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Predicting Plastic Events and Quantifying the Local Yield Surface
in 3D Model Glasses

Dihui Ruan, Sylvain Patinet, Michael L. Falk

e The local yield stress method is proven to be predictive to the plasticity
in 3D glasses, and at the meanwhile, to be scalable to much larger
samples compared to other computational predictors.

e The optimal probing region size of the local yield stress method is ap-
proached by optimization on the predictivity in plasticity as well as the
extreme value distribution indicating the size of shear transformation
zones.

e Quantifying The local yield surface in 3D opens up the window for
studying the anisotropy of the local plasticity intriguing to the com-
munity of solid mechanics.
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Abstract

By applying the local yield stress (LYS) method to probe local regions of
three-dimensional computational glass models, we confirm high correlations
between the measured local yield stress (A7.) and the plastic events when the
parameterization of the method is properly optimized. The optimal probing
region for this system is found to be ~ 50 in radius, where o represents the
Lennard-Jones length scale, approximately the atomic size. The averaged
correlation remains positive through the first 200 identified plastic events or
1/3 of the yielding strain (~ 7%). Here we apply only the local probing that
aligns perfectly with the loading on the boundary. The LYS measurements
converge to a Weibull distribution with a minimum A7, indistinguishable
from zero at larger probing region radii. Analysis of the data in light of an
assumption that A7, is a local quantity that obeys extreme value statistics
above a critical length scale bounds the exponent of the underlying distri-
bution of A7, to lie between 1.26 and 1.71. A thorough investigation of
the anisotropy of the local yield surface at the location of the first plastic
event indicates that the first triggered region does not align perfectly with
the loading on the boundary, but is well-predicted by projecting the shear
applied at the boundary onto the local yield surface. This implies that the
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correlation between the local yield stress prediction and the resulting plastic-
ity may be enhanced by performing a more complete assessment of the local
yield surface at each sample point.

Keywords: Plasticity, Local Yield Stress, Shear Transformation Zone,
Amorphous Solids, Athermal Quasi-static Method
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1. Introduction

The detailed micro-mechanism of the mechanical response under an elasto-
plastic deformation in amorphous materials remains poorly characterized
relative to their crystalline counterparts in which dislocations can be well
specified.[1, 2, 3, 4]. Falk and Langer[5] postulated a shear transformation
zone (STZ) model in which preexisting defects corresponding to local clusters
of atoms/molecules rearrange cooperatively and irreversibly during plastic
flow. This STZ concept has been incorporated into constitutive equations
for describing elastoplastic behaviors [6, 7, 8, 9, 10, 11, 12, 13, 14] as well
as into discrete models of amorphous plastic response[15, 16]. The existence
of such defects in amorphous solids has been supported by experimental
studies[17, 18, 19, 20] and atomic simulations[21, 22, 23, 24] in various types
of glasses.

Researchers have been keenly interested in how one might accurately
locate and characterize such flow-defects’, and in doing so have measured
the correlation of plastic events with a variety of proposed structurally de-
rived predictors.[25] These predictors range from trivial structural param-
eters such as local density[26], atomic potential energy[22, 13], and short-
range order[23, 27, 28], through more complex metrics obtained via ma-
chine learning[29, 30], quantification of local excitations induced by linear|[31,
32, 33, 34] or nonlinear[35, 36] vibrational modes, by probing activation
via the minimal energy path[37, 38|, and by measurement of local elas-
tic moduli[39, 40, 41]. Such simulations require a sample sufficiently large
to resolve multiple individual STZs. Most of these investigations consid-
ered two-dimensional glasses consisting of ~ 10,000 atoms. Few analy-
ses in three-dimensional glasses have been performed at comparable length
scales, as this requires million-atom simulations prepared by quenching a
liquid sufficiently slowly to produce a glass stable enough to compare with
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experiments.[27, 28, 34, 29, 30]

In the context of the above indicators, Patinet et al. [42, 43] developed
the local yield stress (LYS) method in which local regions are sheared at
a particular length scale and loading orientation until yielding is triggered.
By measuring the incremental stress to yield, the LYS method provides a
direct measurement of elastoplastic response. High correlations have been
observed between low local yield stresses and the sites where plastic events
are observed during subsequent shear simulations of the material as a whole.
A recent comparison found that this method ranks highly among a large
number of structural indicators in 2D glassy samples, and performs best
amongst these comparators in deeply quenched glasses, those modeled sam-
ples most comparable to as-quenched glasses produced in laboratory and
industrial processes.[25] The LYS framework also quantifies atomistic data
in ways that clearly relate to the yield surface, a continuum concept criti-
cal for understanding plasticity at the macro-scale [44, 45]. Characterizing
larger 3D glasses has presented a challenge for diagonalization-based methods
such as the identification of ’soft’ spots in Reference [33]. Recent advances
have provided more efficient ways to explore low-frequency modes to locate
STZs, but comprehensive characterization of a material using such methods
remains a challenge [46]. The computational expense for the LYS method
scales with the system size as O(N) making it applicable to these larger
three-dimensional systems.

Here we apply the LYS method to measure spatial variations in the in-
cremental stress to yield (A7.) along a single local probing determined by
a strain tensor. The resulting measurements of A7, exhibit a correlation
with the locations of the local plastic events produced by a similarly oriented
strain applied at the boundary. The correlation persists until about 1/3 of
the yielding strain when undertaken at the optimal length scale, ~ 5o (atomic
diameters) in radius.

