,σ and μ2,σ with time; both values increase as the stellar bulge component is built. We include
three example velocity dispersion maps (above each plot), for the early (left), late (middle), and post-coalescence (right) stages of a merger, respectively. The late and
post-coalescence snapshots have elevated values of μ1,σ and μ2,σ; during the late stage, the area between the two nuclei has an enhanced velocity dispersion (middle),
and during the post-coalescence stage (right), the center of the galaxy has a larger velocity dispersion value. On the other hand, minor mergers (right plot) show an
increase in μ1,σ with time, but there is no significant change to μ2,σ with time. While both types of mergers contribute to a stellar bulge component, the change to the
dispersion maps of the major mergers is more dramatic and global.
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4.2.3. The Skewness of the Velocity Dispersion Distribution (|μ3,σ|)
Identifies Secondary Kinematic Components

The skewness in the velocity dispersion distribution, |μ3,σ|,
is an important predictor for major mergers; it is sensitive to
secondary kinematic components, and to disturbances in the
velocity dispersion maps. For instance, the stellar bulge region
has a higher dispersion, which manifests itself as a small wing
on the velocity dispersion distribution (the main contribution to
this distribution is the disk rotation component). In this case,
the skewness predictor identifies similar features to the μ1,σ and
μ2,σ predictors.

The |μ3,σ| predictor is also important for identifying early-
stage mergers. These snapshots tend to have low values of μ1,σ

and μ2,σ. Since they have undergone their first pericentric
passage, they exhibit a slight enhancement in the velocity
dispersion map in the area of the primary galaxy, which is
perturbed by the merger. An example of such a snapshot with
this type of velocity dispersion enhancement is the leftmost
galaxy in the q0.5_fg0.3 panel in Figure 16. This galaxy is
classified as merging by this classification, where the most
important predictor leading to this decision is |μ3,σ|.

4.2.4. The Kurtosis of the Velocity Distribution (μ4,V) Identifies the

Superposition of Two Merging Galaxies

The kurtosis of the velocity distribution, μ4,V, is important
for both of the individual minor mergers, as well as the
combined minor merger classification. This predictor is
sensitive to perturbations in the velocity field, specifically in
cases where there are high velocities in the velocity distribu-
tion. When there are extreme velocities in the velocity
distribution (due to the superposition of two merging nuclei),
the kurtosis becomes more negative, due to the flattening of the
distribution. The μ4,V predictor is significant because it is able
to track smaller changes in the velocity distribution, as opposed
to global disruptions, as in the case of the major mergers. It is a
significant predictor for minor mergers, since velocity disper-
sion distributions do not change dramatically during a minor
merger. Instead, the LDA must rely upon the extreme velocities
caused by the superposition of a secondary nuclei.

4.3. The Classification Changes with Mass Ratio

Past studies have investigated how the properties of
simulated mergers affect the kinematic predictors. Hung et al.
(2016) investigated this phenomenon in relation to a set of
simulated merging galaxies with mass ratios of 1:1 and 1:4.
They found that the merger signatures in kinematics are most
apparent for the 1:1 major merger, where they may be visible
for up to twice as long as for the 1:4 major merger. While there
are significant differences between the work in this paper and
that of Hung et al. (2016) (i.e., we perform a full RT and create
mock IFS maps, whereas Hung et al. (2016) use the GADGET-
3 particle velocities to create velocity maps), we also find that
the classification differs significantly with mass ratio.

The major and minor merger classifications are different in
several ways. The minor merger classifications have perfor-
mance statistics that are ∼10%–30% lower. The minor mergers
are also more unstable in the terms that are selected, meaning
that the coefficient values fluctuate slightly when the
classification is rerun. The LDA for the minor mergers
therefore uses a small sample of key snapshots to create the
classification. If these snapshots are excluded from the training

set, and instead fall in the CV set, then the classification is
slightly different. The overall effect is that the minor mergers
are less stable, and many of the selected terms have similar
coefficient values, making it difficult to assess which are the
most important.
Another difference between the major and minor merger

classifications is that they are composed of different predictors.
While some predictors, such as μ1,σ and μ2,σ are important for
all classifications, lRe is more important for major mergers and
μ4,V is more important for minor mergers. As we discuss in
Section 4.2, both major and minor mergers demonstrate bulge
growth, which leads to an enhancement in μ1,σ, but the change
is more apparent in major mergers. The global kinematic
properties of major mergers are more significantly impacted;
this includes the lRe predictor, which traces a global slowdown
in the velocity maps of the major mergers. On the other hand,
the minor mergers are most sensitive to smaller-scale changes
in the kinematic maps; this can be traced by predictors such as
μ4,V, which track the superposition of the secondary stellar
nuclei.

4.4. The Predictors Evolve Non-monotically with Time; the
LDA Incorporates This Behavior with Interaction Terms

Many of the kinematic predictors in this analysis evolve with
time throughout the merger. In most cases, this evolution is
non-monotonic, meaning that merging galaxies evolve back
and forth in predictor space as a function of merger time. The
LDA technique accounts for this behavior using interaction
terms.
An example of an interaction term in action is the μσ ∗ σσ

term, which has a negative coefficient for several of the major
merger simulations. This means that if the value of μ1,σ is
relatively large, then μ2,σ must be relatively small in order for
the merger probability to increase. The opposite is also true: if
μ1,σ is relatively small, then μ2,σ must increase. To be clear,
“relatively large” and “relatively small” refer to the standar-
dized values of these predictors, which are measured relative to
the distribution of values for the entire merger. As such, if a
term is relatively small, the predictor value will be negative.
For instance, if μ1,σ is large and μ2,σ is small, then the term
becomes: (− coefficient) ∗ (positive) ∗ (negative)= positive
value= increase in LD1.
Consider the μσ− σσ diagram for the q0.5_fg0.3 merger,

presented in the left panel of Figure 16. The μ1,σ and μ2,σ
predictors are correlated, so they occupy the diagonal space of
this diagram. This correlation and the interaction term function
so that the center of the μσ− σσ diagram is the “merger
territory.” This picture is somewhat complicated by the fact that
there are other terms in the LDA, but if the μσ ∗ σσ interaction
term has a large coefficient, then this interpretation generally
applies.
The interaction terms account for the non-monotonic

