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Highlights

Predicting Plastic Events and Quantifying the Local Yield Surface
in 3D Model Glasses

Dihui Ruan, Sylvain Patinet, Michael L. Falk

• The local yield stress method is proven to be predictive to the plasticity
in 3D glasses, and at the meanwhile, to be scalable to much larger
samples compared to other computational predictors.

• The optimal probing region size of the local yield stress method is ap-
proached by optimization on the predictivity in plasticity as well as the
extreme value distribution indicating the size of shear transformation
zones.

• Quantifying The local yield surface in 3D opens up the window for
studying the anisotropy of the local plasticity intriguing to the com-
munity of solid mechanics.
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Abstract

By applying the local yield stress (LYS) method to probe local regions of
three-dimensional computational glass models, we confirm high correlations
between the measured local yield stress (∆τc) and the plastic events when the
parameterization of the method is properly optimized. The optimal probing
region for this system is found to be ∼ 5σ in radius, where σ represents the
Lennard-Jones length scale, approximately the atomic size. The averaged
correlation remains positive through the first 200 identified plastic events or
1/3 of the yielding strain (∼ 7%). Here we apply only the local probing that
aligns perfectly with the loading on the boundary. The LYS measurements
converge to a Weibull distribution with a minimum ∆τc indistinguishable
from zero at larger probing region radii. Analysis of the data in light of an
assumption that ∆τc is a local quantity that obeys extreme value statistics
above a critical length scale bounds the exponent of the underlying distri-
bution of ∆τc to lie between 1.26 and 1.71. A thorough investigation of
the anisotropy of the local yield surface at the location of the first plastic
event indicates that the first triggered region does not align perfectly with
the loading on the boundary, but is well-predicted by projecting the shear
applied at the boundary onto the local yield surface. This implies that the
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correlation between the local yield stress prediction and the resulting plastic-
ity may be enhanced by performing a more complete assessment of the local
yield surface at each sample point.

Keywords: Plasticity, Local Yield Stress, Shear Transformation Zone,
Amorphous Solids, Athermal Quasi-static Method
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1. Introduction1

The detailed micro-mechanism of the mechanical response under an elasto-2

plastic deformation in amorphous materials remains poorly characterized3

relative to their crystalline counterparts in which dislocations can be well4

specified.[1, 2, 3, 4]. Falk and Langer[5] postulated a shear transformation5

zone (STZ) model in which preexisting defects corresponding to local clusters6

of atoms/molecules rearrange cooperatively and irreversibly during plastic7

flow. This STZ concept has been incorporated into constitutive equations8

for describing elastoplastic behaviors [6, 7, 8, 9, 10, 11, 12, 13, 14] as well9

as into discrete models of amorphous plastic response[15, 16]. The existence10

of such defects in amorphous solids has been supported by experimental11

studies[17, 18, 19, 20] and atomic simulations[21, 22, 23, 24] in various types12

of glasses.13

Researchers have been keenly interested in how one might accurately14

locate and characterize such ’flow-defects’, and in doing so have measured15

the correlation of plastic events with a variety of proposed structurally de-16

rived predictors.[25] These predictors range from trivial structural param-17

eters such as local density[26], atomic potential energy[22, 13], and short-18

range order[23, 27, 28], through more complex metrics obtained via ma-19

chine learning[29, 30], quantification of local excitations induced by linear[31,20

32, 33, 34] or nonlinear[35, 36] vibrational modes, by probing activation21

via the minimal energy path[37, 38], and by measurement of local elas-22

tic moduli[39, 40, 41]. Such simulations require a sample sufficiently large23

to resolve multiple individual STZs. Most of these investigations consid-24

ered two-dimensional glasses consisting of ∼ 10, 000 atoms. Few analy-25

ses in three-dimensional glasses have been performed at comparable length26

scales, as this requires million-atom simulations prepared by quenching a27

liquid sufficiently slowly to produce a glass stable enough to compare with28
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experiments.[27, 28, 34, 29, 30]29