Variation in the local probing strain is also examined at the location of
the first identified plastic event. These data indicate that the triaxiality,
orientation, rotation, and sign of the resulting plastic event aligns well with
what one would infer from the measured local yield surface, but does not
exactly correspond with the strain applied at the boundary. This suggests
that the correlation of A7, with the observed plastic events would improve if
the entire local yield stress surface, rather than only the value of A7, along
the direction of the applied shear, were to be characterized throughout the
material.
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2. Sample Preparation

We perform molecular dynamics (MD) simulations to prepare three inde-
pendent Kob-Andersen (KA)[47] binary Lennard-Jones (LJ) glasses within
the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
environment[48]. In each sample, 1,000,000 atoms are simulated in a cubic
simulation box with periodic boundary conditions along the x, y and z axes.
The system is comprised of 80% large atoms (A) and 20% small atoms (B).
We apply a smoothed 6-12 Lennard-Jones(LJ) potential[49] field to quantify
the interatomic interactions.

According to a prior study by Shi and Falk[24], shear bands only arise
during deformation in KA glasses prepared with relatively low quenching
rates. To focus on KA glasses susceptible to strain localization, we follow the
same preparation procedure to melt and equilibrate the initial configuration
at a reservoir temperature 7' = 0.87¢/kp under an external pressure P =
8.5¢/03, and we then cool this melt to 7" = 0.03¢/kp while releasing the
pressure to P = (¢/o? linearly over a duration of 2000ty using a Nose-Hoover
thermostat[50, 51] and Parrinello-Rahman barostat[52]. We verify that the
difference in the potential energy per atom at the as-quenched state between
our samples and the corresponding KA glasses in Reference [24] results from
our choice of the smoothed LJ potential and the difference in the aspect ratio
of the box dimension. Minimization of the energy via a conjugate gradient
scheme[53] under zero pressure conditions is undertaken until achieving the
convergence of the total force norm of the whole system. This is followed
by a second force minimization with constrained volume for studying the
athermal mechanical response at zero temperature. The final box dimension
of these three KA glasses is approximately 93.40 x 93.40 x 93.40, where x and
y dimensions are comparable to those of the 2D systems previously studied
by the local yield stress method[43, 42]. The configurations of all 3 glasses
can be found on Johns Hopkins University Data Archive[54].

3. Three-Dimensional Local Yield Stresses

3.1. 3D Local Yield Stress Method

Patinet et al. developed the local yield stress (LYS) method in Reference
[42] based upon the assumption that plastic events in amorphous solids occur
as localized rearrangements located at STZs[5]. In the LYS method, local
regions of atoms are sheared to the point of mechanical instability identified
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Figure 1: Schematics of a spherical region of atoms cut from the simulation box for local
probing in a 3D binary glass with large (blue) and small (red) particles. The atoms in
transparency form a shell of the core atoms shown in solid color. Rfree and Rfrozen are
labeled by arrows in yellow and grey respectively. The black arrows denote the loading on
the local boundary in Eq.6.

by a stress drop, and the incremental stress required to reach the yielding
point is recorded as the local yield stress (A7.). A low value of A7, indicates
relative high susceptibility to plasticity. In our three-dimensional LYS anal-
yses, spherical regions of atoms within a radius Rree + Rfrozen are probed
by the athermal quasi-static (AQS) method[55, 56, 39, 57, 58, 59] within
the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
environment[48]. The atoms in the inner core with radius Ry, are referred
to as the 'free’ atoms, and the atoms in the outer shell with thickness Ryozen
are referred to as the ’frozen’ atoms, as is shown in Figure 1. At each incre-
ment of loading, the 'frozen’ atoms are deformed affinely with respect to the
probing strain, and the ’free’ atoms bounded by the ’frozen’ shell undergo
static relaxation into the nearest mechanically stable configuration using a
conjugate gradient method[53]. Rfyozen is set to be 5o, twice the smoothed
LJ potential cutoff radius r,,; = 2.50, to include all relevant neighbor atoms
for the ’free’ atoms.

An increment of local loading AE* with a constant volume can be written
in terms of a strain step magnitude Ae” multiplied by a unit local strain

tensor E~ as
AE* = Ae"EE. (1)
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The projected stress 7, is defined as
=S Ey, (2)

where S* is the stress tensor of the local ’free’ region. In the athermal
limit[60, 61, 62, 63], the virial contribution of atom ¢ can be computed as a
tensor

N
1,
P, = 5 %: (Tz‘j ® fij) , (3)
V)

in which atom j is one of N, atoms within the pairwise potential cutoff radius
from atom 7. The displacement vector 7;; = 7; —T; represents the interatomic
displacement, and ﬁj represents the force exerted on atom ¢ from atom j.
S~ can then be estimated by dividing the sum of the virial contributions ®,
from the N¢,.. atoms in the free region by its volume as

Nf7ee
PD,. 4
s 47TR?¢T6e ; (4)

The projected stress 7, is used to identify whether the response to an incre-
mental strain is elastic or if, rather, an instability has been triggered. The
stress tensor at the point when a stress drop is detected will be referred to as
the onset stress S This stress is used to calculate the local yield stress
AT, given by

onset*

Ar, = (SE

onset Sé) : Eﬁ? (5>
where Sg is the initial stress state of the local region before any probing. It
is important to note that due to the residual stresses present in glasses, the
elements in tensor So’ are typically not equal to zero. Since undertaking the
local yield stress analysis in 3D is computationally demanding, we initially
limit our investigation to the case where EZ is chosen to be a pure shear
loading as
1 0 0
2
-2 0 -1 0|, (6)
0 0 0
To impose strain, equal tension and compression are applied along the x axis
and the y axis while zero strain is imposed along the z axis, as illustrated in

Figure 1. This plane strain boundary condition is comparable to the prior
study on the 2D local yield stress method in Reference [42] and [43].

