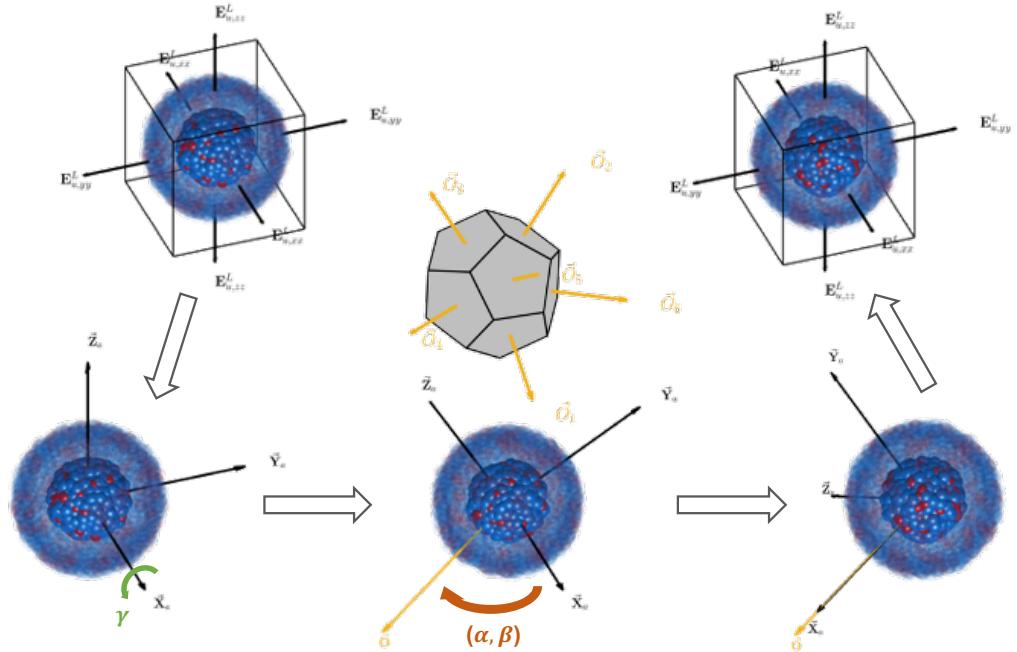


Graphical Abstract

Predicting Plastic Events and Quantifying the Local Yield Surface in 3D Model Glasses

Dihui Ruan, Sylvain Patinet, Michael L. Falk



Highlights

Predicting Plastic Events and Quantifying the Local Yield Surface in 3D Model Glasses

Dihui Ruan, Sylvain Patinet, Michael L. Falk

- The local yield stress method is proven to be predictive to the plasticity in 3D glasses, and at the meanwhile, to be scalable to much larger samples compared to other computational predictors.
- The optimal probing region size of the local yield stress method is approached by optimization on the predictivity in plasticity as well as the extreme value distribution indicating the size of shear transformation zones.
- Quantifying The local yield surface in 3D opens up the window for studying the anisotropy of the local plasticity intriguing to the community of solid mechanics.

Predicting Plastic Events and Quantifying the Local Yield Surface in 3D Model Glasses

Dihui Ruan^a, Sylvain Patinet^b, Michael L. Falk^{a,c,d}

^a*Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, 21093, Maryland, USA*

^b*PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, 7 quai St Bernard, Paris, 75005, , France*

^c*Department of Mechanical Engineering, and Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, 21093, Maryland, USA*

^d*Hopkins Extreme Materials Institute, Johns Hopkins University, 3400 North Charles Street, Baltimore, 21093, Maryland, USA*

Abstract

By applying the local yield stress (LYS) method to probe local regions of three-dimensional computational glass models, we confirm high correlations between the measured local yield stress ($\Delta\tau_c$) and the plastic events when the parameterization of the method is properly optimized. The optimal probing region for this system is found to be $\sim 5\sigma$ in radius, where σ represents the Lennard-Jones length scale, approximately the atomic size. The averaged correlation remains positive through the first 200 identified plastic events or 1/3 of the yielding strain ($\sim 7\%$). Here we apply only the local probing that aligns perfectly with the loading on the boundary. The LYS measurements converge to a Weibull distribution with a minimum $\Delta\tau_c$ indistinguishable from zero at larger probing region radii. Analysis of the data in light of an assumption that $\Delta\tau_c$ is a local quantity that obeys extreme value statistics above a critical length scale bounds the exponent of the underlying distribution of $\Delta\tau_c$ to lie between 1.26 and 1.71. A thorough investigation of the anisotropy of the local yield surface at the location of the first plastic event indicates that the first triggered region does not align perfectly with the loading on the boundary, but is well-predicted by projecting the shear applied at the boundary onto the local yield surface. This implies that the

*Authors have no competing interests, and MLF is the corresponding author.

Email address: mfalk@jhu.edu (Michael L. Falk)

correlation between the local yield stress prediction and the resulting plasticity may be enhanced by performing a more complete assessment of the local yield surface at each sample point.

Keywords: Plasticity, Local Yield Stress, Shear Transformation Zone, Amorphous Solids, Athermal Quasi-static Method

PACS: 0000, 1111

2000 MSC: 0000, 1111

1. Introduction

The detailed micro-mechanism of the mechanical response under an elasto-plastic deformation in amorphous materials remains poorly characterized relative to their crystalline counterparts in which dislocations can be well specified.[1, 2, 3, 4]. Falk and Langer[5] postulated a shear transformation zone (STZ) model in which preexisting defects corresponding to local clusters of atoms/molecules rearrange cooperatively and irreversibly during plastic flow. This STZ concept has been incorporated into constitutive equations for describing elastoplastic behaviors [6, 7, 8, 9, 10, 11, 12, 13, 14] as well as into discrete models of amorphous plastic response[15, 16]. The existence of such defects in amorphous solids has been supported by experimental studies[17, 18, 19, 20] and atomic simulations[21, 22, 23, 24] in various types of glasses.

Researchers have been keenly interested in how one might accurately locate and characterize such 'flow-defects', and in doing so have measured the correlation of plastic events with a variety of proposed structurally derived predictors.[25] These predictors range from trivial structural parameters such as local density[26], atomic potential energy[22, 13], and short-range order[23, 27, 28], through more complex metrics obtained via machine learning[29, 30], quantification of local excitations induced by linear[31, 32, 33, 34] or nonlinear[35, 36] vibrational modes, by probing activation via the minimal energy path[37, 38], and by measurement of local elastic moduli[39, 40, 41]. Such simulations require a sample sufficiently large to resolve multiple individual STZs. Most of these investigations considered two-dimensional glasses consisting of $\sim 10,000$ atoms. Few analyses in three-dimensional glasses have been performed at comparable length scales, as this requires million-atom simulations prepared by quenching a liquid sufficiently slowly to produce a glass stable enough to compare with

29 experiments.[27, 28, 34, 29, 30]

30 In the context of the above indicators, Patinet *et al.* [42, 43] developed
31 the local yield stress (LYS) method in which local regions are sheared at
32 a particular length scale and loading orientation until yielding is triggered.
33 By measuring the incremental stress to yield, the LYS method provides a
34 direct measurement of elastoplastic response. High correlations have been
35 observed between low local yield stresses and the sites where plastic events
36 are observed during subsequent shear simulations of the material as a whole.
37 A recent comparison found that this method ranks highly among a large
38 number of structural indicators in 2D glassy samples, and performs best
39 amongst these comparators in deeply quenched glasses, those modeled sam-
40 ples most comparable to as-quenched glasses produced in laboratory and
41 industrial processes.[25] The LYS framework also quantifies atomistic data
42 in ways that clearly relate to the yield surface, a continuum concept criti-
43 cal for understanding plasticity at the macro-scale [44, 45]. Characterizing
44 larger 3D glasses has presented a challenge for diagonalization-based methods
45 such as the identification of 'soft' spots in Reference [33]. Recent advances
46 have provided more efficient ways to explore low-frequency modes to locate
47 STZs, but comprehensive characterization of a material using such methods
48 remains a challenge [46]. The computational expense for the LYS method
49 scales with the system size as $\mathcal{O}(N)$ making it applicable to these larger
50 three-dimensional systems.

51 Here we apply the LYS method to measure spatial variations in the in-
52 cremental stress to yield ($\Delta\tau_c$) along a single local probing determined by
53 a strain tensor. The resulting measurements of $\Delta\tau_c$ exhibit a correlation
54 with the locations of the local plastic events produced by a similarly oriented
55 strain applied at the boundary. The correlation persists until about 1/3 of
56 the yielding strain when undertaken at the optimal length scale, $\sim 5\sigma$ (atomic
57 diameters) in radius.

58 Variation in the local probing strain is also examined at the location of
59 the first identified plastic event. These data indicate that the triaxiality,
60 orientation, rotation, and sign of the resulting plastic event aligns well with
61 what one would infer from the measured local yield surface, but does not
62 exactly correspond with the strain applied at the boundary. This suggests
63 that the correlation of $\Delta\tau_c$ with the observed plastic events would improve if
64 the entire local yield stress surface, rather than only the value of $\Delta\tau_c$ along
65 the direction of the applied shear, were to be characterized throughout the
66 material.

67 **2. Sample Preparation**

68 We perform molecular dynamics (MD) simulations to prepare three inde-
69 pendent Kob-Andersen (KA)[47] binary Lennard-Jones (LJ) glasses within
70 the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
71 environment[48]. In each sample, 1,000,000 atoms are simulated in a cubic
72 simulation box with periodic boundary conditions along the x, y and z axes.
73 The system is comprised of 80% large atoms (A) and 20% small atoms (B).
74 We apply a smoothed 6-12 Lennard-Jones(LJ) potential[49] field to quantify
75 the interatomic interactions.

76 According to a prior study by Shi and Falk[24], shear bands only arise
77 during deformation in KA glasses prepared with relatively low quenching
78 rates. To focus on KA glasses susceptible to strain localization, we follow the
79 same preparation procedure to melt and equilibrate the initial configuration
80 at a reservoir temperature $T = 0.87\epsilon/k_B$ under an external pressure $P =$
81 $8.5\epsilon/\sigma^3$, and we then cool this melt to $T = 0.03\epsilon/k_B$ while releasing the
82 pressure to $P = 0\epsilon/\sigma^3$ linearly over a duration of $2000t_0$ using a Nose-Hoover
83 thermostat[50, 51] and Parrinello-Rahman barostat[52]. We verify that the
84 difference in the potential energy per atom at the as-quenched state between
85 our samples and the corresponding KA glasses in Reference [24] results from
86 our choice of the smoothed LJ potential and the difference in the aspect ratio
87 of the box dimension. Minimization of the energy via a conjugate gradient
88 scheme[53] under zero pressure conditions is undertaken until achieving the
89 convergence of the total force norm of the whole system. This is followed
90 by a second force minimization with constrained volume for studying the
91 athermal mechanical response at zero temperature. The final box dimension
92 of these three KA glasses is approximately $93.4\sigma \times 93.4\sigma \times 93.4\sigma$, where x and
93 y dimensions are comparable to those of the 2D systems previously studied
94 by the local yield stress method[43, 42]. The configurations of all 3 glasses
95 can be found on Johns Hopkins University Data Archive[54].