In the context of the above indicators, Patinet et al. [42, 43] developed30

the local yield stress (LYS) method in which local regions are sheared at31

a particular length scale and loading orientation until yielding is triggered.32

By measuring the incremental stress to yield, the LYS method provides a33

direct measurement of elastoplastic response. High correlations have been34

observed between low local yield stresses and the sites where plastic events35

are observed during subsequent shear simulations of the material as a whole.36

A recent comparison found that this method ranks highly among a large37

number of structural indicators in 2D glassy samples, and performs best38

amongst these comparators in deeply quenched glasses, those modeled sam-39

ples most comparable to as-quenched glasses produced in laboratory and40

industrial processes.[25] The LYS framework also quantifies atomistic data41

in ways that clearly relate to the yield surface, a continuum concept criti-42

cal for understanding plasticity at the macro-scale [44, 45]. Characterizing43

larger 3D glasses has presented a challenge for diagonalization-based methods44

such as the identification of ’soft’ spots in Reference [33]. Recent advances45

have provided more efficient ways to explore low-frequency modes to locate46

STZs, but comprehensive characterization of a material using such methods47

remains a challenge [46]. The computational expense for the LYS method48

scales with the system size as O(N) making it applicable to these larger49

three-dimensional systems.50

Here we apply the LYS method to measure spatial variations in the in-51

cremental stress to yield (∆τc) along a single local probing determined by52

a strain tensor. The resulting measurements of ∆τc exhibit a correlation53

with the locations of the local plastic events produced by a similarly oriented54

strain applied at the boundary. The correlation persists until about 1/3 of55

the yielding strain when undertaken at the optimal length scale, ∼ 5σ(atomic56

diameters) in radius.57

Variation in the local probing strain is also examined at the location of58

the first identified plastic event. These data indicate that the triaxiality,59

orientation, rotation, and sign of the resulting plastic event aligns well with60

what one would infer from the measured local yield surface, but does not61

exactly correspond with the strain applied at the boundary. This suggests62

that the correlation of ∆τc with the observed plastic events would improve if63

the entire local yield stress surface, rather than only the value of ∆τc along64

the direction of the applied shear, were to be characterized throughout the65

material.66
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2. Sample Preparation67

We perform molecular dynamics (MD) simulations to prepare three inde-68

pendent Kob-Andersen (KA)[47] binary Lennard-Jones (LJ) glasses within69

the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)70

environment[48]. In each sample, 1,000,000 atoms are simulated in a cubic71

simulation box with periodic boundary conditions along the x, y and z axes.72

The system is comprised of 80% large atoms (A) and 20% small atoms (B).73

We apply a smoothed 6-12 Lennard-Jones(LJ) potential[49] field to quantify74

the interatomic interactions.75

According to a prior study by Shi and Falk[24], shear bands only arise76

during deformation in KA glasses prepared with relatively low quenching77

rates. To focus on KA glasses susceptible to strain localization, we follow the78