6
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Table 1: Table of initial force tolerance Ftool7 strain step Ael, and final force tolerance Fj,
settings at each Ryfpce. *: Ael (10_6) is the smallest strain step achievable computation-
ally given the available resources.

Rprec(0) FQy(e/0) At Fle/o)
2.5 2x 10711 107* 1076
375 3 x10°" 10°* 1076

5 4% 107" 10°° 1076
7.5 8 x 1071 10 %« 1076
10 2 x 10719 1075« 1076

3.2. Parameterization

The LYS method involves probing local regions with respect to a local
unit strain tensor Eﬁ and measuring the incremental stress required to induce
a local instability. There are three parameters playing important roles in
computing the local yield stress Ar.: the force tolerance Fj, that sets the
accuracy of force minimization when relaxing the ’free’ atoms, the strain
step Ae” that controls the magnitude of each increment of loading, and the
characteristic length Ry, that determines the size of locally probed regions.
The optimal values of these three parameters are not independent of each
other. For instance, for larger Rf.. values, more atoms may participate
in the plastic rearrangement, and the higher number of degrees of freedom
necessitates a smaller strain step Ael.[58]

In Table 1, we list the parameters that are obtained from a series of
convergence studies that we have undertaken to optimize the parameters. All
the convergence studies are executed on sampling regions centered on evenly
spaced 2 x 2 x 2 grids extracted from the binary LJ glass samples described
in Materials and Methods. For each listed Ry, between 2.50 and 100,
an initial force tolerance F?, is chosen by sampling the convergence of the
force norm when probing a very small strain 1077, Local yields stresses (A7)
are computed at various strain steps Ae”, and these results are compared
with the results using the smallest Ae’ (107%) we could achieve within our
computational limitations. We choose the largest strain step Ael that results
in a relative difference in A7, < 1% or we choose 1079, as noted in Table
1. With Ae” set, we raise the values of Fj, to enhance the computational
efficiency in the 3D LYS method. The final F}, settings are determined by
converging the computed A7, with various Fj, values to be within < 1% of



170

171

172

173

174

175

176

177

178

179

181

182

183

184

185

186

187

188

189

190

191

192

193

194

198

199

200

201

the results using F)),. We are able to raise the final F}, values to 107% among
all the Ry, values without significantly affecting the results.

3.3. Distribution and Scaling

In order to uniformly sample the material response, local yield stresses
(AT,) are computed in probing regions centered on evenly spaced grid points
throughout the simulation box instead of probing regions centered on each
atom as had been done in prior 2D studies[42]. The distance between grid
points dsgmpie is chosen as ~ 100 to approach a set of 10 x 10 x 10 samples
in each Kob-Anderson (KA)[47] glass. From these samples, we are able to
compute the distribution of A7, in a representative manner. The distribu-
tions of local yield stress (A7) with Ry, from 2.50 to 100 are plotted in
the inset of Figure 2(a). As was observed in the prior 2D studies[42, 43],
increasing Ryye. results in more sampling regions yielding at lower A7,, and
the peaks of these probability density functions (Fy) shift toward lower A7,
values with heavier low-end tails. This is consistent with our expectation
that yielding behavior is controlled by the easiest to yield STZ in the sam-
pling region. If we consider yield to be a local phenomenon, such that STZs
are independent above a critical length scale (Rf,..), larger regions are ex-
pected to incorporate more STZs, and their A7, should be lower on average
than that of smaller regions that contain fewer STZs. If we assume that the
observed yield stress is determined by the STZ with the lowest yield stress
in the region, A7, of a larger region is the minimum Ar, of all the included
regions.

To test this assumption of "isolated’ local yield regions, we compare these
distributions to the 'Extreme Value Distribution’ (EVD)[64], which catego-
rizes the distribution of maxima or minima of random variables. Since AT,
is defined to be non-negative, minima of sampled A7, values are expected to
result in a Weibull distribution when sampled at a length scale sufficiently
larger than the scale on which distinct sub-regions would be independent.[65]
For sufficiently large sampling regions, the probability density function (P;)
and cumulative distribution function (P,) are therefore expected to be given

by
B AT, b
a

b—1
PuArlab) = (ATC) exp , (7)

a a
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and

P.(At.|a,b) =1 —exp , (8)

AT\’
()
where a is the scale parameter, and b is the shape parameter. As is presented
in Figure 2(c), the scale parameter a is observed to decrease with increasing
Ryree corresponding to a lower mean when a larger local region is probed.
Here, the shape parameter b > 1 indicates that the instantaneous ’yield rate’

b—1
M(At.|a,b) = % = g (AGTC> , 9)

the number of yield events per unit stress, increases with Ar..[66]