evolution of the predictor values with time. When we create
a classifier with only the primary predictors, it is fundamentally
different from the LDA with interaction terms. The linear
classifier is inaccurate, classifying many of the isolated post-
merger snapshots as mergers. When the LDA is forced to
generalize to one direction of movement across these diagrams
in the monotonic case, it loses key information.
When the interaction terms are included, the LDA becomes

sensitive to the values of the other predictors, and is therefore
able to create “if-then” cases for the predictor space. For
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example, if a galaxy is in the later stages of merging
(characterized by significant bulge growth and a large value of
μ1,σ), then to avoid ambiguity with post-merger isolated
galaxies, the classification would like to see a relatively
negative standardized value of μ2,σ in order to classify the
galaxy as merging. On the other hand, if the galaxy has a
relatively small value of μ1,σ, then μ2,σ should be large in order
for the galaxy to be classified as merging. An example of this
type of galaxy can be seen in the early stages of a merger,
where the bulge growth has not yet begun, so μ1,σ is small.
However, the galaxy has undergone its first pericentric passage,
and is experiencing an enhancement in velocity dispersion,
which leads to an increase in μ2,σ. An example of this type of
galaxy is shown in the left panel of Figure 16.

We conclude that it is critical to include the interaction terms
in the LDA classification. Not only do they improve the
performance of the technique, but they are physically motivated
by the non-monotonic evolution in kinematic predictors over
the course of a merger lifetime.

4.5. The Observability of a Merger Varies with Time; Mergers
Are Missed during the Early Stages when the Kinematics Are

Disk-like

In Section 3.6, we present the observability timescales for
the various simulated mergers. We conclude that the kinematic
LDA technique lengthens the observability timescale of the
simulated mergers as compared to that measured from the
individual predictors. Here, we focus specifically on how the
observability of a merger changes with the merger stage, and
we refer the reader to Figure 7 for a useful visualization of the
mean value of LD1 with time in all of the simulated mergers.

When we examine the observability of the mergers in terms
of the predefined early-, late-, and post-coalescence stages, we
notice several stage-related differences. Firstly, during the early
stages of merging, some simulations show a larger standard
deviation in the LD1 values. For all simulations, the value of
LD1 tends to fall below the decision boundary during these
early stages. Hung et al. (2015) found that using kinematic
predictors to identify mergers results in a significant fraction of
false negatives from epochs where the merger is indistinguish-
able from a rotating disk. We also find that a significant fraction
of false negatives occur during the early stages, where the
rotation is indeed disk-like.

During the late stage of the merger, the minor mergers do not
show much variation from one snapshot to the next; the LD1
values are relatively flat. On the other hand, the major mergers,
in particular q0.5_fg0.3, show variation between the late-stage
snapshots. For q0.5_fg0.3, this factor contributes to the
relatively short observability timescale. These changes in
LD1 values are significantly greater than the variance due to
different viewpoints. The kinematic features are therefore seen
to change significantly and rapidly with time for some of the
major mergers during their late stages. We also find that most
simulations have relatively high LD1 values during the late
stage of a merger. The late stage of a merger is therefore
characterized by short-lived dramatic kinematic features. This
is consistent with Hung et al. (2015), who found that kinematic
tracers of mergers tend to be most informative during the late
stage of the merger, which is when the imaging predictors are
also most useful.

As the merger progresses into the post-coalescence and post-
merger isolated stages, we find that the LD1 value is more

stable, which is characteristic of longer-lived kinematic
features. The LD1 value does not significantly decline during
the post-merger stages. We focus on the kinematics of the post-
coalescence and post-merger stages in Sections 4.6 and 4.7.

4.6. When Does a Merger End? The Kinematic Disturbances
due to Mergers Are Long-lived

In N19, we define the end of the merger as 0.5 Gyr after final
coalescence. This cutoff was selected so that the imaging
predictors, and therefore the value of LD1, would decay
smoothly until the end of the merger. The imaging technique is
therefore very accurate and precise during the transition from a
post-coalescence merger to an isolated post-merger galaxy. In
contrast, in this work, the kinematic predictors, and therefore
the LD1 value, remain elevated during the period of post-
merger isolated snapshots. There are visually apparent warps in
the velocity maps, and the velocity dispersion maps have
elevated values of μ1,σ and μ2,σ for post-merger isolated
galaxies. Hung et al. (2016) also found a persistence of
kinematic merger signatures up to ∼Gyr following coales-
cence. We find that the kinematic disturbances fade 2–2.5 Gyr
after coalescence, meaning that in order to improve the
classification, we would need to significantly extend the post-
coalescence phase.
Rather than changing the definition of the end of a merger, a

more relevant task might be to define the merger more
specifically by stage. For instance, if it is a priority to
distinguish post-coalescence from post-merger isolated
galaxies (post-coalescence snapshots occur immediately fol-
lowing coalescence until 0.5 Gyr after coalescence, and post-
merger snapshots occur >0.5 Gyr after coalescence), we should
rely on the imaging predictors, which do a better job in this
specific case. In our future work we plan to combine the
imaging and kinematic tools, and address this question more
directly. One potential path forward could be to create separate
classifications to target different stages of a merger. This could
provide a more flexible definition of merging galaxies, and
allow other users of the technique to target stages of interest in
a merger.

4.7. The Kinematics of the Post-merger Stages Track the
Growth of a Stellar Bulge and a Kinematically Decoupled

Core for the 1:2 Mass Ratio Merger

Here, we focus on the kinematics of the post-coalescence
and post-merger stages. During these stages we observe the
buildup of a central component in the stellar velocity dispersion
maps. The change is more dramatic for major mergers, and can
best be explained by tracing the growth of a stellar bulge
component. Hopkins et al. (2009) investigated the effect of
mass ratio on the merger remnant, finding that the fraction of
the primary stellar disk that is relaxed into the bulge is directly
proportional to the mass ratio of the merger. This supports the
hypothesis that a stellar bulge is built in the post-merger stages,
since we would expect major mergers to contribute a larger
fraction of stars to the bulge component.
The q0.5_fg0.3 merger has unique kinematic features in

its stellar velocity map during the post-merger stages, so we
focus the remainder of our discussion on this merger. We
present several post-coalescence and post-merger snapshots
from the q0.5_fg0.3 merger in Figure 17. The stellar velocity
maps are particularly intriguing, as they have a distinct central
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component that appears in the post-coalescence phase, and
persists into the post-merger phase. This central feature in the
stellar velocity maps is spatially coincident with the bulge-like
feature in the stellar velocity dispersion maps. It is not fully
counter-rotating, but is misaligned from the main stellar disk.
We therefore hypothesize that we have discovered a decoupled
kinematic component.