96 **3. Three-Dimensional Local Yield Stresses**

97 *3.1. 3D Local Yield Stress Method*

98 Patinet *et al.* developed the local yield stress (LYS) method in Reference
99 [42] based upon the assumption that plastic events in amorphous solids occur
100 as localized rearrangements located at STZs[5]. In the LYS method, local
101 regions of atoms are sheared to the point of mechanical instability identified

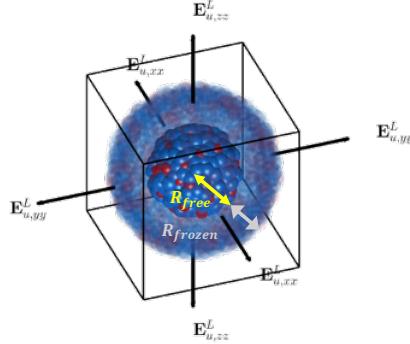


Figure 1: Schematics of a spherical region of atoms cut from the simulation box for local probing in a 3D binary glass with large (blue) and small (red) particles. The atoms in transparency form a shell of the core atoms shown in solid color. R_{free} and R_{frozen} are labeled by arrows in yellow and grey respectively. The black arrows denote the loading on the local boundary in Eq.6.

102 by a stress drop, and the incremental stress required to reach the yielding
 103 point is recorded as the local yield stress ($\Delta\tau_c$). A low value of $\Delta\tau_c$ indicates
 104 relative high susceptibility to plasticity. In our three-dimensional LYS anal-
 105 yses, spherical regions of atoms within a radius $R_{free} + R_{frozen}$ are probed
 106 by the athermal quasi-static (AQS) method[55, 56, 39, 57, 58, 59] within
 107 the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
 108 environment[48]. The atoms in the inner core with radius R_{free} are referred
 109 to as the 'free' atoms, and the atoms in the outer shell with thickness R_{frozen}
 110 are referred to as the 'frozen' atoms, as is shown in Figure 1. At each incre-
 111 ment of loading, the 'frozen' atoms are deformed affinely with respect to the
 112 probing strain, and the 'free' atoms bounded by the 'frozen' shell undergo
 113 static relaxation into the nearest mechanically stable configuration using a
 114 conjugate gradient method[53]. R_{frozen} is set to be 5σ , twice the smoothed
 115 LJ potential cutoff radius $r_{out} = 2.5\sigma$, to include all relevant neighbor atoms
 116 for the 'free' atoms.

117 An increment of local loading $\Delta\mathbf{E}^L$ with a constant volume can be written
 118 in terms of a strain step magnitude Δe^L multiplied by a unit local strain
 119 tensor \mathbf{E}_u^L as

$$\Delta\mathbf{E}^L = \Delta e^L \mathbf{E}_u^L. \quad (1)$$

120 The projected stress τ_p is defined as

$$\tau_p = \mathbf{S}^L : \mathbf{E}_u^L, \quad (2)$$

121 where \mathbf{S}^L is the stress tensor of the local 'free' region. In the athermal
122 limit[60, 61, 62, 63], the virial contribution of atom i can be computed as a
123 tensor

$$\Phi_i = \frac{1}{2} \sum_{j \neq i}^{N_p} \left(\vec{r}_{ij} \otimes \vec{f}_{ij} \right), \quad (3)$$

124 in which atom j is one of N_p atoms within the pairwise potential cutoff radius
125 from atom i . The displacement vector $\vec{r}_{ij} = \vec{r}_j - \vec{r}_i$ represents the interatomic
126 displacement, and \vec{f}_{ij} represents the force exerted on atom i from atom j .
127 \mathbf{S}^L can then be estimated by dividing the sum of the virial contributions Φ_i
128 from the N_{free} atoms in the free region by its volume as

$$\mathbf{S}^L \approx \frac{3}{4\pi R_{free}^3} \sum_{i=1}^{N_{free}} \Phi_i. \quad (4)$$

129 The projected stress τ_p is used to identify whether the response to an incre-
130 mental strain is elastic or if, rather, an instability has been triggered. The
131 stress tensor at the point when a stress drop is detected will be referred to as
132 the onset stress \mathbf{S}_{onset}^L . This stress is used to calculate the local yield stress
133 $\Delta\tau_c$ given by

$$\Delta\tau_c = (\mathbf{S}_{onset}^L - \mathbf{S}_0^L) : \mathbf{E}_u^L, \quad (5)$$

134 where \mathbf{S}_0^L is the initial stress state of the local region before any probing. It
135 is important to note that due to the residual stresses present in glasses, the
136 elements in tensor \mathbf{S}_0^L are typically not equal to zero. Since undertaking the
137 local yield stress analysis in 3D is computationally demanding, we initially
138 limit our investigation to the case where \mathbf{E}_u^L is chosen to be a pure shear
139 loading as

$$\mathbf{E}_u^L = \frac{\sqrt{2}}{2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}. \quad (6)$$

140 To impose strain, equal tension and compression are applied along the x axis
141 and the y axis while zero strain is imposed along the z axis, as illustrated in
142 Figure 1. This plane strain boundary condition is comparable to the prior
143 study on the 2D local yield stress method in Reference [42] and [43].

Table 1: Table of initial force tolerance F_{tol}^0 , strain step Δe^L , and final force tolerance F_{tol} settings at each R_{free} . *: Δe^L (10^{-6}) is the smallest strain step achievable computationally given the available resources.

$R_{free}(\sigma)$	$F_{tol}^0(\epsilon/\sigma)$	Δe^L	$F_{tol}(\epsilon/\sigma)$
2.5	2×10^{-11}	10^{-4}	10^{-6}
3.75	3×10^{-11}	10^{-4}	10^{-6}
5	4×10^{-11}	10^{-5}	10^{-6}
7.5	8×10^{-11}	$10^{-6}*_{}$	10^{-6}
10	2×10^{-10}	$10^{-6}*_{}$	10^{-6}

144 *3.2. Parameterization*

145 The LYS method involves probing local regions with respect to a local
 146 unit strain tensor \mathbf{E}_u^L and measuring the incremental stress required to induce
 147 a local instability. There are three parameters playing important roles in
 148 computing the local yield stress $\Delta\tau_c$: the force tolerance F_{tol} that sets the
 149 accuracy of force minimization when relaxing the 'free' atoms, the strain
 150 step Δe^L that controls the magnitude of each increment of loading, and the
 151 characteristic length R_{free} that determines the size of locally probed regions.
 152 The optimal values of these three parameters are not independent of each
 153 other. For instance, for larger R_{free} values, more atoms may participate
 154 in the plastic rearrangement, and the higher number of degrees of freedom
 155 necessitates a smaller strain step Δe^L .[58]

156 In Table 1, we list the parameters that are obtained from a series of
 157 convergence studies that we have undertaken to optimize the parameters. All
 158 the convergence studies are executed on sampling regions centered on evenly
 159 spaced $2 \times 2 \times 2$ grids extracted from the binary LJ glass samples described
 160 in **Materials and Methods**. For each listed R_{free} between 2.5σ and 10σ ,
 161 an initial force tolerance F_{tol}^0 is chosen by sampling the convergence of the
 162 force norm when probing a very small strain 10^{-7} . Local yields stresses ($\Delta\tau_c$)
 163 are computed at various strain steps Δe^L , and these results are compared
 164 with the results using the smallest Δe^L (10^{-6}) we could achieve within our
 165 computational limitations. We choose the largest strain step Δe^L that results
 166 in a relative difference in $\Delta\tau_c \leq 1\%$ or we choose 10^{-6} , as noted in Table
 167 1. With Δe^L set, we raise the values of F_{tol} to enhance the computational
 168 efficiency in the 3D LYS method. The final F_{tol} settings are determined by
 169 converging the computed $\Delta\tau_c$ with various F_{tol} values to be within $\leq 1\%$ of

170 the results using F_{tol}^0 . We are able to raise the final F_{tol} values to 10^{-6} among
 171 all the R_{free} values without significantly affecting the results.

172 *3.3. Distribution and Scaling*

173 In order to uniformly sample the material response, local yield stresses
 174 ($\Delta\tau_c$) are computed in probing regions centered on evenly spaced grid points
 175 throughout the simulation box instead of probing regions centered on each
 176 atom as had been done in prior 2D studies[42]. The distance between grid
 177 points d_{sample} is chosen as $\sim 10\sigma$ to approach a set of $10 \times 10 \times 10$ samples
 178 in each Kob-Anderson (KA)[47] glass. From these samples, we are able to
 179 compute the distribution of $\Delta\tau_c$ in a representative manner. The distribu-
 180 tions of local yield stress ($\Delta\tau_c$) with R_{free} from 2.5σ to 10σ are plotted in
 181 the inset of Figure 2(a). As was observed in the prior 2D studies[42, 43],
 182 increasing R_{free} results in more sampling regions yielding at lower $\Delta\tau_c$, and
 183 the peaks of these probability density functions (P_d) shift toward lower $\Delta\tau_c$
 184 values with heavier low-end tails. This is consistent with our expectation
 185 that yielding behavior is controlled by the easiest to yield STZ in the sam-
 186 pling region. If we consider yield to be a local phenomenon, such that STZs
 187 are independent above a critical length scale (R_{free}^c), larger regions are ex-
 188 pected to incorporate more STZs, and their $\Delta\tau_c$ should be lower on average
 189 than that of smaller regions that contain fewer STZs. If we assume that the
 190 observed yield stress is determined by the STZ with the lowest yield stress
 191 in the region, $\Delta\tau_c$ of a larger region is the minimum $\Delta\tau_c$ of all the included
 192 regions.