The fitted Weibull distributions are plotted as dot-dashed lines on top of
the measured A7, distributions in the main plot of Figure 2(a). Also, the
corresponding cumulative distributions (P.) of A7, are presented in the inset
of Figure 2(b). In the main plot of Figure 2(b), the cumulative distributions
of A7, are normalized by the two fitting parameters a and b in terms of
In[—In(1— P.)] /b+ Ina and are then plotted versus In 7, after being shifted
by the corresponding mode. Combining the above plots, we notice that
the distributions of A7, align with the Weibull distribution for larger Ry
values. More specifically, the density distribution functions in Figure 2(a)
with Rfee = 7.50 and 100 are significantly Weibull-like. Therefore, the
underlying distribution of A7, at some critical length with R}, .. under 7.50
is inferred to behave like a power-law distribution in the limit of A7, — 0.[67]

Close inspection of the data taken with Ry,.. from 2.50 to 3.750, reveals
that the lower-value tails in their probability density functions are heavier
than what would be expected in an underlying distribution that would lead
to a Weibull distribution. These distributions discontinuously drop to zero
below a relatively high threshold, as shown in the main plot of Figure 2(a).
We believe this indicates that lower A7, values can’t be accurately mea-
sured due to the limitations that the boundary constraints impose on local
rearrangements within smaller regions. In comparison, the smooth A7, dis-
tribution at Ry..e = 50 behaves like a power-law distribution as A7, — 0.
As we should expect, this distribution doesn’t converge to a Weibull distri-
bution since each probing region is too small to include a statistical number
of independent STZs. We expect the characteristic length R, of the un-
derlying distribution is between 3.750 and 5o, and that 5o is the closet to

%ree among all the Ry,.. values measured here. By this reasoning, we can

free

9
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bound b*, the exponent of the power law of the underlying A7, distribution
at RS, when A7, — 0, to be greater than 1.26 as shown by the slope of
the log-log distribution at the lower end when Ry, = 50 in Figure 2(a). If
we could measure larger and larger Ry,.. values, the shape parameter b used
to fit the Weibull distribution to the data in Figure 2(d) should converge to
b*.[67] Since the value of b* is expected to be lower than the b from the fitted
Weibull distribution with R¢,.. = 100, we can bound b* to be less than 1.71
according to Figure 2(d).

Based on the derivation of the extreme value statistics, the mean AT,
when probing larger regions whose size is far above the critical length R, .
can be related to the cumulative distribution P in terms of N, the number

of STZs in the probing region as[67]

1
< ATC >= Pc*_l (N——f—l> . (10)

If we suppose R$,., to be 50, N(Rjee = 7.50) ~ 11 and N(Ry... = 100) ~ 47
accordingly. While we intuitively expect that N oc R}, this is not consis-
tent with the above two Ry,.. values, indicating that we are not at sufficiently
large R fyc. values to have fully converged to the Weibull distribution, or that
the distribution at 5o is not sufficiently close to the underlying distribution

for this analysis to be viable.

10



In[—In(1 — P.)]/b+ Inax

Figure 2: Local yield stress (A7.) distributions with Rfpce=2.50(¢), 3.750(%), 50(0),
7.50(0), and 100(A). (a) Log-log plot of A7, probability density function (P;). Dot-
dashed lines denote Weibull distribution fits (Eq.7). The black solid line denotes the slope
of the log-log distribution at A7, — 0 with Rf,ce = 50. Inset: linear-linear plot of the
probability density function of A7.. (b) Scaled plot of the normalized cumulative distribu-
tion function of A7., where the dot-dashed line denotes for a linear guideline extrapolated
from A7, distribution with Rf... = 100. *: The curves are shifted by their corresponding
modes. Inset: the cumulative distribution of A7.. Plot of (c) the scale parameter a (x)
and (d) the shape parameter b (%) from the Weibull distribution fits in Figure 2 versus
Rjree. The dotted line in (d) denotes the lower bound for b to converge with extremely

large Rfree. The original data in this figure can be found on Johns Hopkins University
Data Archive[54].
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4. Locating Plastic Events

2
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Figure 3: Stress-strain response for the AQS deformation with a strain step Ae® = 10=6
on one KA glass. The inset is the zoom-in view of the circled region in the main plot,
where the first plastic event is identified. The original data of the stress-strain response
for all 3 independent glasses can be found on Johns Hopkins University Data Archive[54].

To identify the series of plastic events that arise during loading, the sim-
ulation box is deformed via the AQS method within the LAMMPS environ-
ment. The AQS method affinely deforms the simulation box as all atoms
are statically relaxed to a mechanically equilibrated state at each strain step.
Here, the conjugate gradient method is deployed to minimize the forces dur-
ing the relaxation. The load on the boundary is applied in the same manner
as the locally-probed deformation described by Eq.6. At each strain step
applied on the boundary (Ae®), a projected stress for the simulation box
(sp) is recorded to characterize the stress-strain response,

s, =8%: EY, (11)
where E¢ denotes the unit global strain tensor. The stress tensor of the
N
1
system SY = v Z(I%-, where V' is the volume of the simulation box and
i=1

N is the total number of atoms in the system. A plastic event is identi-
fied by each instance in which the stress (i.e., s,) decreases. These 3D KA
glasses exhibit a discontinuous drop in the stress due to strain localization