same preparation procedure to melt and equilibrate the initial configuration79

at a reservoir temperature T = 0.87ε/kB under an external pressure P =80

8.5ε/σ3, and we then cool this melt to T = 0.03ε/kB while releasing the81

pressure to P = 0ε/σ3 linearly over a duration of 2000t0 using a Nose-Hoover82

thermostat[50, 51] and Parrinello-Rahman barostat[52]. We verify that the83

difference in the potential energy per atom at the as-quenched state between84

our samples and the corresponding KA glasses in Reference [24] results from85

our choice of the smoothed LJ potential and the difference in the aspect ratio86

of the box dimension. Minimization of the energy via a conjugate gradient87

scheme[53] under zero pressure conditions is undertaken until achieving the88

convergence of the total force norm of the whole system. This is followed89

by a second force minimization with constrained volume for studying the90

athermal mechanical response at zero temperature. The final box dimension91

of these three KA glasses is approximately 93.4σ×93.4σ×93.4σ, where x and92

y dimensions are comparable to those of the 2D systems previously studied93

by the local yield stress method[43, 42]. The configurations of all 3 glasses94

can be found on Johns Hopkins University Data Archive[54].95

3. Three-Dimensional Local Yield Stresses96

3.1. 3D Local Yield Stress Method97

Patinet et al. developed the local yield stress (LYS) method in Reference98

[42] based upon the assumption that plastic events in amorphous solids occur99

as localized rearrangements located at STZs[5]. In the LYS method, local100

regions of atoms are sheared to the point of mechanical instability identified101
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Figure 1: Schematics of a spherical region of atoms cut from the simulation box for local
probing in a 3D binary glass with large (blue) and small (red) particles. The atoms in
transparency form a shell of the core atoms shown in solid color. Rfree and Rfrozen are
labeled by arrows in yellow and grey respectively. The black arrows denote the loading on
the local boundary in Eq.6.

by a stress drop, and the incremental stress required to reach the yielding102

point is recorded as the local yield stress (∆τc). A low value of ∆τc indicates103

relative high susceptibility to plasticity. In our three-dimensional LYS anal-104

yses, spherical regions of atoms within a radius Rfree + Rfrozen are probed105

by the athermal quasi-static (AQS) method[55, 56, 39, 57, 58, 59] within106

the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)107

environment[48]. The atoms in the inner core with radius Rfree are referred108

to as the ’free’ atoms, and the atoms in the outer shell with thickness Rfrozen109

are referred to as the ’frozen’ atoms, as is shown in Figure 1. At each incre-110

ment of loading, the ’frozen’ atoms are deformed affinely with respect to the111

probing strain, and the ’free’ atoms bounded by the ’frozen’ shell undergo112

static relaxation into the nearest mechanically stable configuration using a113

conjugate gradient method[53]. Rfrozen is set to be 5σ, twice the smoothed114

LJ potential cutoff radius rout = 2.5σ, to include all relevant neighbor atoms115

for the ’free’ atoms.116

An increment of local loading ∆EL with a constant volume can be written117

in terms of a strain step magnitude ∆eL multiplied by a unit local strain118

tensor EL
u as119

∆EL = ∆eLEL
u . (1)
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The projected stress τp is defined as120

τp = SL : EL
u , (2)

where SL is the stress tensor of the local ’free’ region. In the athermal121

limit[60, 61, 62, 63], the virial contribution of atom i can be computed as a122

tensor123

Φi =
1

2

Np∑
j 6=i

(
~rij ⊗ ~fij

)
, (3)

in which atom j is one of Np atoms within the pairwise potential cutoff radius124

from atom i. The displacement vector ~rij = ~rj−~ri represents the interatomic125

displacement, and ~fij represents the force exerted on atom i from atom j.126

SL can then be estimated by dividing the sum of the virial contributions Φi127

from the Nfree atoms in the free region by its volume as128

SL ≈ 3

4πR3
free

Nfree∑
i=1

Φi. (4)

The projected stress τp is used to identify whether the response to an incre-129

mental strain is elastic or if, rather, an instability has been triggered. The130

stress tensor at the point when a stress drop is detected will be referred to as131

the onset stress SLonset. This stress is used to calculate the local yield stress132

∆τc given by133

∆τc = (SLonset − SL0 ) : EL
u , (5)

where SL0 is the initial stress state of the local region before any probing. It134

is important to note that due to the residual stresses present in glasses, the135

elements in tensor S0
L are typically not equal to zero. Since undertaking the136

local yield stress analysis in 3D is computationally demanding, we initially137

limit our investigation to the case where EL
u is chosen to be a pure shear138

loading as139

EL
u =

√
2

2

1 0 0
0 −1 0
0 0 0

 . (6)

To impose strain, equal tension and compression are applied along the x axis140

and the y axis while zero strain is imposed along the z axis, as illustrated in141

Figure 1. This plane strain boundary condition is comparable to the prior142

study on the 2D local yield stress method in Reference [42] and [43].143
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Table 1: Table of initial force tolerance F 0
tol, strain step ∆eL, and final force tolerance Ftol

settings at each Rfree. ∗: ∆eL (10−6) is the smallest strain step achievable computation-
ally given the available resources.