193 To test this assumption of 'isolated' local yield regions, we compare these
 194 distributions to the 'Extreme Value Distribution' (EVD)[64], which catego-
 195 rizes the distribution of maxima or minima of random variables. Since $\Delta\tau_c$
 196 is defined to be non-negative, minima of sampled $\Delta\tau_c$ values are expected to
 197 result in a Weibull distribution when sampled at a length scale sufficiently
 198 larger than the scale on which distinct sub-regions would be independent.[65]
 199 For sufficiently large sampling regions, the probability density function (P_d)
 200 and cumulative distribution function (P_c) are therefore expected to be given
 201 by

$$P_d(\Delta\tau_c|a, b) = \frac{b}{a} \left(\frac{\Delta\tau_c}{a} \right)^{b-1} \exp \left[- \left(\frac{\Delta\tau_c}{a} \right)^b \right], \quad (7)$$

202 and

$$P_c(\Delta\tau_c|a,b) = 1 - \exp\left[-\left(\frac{\Delta\tau_c}{a}\right)^b\right], \quad (8)$$

203 where a is the scale parameter, and b is the shape parameter. As is presented
204 in Figure 2(c), the scale parameter a is observed to decrease with increasing
205 R_{free} corresponding to a lower mean when a larger local region is probed.
206 Here, the shape parameter $b > 1$ indicates that the instantaneous 'yield rate'

$$M(\Delta\tau_c|a,b) = \frac{P_d(\Delta\tau_c)}{1 - P_c(\Delta\tau_c)} = \frac{b}{a} \left(\frac{\Delta\tau_c}{a}\right)^{b-1}, \quad (9)$$

207 the number of yield events per unit stress, increases with $\Delta\tau_c$.[66]

208 The fitted Weibull distributions are plotted as dot-dashed lines on top of
209 the measured $\Delta\tau_c$ distributions in the main plot of Figure 2(a). Also, the
210 corresponding cumulative distributions (P_c) of $\Delta\tau_c$ are presented in the inset
211 of Figure 2(b). In the main plot of Figure 2(b), the cumulative distributions
212 of $\Delta\tau_c$ are normalized by the two fitting parameters a and b in terms of
213 $\ln[-\ln(1 - P_c)]/b + \ln a$ and are then plotted versus $\ln\tau_y$ after being shifted
214 by the corresponding mode. Combining the above plots, we notice that
215 the distributions of $\Delta\tau_c$ align with the Weibull distribution for larger R_{free}
216 values. More specifically, the density distribution functions in Figure 2(a)
217 with $R_{free} = 7.5\sigma$ and 10σ are significantly Weibull-like. Therefore, the
218 underlying distribution of $\Delta\tau_c$ at some critical length with R_{free}^c under 7.5σ
219 is inferred to behave like a power-law distribution in the limit of $\Delta\tau_c \rightarrow 0$.[67]

220 Close inspection of the data taken with R_{free} from 2.5σ to 3.75σ , reveals
221 that the lower-value tails in their probability density functions are heavier
222 than what would be expected in an underlying distribution that would lead
223 to a Weibull distribution. These distributions discontinuously drop to zero
224 below a relatively high threshold, as shown in the main plot of Figure 2(a).
225 We believe this indicates that lower $\Delta\tau_c$ values can't be accurately mea-
226 sured due to the limitations that the boundary constraints impose on local
227 rearrangements within smaller regions. In comparison, the smooth $\Delta\tau_c$ dis-
228 tribution at $R_{free} = 5\sigma$ behaves like a power-law distribution as $\Delta\tau_c \rightarrow 0$.
229 As we should expect, this distribution doesn't converge to a Weibull distri-
230 bution since each probing region is too small to include a statistical number
231 of independent STZs. We expect the characteristic length R_{free}^c of the un-
232 derlying distribution is between 3.75σ and 5σ , and that 5σ is the closest to
233 R_{free}^c among all the R_{free} values measured here. By this reasoning, we can

234 bound b^* , the exponent of the power law of the underlying $\Delta\tau_c$ distribution
 235 at R_{free}^c when $\Delta\tau_c \rightarrow 0$, to be greater than 1.26 as shown by the slope of
 236 the log-log distribution at the lower end when $R_{free} = 5\sigma$ in Figure 2(a). If
 237 we could measure larger and larger R_{free} values, the shape parameter b used
 238 to fit the Weibull distribution to the data in Figure 2(d) should converge to
 239 b^* . [67] Since the value of b^* is expected to be lower than the b from the fitted
 240 Weibull distribution with $R_{free} = 10\sigma$, we can bound b^* to be less than 1.71
 241 according to Figure 2(d).

242 Based on the derivation of the extreme value statistics, the mean $\Delta\tau_c$
 243 when probing larger regions whose size is far above the critical length R_{free}^c
 244 can be related to the cumulative distribution P_c^* in terms of N , the number
 245 of STZs in the probing region as [67]

$$\langle \Delta\tau_c \rangle = P_c^{*-1} \left(\frac{1}{N+1} \right). \quad (10)$$

246 If we suppose R_{free}^c to be 5σ , $N(R_{free} = 7.5\sigma) \approx 11$ and $N(R_{free} = 10\sigma) \approx 47$
 247 accordingly. While we intuitively expect that $N \propto R_{free}^3$, this is not consis-
 248 tent with the above two R_{free} values, indicating that we are not at sufficiently
 249 large R_{free} values to have fully converged to the Weibull distribution, or that
 250 the distribution at 5σ is not sufficiently close to the underlying distribution
 251 for this analysis to be viable.

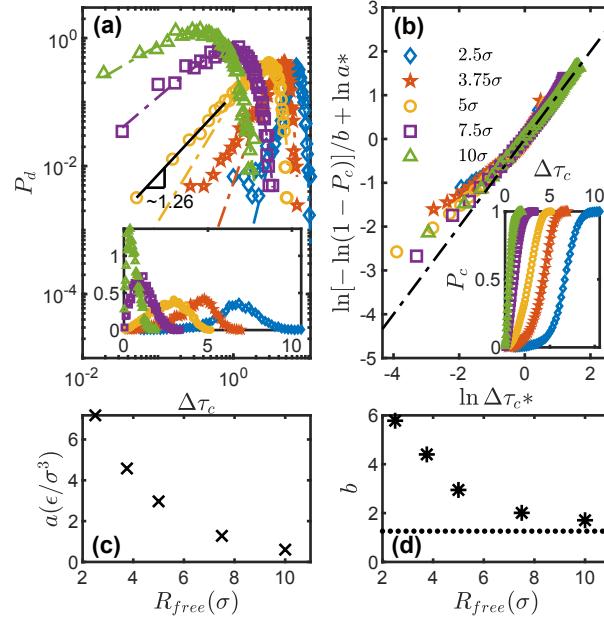


Figure 2: Local yield stress ($\Delta\tau_c$) distributions with $R_{free}=2.5\sigma(\diamond)$, $3.75\sigma(\star)$, $5\sigma(\circ)$, $7.5\sigma(\square)$, and $10\sigma(\triangle)$. (a) Log-log plot of $\Delta\tau_c$ probability density function (P_d). Dot-dashed lines denote Weibull distribution fits (Eq.7). The black solid line denotes the slope of the log-log distribution at $\Delta\tau_c \rightarrow 0$ with $R_{free} = 5\sigma$. Inset: linear-linear plot of the probability density function of $\Delta\tau_c$. (b) Scaled plot of the normalized cumulative distribution function of $\Delta\tau_c$, where the dot-dashed line denotes for a linear guideline extrapolated from $\Delta\tau_c$ distribution with $R_{free} = 10\sigma$. *: The curves are shifted by their corresponding modes. Inset: the cumulative distribution of $\Delta\tau_c$. Plot of (c) the scale parameter a (\times) and (d) the shape parameter b ($*$) from the Weibull distribution fits in Figure 2 versus R_{free} . The dotted line in (d) denotes the lower bound for b to converge with extremely large R_{free} . The original data in this figure can be found on Johns Hopkins University Data Archive[54].

252 4. Locating Plastic Events

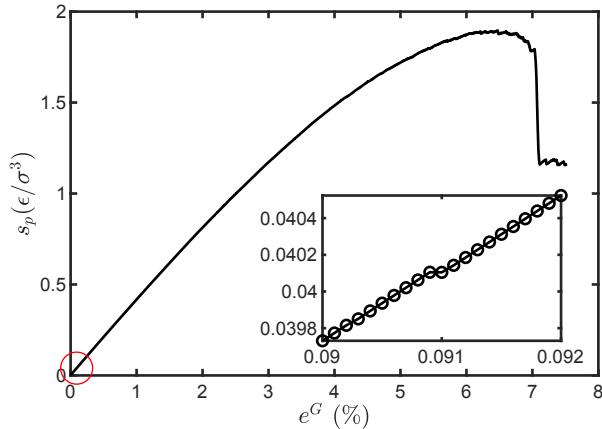


Figure 3: Stress-strain response for the AQS deformation with a strain step $\Delta e^G = 10^{-6}$ on one KA glass. The inset is the zoom-in view of the circled region in the main plot, where the first plastic event is identified. The original data of the stress-strain response for all 3 independent glasses can be found on Johns Hopkins University Data Archive[54].

253 To identify the series of plastic events that arise during loading, the sim-
 254 ulation box is deformed via the AQS method within the LAMMPS environ-
 255 ment. The AQS method affinely deforms the simulation box as all atoms
 256 are statically relaxed to a mechanically equilibrated state at each strain step.
 257 Here, the conjugate gradient method is deployed to minimize the forces dur-
 258 ing the relaxation. The load on the boundary is applied in the same manner
 259 as the locally-probed deformation described by Eq.6. At each strain step
 260 applied on the boundary (Δe^G), a projected stress for the simulation box
 261 (s_p) is recorded to characterize the stress-strain response,

$$s_p = \mathbf{S}^G : \mathbf{E}_u^G, \quad (11)$$

262 where \mathbf{E}_u^G denotes the unit global strain tensor. The stress tensor of the
 263 system $\mathbf{S}^G = \frac{1}{V} \sum_{i=1}^N \Phi_i$, where V is the volume of the simulation box and
 264 N is the total number of atoms in the system. A plastic event is identi-
 265 fied by each instance in which the stress (i.e., s_p) decreases. These 3D KA
 266 glasses exhibit a discontinuous drop in the stress due to strain localization

267 at approximately 7% strain with strain step 10^{-6} , as is indicated in Figure 3.
268 Due to the relatively large size of these 3D systems, many plastic events are
269 triggered during deformation. This makes the serrations difficult to resolve
270 by eye, in contrast to the obvious fluctuations in some previously studied
271 2D glasses[43]. The inset presents the first identified plastic event with a
272 stress drop of $\sim 5.30 \times 10^{-7} \epsilon/\sigma^3$ and a triggering strain of $\sim 0.091\%$. As was
273 noted in Reference [68], the identified plastic events depend on the strain
274 step. This means that smaller and smaller plastic events are observed to
275 occur at smaller and smaller strain as the strain step is decreased. Due to
276 computational limitations, it is not possible to converge Δe^G to determine
277 if there is a 'true' first plastic event in our prepared glasses with 1,000,000
278 atoms, and answering that question is not the objective of this work. Rather
279 we assume that the strain step determines the resolution at which we are able
280 to sample plastic rearrangements during deformation of the simulation box.
281 We apply the loading on the boundary with the smallest strain step which
282 is computationally affordable (10^{-7}) until the first stress drop in an effort
283 to characterize the smallest length scale at which 3D Hooke's law behavior
284 is recovered. For testing the predictivity of the LYS method, consecutive
285 plastic events are sampled every 10^{-6} strain.

286 5. Deviation from Hooke's Law

287 In determining the the region size set by R_{free} , the local yield stress
288 method assumes that Hooke's law is valid at this length scale. An evaluation
289 of the consistency of local material response with Hooke's law should thus
290 set a lower bound on R_{free} in computing the local yield stresses ($\Delta\tau_c$). Here,
291 we adopt the methodology developed by Tsamados *et al.*[39] to estimate the
292 deviation from linear elasticity at a given length scale. The whole simulation
293 box is deformed in increments of 10^{-7} strain. The virial contribution at each
294 atom (Eq.3) is computed both at the initial as-quenched state ($\Phi_{i,0}^G$) and
295 at the first onset of instability ($\Phi_{i,y}^G$), defined as the configuration prior to
296 the first stress drop (at $0.012 \pm 0.007\%$). Instead of applying a Gaussian
297 windowing function as in Reference [39], we sum these local contributions
298 from N_H atoms within the sampling radius R_H , to remain consistent with
299 the uniform contributions from the 'free' atoms when computing the local

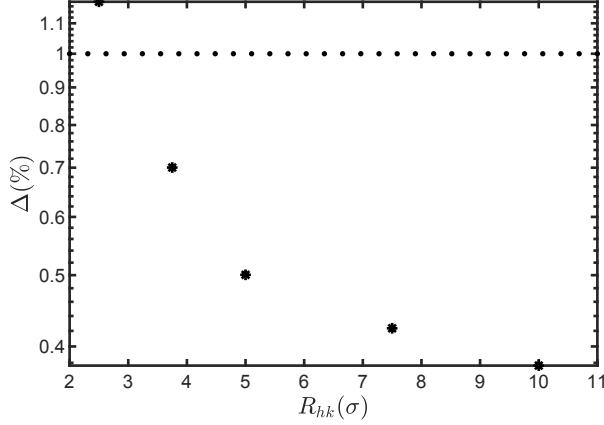


Figure 4: Log-linear plot of deviation from 3D Hooke's law versus averaging radius R_H . The standard errors are negligible compared with the size of the markers. The dotted line is the guideline for 1%.