Previous theoretical works have predicted that major mergers
with mass ratios of 1:1 or 1:2 may produce this type of intriguing
kinematic component (e.g., Bendo & Barnes 2000; Jesseit
et al. 2007; Crocker et al. 2009). For instance, Bendo & Barnes
(2000) and Jesseit et al. (2007) found that equal mass simulated
mergers display a far wider range of kinematic features,
including counter-rotating cores and global misalignments,

whereas unequal mass mergers tend to have disk-like kine-
matics. The merger remnants with complex kinematics
are intriguing, because these decoupled central components
have also been discovered in observational studies. For example,
the ATLAS3D survey found that a significant fraction of slow-
rotating ETGs have decoupled kinematic components (e.g.,
Emsellem et al. 2011).
Our finding of a decoupled kinematic core in the remnant of

the 1:2 (q= 0.5) mass ratio merger supports these past findings,
i.e., that mergers with a large mass ratio can produce dramatic
central features in the kinematic maps. Furthermore, this result
suggests that selecting galaxies with kinematically decoupled
cores would produce a sample of post-coalescence major
mergers with a mass ratio q 0.5.

Figure 17. Evolution of the long-lived kinematically decoupled feature in the r-band image (left), stellar velocity map (middle), and stellar velocity dispersion map
(right) of the q0.5_fg0.3 merger. The top panel depicts the last snapshot before coalescence. At 2.54 Gyr the galaxy is in the post-coalescence stage, and at 2.79 and
5.18 Gyr the galaxy is in the post-merger isolated stages. The central kinematically decoupled component appears in the velocity map at around 2.54 Gyr, i.e.,
∼0.4 Gyr after coalescence, and does not disappear until ∼3 Gyr after coalescence.
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4.8. The Kinematic LDA Is Not as Good at Identifying Merging
Galaxies as the Imaging Technique

The kinematic LDA technique gives rise to a significant
number of false negatives, which drive down the accuracy and
recall of the technique. This can be partially ascribed to the
chosen priors, which skew the classification toward minimizing
false positives (see Section 3.5 for a full discussion). As we
discuss in Section 3.7, this is also due to the lack of
identifiability of certain snapshots as mergers, meaning that
they are indistinguishable from nonmerging disks and/or post-
merger remnants, both visually, and based on their kinematic
predictors.

The imaging LDA performs better for all runs, with
improvements in all performance statistics. This means that
fewer galaxies in total will be correctly classified by the
kinematic technique, due to the shortcomings listed above.
While the major merger combined run is slightly improved
when performed using imaging predictors (this improves the
accuracy/recall/F1 score by 9%/11%/7%), the minor merger
combined run experiences significant improvement (16%/
41%/25%). The kinematic minor merger combined classifica-
tion therefore scores lower across all performance statistics,
relative to both the imaging minor merger classification and the
kinematic major merger classification. This reflects the specific
inability of the kinematic classification to identify minor
mergers.

The imaging LDA also has longer observability times on
average, ranging from observability times of 2.2–2.8 Gyr for
major mergers, and 3.5–9.2 Gyr for minor mergers. The
kinematic LDA has observability times of 0.9–2.4 Gyr for the
major mergers, and 3.0–6.6 Gyr for the minor mergers. As
such, while the observability times for the kinematic LDA
significantly improve upon the observability times for indivi-
dual kinematic predictors, the mergers are still observable for
slightly longer timescales with the imaging LDA.

This has important implications for the relative capabilities
of imaging versus kinematic predictors in identifying merging
galaxies. The stellar kinematics of mergers take longer to
exhibit disturbance, and remain disturbed for a longer time
following a merger. The imaging predictors are better
contained to the duration of the merger, and better able to
identify all of the different merger stages. Hung et al. (2016)
recommended using kinematic predictors in combination with
imaging predictors, due to the frequency of false negatives in
their investigation of kinematically identified merging galaxies.
We support this conclusion, finding that the kinematic
predictors have failure modes that may be ameliorated by
incorporating imaging predictors.

However, there are some advantages of kinematic predictors
relative to imaging predictors. In Sections 4.6 and 4.7, we find
that the kinematic predictors are particularly useful for
identifying post-coalescence and post-merger stages, because
the kinematic disturbances persist long after the imaging
predictors fade. The inference is that while imaging predictors
are more informative overall, kinematic predictors are powerful
in certain domains, and provide additional information. If
forced to select between imaging and kinematic classification
methods, the imaging approach is better. However, the best
overall approach is to combine the two techniques into one
imaging + kinematic classification. We plan to discuss this
topic further in future work.

4.9. Applying the Technique to MaNGA IFS in Future Work

In Section 3.10, we discuss the implications of creating a
kinematic classification from a suite of simulations with a
narrow range in stellar mass (3.9× 1010<Me< 4.7× 1010),
and in an initial B/T ratio (0–0.2). Many of the kinematic
predictors, specifically the most important predictors for the
major merger simulations, also probe the intrinsic properties of
galaxies. In other words, while these predictors are useful in
identifying major mergers, they also change as a function of
stellar mass and morphology. The implication is that a
classification created from disk-dominated intermediate-mass
mergers may not extrapolate well to the MaNGA sample,
which spans a wider range in stellar mass (108<Me< 1011)
and morphology.
At present, it is unclear whether this will be a concern only

for extreme cases, i.e., the most massive bulge-dominated
ETGs, or if it will also cause concern in systems with a mix of
rotation and dispersion support in their kinematics. We have
preliminarily investigated the distribution of bulge- versus disk-
dominated galaxies in MaNGA; while Wang et al. (2020) have
found that MaNGA galaxies are predominantly disk-domi-
nated, Graham et al. (2018) found that a significant fraction of
MaNGA galaxies (across all masses) are bulge-dominated.
Since the MaNGA sample includes a diversity of different

galaxy types, we plan to tread carefully when we apply the
classification. One option may be to select those MaNGA
galaxies with high values of lRe to include in the classification;
in this way, we could exclude bulge-dominated galaxies.
Another option could be to de-emphasize certain domains of
predictor space in the classification, or to remove those
kinematic predictors that are most sensitive to intrinsic galaxy
properties altogether. The details of this approach will be
developed in future work, as they fall beyond the scope of this
paper, which focuses mostly on the creation of the merger
identification technique.