12
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at approximately 7% strain with strain step 107°, as is indicated in Figure 3.
Due to the relatively large size of these 3D systems, many plastic events are
triggered during deformation. This makes the serrations difficult to resolve
by eye, in contrast to the obvious fluctuations in some previously studied
2D glasses[43]. The inset presents the first identified plastic event with a
stress drop of ~ 5.30 x 10~7¢ /03 and a triggering strain of ~ 0.091%. As was
noted in Reference [68], the identified plastic events depend on the strain
step. This means that smaller and smaller plastic events are observed to
occur at smaller and smaller strain as the strain step is decreased. Due to
computational limitations, it is not possible to converge Ae® to determine
if there is a 'true’ first plastic event in our prepared glasses with 1,000,000
atoms, and answering that question is not the objective of this work. Rather
we assume that the strain step determines the resolution at which we are able
to sample plastic rearrangements during deformation of the simulation box.
We apply the loading on the boundary with the smallest strain step which
is computationally affordable (10~7) until the first stress drop in an effort
to characterize the smallest length scale at which 3D Hooke’s law behavior
is recovered. For testing the predictivity of the LYS method, consecutive
plastic events are sampled every 1075 strain.

5. Deviation from Hooke’s Law

In determining the the region size set by R, the local yield stress
method assumes that Hooke’s law is valid at this length scale. An evaluation
of the consistency of local material response with Hooke’s law should thus
set a lower bound on Ry, in computing the local yield stresses (A7.). Here,
we adopt the methodology developed by Tsamados et al.[39] to estimate the
deviation from linear elasticity at a given length scale. The whole simulation
box is deformed in increments of 10~7 strain. The virial contribution at each
atom (Eq.3) is computed both at the initial as-quenched state (®) and
at the first onset of instability (q)fy), defined as the configuration prior to
the first stress drop (at 0.012 £ 0.007%). Instead of applying a Gaussian
windowing function as in Reference [39], we sum these local contributions
from Ny atoms within the sampling radius Ry, to remain consistent with
the uniform contributions from the ’free’ atoms when computing the local

13
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Figure 4: Log-linear plot of deviation from 3D Hooke’s law versus averaging radius Ry.
The standard errors are negligible compared with the size of the markers. The dotted line
is the guideline for 1%.

yield stress (A7.). The stress change in this region is then approximated by

G
S’LRH 47TR3 Z (ﬁjo (12)

By comparing the above two conﬁgurations, the atomic strain tensor cen-
tered at each atom is calculated with varying cutoff radii Ry according to
References [5] and [69] using the OVITO open visualization tool[70]. A de-
formation gradient tensor F'; is computed by minimizing

Ny
D IFiF =yl (13)
j=1
where 7550 and 7j;, are displacement vectors between atom j and ¢ in the
unstrained state and at the onset of instability respectively.[69] It follows

that
Ny 1 /Ny
F; = <Z Tijo & ﬁjp) (Z Tij0 & ﬁj,;;) : (14)

j=1 j=1
The resulting atomic strain tensor centered at atom i is then calculated as

1
Efy, = 3 (FIF,—1I). (15)

14
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Consider the generalized 3D Hooke’s law in Voigt notation

S=CE (16)
where, for instance, s, in S and Cpq 1N E represent for the stress and strain
components along x direction on the yz plane, and ¢;;; in C denotes one of
the 21 nonzero elastic constants from a 4th order elastic-moduli tensor. To
solve for these 21 unknowns in the stiffness matrix, 21 linear equations must
be generated from 4 independent deformations. The resulting solution is, in
general, overdetermined. We apply the least-squares method[71] to optimize
the 21 elastic moduli numerically. Preset bounds on the solutions are applied
with regards to the bulk stiffness matrix of the whole system computed from
LAMMPS.

We then perform 11 independent deformations on the simulation box with
the unit strain tensor

1 0 0
EG:\/2¢2—4¢+8 0 %—1 0 (17)
CoR-wd |2 |
0 0 —%
2

in which triaxiality ¢¥» = 0,0.1,0.2,0.3, ..., 1. For an atom ¢, the deformations
with ¢ ranging from 0.1 to 1 overdetermine the elastic constants in Eq.16.
The length scale dependence of the overdetermined elastic constants is as-
ses§ed by varying Ry from 2.5 to 100. At ¢ = 0, an estimated stress tensor

~G

S, r, (in Viogt notation) is calculated by substituting the solved stiffness
~G’

matrix and the strain tensor into Eq.16. Then S, p = is compared with the

~G
directly computed stress tensor S,z (in Viogt notation) from LAMMPS
and its deviation is quantified by the relative root mean square as

R 2

SZ RH ZRH

A’%RH — (18)

6|81

i, Ry

In Figure 4, the mean deviation averaged among all the atoms are plotted
against the averaging radius Ry. If we choose the threshold for elastic be-
havior to be < 1% as in Reference [39], then the 3D Hooke’s law is valid at a
length scale Ry above 2.50, which can thus serve as the lower limit of Ry,
for the local yield stress method in the 3D glasses.
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6. Correlation between A7, and Plastic Events

Next, we would like to assess the degree of correlation of the localized
plasticity with the local yield stress, and in doing so determine an optimal
length scale for Ryf,e.. We consider multiple plastic events obtained by shear-
ing with strain steps Ae® = 1075. Each plastic event is identified by a stress
(sp) drop, and the yield point is recorded as the last configuration prior to
instability. Considering two consecutive events, the end of the former event
also serves as the reference point of the subsequent event, which is identified
as the last configuration prior to a stress (s,) increase after a relaxation.
We locate the triggered plastic rearrangement and characterize its nature by
comparing the configuration after relaxation to the configuration at the yield
point. These two configurations are denoted by subscripts e, for end, and
y, for yield, respectively. At each atom, the deviation from affinity D2, is

calculated as
Ncut

— — 2
D}ini = > P Fi = el (19)
j=1

where, we solve for F'; as described in Eq.14. N, is the number of neighbor
atoms within a cutoff radius 2.50[5] to the center atom 7. At the Nth plastic
event, the local yield stress A7, is computed centered at atom ay with the
maximum value of D2, in the as-quenched configuration, and then this
AT, 4, is compared with the distribution of A7, above. To be consistent with
the prior studies in the 2D LYS method[43, 42], we quantify the correlation
as

Cn=1—-2P.(AT,ay), (20)

where P, is the cumulative distribution function of Ar,.