300 yield stress ($\Delta\tau_c$). The stress change in this region is then approximated by

$$\mathbf{S}_{i,R_H}^G = \frac{3}{4\pi R_H^3} \sum_j^{N_H} (\Phi_{j,y}^G - \Phi_{j,0}^G). \quad (12)$$

301 By comparing the above two configurations, the atomic strain tensor cen-
 302 tered at each atom is calculated with varying cutoff radii R_H according to
 303 References [5] and [69] using the OVITO open visualization tool[70]. A de-
 304 formation gradient tensor \mathbf{F}_i is computed by minimizing

$$\sum_{j=1}^{N_H} |\vec{r}_{ij,0} \mathbf{F}_i - \vec{r}_{ij,y}|^2, \quad (13)$$

305 where $\vec{r}_{ij,0}$ and $\vec{r}_{ij,y}$ are displacement vectors between atom j and i in the
 306 unstrained state and at the onset of instability respectively.[69] It follows
 307 that

$$\mathbf{F}_i = \left(\sum_{j=1}^{N_H} \vec{r}_{ij,0} \otimes \vec{r}_{ij,0} \right)^{-1} \left(\sum_{j=1}^{N_H} \vec{r}_{ij,0} \otimes \vec{r}_{ij,y} \right). \quad (14)$$

308 The resulting atomic strain tensor centered at atom i is then calculated as

$$\mathbf{E}_{i,R_H}^G = \frac{1}{2} (\mathbf{F}_i^T \mathbf{F}_i - \mathbf{I}). \quad (15)$$

309 Consider the generalized 3D Hooke's law in Voigt notation

$$\tilde{\mathbf{S}} = \tilde{\mathbf{C}} \tilde{\mathbf{E}} \quad (16)$$

310 where, for instance, s_{xx} in $\tilde{\mathbf{S}}$ and e_{xx} in $\tilde{\mathbf{E}}$ represent for the stress and strain
 311 components along x direction on the yz plane, and c_{ijkl} in $\tilde{\mathbf{C}}$ denotes one of
 312 the 21 nonzero elastic constants from a 4th order elastic-moduli tensor. To
 313 solve for these 21 unknowns in the stiffness matrix, 21 linear equations must
 314 be generated from 4 independent deformations. The resulting solution is, in
 315 general, overdetermined. We apply the least-squares method[71] to optimize
 316 the 21 elastic moduli numerically. Preset bounds on the solutions are applied
 317 with regards to the bulk stiffness matrix of the whole system computed from
 318 LAMMPS.

319 We then perform 11 independent deformations on the simulation box with
 320 the unit strain tensor

$$\mathbf{E}_u^G = \frac{\sqrt{2\psi^2 - 4\psi + 8}}{\psi^2 - 2\psi + 4} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{\psi}{2} - 1 & 0 \\ 0 & 0 & -\frac{\psi}{2} \end{bmatrix}, \quad (17)$$

321 in which triaxiality $\psi = 0, 0.1, 0.2, 0.3, \dots, 1$. For an atom i , the deformations
 322 with ψ ranging from 0.1 to 1 overdetermine the elastic constants in Eq.16.
 323 The length scale dependence of the overdetermined elastic constants is as-
 324 sessed by varying R_H from 2.5 to 10σ . At $\psi = 0$, an estimated stress tensor
 325 $\tilde{\mathbf{S}}_{i,R_H}^{G'}$ (in Voigt notation) is calculated by substituting the solved stiffness
 326 matrix and the strain tensor into Eq.16. Then $\tilde{\mathbf{S}}_{i,R_H}^{G'}$ is compared with the
 327 directly computed stress tensor $\tilde{\mathbf{S}}_{i,R_H}^G$ (in Voigt notation) from LAMMPS
 328 and its deviation is quantified by the relative root mean square as

$$\Delta_{i,R_H} = \sqrt{\frac{\|\tilde{\mathbf{S}}_{i,R_H}^{G'} - \tilde{\mathbf{S}}_{i,R_H}^G\|^2}{6 \|\tilde{\mathbf{S}}_{i,R_H}^G\|^2}}. \quad (18)$$

329 In Figure 4, the mean deviation averaged among all the atoms are plotted
 330 against the averaging radius R_H . If we choose the threshold for elastic be-
 331 havior to be $\leq 1\%$ as in Reference [39], then the 3D Hooke's law is valid at a
 332 length scale R_H above 2.5σ , which can thus serve as the lower limit of R_{free}
 333 for the local yield stress method in the 3D glasses.

334 **6. Correlation between $\Delta\tau_c$ and Plastic Events**

335 Next, we would like to assess the degree of correlation of the localized
 336 plasticity with the local yield stress, and in doing so determine an optimal
 337 length scale for R_{free} . We consider multiple plastic events obtained by shear-
 338 ing with strain steps $\Delta e^G = 10^{-6}$. Each plastic event is identified by a stress
 339 (s_p) drop, and the yield point is recorded as the last configuration prior to
 340 instability. Considering two consecutive events, the end of the former event
 341 also serves as the reference point of the subsequent event, which is identified
 342 as the last configuration prior to a stress (s_p) increase after a relaxation.
 343 We locate the triggered plastic rearrangement and characterize its nature by
 344 comparing the configuration after relaxation to the configuration at the yield
 345 point. These two configurations are denoted by subscripts e , for end, and
 346 y , for yield, respectively. At each atom, the deviation from affinity D_{min}^2 is
 347 calculated as

$$D_{min,i}^2 = \sum_{j=1}^{N_{cut}} |\vec{r}_{ij,y} \mathbf{F}_i - \vec{r}_{ij,e}|^2, \quad (19)$$

348 where, we solve for \mathbf{F}_i as described in Eq.14. N_{cut} is the number of neighbor
 349 atoms within a cutoff radius 2.5σ [5] to the center atom i . At the N th plastic
 350 event, the local yield stress $\Delta\tau_c$ is computed centered at atom a_N with the
 351 maximum value of D_{min}^2 in the as-quenched configuration, and then this
 352 $\Delta\tau_{c,a_N}$ is compared with the distribution of $\Delta\tau_c$ above. To be consistent with
 353 the prior studies in the 2D LYS method[43, 42], we quantify the correlation
 354 as

$$C_N = 1 - 2P_c(\Delta\tau_{c,a_N}), \quad (20)$$

355 where P_c is the cumulative distribution function of $\Delta\tau_c$.

356 For the first 200 identified plastic events, the correlation averaged over
 357 every 20 plastic events in 3 independent KA glasses is plotted against the
 358 number of the plastic event in Figure 5(a). The corresponding total average
 359 with each R_{free} is presented in Figure 5(b). The local yield stress ($\Delta\tau_c$)
 360 computed for $R_{free} = 5\sigma$ exhibits the highest total averaged correlation with
 361 the plastic events. The mean correlation with $R_{free} = 5\sigma$ remains positive
 362 through $\sim 2.5\%$ strain, about $1/3$ of the yielding strain. The correlation of
 363 the first plastic event is shown separately by the solid markers in Figure 5(a),
 364 and these correlations decay rapidly with the number of plastic events with
 365 larger R_{free} values. The predictivity of the local yield stress method in 3D
 366 appears reasonably good in this preliminary study in which we consider only

367 the local probing that perfectly aligns with the deformation imposed at the
368 box boundary. This optimal $R_{free} \sim 5\sigma$ is consistent with the length scale of
369 the prior study in the 2D LYS method[43, 42], but the corresponding volume
370 is significantly more substantial with $600 \sim 700$ atoms in each probing region
371 in 3D.

372 We note that there exist some negative correlations in Figure 5(a) and
373 (b). As discussed in the previous 2D LYS studies[43], the LYS measurements
374 using larger values of R_{free} fail to account for the secondary STZs because
375 their signature is obscured by other nearby low yield-stress STZs. In other
376 words, spatial resolution is lost by increasing local patch size. This leads to
377 rapid decay in the correlation at higher strains. The fact that off-axis rear-
378 rangements were not probed is also expected to result in the over-estimation
379 on the local yield stress ($\Delta\tau_c$).

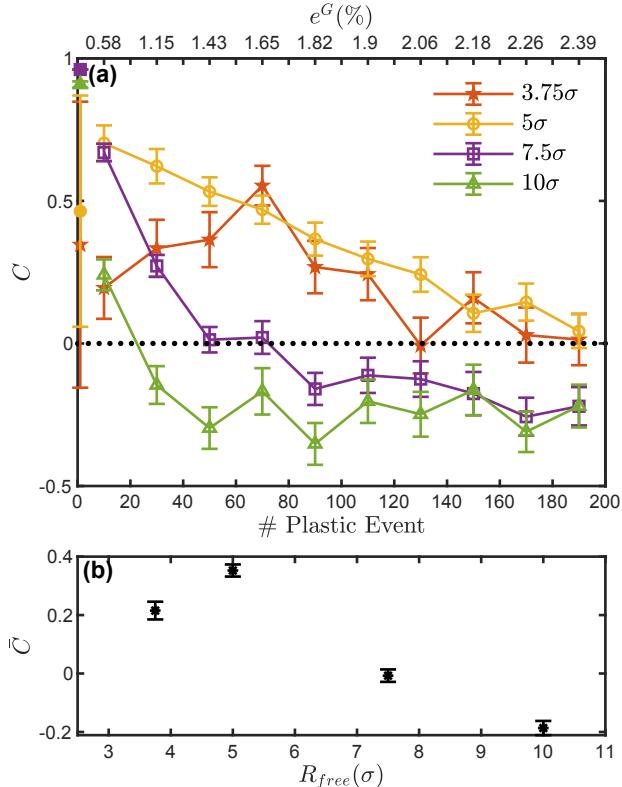


Figure 5: (a) Plot of correlation from Eq.20 versus the N th plastic event with $3.75\sigma(\star)$, $5\sigma(\circ)$, $7.5\sigma(\square)$, and $10\sigma(\triangle)$. The hollow markers denote data points averaged over every 20 plastic events for 3 independent KA glasses. The 4 solid markers denote the mean correlation over the 3 glasses at the 1st plastic event. The standard errors are presented by the errorbars. The upper x-axis marks the corresponding triggering strain for each averaged correlation. The dotted line works as a guidance for $C = 0$. (b) Plot of the correlation averaged over all the plastic events in Subplot (a) versus R_{free} , with standard errors denoted by errorbars. The correlation with $R_{free}=2.5\sigma$ is excluded due to its relatively large deviation from Hooke's law (see Figure 4).