Rfree(σ) F 0
tol(ε/σ) ∆eL Ftol(ε/σ)

2.5 2× 10−11 10−4 10−6

3.75 3× 10−11 10−4 10−6

5 4× 10−11 10−5 10−6

7.5 8× 10−11 10−6∗ 10−6

10 2× 10−10 10−6∗ 10−6

3.2. Parameterization144

The LYS method involves probing local regions with respect to a local145

unit strain tensorEL
u and measuring the incremental stress required to induce146

a local instability. There are three parameters playing important roles in147

computing the local yield stress ∆τc: the force tolerance Ftol that sets the148

accuracy of force minimization when relaxing the ’free’ atoms, the strain149

step ∆eL that controls the magnitude of each increment of loading, and the150

characteristic length Rfree that determines the size of locally probed regions.151

The optimal values of these three parameters are not independent of each152

other. For instance, for larger Rfree values, more atoms may participate153

in the plastic rearrangement, and the higher number of degrees of freedom154

necessitates a smaller strain step ∆eL.[58]155

In Table 1, we list the parameters that are obtained from a series of156

convergence studies that we have undertaken to optimize the parameters. All157

the convergence studies are executed on sampling regions centered on evenly158

spaced 2× 2× 2 grids extracted from the binary LJ glass samples described159

in Materials and Methods. For each listed Rfree between 2.5σ and 10σ,160

an initial force tolerance F 0
tol is chosen by sampling the convergence of the161

force norm when probing a very small strain 10−7. Local yields stresses (∆τc)162

are computed at various strain steps ∆eL, and these results are compared163

with the results using the smallest ∆eL (10−6) we could achieve within our164

computational limitations. We choose the largest strain step ∆eL that results165

in a relative difference in ∆τc 6 1% or we choose 10−6, as noted in Table166

1. With ∆eL set, we raise the values of Ftol to enhance the computational167

efficiency in the 3D LYS method. The final Ftol settings are determined by168

converging the computed ∆τc with various Ftol values to be within 6 1% of169
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the results using F 0
tol. We are able to raise the final Ftol values to 10−6 among170

all the Rfree values without significantly affecting the results.171

3.3. Distribution and Scaling172

In order to uniformly sample the material response, local yield stresses173

(∆τc) are computed in probing regions centered on evenly spaced grid points174

throughout the simulation box instead of probing regions centered on each175

atom as had been done in prior 2D studies[42]. The distance between grid176

points dsample is chosen as ∼ 10σ to approach a set of 10 × 10 × 10 samples177

in each Kob-Anderson (KA)[47] glass. From these samples, we are able to178

compute the distribution of ∆τc in a representative manner. The distribu-179

tions of local yield stress (∆τc) with Rfree from 2.5σ to 10σ are plotted in180

the inset of Figure 2(a). As was observed in the prior 2D studies[42, 43],181

increasing Rfree results in more sampling regions yielding at lower ∆τc, and182

the peaks of these probability density functions (Pd) shift toward lower ∆τc183

values with heavier low-end tails. This is consistent with our expectation184

that yielding behavior is controlled by the easiest to yield STZ in the sam-185

pling region. If we consider yield to be a local phenomenon, such that STZs186

are independent above a critical length scale (Rc
free), larger regions are ex-187

pected to incorporate more STZs, and their ∆τc should be lower on average188

than that of smaller regions that contain fewer STZs. If we assume that the189

observed yield stress is determined by the STZ with the lowest yield stress190

in the region, ∆τc of a larger region is the minimum ∆τc of all the included191

regions.192

To test this assumption of ’isolated’ local yield regions, we compare these193

distributions to the ’Extreme Value Distribution’ (EVD)[64], which catego-194

rizes the distribution of maxima or minima of random variables. Since ∆τc195

is defined to be non-negative, minima of sampled ∆τc values are expected to196

result in a Weibull distribution when sampled at a length scale sufficiently197

larger than the scale on which distinct sub-regions would be independent.[65]198

For sufficiently large sampling regions, the probability density function (Pd)199