For the first 200 identified plastic events, the correlation averaged over
every 20 plastic events in 3 independent KA glasses is plotted against the
number of the plastic event in Figure 5(a). The corresponding total average
with each Ry is presented in Figure 5(b). The local yield stress (Ar.)
computed for Ry,.. = do exhibits the highest total averaged correlation with
the plastic events. The mean correlation with Ry... = 50 remains positive
through ~ 2.5% strain, about 1/3 of the yielding strain. The correlation of
the first plastic event is shown separately by the solid markers in Figure 5(a),
and these correlations decay rapidly with the number of plastic events with
larger Ry values. The predictivity of the local yield stress method in 3D
appears reasonably good in this preliminary study in which we consider only
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the local probing that perfectly aligns with the deformation imposed at the
box boundary. This optimal Ry, ~ 5o is consistent with the length scale of
the prior study in the 2D LY'S method[43, 42], but the corresponding volume
is significantly more substantial with 600 ~ 700 atoms in each probing region
in 3D.

We note that there exist some negative correlations in Figure 5(a) and
(b). As discussed in the previous 2D LYS studies[43], the LYS measurements
using larger values of Ry, fail to account for the secondary STZs because
their signature is obscured by other nearby low yield-stress STZs. In other
words, spatial resolution is lost by increasing local patch size. This leads to
rapid decay in the correlation at higher strains. The fact that off-axis rear-
rangements were not probed is also expected to result in the over-estimation
on the local yield stress (AT.).
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Figure 5: (a) Plot of correlation from Eq.20 versus the Nth plastic event with 3.750(x),
50 (o), 7.50(0), and 100(A). The hollow markers denote data points averaged over every
20 plastic events for 3 independent KA glasses. The 4 solid markers denote the mean
correlation over the 3 glasses at the 1st plastic event. The standard errors are presented
by the errorbars. The upper x-axis marks the corresponding triggering strain for each
averaged correlation. The dotted line works as a guidance for C' = 0. (b) Plot of the
correlation averaged over all the plastic events in Subplot (a) versus Ry, .., with standard
errors denoted by errorbars. The correlation with Rjf...=2.50 is excluded due to its
relatively large deviation from Hooke’s law (see Figure 4).

18



380

381

382

383

384

385

386

387

388

389

390

391

392

7. Variation in Orientation, Rotation and Triaxiality

;@ @i
GE!E)

%,

(@ B)

Figure 6: Schematics of rotating and probing a local region. The ’frozen’ atoms in trans-
parency form a shell of the core ’free’ atoms shown in solid color. The black arrows on
the local boundary denote the loading given by EZ in Eq.22 before (upper left) and after
(upper right) the rotation. (X'a, }7@, Z ) represents for the coordinate system of the atoms
rotating about X, counter-clockwise with angle v (green arrows) and then aligning X,

with a direction O (yellow arrows). O (yellow arrows) is sampled with respect to the face
norms in a regular dodecahedron in the middle.

We expect that the local yield stress (A7,) is anisotropic in glasses. To ex-
plore this anisotropy, we vary the local probing and explore the A7, yield sur-
face in a representative and efficient way. For this purpose, we transform Eﬁ

to a rotated unit strain EX* by applying the rotation matrix R (6(04, B), fy)

E. = R" (0(a,8),7) BER (0(a,8),7). (21)

In order to maintain an orthogonal simulation box, we rotate the atoms in
the local region such that the principal axes of E% align with the basis vec-

tors that define the simulation box, illustrated in Figure 6. R (6(&, B), ”y)

represents the general rotation tensor expressed as a function of 5, an arbi-
trary unit vector with which the x axis is brought into alignment, specified
in terms of (a, ), a polar and an azimuthal angle respectively, and ~, an
angle that describes a prior rotation about the x axis. To sample 0] evenly
in 3D, we utilize the face norms of a regular dodecahedron. The resulting
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rotation is illustrated in Figure 6. The atoms within the cut-out sphere are
first rotated by an angle v counterclockwise about X, that is then rotated
to align with a direction O. After the rotation operation is applied on the
atoms, a loading E% is imposed on the local boundary. The deformation
imposed on the principal axes may be expressed in terms of triaxiality v as

1 0 0
ELZW\/2w2—4w+8 0 %_1 0 (22)
T2 -2+ 4 2 s
0 0 ——
2
where, w = —1 (compression) or +1 (tension). ¢ ranges from 0 to 1 inclu-

sively, and in doing so determines the symmetry of the loading. If ¢ = 0,

1 0 0
5
Ej—“‘Tfoqo, (23)
0 0 0

and a uniaxial loading strain is thus applied. With zero strain along z axis,
this plane strain deformation recovers the local probing studied in the prior
work regarding the two-dimensional LYS method[42, 43]. As v increases to
1

?