380 7. Variation in Orientation, Rotation and Triaxiality

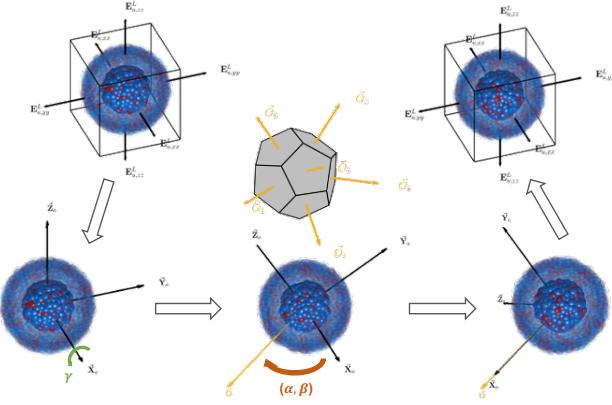


Figure 6: Schematics of rotating and probing a local region. The 'frozen' atoms in transparency form a shell of the core 'free' atoms shown in solid color. The black arrows on the local boundary denote the loading given by E_u^L in Eq.22 before (upper left) and after (upper right) the rotation. $(\vec{X}_a, \vec{Y}_a, \vec{Z}_a)$ represents for the coordinate system of the atoms rotating about \vec{X}_a counter-clockwise with angle γ (green arrows) and then aligning \vec{X}_a with a direction \vec{O} (yellow arrows). \vec{O} (yellow arrows) is sampled with respect to the face norms in a regular dodecahedron in the middle.

381 We expect that the local yield stress ($\Delta\tau_c$) is anisotropic in glasses. To ex-
 382 plore this anisotropy, we vary the local probing and explore the $\Delta\tau_c$ yield sur-
 383 face in a representative and efficient way. For this purpose, we transform \mathbf{E}_u^L
 384 to a rotated unit strain \mathbf{E}_u^{L*} by applying the rotation matrix $\mathbf{R}(\vec{O}(\alpha, \beta), \gamma)$

$$\mathbf{E}_u^{L*} = \mathbf{R}^T(\vec{O}(\alpha, \beta), \gamma) \mathbf{E}_u^L \mathbf{R}(\vec{O}(\alpha, \beta), \gamma). \quad (21)$$

385 In order to maintain an orthogonal simulation box, we rotate the atoms in
 386 the local region such that the principal axes of \mathbf{E}_u^L align with the basis vec-
 387 tors that define the simulation box, illustrated in Figure 6. $\mathbf{R}(\vec{O}(\alpha, \beta), \gamma)$
 388 represents the general rotation tensor expressed as a function of \vec{O} , an arbi-
 389 trary unit vector with which the x axis is brought into alignment, specified
 390 in terms of (α, β) , a polar and an azimuthal angle respectively, and γ , an
 391 angle that describes a prior rotation about the x axis. To sample \vec{O} evenly
 392 in 3D, we utilize the face norms of a regular dodecahedron. The resulting

393 rotation is illustrated in Figure 6. The atoms within the cut-out sphere are
 394 first rotated by an angle γ counterclockwise about \vec{X}_a that is then rotated
 395 to align with a direction \vec{O} . After the rotation operation is applied on the
 396 atoms, a loading \mathbf{E}_u^L is imposed on the local boundary. The deformation
 397 imposed on the principal axes may be expressed in terms of triaxiality ψ as

$$\mathbf{E}_u^L = \frac{\omega \sqrt{2\psi^2 - 4\psi + 8}}{\psi^2 - 2\psi + 4} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{\psi}{2} - 1 & 0 \\ 0 & 0 & -\frac{\psi}{2} \end{bmatrix}, \quad (22)$$

398 where, $\omega = -1$ (compression) or $+1$ (tension). ψ ranges from 0 to 1 inclusively,
 399 and in doing so determines the symmetry of the loading. If $\psi = 0$,

$$\mathbf{E}_u^L = \frac{\omega \sqrt{2}}{2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad (23)$$

400 and a uniaxial loading strain is thus applied. With zero strain along z axis,
 401 this plane strain deformation recovers the local probing studied in the prior
 402 work regarding the two-dimensional LYS method[42, 43]. As ψ increases to
 403 1,

$$\mathbf{E}_u^L = \frac{\omega \sqrt{6}}{2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & 0 \\ 0 & 0 & -\frac{1}{2} \end{bmatrix}, \quad (24)$$

404 resulting in a biaxial loading that is symmetric about the x axis.

405 For the sake of a preliminary study regarding the anisotropy of the local
 406 yield stress ($\Delta\tau_c$), we focus on the region centered around the single atom
 407 with the most dramatic plastic rearrangement as characterized by D_{min}^2 from
 408 Eq.19 applied to the first plastic event identified in Figure 3 during the
 409 deformation of a 3D KA glass. When computing $\Delta\tau_c$, we choose $R_{free} = 5\sigma$
 410 as the optimal length scale in the LYS method. Then we systematically vary
 411 the triaxiality ψ to take the values 0, 0.2, 0.4, 0.6, 0.8, and 1.0. At each
 412 ψ , we consider 6 orientation directions of $\vec{O}(\alpha, \beta)$ as shown in the middle of
 413 Figure 6. For each $\vec{O}(\alpha, \beta)$, the rotation angle γ is set to be $0^\circ, 30^\circ, 60^\circ, 90^\circ,$
 414 120° , and 150° .

415 In Figure 7, the calculated local yield stresses ($\Delta\tau_c$) are presented in a
 416 series of 2D plots with variation in rotation (γ), orientation (\vec{O}), triaxiality
 417 (ψ) and loading direction (ω). Each plot corresponds to a chosen set of ψ
 418 and \vec{O} , and the resulting $\Delta\tau_c$ from both compressive and tensile loadings is
 419 plotted for each value of γ . As expected, the projection must be a circle when
 420 $\psi = 1$ since \mathbf{E}_u^L in Eq.24 is symmetric about the x axis. As ψ decreases to 0
 421 (from right to left), $\Delta\tau_c$ loses this symmetry. The resulting $\Delta\tau_c$ projections
 422 from both loading directions ($\omega = -1, +1$) are consistent in their elongation,
 423 and it is generally the case that the compressive $\Delta\tau_c$ is slightly larger in
 424 magnitude than its corresponding tensile $\Delta\tau_c$, particularly for larger values
 425 of ψ .

426 In previous sections, the deformation on the box boundary given by \mathbf{E}_u^G
 427 is identical to the shear of the local probing used to analyze the local value of
 428 $\Delta\tau_c$ given by \mathbf{E}_u^L . Here, we are able to cross-compare the propensity for the
 429 applied global loading to trigger the local yield stresses ($\Delta\tau_c$) measured along
 430 multiple probing directions, projecting each $\Delta\tau_c$ along the applied loading
 431 direction by calculating

$$432 \quad f_p^2 = \mathbf{E}_u^{L*} : \mathbf{E}_u^G, \quad (25)$$

$$433 \quad p_f = \frac{f_p^2}{|f_p^2|} \sqrt{|f_p^2|}, \quad (26)$$

434 such that the projected local yield stress is expressed as

$$435 \quad \Delta\tau_y = \frac{\Delta\tau_c}{p_f}. \quad (27)$$

436 If $\mathbf{E}_u^{L*} = \mathbf{E}_u^G$, then $p_f = 1$ and the deformation on the box boundary aligns
 437 perfectly with the local probing when computing $\Delta\tau_c$. This is the case for
 438 our results in the previous sections. If $0 < p_f < 1$, the stress along \mathbf{E}_u^G must
 439 be greater than $\Delta\tau_c$ itself in order to trigger the same local rearrangement
 440 probed by \mathbf{E}_u^{L*} . If $p_f < 0$, it indicates that the loading via \mathbf{E}_u^G contributes
 441 in the opposite direction as that applied during the local probing \mathbf{E}_u^{L*} . This
 442 should indicate that it is impossible to trigger such a rearrangement by ap-
 443 pllying this \mathbf{E}_u^G .

444 The projected local yield stresses ($\Delta\tau_y$) along \mathbf{E}_u^G in Eq.11 are mapped in
 445 Figure 8 with the same presentation as in Figure 7. Due to the fact that $\Delta\tau_y$
 446 varies over a very large range, from $-20\epsilon/\sigma^3$ to $20\epsilon/\sigma^3$ after being scaled by
 447 p_f in Eq.27, we only present the resultant $\Delta\tau_c$ with \vec{O}_1 corresponding to the

446 1st row in Figure 7, which are found to be generally lower in magnitude than
 447 those in other orientation directions. With all negative $\Delta\tau_y$ values neglected,
 448 all subplots are scaled to a radius of $5\epsilon/\sigma^3$. The minimum positive $\Delta\tau_y$ along
 449 all other \vec{O} orientations is indicated by black dotted circles as a reference in
 450 each plot. The black crosses label the five smallest positive $\Delta\tau_y$ values. The
 451 $\Delta\tau_y$ locally probed with \mathbf{E}_u^L in Eq.6 ranks as the 4th least in its value. This
 452 \mathbf{E}_u^L aligns perfectly with \mathbf{E}_u^G in the prior section, and the difference from the
 453 lowest $\Delta\tau_y$ is $\sim 8\%$ and is small in comparison to the highest level of the $\Delta\tau_y$
 454 scale, $20\epsilon/\sigma^3$. This indicates that the easiest-to-trigger local rearrangement
 455 doesn't necessarily align with the loading imposed at the boundary, and the
 456 difference between the two appears to predominantly associated with the
 457 triaxiality ψ .

458 We are also curious to compare the triaxiality ψ of the corresponding
 459 local rearrangement centered at this targeted atom when applying \mathbf{E}_u^G on the
 460 boundary. The atomic strain with averaging radius 5σ is computed according
 461 to Eq.15 by comparing the yielding configuration with the initial state. This
 462 strain tensor is an 'average' over the probing region, and this can be compared
 463 to the local probing presented by the effective unit strain tensor \mathbf{E}_u^{L*} in Eq.21
 464 after normalization. Accordingly, the eigenvalues of the normalized atomic
 465 strain tensor are then compared to \mathbf{E}_u^L in Eq.22 and the resulting value of
 466 ψ is 0.465. This value falls between $\psi = 0.4$ and $\psi = 0.6$ which correspond
 467 to the 2nd and the 1st lowest $\Delta\tau_y$ marked in Figure 8. In addition, the
 468 p_f between the probing \mathbf{E}_u^{L*} and the above averaged atomic strain yields
 469 ~ 0.938 for the minimal $\Delta\tau_y$ higher than $p_f \sim 0.896$ found for the $\Delta\tau_y$
 470 when the local regions are probed aligning perfectly with the loading on the
 471 boundary (the 4th lowest). This high degree of correspondence indicates
 472 that the triggered local plastic event isn't necessarily in alignment with the
 473 loading on the boundary, but, rather the local arrangement could be well
 474 predicted by the minimum $\Delta\tau_y$ from the local yield surface. The correlation
 475 might be improved if a more complete range of local probing were undertaken
 476 at each sampling point, particularly with respect to the triaxiality ψ .