and cumulative distribution function (Pc) are therefore expected to be given200

by201

Pd(∆τc|a, b) =
b

a

(
∆τc
a

)b−1
exp

[
−
(

∆τc
a

)b]
, (7)
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and202

Pc(∆τc|a, b) = 1− exp

[
−
(

∆τc
a

)b]
, (8)

where a is the scale parameter, and b is the shape parameter. As is presented203

in Figure 2(c), the scale parameter a is observed to decrease with increasing204

Rfree corresponding to a lower mean when a larger local region is probed.205

Here, the shape parameter b > 1 indicates that the instantaneous ’yield rate’206

M(∆τc|a, b) =
Pd(∆τc)

1− Pc(∆τc)
=
b

a

(
∆τc
a

)b−1
, (9)

the number of yield events per unit stress, increases with ∆τc.[66]207

The fitted Weibull distributions are plotted as dot-dashed lines on top of208

the measured ∆τc distributions in the main plot of Figure 2(a). Also, the209

corresponding cumulative distributions (Pc) of ∆τc are presented in the inset210

of Figure 2(b). In the main plot of Figure 2(b), the cumulative distributions211

of ∆τc are normalized by the two fitting parameters a and b in terms of212

ln [− ln (1− Pc)] /b+ ln a and are then plotted versus ln τy after being shifted213

by the corresponding mode. Combining the above plots, we notice that214

the distributions of ∆τc align with the Weibull distribution for larger Rfree215

values. More specifically, the density distribution functions in Figure 2(a)216

with Rfree = 7.5σ and 10σ are significantly Weibull-like. Therefore, the217

underlying distribution of ∆τc at some critical length with Rc
free under 7.5σ218

is inferred to behave like a power-law distribution in the limit of ∆τc → 0.[67]219

Close inspection of the data taken with Rfree from 2.5σ to 3.75σ, reveals220

that the lower-value tails in their probability density functions are heavier221

than what would be expected in an underlying distribution that would lead222

to a Weibull distribution. These distributions discontinuously drop to zero223

below a relatively high threshold, as shown in the main plot of Figure 2(a).224

We believe this indicates that lower ∆τc values can’t be accurately mea-225

sured due to the limitations that the boundary constraints impose on local226

rearrangements within smaller regions. In comparison, the smooth ∆τc dis-227

tribution at Rfree = 5σ behaves like a power-law distribution as ∆τc → 0.228

As we should expect, this distribution doesn’t converge to a Weibull distri-229

bution since each probing region is too small to include a statistical number230

of independent STZs. We expect the characteristic length Rc
free of the un-231

derlying distribution is between 3.75σ and 5σ, and that 5σ is the closet to232

Rc
free among all the Rfree values measured here. By this reasoning, we can233
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bound b∗, the exponent of the power law of the underlying ∆τc distribution234

at Rc
free when ∆τc → 0, to be greater than 1.26 as shown by the slope of235

the log-log distribution at the lower end when Rfree = 5σ in Figure 2(a). If236

we could measure larger and larger Rfree values, the shape parameter b used237

to fit the Weibull distribution to the data in Figure 2(d) should converge to238

b∗.[67] Since the value of b∗ is expected to be lower than the b from the fitted239

Weibull distribution with Rfree = 10σ, we can bound b∗ to be less than 1.71240

according to Figure 2(d).241

Based on the derivation of the extreme value statistics, the mean ∆τc242

when probing larger regions whose size is far above the critical length Rc
free243

can be related to the cumulative distribution P ∗c in terms of N , the number244

of STZs in the probing region as[67]245

< ∆τc >= P ∗−1c

(
1

N + 1

)
. (10)