1 0 0
1
gr=Y8lo 5 o (24)
2 1
0 O —3

resulting in a biaxial loading that is symmetric about the x axis.

For the sake of a preliminary study regarding the anisotropy of the local
yield stress (AT.), we focus on the region centered around the single atom
with the most dramatic plastic rearrangement as characterized by D? . from
Eq.19 applied to the first plastic event identified in Figure 3 during the
deformation of a 3D KA glass. When computing A7., we choose Rfyee = o
as the optimal length scale in the LYS method. Then we systematically vary
the triaxiality ¢ to take the values 0, 0.2, 0.4, 0.6, 0.8, and 1.0. At each
1, we consider 6 orientation directions of 6(04, B) as shown in the middle of
Figure 6. For each 6(@, B), the rotation angle 7 is set to be 0°, 30°, 60°, 90°,
120°, and 150°.
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In Figure 7, the calculated local yield stresses (A7,) are presented in a
series of 2D plots with variation in rotation (v), orientation (O), triaxiality
(¢) and loading direction (w). Each plot corresponds to a chosen set of
and O, and the resulting A7, from both compressive and tensile loadings is
plotted for each value of 7. As expected, the projection must be a circle when
1 = 1 since Ef in Eq.24 is symmetric about the x axis. As 1) decreases to 0
(from right to left), A7, loses this symmetry. The resulting A7, projections
from both loading directions (w = —1, +1) are consistent in their elongation,
and it is generally the case that the compressive Ar, is slightly larger in
magnitude than its corresponding tensile A7, particularly for larger values
of 1.

In previous sections, the deformation on the box boundary given by Ef
is identical to the shear of the local probing used to analyze the local value of
AT, given by EfL Here, we are able to cross-compare the propensity for the
applied global loading to trigger the local yield stresses (A7.) measured along
multiple probing directions, projecting each A7, along the applied loading
direction by calculating

fp=E; E}, (25)
2
Py = T/ I3 (26)
/7]
such that the projected local yield stress is expressed as
At
AT, = Te. (27)
by

If EX* = EC| then ps = 1 and the deformation on the box boundary aligns
perfectly with the local probing when computing A7.. This is the case for
our results in the previous sections. If 0 < p; < 1, the stress along Ef must
be greater than A7, itself in order to trigger the same local rearrangement
probed by EX*. If ps < 0, it indicates that the loading via Ef contributes
in the opposite direction as that applied during the local probing E{j* This
should indicate that it is impossible to trigger such a rearrangement by ap-
plying this Ef

The projected local yield stresses (A7) along ES in Eq.11 are mapped in
Figure 8 with the same presentation as in Figure 7. Due to the fact that A,
varies over a very large range, from -20¢/03 to 20¢/0? after being scaled by
py in Eq.27, we only present the resultant A7, with O, corresponding to the
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1st row in Figure 7, which are found to be generally lower in magnitude than
those in other orientation directions. With all negative AT, values neglected,
all subplots are scaled to a radius of 5¢/0®. The minimum positive A, along
all other O orientations is indicated by black dotted circles as a reference in
each plot. The black crosses label the five smallest positive A7, values. The
AT, locally probed with E5 in Eq.6 ranks as the 4th least in its value. This
E% aligns perfectly with ES in the prior section, and the difference from the
lowest A7, is ~ 8% and is small in comparison to the highest level of the AT,
scale, 20¢/03. This indicates that the easiest-to-trigger local rearrangement
doesn’t necessarily align with the loading imposed at the boundary, and the
difference between the two appears to predominantly associated with the
triaxiality 1.

We are also curious to compare the triaxiality v of the corresponding
local rearrangement centered at this targeted atom when applying Eg on the
boundary. The atomic strain with averaging radius 5o is computed according
to Eq.15 by comparing the yielding configuration with the initial state. This
strain tensor is an 'average’ over the probing region, and this can be compared
to the local probing presented by the effective unit strain tensor Eﬁ* in Eq.21
after normalization. Accordingly, the eigenvalues of the normalized atomic
strain tensor are then compared to Eﬁ in Eq.22 and the resulting value of
1 is 0.465. This value falls between 1) = 0.4 and ¢ = 0.6 which correspond
to the 2nd and the 1st lowest A7, marked in Figure 8. In addition, the
py between the probing Eﬁ* and the above averaged atomic strain yields
~ 0.938 for the minimal A7, higher than p; ~ 0.896 found for the Ar,
when the local regions are probed aligning perfectly with the loading on the
boundary (the 4th lowest). This high degree of correspondence indicates
that the triggered local plastic event isn’t necessarily in alignment with the
loading on the boundary, but, rather the local arrangement could be well
predicted by the minimum A7, from the local yield surface. The correlation
might be improved if a more complete range of local probing were undertaken
at each sampling point, particularly with respect to the triaxiality ).
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Figure 7: A, with variation in triaxiality ) horizontally and orientation o vertically. In
each subplot, rotation angle v is plotted as the angle counterclockwise from the horizontal
axis pointing to the right, and the magnitude of A7, is represented by the distance from
the origin. Blue A and red o denote the results for w = —1 and +1 in Eq.22 respectively.
All subplots are scaled with the limits of the axes as 5¢/0®. The original data can be
found on Johns Hopkins University Data Archive[54].
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Figure 8: Projected local yield stress (A7) calculated by Eq.25 to 27 with Ef in Eq.11.
Only A7, with 61 is plotted corresponding to the 1st row in Figure 7. Black crosses
mark the five lowest values of Atys with labeling 1 next to the smallest value. The black
dotted circle labels the magnitude of the minimum A7, among all other O orientations as
a reference in each plot. All subplots are scaled with the limits of the axes as 5¢/03. The
original data can be found on Johns Hopkins University Data Archive[54].
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8. Conclusions