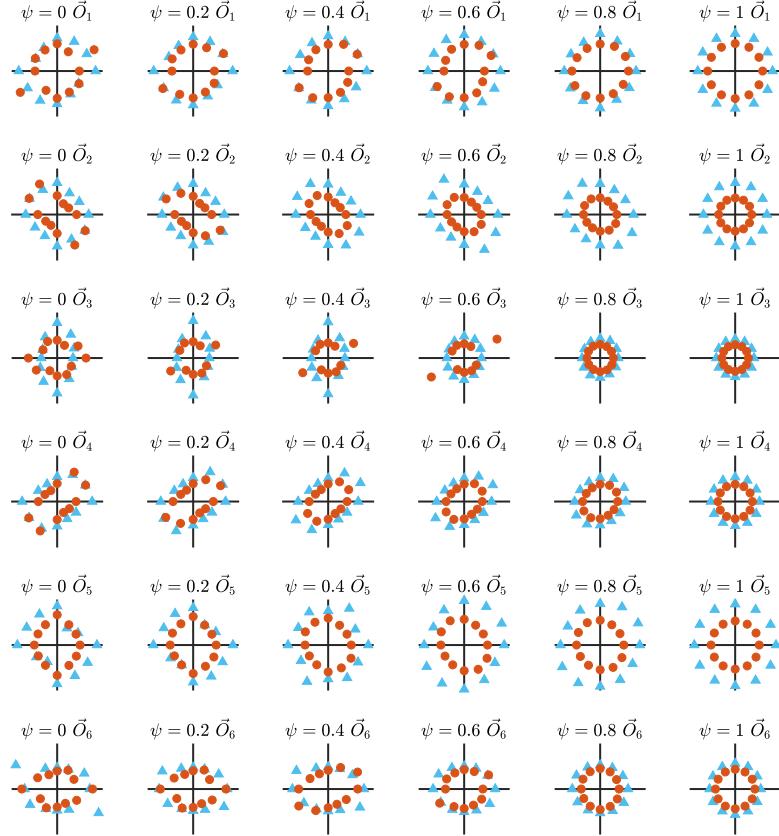


Figure 7: $\Delta\tau_c$ with variation in triaxiality ψ horizontally and orientation \vec{O} vertically. In each subplot, rotation angle γ is plotted as the angle counterclockwise from the horizontal axis pointing to the right, and the magnitude of $\Delta\tau_c$ is represented by the distance from the origin. Blue \triangle and red \circ denote the results for $\omega = -1$ and $+1$ in Eq.22 respectively. All subplots are scaled with the limits of the axes as $5\epsilon/\sigma^3$. The original data can be found on Johns Hopkins University Data Archive[54].

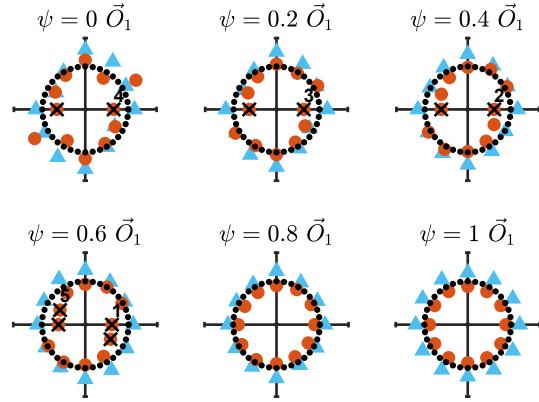


Figure 8: Projected local yield stress ($\Delta\tau_y$) calculated by Eq.25 to 27 with \mathbf{E}_u^G in Eq.11. Only $\Delta\tau_y$ with \vec{O}_1 is plotted corresponding to the 1st row in Figure 7. Black crosses mark the five lowest values of $\Delta\tau_y$ s with labeling 1 next to the smallest value. The black dotted circle labels the magnitude of the minimum $\Delta\tau_y$ among all other \vec{O} orientations as a reference in each plot. All subplots are scaled with the limits of the axes as $5\epsilon/\sigma^3$. The original data can be found on Johns Hopkins University Data Archive[54].

477 **8. Conclusions**

478 By applying the local yield stress (LYS) method to a computational model
479 of a three-dimensional glass and varying the local probing over a range of
480 triaxialities (ψ), orientations ($\vec{O}(\alpha, \beta)$), rotations (γ), and directions (ω), we
481 are able to obtain a sense of the complexity of the response of the glass
482 microstructure when subjected to shear. We note that the optimal length
483 scale for this analysis (approximately 5 atomic diameters in radius) is just
484 above the smallest length scale at which the 3D Hooke's law remains valid,
485 as was the case in 2D, although significantly more atoms reside within the
486 resulting probing region (600-700 atoms) due to the higher dimensionality.
487 When we are limited to probing at a shear identical to the loading on the
488 boundary, the mean correlation after noise reduction persists through the
489 first 200 identified plastic events or 1/3 the yielding strain ($\sim 7\%$). The
490 local yield stress surface is significantly anisotropic. And the projected local
491 yield stresses ($\Delta\tau_y$) with respect to the loading on the boundary does a very
492 good job of predicting the sense of the shear at the first yield event. It is
493 thus anticipated that the correlation of the yield stress analysis might be
494 improved by characterizing the entire yield surface, rather than only the
495 shear commensurate with that applied at the boundary, on each sampling
496 point.

497 **9. Acknowledgements**

498 We would like to dedicate this work to Dr. Mark O. Robbins for his
499 valuable advice and his mentorship over many, many years. Although Mark
500 is no longer with us, his wisdom and passion towards scientific research will
501 continue to inspire people who have known and communicated with him.
502 We also would like to thank Dr. Bin Xu for sharing his experiences on the
503 parameterization for the computational predictors and the presentations of
504 multi-dimensional data. All the computations in this paper were performed
505 at the Maryland Advanced Research Computing Center (MARCC). This
506 project is supported by National Science Foundation(NSF) under Award No.
507 DMR-1910066/1909733.

508 **Appendix A. Sample Preparation**

509 In each sample, 1,000,000 atoms are simulated in a cubic simulation box
510 with periodic boundary conditions along the x, y and z axes. The system

511 is comprised of 80% large atoms (A) and 20% small atoms (B). We apply
 512 a smoothed 6-12 Lennard-Jones(LJ) potential to quantify the interatomic
 513 interactions as follows[43]:

514 When $r \leq r_{in}$,

$$U_{\alpha\beta}(r) = 4\epsilon_{\alpha\beta} \left[\left(\frac{\sigma_{\alpha\beta}}{r} \right)^{12} - \left(\frac{\sigma_{\alpha\beta}}{r} \right)^6 \right] + C', \quad (\text{A.1})$$

515 When $r_{in} < r \leq r_{out}$,

$$U_{\alpha\beta}(r) = C_0 + C_1(r - r_{in}) + C_2(r - r_{in})^2 + C_3(r - r_{in})^3 + C_4(r - r_{in})^4, \quad (\text{A.2})$$

516 When $r > r_{out}$,

$$U_{\alpha\beta}(r) = 0, \quad (\text{A.3})$$

517 with

$$C' = C_0 - 4\epsilon_{\alpha\beta} \left[\left(\frac{\sigma_{\alpha\beta}}{r_{in}} \right)^{12} - \left(\frac{\sigma_{\alpha\beta}}{r_{in}} \right)^6 \right], \quad (\text{A.4})$$

$$C_0 = -(r_{out} - r_{in}) [3C_1 + C_2(r_{out} - r_{in})] / 6, \quad (\text{A.5})$$

$$C_1 = 24\epsilon_{\alpha\beta}\sigma_{\alpha\beta}^6(r_{in}^6 - 2\sigma_{\alpha\beta}^6)/r_{in}^{13}, \quad (\text{A.6})$$

$$C_2 = 12\epsilon_{\alpha\beta}\sigma_{\alpha\beta}^6(26\sigma_{\alpha\beta}^6 - 7r_{in}^6)/r_{in}^{14}, \quad (\text{A.7})$$

$$C_3 = -[3C_1 + 4C_2(r_{out} - r_{in})]/[3(r_{out} - r_{in})^2], \quad (\text{A.8})$$

$$C_4 = [C_1 + C_2(r_{out} - r_{in})]/[2(r_{out} - r_{in})^3]. \quad (\text{A.9})$$

523 α and β denote particle species A or B. In LJ units, all quantities are rep-
 524 resented in terms of particle mass m , which is equivalent for both species,
 525 interatomic distance σ , and interaction energy ϵ . Consequently, time is mea-
 526 sured in units of $t_0 = \sigma\sqrt{m/\epsilon}$, temperature in units of ϵ/k_B , pressure and
 527 stress in units of ϵ/σ^3 , etc. In the Kob-Aderson[47] model, the bonding en-
 528 ergies are $\epsilon_{AA} = 1.0\epsilon$, $\epsilon_{BB} = 0.5\epsilon$, $\epsilon_{AB} = \epsilon_{BA} = 1.5\epsilon$, and the equilibrium
 529 particle spacings are $\sigma_{AA} = 1.0\sigma$, $\sigma_{AA} = 0.88\sigma$, $\sigma_{AB} = \sigma_{BA} = 0.8\sigma$.[24] This
 530 potential field is smoothed from $r_{in} = 2.0\sigma$ to $r_{out} = 2.5\sigma$ via a polynomial
 531 function with coefficients C_0, C_1, C_2, C_3 and C_4 as shown in Eq.A.2, to avoid
 532 any discontinuity in the force associated with the potential's short-ranged
 533 cutoff.

534 **Appendix B. Deviation from Hooke's Law**

535 *Appendix B.1. Elastic Constants for the Bulk Glasses*

536 To estimate the bulk elastic constants, the simulation box is loaded inde-
537 pendently along xx , yy , zz , or sheared along xy , xz , yz up to 1×10^{-7} strain
538 using the athermal quasi-static (AQS) method [55, 56, 39, 57, 58, 59]. After
539 strain is applied along each of the six probing directions, the elastic constants
540 are calculated such that

$$c_{AB} = s_A/e_B \quad (B.1)$$

541 with A and B taking the values xx , yy , zz , xy , xz , or yz . For each loading,
542 both positive and negative strain are applied and averaged. The $c_{AB} =$
543 c_{BA} elements are symmetrized as $(c_{AB} + c_{BA})/2$ for the off-diagonal elastic
544 constants.

545 **Appendix C. Variation in Orientation, Rotation and Triaxiality**

546 *The Projected Local Yield Stress $\Delta\tau_y$*

547 The patterns of the Projected Local Yield Stress $\Delta\tau_y$ are presented in
548 Fig. C.9. In the array of plots, triaxiality (ψ) is varied horizontally and
549 orientation (\vec{O}) is varied vertically. In each plot, rotation angle (γ) is the
550 angle counterclockwise from the horizontal axis pointing to the right, and the
551 magnitude of $\Delta\tau_c$ is represented by the distance from the origin. Blue Δ and
552 red \circ denote the results for $\omega = -1$ and $+1$. Black crosses mark the five lowest
553 values of $\Delta\tau_y$ where the label 1 indicates the smallest value. In addition, solid
554 and hollow markers denote positive and negative sign respectively. In order
555 to show the full range of values, each plot is scaled with the limits of the
556 axes varied to ± 5 , ± 10 , ± 15 , and $\pm 20\epsilon/\sigma^3$, and this variation in scaling is
557 denoted by the yellow, light green, green, and dark green backgrounds, as is
558 shown in the bottom subplot.