5. Conclusions

In this work, we have built on the standalone imaging
merger classifier in N19 to create a parallel LDA classifier,
utilizing kinematic predictors to identify merging galaxies. To
produce the classification, we used SUNRISE synthetic spectra
from GADGET-3 simulated merging galaxies to create mock
“MaNGA-ized” data cubes. We convolved and rebinned the
synthetic spectra to the spatial and spectral resolution of
MaNGA, introduced noise, and implemented the Voronoi
binning scheme used for the MaNGA data cubes. With ppxf,
we extracted stellar velocity and stellar velocity dispersion
maps for each data cube.
We then measured a number of kinematic predictors from

the velocity and velocity dispersion maps. We used a random
forest regressor (RFR), followed by the LDA classifier to select
the most informative kinematic predictors and to carry out the
classification. The selected predictors are: the difference
between the kinematic PA and the imaging PA (ΔPA), the
kinemetry residuals (resid), the approximate spin parameter
(lRe), the asymmetry in the Radon profile (A2), and the
moments of the velocity and velocity dispersion distributions
(μ1,V, μ1,σ, μ2,V, μ2,σ, |μ3,V|, |μ3,σ|, μ4,V, and μ4,σ). We then ran
the LDA as a classifier for all simulations individually, as well
as for the combined major merger simulation and the combined
minor merger simulation.
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We first used the LDA classification as an agnostic approach
to determine the most useful kinematic predictors for identify-
ing different types of mergers. Our main conclusions are:

1. Many kinematic predictors used in previous work to
identify mergers are not as useful as those in this work
(i.e., the deviation of the velocity and velocity dispersion
maps from ordered rotation vasym and σasym, respectively,
and ΔPA). These predictors are sensitive to specific
stages of equal mass ratio mergers, and are not as
sensitive to the full range of merger parameters and stages
used in this simulation suite (Section 4.1).

2. The mean and variance of the values in the velocity
dispersion maps (μ1,σ and μ2,σ, respectively) are the most
useful predictors for identifying mergers across all
simulations, because they are sensitive to the growth of
a stellar bulge component during mergers (Section 4.2).

3. The selected predictors differ as a function of mass ratio.
The major mergers exhibit large-scale kinematic changes
(i.e., a global slowdown of the rotation), and therefore rely
more on predictors such as lRe. The minor mergers are
identified using predictors such as μ4,V, which trace the
superposition of a secondary stellar nucleus (Section 4.3).

We have also examined the performance of the LDA
classification, measured using the four performance statistics
(accuracy, precision, recall, and F1 score), as well as the
observability timescale. Our main findings are:

1. The LDA performance significantly improves when the
interaction terms are included. These terms are able to
account for the non-monotonic evolution of the kinematic
predictors with time (Section 4.4).

2. By combining many different kinematic predictors, we
create a classification where the observability timescale is
a large fraction of the overall merger time (40%–90%).
This corresponds to mergers that are observable for
0.9–6.6 Gyr, and represents an improvement on the
observability timescale as compared to any of the
individual kinematic predictors (Section 4.5).

3. The sensitivity of the LDA technique varies with epoch
during mergers. We find that there are more missed
mergers (i.e., false negatives) during the early stage of a
merger, where the stellar kinematics are disk-like. The
mergers are at their most detectable during the late and
post-coalescence stages (Section 4.5).

4. The kinematic predictors (and the LD1 value) are long-
lived, and remain elevated for ∼2 Gyr following final
coalescence. The stellar kinematics of the post-coales-
cence and post-merger epochs capture the formation of a
stellar bulge component (Section 4.6).

5. For the (major, gas-rich) q0.5_fg0.3 merger, a kinema-
tically decoupled component is visible in the stellar
velocity maps (Section 4.7).

6. The imaging classification performs better than the
kinematic classification, and the improvement is larger
(∼15% increase in accuracy, recall, and F1 score) for
minor mergers. The kinematic LDA can be improved by
adding imaging predictors (Section 4.8).

7. The kinematic predictors add unique information about
merging galaxies to the toolkit; for instance, the
kinematic classification is better at identifying post-
coalescence and post-merger galaxies, relative to the
imaging classification (Section 4.8).

8. The kinematic classification is created from a suite of
simulations that are limited in their scope (i.e., the
simulated galaxies are disk-dominated, and span a range
of (3.9–4.7)× 1010Me in stellar mass). We conclude that
the results may not be applied to all MaNGA galaxies
(which have a range of morphologies, and an approxi-
mately flat stellar mass distribution of 108<Me< 1011).
We plan to further address this concern in future work
(Section 4.9).

In R. Nevin et al. (2021, in preparation) we will combine the
kinematic classification with the imaging classification pre-
sented in N19, and apply the classifier to MaNGA galaxies. At
this point, we will release the python tools for implementing
these classifications. These tools are designed to be adaptable
to the specifications of other imaging and/or IFS surveys, with
the goal of applying the classification to other IFS surveys—
e.g., SAMI, CALIFA, HECTOR.
In R. Nevin et al. (2021, in preparation) we will further

investigate whether various kinematic parameters enhance the
existing imaging classifier, and why, and revisit the hyperpara-
meter tuning to determine the optimal location of the decision
boundary. We also plan to investigate the possibility of
splitting the classification by merger stage. Our scientific goals
include identifying how the star formation histories, metalli-
cities, and AGN activity change for these different stages, as
well as for different mass ratios of merging galaxies.
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Appendix A
The Importance of Radiative Transfer and Dust Scattering

and Absorption

A central goal of this paper is to design a process to produce
synthetic kinematic maps from simulated galaxies that are as close
to full realism as possible. However, we acknowledge that running
full radiative transfer (RT) and fitting the absorption lines of the
resultant data cube is both complex and computationally
expensive. Bottrell et al. (2019) explore the concept of observa-
tional realism, and the steps necessary to produce a CNN classifier
for merging galaxies capable of achieving high accuracy. They
find that the RT step is unnecessary, and that it can be avoided in
order to achieve significant gains in computational time. Since the
goal of our approach is to produce observations that closely mimic
MaNGA kinematic maps, we carry out a full RT (“full”means that
we include the effects of dust scattering and absorption); in
addition, we apply observational realism, as detailed in Section 2.2.
Here, we focus on the importance of radiative transfer, and the
proper treatment of dust.