By applying the local yield stress (LYS) method to a computational model
of a three-dimensional glass and varying the local probing over a range of
triaxialities (1), orientations (O(a, 8)), rotations (), and directions (w), we
are able to obtain a sense of the complexity of the response of the glass
microstructure when subjected to shear. We note that the optimal length
scale for this analysis (approximately 5 atomic diameters in radius) is just
above the smallest length scale at which the 3D Hooke’s law remains valid,
as was the case in 2D, although significantly more atoms reside within the
resulting probing region (600-700 atoms) due to the higher dimensionality.
When we are limited to probing at a shear identical to the loading on the
boundary, the mean correlation after noise reduction persists through the
first 200 identified plastic events or 1/3 the yielding strain (~ 7%). The
local yield stress surface is significantly anisotropic. And the projected local
yield stresses (A7,) with respect to the loading on the boundary does a very
good job of predicting the sense of the shear at the first yield event. It is
thus anticipated that the correlation of the yield stress analysis might be
improved by characterizing the entire yield surface, rather than only the
shear commensurate with that applied at the boundary, on each sampling
point.
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Appendix A. Sample Preparation

In each sample, 1,000,000 atoms are simulated in a cubic simulation box
with periodic boundary conditions along the x, y and z axes. The system
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is comprised of 80% large atoms (A) and 20% small atoms (B). We apply
a smoothed 6-12 Lennard-Jones(LJ) potential to quantify the interatomic
interactions as follows[43]:

When r < ryy,,

Uns(r) = dews {(M)m - (%)6} e (A1)

T r

When 7, <r < rou,
Ua5<T) = CO + 01(7" — rin) + 02(7“ — Tin)z =+ Cg(?” — Tin)g + 04(7“ — rin)47 (AQ)

When r > ry.,
Uaﬁ(r> = 07 (AS)

o 12 o 6
O = Cy — deug [(:ﬁ) ~ (rﬂ) ] , (A.4)

with

Co = —(Tout — Tin) [3C1 + Ca(rout — 7in)] /6, (A.5)
Cy = 24504,8026(7‘21 - 202,6)/7‘1-13, (A.6)

Cy = 126a5025(26025 — 78y /rid (A.7)

Cs = —[3C) 4+ 4Cs(Tout — Tin)]/[3(rout — Tin)?], (A.8)
Ci = [Cr + Ca(rout — 7in)]/[2(rout — 7in)?]. (A.9)

a and S denote particle species A or B. In LJ units, all quantities are rep-
resented in terms of particle mass m, which is equivalent for both species,
interatomic distance o, and interaction energy e. Consequently, time is mea-
sured in units of ¢y = o+/m/e, temperature in units of €/kp, pressure and
stress in units of €/0®, etc. In the Kob-Aderson[47] model, the bonding en-
ergies are €44 = 1.0¢, eggp = 0.5¢, exp = ega = 1.5¢, and the equilibrium
particle spacings are 044 = 1.00, 044 = 0.880, 045 = 0pa = 0.80.[24] This
potential field is smoothed from r;, = 2.00 to r,,; = 2.50 via a polynomial
function with coefficients Cy,Cy, Cs, C3 and C} as shown in Eq.A.2, to avoid
any discontinuity in the force associated with the potential’s short-ranged
cutoff.
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Appendix B. Deviation from Hooke’s Law

Appendiz B.1. FElastic Constants for the Bulk Glasses

To estimate the bulk elastic constants, the simulation box is loaded inde-
pendently along xx, yy, zz, or sheared along xy, xz, yz up to 1 x 1077 strain
using the athemal quasi-static (AQS) method [55, 56, 39, 57, 58, 59]. After
strain is applied along each of the six probing directions, the elastic constants
are calculated such that

cAp = Saj/en (B.1)

with A and B taking the values xx, yy, zz, xy, xz, or yz. For each loading,
both positive and negative strain are applied and averaged. The cap =
cpa elements are symmetrized as (cap + cga) /2 for the off-diagonal elastic
constants.

Appendix C. Variation in Orientation, Rotation and Triaxiality

The Projected Local Yield Stress AT,

The patterns of the Projected Local Yield Stress Ar, are presented in
Fig. C.9. In the array of plots, triaxiality (¢) is varied horizontally and
orientation (O) is varied vertically. In each plot, rotation angle (y) is the
angle counterclockwise from the horizontal axis pointing to the right, and the
magnitude of A, is represented by the distance from the origin. Blue A and
red o denote the results for w = —1 and +1. Black crosses mark the five lowest
values of A7, where the label 1 indicates the smallest value. In addition, solid
and hollow markers denote positive and negative sign respectively. In order
to show the full range of values, each plot is scaled with the limits of the
axes varied to +5, +10, £15, and +20¢/03, and this variation in scaling is
denoted by the yellow, light green, green, and dark green backgrounds, as is
shown in the bottom subplot.
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Figure C.9: Projected local yield stress (Ary).
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