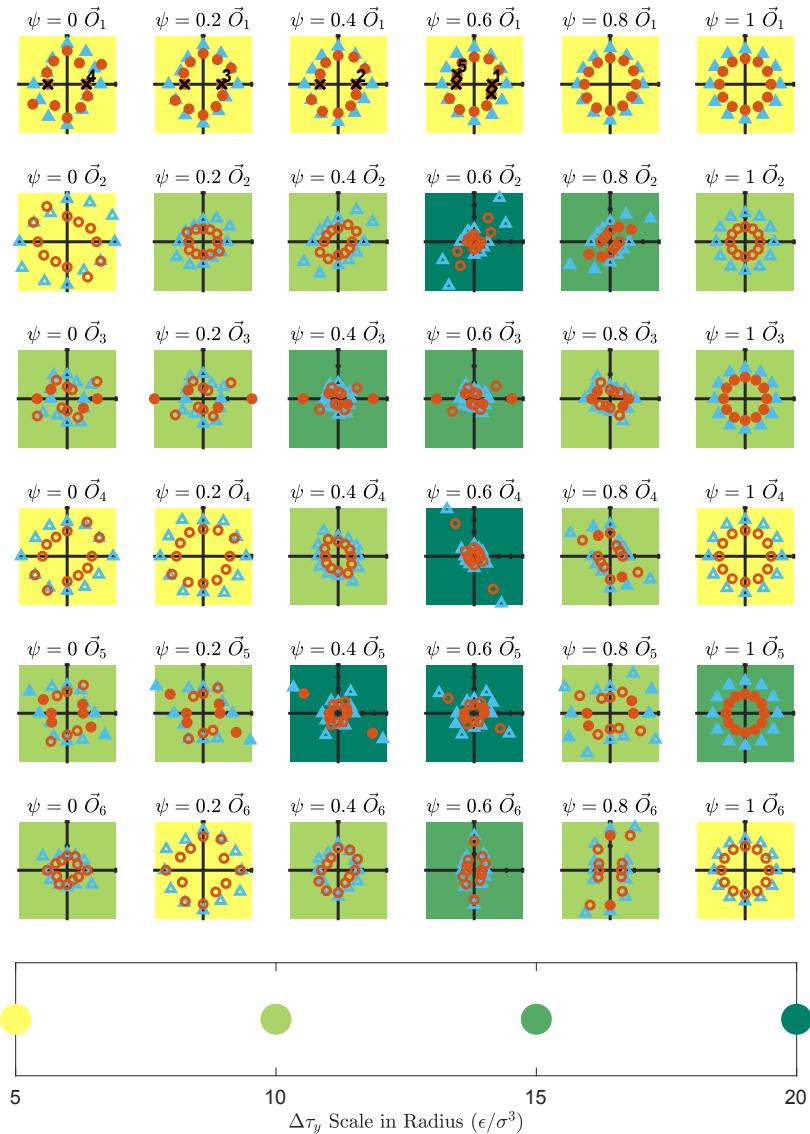


Figure C.9: Projected local yield stress ($\Delta\tau_y$).

559 **References**

560 [1] A. Stukowski, K. Albe, Extracting dislocations and non-dislocation
561 crystal defects from atomistic simulation data, *Modelling and Simulation in Materials Science and Engineering* 18 (8) (2010) 085001.
563 doi:10.1088/0965-0393/18/8/085001.

564 [2] W. Shockley, W. T. Read, Quantitative Predictions from Dislocation
565 Models of Crystal Grain Boundaries, *Physical Review* 75 (4) (1949)
566 692–692. doi:10.1103/PhysRev.75.692.

567 [3] R. LeSar, Simulations of Dislocation Structure and Response, *Annual
568 Review of Condensed Matter Physics* 5 (1) (2014) 375–407.
569 doi:10.1146/annurev-conmatphys-031113-133858.

570 [4] W. Püschl, Models for dislocation cross-slip in close-packed crystal structures:
571 A critical review, *Progress in Materials Science* 47 (4) (2002)
572 415–461. doi:10.1016/S0079-6425(01)00003-2.

573 [5] M. L. Falk, J. S. Langer, Dynamics of viscoplastic deformation
574 in amorphous solids, *Physical Review E* 57 (6) (1998) 7192–7205.
575 doi:10.1103/PhysRevE.57.7192.

576 [6] E. Bouchbinder, J. S. Langer, I. Procaccia, Athermal shear-
577 transformation-zone theory of amorphous plastic deformation. II. Analysis
578 of simulated amorphous silicon, *Physical Review E* 75 (3) (2007)
579 036108. doi:10.1103/PhysRevE.75.036108.

580 [7] E. Bouchbinder, J. S. Langer, I. Procaccia, Athermal shear-
581 transformation-zone theory of amorphous plastic deformation. I.
582 Basic principles, *Physical Review E* 75 (3) (2007) 036107.
583 doi:10.1103/PhysRevE.75.036107.

584 [8] M. L. Manning, J. S. Langer, J. M. Carlson, Strain localization in a
585 shear transformation zone model for amorphous solids, *Physical Review
586 E* 76 (5) (2007) 056106. doi:10.1103/PhysRevE.76.056106.

587 [9] E. Bouchbinder, J. S. Langer, Nonequilibrium thermodynamics of
588 driven amorphous materials. I. Internal degrees of freedom and
589 volume deformation, *Physical Review E* 80 (3) (2009) 031131.
590 doi:10.1103/PhysRevE.80.031131.

591 [10] E. Bouchbinder, J. S. Langer, Nonequilibrium thermodynamics of driven
592 amorphous materials. II. Effective-temperature theory, *Physical Review*
593 *E* 80 (3) (2009) 031132. doi:10.1103/PhysRevE.80.031132.

594 [11] E. Bouchbinder, J. S. Langer, Nonequilibrium thermodynamics of driven
595 amorphous materials. III. Shear-transformation-zone plasticity, *Physical*
596 *Review E* 80 (3) (2009) 031133. doi:10.1103/PhysRevE.80.031133.

597 [12] C. H. Rycroft, Y. Sui, E. Bouchbinder, An Eulerian projection method
598 for quasi-static elastoplasticity, *Journal of Computational Physics* 300
599 (2015) 136–166. arXiv:1409.2173, doi:10.1016/j.jcp.2015.06.046.

600 [13] A. R. Hinkle, C. H. Rycroft, M. D. Shields, M. L. Falk, Coarse graining
601 atomistic simulations of plastically deforming amorphous solids, *Physical*
602 *Review E* 95 (5) (2017) 053001. doi:10.1103/PhysRevE.95.053001.

603 [14] K. Kontolati, D. Alix-Williams, N. M. Boffi, M. L. Falk, C. H. Rycroft,
604 M. D. Shields, Manifold learning for coarse-graining atomistic simulations:
605 Application to amorphous solids, arXiv:2103.00779 [physics] x
606 (2021) x. arXiv:2103.00779.

607 [15] E. R. Homer, C. A. Schuh, Mesoscale modeling of amorphous metals
608 by shear transformation zone dynamics, *Acta Materialia* 57 (9) (2009)
609 2823–2833. doi:10.1016/j.actamat.2009.02.035.

610 [16] M. Talamali, V. Petäjä, D. Vandembroucq, S. Roux, Strain local-
611 ization and anisotropic correlations in a mesoscopic model of amor-
612 phous plasticity, *Comptes Rendus Mécanique* 340 (4) (2012) 275–288.
613 doi:10.1016/j.crme.2012.02.010.

614 [17] F. Jiang, M. Q. Jiang, H. F. Wang, Y. L. Zhao, L. He, J. Sun,
615 Shear transformation zone volume determining ductile–brittle transi-
616 tion of bulk metallic glasses, *Acta Materialia* 59 (5) (2011) 2057–2068.
617 doi:10.1016/j.actamat.2010.12.006.

618 [18] Y. Ma, J. H. Ye, G. J. Peng, D. H. Wen, T. H. Zhang, Loading rate
619 effect on the creep behavior of metallic glassy films and its correlation
620 with the shear transformation zone, *Materials Science and Engineering:*
621 *A* 622 (2015) 76–81. doi:10.1016/j.msea.2014.11.022.

622 [19] Y. Ma, J. H. Ye, G. J. Peng, D. H. Wen, T. H. Zhang, Nanoindentation
623 study of size effect on shear transformation zone size in a Ni–Nb metal-
624 lic glass, *Materials Science and Engineering: A* 627 (2015) 153–160.
625 doi:10.1016/j.msea.2015.01.001.

626 [20] D. Pan, Y. Yokoyama, T. Fujita, Y. H. Liu, S. Kohara, A. Inoue, M. W.
627 Chen, Correlation between structural relaxation and shear transforma-
628 tion zone volume of a bulk metallic glass, *Applied Physics Letters* 95 (14)
629 (2009) 141909. doi:10.1063/1.3246151.

630 [21] N. V. Priezjev, Collective nonaffine displacements in amorphous mate-
631 rials during large-amplitude oscillatory shear, *Physical Review E* 95 (2)
632 (2017) 023002. doi:10.1103/PhysRevE.95.023002.

633 [22] Y. Shi, M. B. Katz, H. Li, M. L. Falk, Evaluation of the Disorder Tem-
634 perature and Free-Volume Formalisms via Simulations of Shear Banding
635 in Amorphous Solids, *Physical Review Letters* 98 (18) (2007) 185505.
636 doi:10.1103/PhysRevLett.98.185505.

637 [23] Y. Shi, M. L. Falk, Strain Localization and Percolation of Stable Struc-
638 ture in Amorphous Solids, *Physical Review Letters* 95 (9) (2005) 095502.
639 doi:10.1103/PhysRevLett.95.095502.

640 [24] Y. Shi, M. L. Falk, Atomic-scale simulations of strain localization in
641 three-dimensional model amorphous solids, *Physical Review B* 73 (21)
642 (2006) 214201. doi:10.1103/PhysRevB.73.214201.

643 [25] D. Richard, M. Ozawa, S. Patinet, E. Stanifer, B. Shang, S. A. Rid-
644 out, B. Xu, G. Zhang, P. K. Morse, J.-L. Barrat, L. Berthier, M. L.
645 Falk, P. Guan, A. J. Liu, K. Martens, S. Sastry, D. Vandembroucq,
646 E. Lerner, M. L. Manning, Predicting plasticity in disordered solids from
647 structural indicators, *Physical Review Materials* 4 (11) (2020) 113609.
648 doi:10.1103/PhysRevMaterials.4.113609.

649 [26] F. Spaepen, A microscopic mechanism for steady state inhomogeneous
650 flow in metallic glasses, *Acta Metallurgica* 25 (4) (1977) 407–415.
651 doi:10.1016/0001-6160(77)90232-2.

652 [27] Y. Shi, M. L. Falk, Stress-induced structural transformation and shear
653 banding during simulated nanoindentation of a metallic glass, *Acta Ma-
654 terialia* 55 (13) (2007) 4317–4324. doi:10.1016/j.actamat.2007.03.029.