Firstly, we explore the differences between stellar kinematics
derived from the GADGET-3 particles (no RT) and those
derived from the SUNRISE spectra (RT), without dust
scattering and absorption. From here on, GADGET-3 derived
kinematics are the “particle” kinematics, the SUNRISE spectra
without dust effects are the “NONSCATTER” spectra, and the
SUNRISE spectra incorporating dust scattering and absorption
are the “SCATTER” spectra.18 An important caveat to our
analysis of the differences between these kinematic maps
relates to differences in observational effects. We apply all
observational effects to the NONSCATTER and SCATTER

spectra, convolving, rebinning, and incorporating noise, but we
create the particle kinematic maps without noise effects.
Moreover, the particle kinematics are mass-weighted, so the
convolution kernel we apply to the particle velocity and
velocity dispersion maps is a rough approximation of the
convolution of a flux-weighted quantity (i.e., the NONSCAT-
TER and SCATTER spectra). We apply this convolution kernel
as a final step, once the kinematic maps are generated.
In Figure 18 we present the velocity maps (top row) and the

velocity dispersion maps (bottom row) produced at various
stages of realism for a snapshot from the q0.5_fg0.3 merger.
We begin with the kinematic maps derived from the mass-
weighted particle velocities (second column), then the kine-
matic maps from the NONSCATTER spectra (third column),
which are produced using RT, and finally the kinematic maps
from the SCATTER spectra (fourth column), which also
incorporates the effects of dust scattering and absorption. To a
first order approximation, we find that the velocity and velocity
dispersion maps are similar enough to verify that our
methodology for creating stellar velocity and velocity disper-
sion maps from mock SUNRISE spectra is not failing.
Specifically, significant differences between the SUNRISE-
derived maps and the particle-derived maps could indicate bugs
in SUNRISE, failures in the steps that produce mock spectral
data cubes, or problems with the ppxf absorption line fitting
that produces the velocity and velocity dispersion maps.
We present the difference maps between the particle and

NONSCATTER, and SCATTER and NONSCATTER maps in
Figure 19. We first examine the differences between the particle
kinematic maps and the NONSCATTER kinematics maps, as
given the first and third panels of this figure, for the stellar velocity
and velocity dispersion maps, respectively. Radiative transfer,
observational effects, and the fact that the particle maps are derived
from mass-weighted velocities can cause differences between these
maps. For instance, the NONSCATTER maps have larger bins
toward the exterior of the galaxy and in addition, show more
variation on a spaxel-to-spaxel basis, due to noise. The
NONSCATTER maps have significantly different velocity and
velocity dispersion values, particularly at the center of the galaxy.
There is a faster rotating feature at the center of the particle velocity
map, which manifests as a rotating feature in the leftmost panel of
Figure 19. Moreover, the NONSCATTER-derived dispersion is
significantly higher at this location, which is apparent as an over-
subtraction in the third panel. Since the central feature is slower-
rotating, and has a higher velocity dispersion, it is most likely to be
related to beam-smearing. The differences in the implementation of
convolution in the particle maps, which are convolved as a last
step, and the NONSCATTER maps, which are convolved prior to
deriving the velocity and velocity dispersion values, could
contribute to the differences in these central regions.
We next evaluate the role of dust in the kinematic maps by

comparing the NONSCATTER kinematic maps to the SCATTER
version in the second and fourth panels of Figure 19, for the stellar
velocity and stellar velocity dispersion maps, respectively. The
effects of dust on the spectra of galaxies are especially important
in the context of merging galaxies. For instance, nearly all ultra-
luminous infrared galaxies (ULIRGs, LIR> 1012Le) are dust-
dominated major mergers, with buried starburst or AGNs (e.g.,
Veilleux et al. 2002; Tacconi et al. 2008). While the galaxies in
this simulation suite are not ULIRGs, they still showcase
kinematic effects, due to the presence of dust. For instance, the
NONSCATTER maps tend to underestimate the velocity

18
When we initially began this investigation, we found that there was a small

error in the public version of SUNRISE that affected the shape of computed
emission and absorption lines (C. Hayward & R. Simons 2021, private
communication). This error in SUNRISE occurs when kinematic shifts are
applied to emission and absorption lines during the dust scattering stage, and
therefore applies only to SCATTER spectra generated from dust RT with
kinematics. We were able to locate and fix the bug prior to running the
production-run SUNRISE simulations for this paper.
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dispersion relative to that of the SCATTER maps. This is apparent

in the fourth panel of Figure 19, which has a significant number

of spaxels with negative values, indicating that the SCATTER

dispersion map has larger values. In addition, the difference

is apparent for the majority of spaxels in the galaxy, which

could indicate that dust is important on the galaxy scale. The

NONSCATTER and SCATTER velocity maps also differ.

The stars in the disk have higher rotational velocities for the

SCATTER extension, meaning that dust may be obscuring

the slower-rotating dynamically young population. We run the

classification with both SCATTER and NONSCATTER

extensions, finding that both the individual predictors and the

classification change significantly (in terms of both the selected

predictors and their coefficients); we therefore conclude that the

effects of dust are important in terms of stellar kinematics.

Previous works have investigated the effects of dust in

SUNRISE spectra in depth. Stickley and Canalizo (2016)

compared measurements of the stellar velocity dispersion

(mσ*, from the GADGET-3 particle velocities) to the

SCATTER version of the SUNRISE spectra ( fσ*), finding

that the offset between the two measurements can be as large as

20%–30% for isolated galaxies, and as large as 100% for

extreme cases, such as actively merging systems with disturbed

morphologies. They conclude that when comparing observa-

tions to simulations, it is important to measure flux-weighted

kinematics, and to incorporate dust. The dust acts to

preferentially obscure younger stars, elevating measurements

of fσ* relative to mσ*. Stickley and Canalizo (2016) also found

that the distribution of the dust is more important than the total

attenuation due to dust. For the case of merging galaxies, this

Figure 18. A comparison of the stellar velocity (top row) and velocity dispersion maps (bottom row) for an example galaxy snapshot from the q0.5_fg0.3 merger. We
include the r-band image for this snapshot (without observational effects, top left panel). The GADGET-3 particle velocity and velocity dispersion map are shown in
the middle left column, the kinematic maps derived from the NONSCATTER SUNRISE spectra in the middle right column, and the kinematic maps from the
SCATTER SUNRISE spectra in the right column. The NONSCATTER and SCATTER kinematic have undergone all steps to achieve mock MaNGA observations,
while the GADGET-3 derived maps have only been convolved and rebinned. Additionally, the GADGET-3 maps are a mass-weighted quantity, while all others are
flux-weighted. The differences between the maps can therefore be ascribed to these effects, in addition to the effects of radiative transfer and the proper treatment of
dust. The NONSCATTER and SCATTER velocity and velocity dispersion maps have significantly larger values, which is especially apparent in the center of the
velocity dispersion maps. The SCATTER maps have larger values at all locations relative to the NONSCATTER maps; this points to the importance of the proper
treatment of dust when creating mock stellar kinematic maps.

Figure 19. Difference maps for the stellar velocity (first and second panels) and stellar velocity dispersion maps (third and fourth panels). We show the difference
between the particle and NONSCATTER maps, and the SCATTER and NONSCATTER maps. The particle velocity map has a faster rotating core (first panel) and a
lower central velocity dispersion (third panel) relative to the NONSCATTER maps, which are both characteristic beam-smearing effects. The SCATTER maps are
faster rotating, and have a larger velocity dispersion across the galaxy disk, which could be due to dust preferentially obscuring dynamically young stars.
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message is particularly relevant; the effects of dust on merger
kinematics cannot be ignored.

We conclude with two points: (1) The kinematic maps
derived from particle velocities are similar to the SUNRISE-
derived kinematic maps, indicating that the technique for
creating mock stellar kinematic maps is not failing, and (2) The
kinematic maps have important differences, occurring over the
course of RT, the proper treatment of dust, and the subsequent
mock observational steps. While we do not fully propagate the
particle kinematic maps through the LDA, we find that they are
significantly different in appearance from the RT’ed maps, and
that the derived kinematic predictors are also affected. This
confirms that in order to apply the classification to observed
galaxies, we need to train the classification using galaxies that
have undergone RT, are flux-weighted, and incorporate
observational effects. It is beyond the scope of this paper to
conduct a full analysis as regards which steps of the RT and
subsequent ppxf derivation of the kinematic maps are of
greatest importance in creating realistic galaxies, and why.

Appendix B
Creating a Mock Noise Spectrum

In order to create realistic mock data cubes, we also create a
mock noise data cube for each snapshot. For an IFS data cube,
the typical noise trends with wavelength, and so we first

measure the median inverse noise (1/σ, or ivar ) trend for the
central spaxel of 20 MaNGA galaxies (Figure 20). These 20
galaxies are composed of four randomly selected galaxies from
each of the five fiber bundles.19 We test how the 1/σ spectrum
changes for the location of the spaxel relative to the center of
the galaxy, finding that there is more variation (in the shape of

the 1/σ spectrum) between different galaxies than that found in
terms of location in the galaxy. We therefore compute the
median 1/σ spectrum using the central spaxel for all 20
MaNGA galaxies.
To compute the noise spectrum for each spaxel, we multiply

the normalized 1/σ trend with wavelength by the g-band S/N
of that spaxel, so as to determine how S/N trends with
wavelength. We then divide the mock spectra for each spaxel
by the S/N trend with wavelength for that spaxel to get the
error (or σ) spectrum. Finally, we multiply the error spectrum
by a random normal Gaussian, with a mean of zero and a
standard deviation of one. This is the “realization” of the noise
for that spaxel. We add the realization of the noise to the
spectrum, and use the error spectrum as an input to ppxf.

Appendix C
AGN Contamination

The framework for the simulation suite was originally created in
Blecha et al. (2018) to determine the timeline of the activation and
fueling of AGNs during mergers. It therefore contains broad line
AGNs, which can complicate the fitting of stellar kinematics.
While all of the simulations include AGNs, the q0.5_fg0.3
simulation hosts the brightest AGN, so we focus on this simulation
to describe the effects of a BL AGN on the stellar kinematics.
The AGN in the q0.5_fg0.3 simulation achieves a maximum
bolometric luminosity of LAGN= 1046.3 erg s−1, representing 90%
of the total luminosity. The duty cycle is short for moderate and
high luminosity AGNs; the AGN dominates the spectra for
<50Myr. Therefore, even in the q0.5_fg0.3 simulation, the AGN
luminosity is subdominant for the majority of snapshots, even
during the late stage of the merger.
Most MaNGA galaxies do not host AGNs, so the MaNGA

DAP is not equipped to mask broad emission lines, and
therefore fails to fit the stellar absorption lines. Bright AGNs in
MaNGA galaxies are often masked by the DAP fitting
procedure, leaving a hole at the center of the galaxy in the
stellar kinematic maps. We demonstrate this type of failure in
the middle row of Figure 21 for the snapshot of the q0.5_fg0.3

Figure 20. Trend of inverse noise (1/σ, or ivar ) with wavelength for the central spaxel of 20 MaNGA galaxies (color lines). The normalized median trend is black.
The largest variation occurs from galaxy to galaxy, as opposed to spaxel-to-spaxel; as such, we take the average 1/σ spectrum (black) to use as our characteristic 1/σ,
which we scale to the flux of each simulated spaxel to produce an error spectrum.

19
To verify whether the randomly selected galaxies constitute a fair

representation of the MaNGA sample, we compare the average ivar spectrum in
Figure 20 with the average ivar spectra, computed as a function of stellar mass.
We find that the shape of the ivar spectrum varies little below a stellar mass of
log M* ∼ 11, and that the average spectrum presented in Figure 20 is
representative of the ivar spectra of the majority of MaNGA galaxies below this
mass cutoff.
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simulation with the largest contribution from AGN emission.
When the AGN continuum is strong, and the emission lines are
broad, which is the case for 3–4 (out of 20 total) snapshots in
the q0.5_fg0.3 simulation, the DAP produces velocity and
velocity dispersion values of 1000 km s−1, which is the
artificial convergence of ppxf on the maximum allowed
values. These values are then masked.