655 [28] J. Ding, Y.-Q. Cheng, E. Ma, Full icosahedra dominate local order
656 in Cu₆₄Zr₃₄ metallic glass and supercooled liquid, *Acta Materialia* 69
657 (2014) 343–354. doi:10.1016/j.actamat.2014.02.005.

658 [29] E. D. Cubuk, S. S. Schoenholz, J. M. Rieser, B. D. Malone, J. Rottler,
659 D. J. Durian, E. Kaxiras, A. J. Liu, Identifying Structural Flow Defects
660 in Disordered Solids Using Machine-Learning Methods, *Physical Review*
661 Letters 114 (10) (2015) 108001. doi:10.1103/PhysRevLett.114.108001.

662 [30] S. S. Schoenholz, E. D. Cubuk, D. M. Sussman, E. Kaxiras, A. J. Liu,
663 A structural approach to relaxation in glassy liquids, *Nature Physics*
664 12 (5) (2016) 469–471. doi:10.1038/nphys3644.

665 [31] A. Widmer-Cooper, H. Perry, P. Harrowell, D. R. Reichman, Irreversible
666 reorganization in a supercooled liquid originates from localized soft
667 modes, *Nature Physics* 4 (9) (2008) 711–715. doi:10.1038/nphys1025.

668 [32] A. Tanguy, B. Mantisi, M. Tsamados, Vibrational modes as a predictor
669 for plasticity in a model glass, *EPL (Europhysics Letters)* 90 (1) (2010)
670 16004. doi:10.1209/0295-5075/90/16004.

671 [33] M. L. Manning, A. J. Liu, Vibrational Modes Identify Soft Spots in a
672 Sheared Disordered Packing, *Physical Review Letters* 107 (10) (2011)
673 108302. doi:10.1103/PhysRevLett.107.108302.

674 [34] J. Ding, S. Patinet, M. L. Falk, Y. Cheng, E. Ma, Soft spots
675 and their structural signature in a metallic glass, *Proceedings of*
676 the National Academy of Sciences 111 (39) (2014) 14052–14056.
677 doi:10.1073/pnas.1412095111.

678 [35] L. Gartner, E. Lerner, Nonlinear plastic modes in dis-
679 ordered solids, *Physical Review E* 93 (1) (2016) 011001.
680 doi:10.1103/PhysRevE.93.011001.

681 [36] B. Xu, M. L. Falk, S. Patinet, P. Guan, Atomic nonaffinity as a predictor
682 of plasticity in amorphous solids, *Physical Review Materials* 5 (2) (2021)
683 025603. doi:10.1103/PhysRevMaterials.5.025603.

684 [37] B. Xu, M. Falk, J. Li, L. Kong, Strain-dependent activation energy
685 of shear transformation in metallic glasses, *Physical Review B* 95 (14)
686 (2017) 144201. doi:10.1103/PhysRevB.95.144201.

687 [38] B. Xu, M. L. Falk, J. F. Li, L. T. Kong, Predicting Shear Transformation
688 Events in Metallic Glasses, *Physical Review Letters* 120 (12) (2018)
689 125503. doi:10.1103/PhysRevLett.120.125503.

690 [39] M. Tsamados, A. Tanguy, C. Goldenberg, J.-L. Barrat, Local elasticity
691 map and plasticity in a model Lennard-Jones glass, *Physical Review E* 80 (2) (2009) 026112. doi:10.1103/PhysRevE.80.026112.

693 [40] H. Mizuno, S. Mossa, J.-L. Barrat, Measuring Spatial Distribution of
694 Local Elastic Modulus in Glasses, *Physical review. E* 87 (2013) 042306.
695 doi:10.1103/PhysRevE.87.042306.

696 [41] B. Shang, J. Rottler, P. Guan, J.-L. Barrat, Local versus Global
697 Stretched Mechanical Response in a Supercooled Liquid near the
698 Glass Transition, *Physical Review Letters* 122 (10) (2019) 105501.
699 doi:10.1103/PhysRevLett.122.105501.

700 [42] S. Patinet, D. Vandembroucq, M. L. Falk, Connecting Local Yield
701 Stresses with Plastic Activity in Amorphous Solids, *Physical Review
702 Letters* 117 (4) (2016) 045501. doi:10.1103/PhysRevLett.117.045501.

703 [43] A. Barbot, M. Lerbinger, A. Hernandez-Garcia, R. García-García, M. L.
704 Falk, D. Vandembroucq, S. Patinet, Local yield stress statistics in
705 model amorphous solids, *Physical Review E* 97 (3) (2018) 033001.
706 doi:10.1103/PhysRevE.97.033001.

707 [44] A. C. Lund, C. A. Schuh, Yield surface of a simulated metallic glass,
708 *Acta Materialia* 51 (18) (2003) 5399–5411.

709 [45] C. A. Schuh, A. C. Lund, Atomistic basis for the plastic yield criterion
710 of metallic glass, *Nature materials* 2 (7) (2003) 449–452.

711 [46] D. Richard, G. Kapteijns, J. A. Giannini, M. L. Manning, E. Lerner,
712 Simple and broadly applicable definition of shear transformation zones,
713 *Physical Review Letters* 126 (1) (2021) 015501.

714 [47] W. Kob, H. C. Andersen, Testing mode-coupling theory for a
715 supercooled binary Lennard-Jones mixture I: The van Hove cor-
716 relation function, *Physical Review E* 51 (5) (1995) 4626–4641.
717 doi:10.1103/PhysRevE.51.4626.

718 [48] LAMMPS: Large-scale Atomic/Molecular Massively Parallel Simulator,
719 <http://lammps.sandia.gov>, LAMMPS: Large-scale Atomic/Molecular
720 Massively Parallel Simulator, <http://lammps.sandia.gov>.

721 [49] J. E. Jones, S. Chapman, On the determination of molecular fields. —II.
722 From the equation of state of a gas, Proceedings of the Royal Society
723 of London. Series A, Containing Papers of a Mathematical and Physical
724 Character 106 (738) (1924) 463–477. doi:10.1098/rspa.1924.0082.

725 [50] S. Nosé, A unified formulation of the constant temperature molecular
726 dynamics methods, The Journal of Chemical Physics 81 (1) (1984) 511–
727 519. doi:10.1063/1.447334.

728 [51] W. G. Hoover, Canonical dynamics: Equilibrium phase-space
729 distributions, Physical Review A 31 (3) (1985) 1695–1697.
730 doi:10.1103/PhysRevA.31.1695.

731 [52] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals:
732 A new molecular dynamics method, Journal of Applied Physics 52 (12)
733 (1981) 7182–7190. doi:10.1063/1.328693.

734 [53] E. Polak, G. Ribiere, Note sur la convergence de méthodes
735 de directions conjuguées, Revue française d'informatique et
736 de recherche opérationnelle. Série rouge 3 (16) (1969) 35–43.
737 doi:10.1051/m2an/196903R100351.

738 [54] D. Ruan, S. Patinet, M. L. Falk, Data associated with the publication:
739 Predicting plastic events and quantifying the local yield surface
740 in 3d model glasses, <https://doi.org/10.7281/T1/HVRF8B> (2021).
741 doi:10.7281/T1/HVRF8B.

742 [55] A. Tanguy, F. Leonforte, J.-L. Barrat, Plastic response of a 2D Lennard-
743 Jones amorphous solid: Detailed analysis of the local rearrangements at
744 very slow strain rate, The European Physical Journal E 20 (3) (2006)
745 355–364. doi:10.1140/epje/i2006-10024-2.

746 [56] E. Lerner, I. Procaccia, Locality and nonlocality in elastoplastic re-
747 sponses of amorphous solids, Physical Review E 79 (6) (2009) 066109.
748 doi:10.1103/PhysRevE.79.066109.

749 [57] R. Dasgupta, S. Karmakar, I. Procaccia, Universality of the Plastic In-
750 stability in Strained Amorphous Solids, *Physical Review Letters* 108 (7)
751 (2012) 075701. doi:10.1103/PhysRevLett.108.075701.

752 [58] S. Karmakar, E. Lerner, I. Procaccia, Statistical physics of the yielding
753 transition in amorphous solids, *Physical Review E* 82 (055103(R)) (Nov.
754 2010). doi:10.1103/PhysRevE.82.055103.

755 [59] C. Maloney, A. Lemaître, Universal Breakdown of Elasticity at the On-
756 set of Material Failure, *Physical Review Letters* 93 (19) (2004) 195501.
757 doi:10.1103/PhysRevLett.93.195501.

758 [60] D. M. Heyes, Pressure tensor of partial-charge and point-dipole lattices
759 with bulk and surface geometries, *Physical Review B* 49 (2) (1994) 755–
760 764. doi:10.1103/PhysRevB.49.755.

761 [61] T. W. Sirk, S. Moore, E. F. Brown, Characteristics of thermal conduc-
762 tivity in classical water models, *The Journal of Chemical Physics* 138 (6)
763 (2013) 064505. doi:10.1063/1.4789961.

764 [62] A. P. Thompson, S. J. Plimpton, W. Mattson, General formulation of
765 pressure and stress tensor for arbitrary many-body interaction potentials
766 under periodic boundary conditions, *The Journal of Chemical Physics*
767 131 (15) (2009) 154107. doi:10.1063/1.3245303.

768 [63] D. Surblys, H. Matsubara, G. Kikugawa, T. Ohara, Application of
769 atomic stress to compute heat flux via molecular dynamics for systems
770 with many-body interactions, *Physical Review E* 99 (5) (2019) 051301.
771 doi:10.1103/PhysRevE.99.051301.

772 [64] E. J. Gumbel, *Statistics of Extremes*, Dover Publications, Mineola, N.Y.,
773 2004.

774 [65] W. Weibull, S. Stockholm, A Statistical Distribution Function of Wide
775 Applicability, *Journal of Applied Mechanics* 18 (1951) 293–297.

776 [66] R. Jiang, D. N. P. Murthy, A study of Weibull shape parameter: Prop-
777 erties and significance, *Reliability Engineering & System Safety* 96 (12)
778 (2011) 1619–1626. doi:10.1016/j.ress.2011.09.003.

[67] A. Hansen, S. Roux, Statistics Toolbox for Damage and Fracture, in: D. Krajcinovic, J. Van Mier (Eds.), *Damage and Fracture of Disordered Materials*, International Centre for Mechanical Sciences, Springer, Vienna, 2000, pp. 17–101. doi:10.1007/978-3-7091-2504-5_2.

[68] K. M. Salerno, M. O. Robbins, Effect of inertia on sheared disordered solids: Critical scaling of avalanches in two and three dimensions, *Physical Review E* 88 (6) (2013) 062206. doi:10.1103/PhysRevE.88.062206.

[69] F. Shimizu, S. Ogata, J. Li, Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations, *Materials Transactions* 48 (11) (2007) 2923–2927. doi:10.2320/matertrans.MJ200769.

[70] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool, *Modelling and Simulation in Materials Science and Engineering* 18 (1) (2010) 015012. doi:10.1088/0965-0393/18/1/015012.

[71] C. C. Paige, M. A. Saunders, LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares, *ACM Transactions on Mathematical Software* 8 (1) (1982) 43–71. doi:10.1145/355984.355989.