Since our eventual scientific goals include investigating
AGN fueling in mergers, we aim to include galaxies with broad
line AGN in the analysis. We therefore explore a variety of
options for removing the AGN contamination. One approach to
remove AGN contamination is to determine the PSF of the
AGN, subtract this from the data cube, and then fit the stellar
kinematics. A different approach is to modify ppxf to fit

broader emission lines. We find that determining the AGN PSF
is nontrivial, and can lead to over-subtraction of continuum
light, and as such we pursue the alternate approach, modifying
ppxf to fit broad emission lines. This approach could also be
applied to MaNGA, to fit the stellar kinematics of broad
line AGNs.
We modify our ppxf fitting procedure to include a step

where we use the “ELPEXT” emission line mask to mask all of
the emission lines. We experiment with fitting these emission
line masks to galaxies with no broad lines, and we find that the
returned velocity maps match those maps without an emission
line mask, so we use this procedure for all mock data cubes,
rather than only those dominated by AGN light. We rerun the
q0.5_fg0.3 simulation with the AGN turned off in order to

Figure 21. Stellar velocity (left) and stellar velocity dispersion (right) maps for a snapshot of the q0.5_fg0.3 simulation with an AGN. This specific viewpoint and
snapshot has the largest contribution from AGN emission, and therefore showcases the most extreme example of the effects of contamination in the stellar kinematic
maps by AGN emission. We present the kinematics from the snapshot with the AGN turned off in the top row, followed by the AGN turned on in the middle row, and
the AGN turned on with our modified masking procedure in the bottom row. When the AGN light is not removed, and no emission line mask is used (middle row),
ppxf is unable to accurately fit the absorption lines in areas contaminated by AGN light, for both velocity and velocity dispersion. These snapshots are not reliable for
the extraction of the kinematic predictors. When we mask the emission lines (bottom row), the kinematic predictors are slightly affected. However, this effect is only
significant for a few snapshots, so the LDA classification is unaffected by the slight difference between the masked emission lines and the run with the AGN emission
turned off.

31

The Astrophysical Journal, 912:45 (35pp), 2021 May 1 Nevin et al.



verify the success of our approach, and we present the results in
Figure 21. We “turn the AGN off” by removing the AGN
contribution to the spectrum and re-running the RT (we still
include dust absorption and scattering). The GADGET-3
output is unchanged, meaning that we do not remove BH
accretion and feedback from the simulated galaxy. The
modified version of ppxf produces similar velocity and
velocity dispersion maps to the simulation with the AGN
turned off. In Figure 21, we demonstrate that for a few
snapshots where the AGN emission is strongest, the velocity
dispersion is elevated at the location of the AGN. A full
multiwavelength subtraction of the PSF would be necessary to
totally eliminate this effect.

The kinematic predictors measured from the maps where the
AGN is off are consistent in most cases with those measured
with the modified emission line mask, indicating that the
classification does not change significantly, with or without
AGN emission. The exception is those kinematic predictors
that trace the properties of the velocity dispersion map, such as
μ1,σ, μ2,σ, and |μ3,σ|. These predictors all increase, because the
velocity dispersion distribution has higher values from the
AGN region, resulting in a larger mean, variance, and skew in
the velocity dispersion distribution. The lRe value also
increases in the presence of a bright face-on AGN, because
lRe is a flux-weighted measurement, far more sensitive to the
enhanced velocities in the region of the BL AGN. These
predictors are significantly elevated in the presence of an AGN
only in the case where the AGN is very bright and face-on.
This occurs for ∼3 snapshots out of 20 total snapshots, and the
AGN is only face-on for one of the seven viewpoints,
amounting to 3/140 data points. We show one example of
dominant AGN emission in Figure 21. These snapshots are
already classified as merging when the AGN is off, so while
their LD1 value is slightly increased in the presence of an
AGN, their classification is unchanged. We can conclude that
the AGN alone does not determine the classification, and that it
plays a small role for only a few snapshots. In future work, we
plan to examine galaxies with significant AGN emission more
closely (this will be a small fraction of the MaNGA sample), to
determine whether the effects of AGN emission are capable of
affecting the classification.

In N19, we did not consider AGN contamination, meaning
that the imaging side of the technique is developed with the
AGNs present. Since we did not remove the AGNs from
the N19 analysis, they may be enhancing the r-band
concentration of the gas-rich major mergers. However, the
most important predictors in relation to gas-rich major mergers
are asymmetry-based, indicating that the classification relies
more on the lower surface brightness features of the major
mergers, and is not dominated by the central AGN light.

Appendix D
Predictors Not Selected by the RFR

Here, we continue the description of kinematic predictors
discussed in Section 2.3, i.e., those not selected by the LDA,
and therefore not introduced previously. In other words, here
we describe predictors that are not as important for identifying
mergers: A, vasym, σasym, ΔxV, and Δxσ.

In Section 2.3 we define the Radon Transform and Radon
profile. Here, we describe how we determine the kinematic
center of the galaxy using these as tools, and define the A
predictor. We follow the procedure of Stark et al. (2018) in

determining the galaxy’s kinematic center. We use the
photometric center as the initial input, but find that the
photometric center is not always the same as the kinematic
center. Since an incorrect kinematic center can cause variations
in the calculation of the Radon Transform, we first determine
the kinematic center using the Radon profile, and then extract
the kinematic predictors using this kinematic center. The
kinematic center is the location where the weighted kinematic
asymmetry (A) is minimized, i.e., the asymmetry in the

estimated q̂ values, measured from the bounded Absolute
Radon Transform. The A predictor is defined as
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where N0,0 is the number of values at the photometric center.
We iteratively measure A in a 3× 3 spaxel grid, centered on

the photometric center, and select the spaxel with the lowest
value as the kinematic center, while taking the minimized A
value as our A predictor for each snapshot. If the spaxel with
the lowest value of A is consistent, within errors, with the
photometric center, we select the photometric center as the
kinematic center. If the spaxel with the lowest value is on the
edge of the spaxel grid, we expand the grid by a factor of 2, and
rerun the determination of the kinematic center.
If the kinematic center is again at the edge of the grid, we do

not expand the grid, but take the photometric center as the
kinematic center. In this case, the kinematic center is not well-
determined, often due to a disorganized velocity map, so the
photometric center is a fair estimate of the kinematic center. In
Stark et al. (2018), galaxies where the kinematic center is not
well-determined are eliminated from the analysis, but in this
case, a large fraction of galaxies have disordered kinematics, so
we include them in the analysis, using the photometric center as
the kinematic center.
We ultimately find that A is highly correlated with A2, and is

therefore superfluous to the analysis. As a result, it is rejected
during the RFR step.
We measure the vasym and σasym predictors using kine-

metry, previously introduced in Section 2.3. Our goal with
these predictors is to quantify the chaotic velocity patterns
expected for interacting systems in the velocity and velocity
dispersion maps, using the degree of kinematic asymmetries
from the kinemetry output. The kinemetry output
includes the An and Bn coefficients from the harmonic
expansion of the best-fitting ellipses for each ellipse. From
these, we calculate the amplitude and phase coefficients (kn and
fn)

20:

( )= +k A B D3n n n
2 2

20
We do not explicitly apply a flux weighting for the calculation of the phase

coefficients, as in Krajnović et al. (2011). However, we do use an uncertainty
weighting in the kinemetry fitting, which indirectly incorporates a flux
weighting. In addition, kinemetry uses adaptively sized annuli (which
increase in size with radius), which already emphasizes the high flux inner
regions of the galaxy.
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The higher order An and Bn terms represent deviations from
an ideal rotating disk. We quantify these perturbations with
vasym and σasym, which are measured from the kn amplitude
coefficients of the model velocity and velocity dispersion maps,
respectively (Krajnovic et al. 2006; Shapiro et al. 2008;
Bellocchi et al. 2016; Hung et al. 2016):
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where the expression is averaged over all radii, r. The

amplitude coefficients, kn,v, are summed and averaged for the

n higher order moments. We exclude the k1,v term from the

calculation of vasym, since it represents radial outflow, which is

not associated with stars (Shapiro et al. 2008). We normalize

vasym by the circular velocity term, and σasym by the A0 term,

which is the amplitude of the velocity dispersion maps, as in

Krajnovic et al. (2006). The vasym and σasym predictors increase

for disordered velocities and velocity dispersions.
We define Δxσ as the difference in spatial position between

the centroid of the galaxy in r-band imaging, and the centroid
of the galaxy’s velocity dispersion map. We determine the
centroid (from both the r-band image and the velocity
dispersion) by applying a 10× 10 pixel low-pass filter,
thresholding, and then identifying the center of the brightest
contour. We refer to the physical distance (in kpc) between the
centroid of the r-band image and the centroid of the velocity
dispersion map as Δxσ. We use a physical distance, as opposed
to a spaxel distance, in order to avoid a sensitivity to galaxy
redshift. We also measure ΔxV, which is the difference (in kpc)
between the centroid of the galaxy in r-band imaging and the
kinematic center.

Appendix E
LDA Stability: Is the Training Set Biased?

Here, we interrogate the biases of our simulation suite. We
are specifically interested in two questions:

1. Are we justified in directly comparing the classifications
from the different simulations of mergers?

2. Is the classification cheating? In other words, are the
merging and nonmerging galaxies biased in a way that
allows the classification to identify mergers using
nuisance parameters?

First, we tackle the validity of comparing different simula-
tions. We find that the LDA differs significantly for the
different merger simulations, both in terms of performance, and
in the selected predictors. We want to ensure that this is a
reflection of the physical properties of the stellar kinematics in
these different mergers, and not merely a reflection of irrelevant
differences in the data set. For instance, the classification
from the q0.2_fg0.3_BT0.2 simulation has a significantly
lower accuracy than any other simulation, including the
q0.1_fg0.3_BT0.2 simulation, which we would naively expect
to have the lowest accuracy. Could this be a result of the
q0.2_fg0.3_BT0.2 simulation having fewer data points than
any other simulation? We randomly discard data from all
simulations so that they are limited to the same amount of data

as the q0.2_fg0.3_BT0.2 simulation. We find that both the
performance and the selected predictors for all runs are stable
when we decrease the number of simulated snapshots, which
indicates that the number of snapshots is not biasing the
classification.
Secondly, we carefully examine the properties of the isolated

galaxies, relative to the merging galaxies, for each simulation.
This is known as the between-class bias of the classification.
Our concern is that differences between the merging and
nonmerging populations (i.e., trends with inclination or size)
may affect the kinematic predictors. For instance, we find that
the isolated snapshots tend to be larger in size and slightly more
face-on, relative to the nonmerging population, for all
simulations. Since it is known that properties such as
inclination can significantly affect the observed stellar kine-
matics, we want to ensure that the classification is not relying
upon the underlying properties of the galaxies in order to cheat
in its classification of merging galaxies. This could happen if,
for instance, the nonmerging galaxies are more face-on, and
therefore the kinematic predictors are picking up on this
property, as opposed to features relating to the mergers
themselves. We have chosen a relatively transparent classifica-
tion method, so we can use our interpretation of the individual
predictors to diagnose whether or not between-class bias is a
concern.
The first line of logic we use to prove that the between-class

bias is not significant is the interpretation of the important
predictors throughout Section 4. The most important predictors
track features that can be associated with merging galaxies. In
addition, the sensitivity of the method changes with time,
meaning that the kinematic features are not long-lived, as one
might expect from a classification relying mainly on inclination
or size effects, which do not change dramatically over time in a
merger.
We also investigate between-class bias by directly introdu-

cing suspicious galaxy properties into the analysis. For
instance, we expect that if the classification is instead tied to
inclination or size, the kinematic predictors would be correlated
with these quantities, and therefore the LDA would depend
most strongly on inclination or size. To test whether this is the
case, we introduce several parameters that quantify size and
inclination into the LDA as “nuisance” predictors, so as to
determine whether they are important. We use the galaxy
ellipticity (ò), the number of spaxels in the velocity map, and
the effective radius, Re, of each galaxy as proxies for
inclination, apparent size, and physical size, respectively. We
expect these nuisance predictors to be important predictors if
the merging and nonmerging galaxies are significantly
unbalanced in those properties measured by the nuisance
predictors. We find that the nuisance predictors are only
selected for a few simulations, and when they are selected, they
are far less important than the leading terms. Therefore, we
conclude that the other predictors are not masquerading as
proxies for these properties, and that the isolated galaxies are
not significantly biased relative to the merging galaxies.
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