If we supposeRc
free to be 5σ, N(Rfree = 7.5σ) ≈ 11 andN(Rfree = 10σ) ≈ 47246

accordingly. While we intuitively expect that N ∝ R3
free, this is not consis-247

tent with the above two Rfree values, indicating that we are not at sufficiently248

large Rfree values to have fully converged to the Weibull distribution, or that249

the distribution at 5σ is not sufficiently close to the underlying distribution250

for this analysis to be viable.251
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Figure 2: Local yield stress (∆τc) distributions with Rfree=2.5σ(�), 3.75σ(?), 5σ(◦),
7.5σ(�), and 10σ(4). (a) Log-log plot of ∆τc probability density function (Pd). Dot-
dashed lines denote Weibull distribution fits (Eq.7). The black solid line denotes the slope
of the log-log distribution at ∆τc → 0 with Rfree = 5σ. Inset: linear-linear plot of the
probability density function of ∆τc. (b) Scaled plot of the normalized cumulative distribu-
tion function of ∆τc, where the dot-dashed line denotes for a linear guideline extrapolated
from ∆τc distribution with Rfree = 10σ. *: The curves are shifted by their corresponding
modes. Inset: the cumulative distribution of ∆τc. Plot of (c) the scale parameter a (×)
and (d) the shape parameter b (∗) from the Weibull distribution fits in Figure 2 versus
Rfree. The dotted line in (d) denotes the lower bound for b to converge with extremely
large Rfree. The original data in this figure can be found on Johns Hopkins University
Data Archive[54].
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4. Locating Plastic Events252
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0.0404

Figure 3: Stress-strain response for the AQS deformation with a strain step ∆eG = 10−6

on one KA glass. The inset is the zoom-in view of the circled region in the main plot,
where the first plastic event is identified. The original data of the stress-strain response
for all 3 independent glasses can be found on Johns Hopkins University Data Archive[54].

To identify the series of plastic events that arise during loading, the sim-253

ulation box is deformed via the AQS method within the LAMMPS environ-254

ment. The AQS method affinely deforms the simulation box as all atoms255

are statically relaxed to a mechanically equilibrated state at each strain step.256

Here, the conjugate gradient method is deployed to minimize the forces dur-257

ing the relaxation. The load on the boundary is applied in the same manner258

as the locally-probed deformation described by Eq.6. At each strain step259

applied on the boundary (∆eG), a projected stress for the simulation box260

(sp) is recorded to characterize the stress-strain response,261

sp = SG : EG
u , (11)

where EG
u denotes the unit global strain tensor. The stress tensor of the262

system SG =
1

V

N∑
i=1

Φi, where V is the volume of the simulation box and263

N is the total number of atoms in the system. A plastic event is identi-264

fied by each instance in which the stress (i.e., sp) decreases. These 3D KA265

glasses exhibit a discontinuous drop in the stress due to strain localization266
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at approximately 7% strain with strain step 10−6, as is indicated in Figure 3.267

Due to the relatively large size of these 3D systems, many plastic events are268

triggered during deformation. This makes the serrations difficult to resolve269

by eye, in contrast to the obvious fluctuations in some previously studied270

2D glasses[43]. The inset presents the first identified plastic event with a271

stress drop of ∼ 5.30×10−7ε/σ3 and a triggering strain of ∼ 0.091%. As was272

noted in Reference [68], the identified plastic events depend on the strain273

step. This means that smaller and smaller plastic events are observed to274

occur at smaller and smaller strain as the strain step is decreased. Due to275

computational limitations, it is not possible to converge ∆eG to determine276

if there is a ’true’ first plastic event in our prepared glasses with 1,000,000277

atoms, and answering that question is not the objective of this work. Rather278

we assume that the strain step determines the resolution at which we are able279

to sample plastic rearrangements during deformation of the simulation box.280

We apply the loading on the boundary with the smallest strain step which281

is computationally affordable (10−7) until the first stress drop in an effort282

to characterize the smallest length scale at which 3D Hooke’s law behavior283

is recovered. For testing the predictivity of the LYS method, consecutive284

plastic events are sampled every 10−6 strain.285

5. Deviation from Hooke’s Law286

In determining the the region size set by Rfree, the local yield stress287

method assumes that Hooke’s law is valid at this length scale. An evaluation288

of the consistency of local material response with Hooke’s law should thus289

set a lower bound on Rfree in computing the local yield stresses (∆τc). Here,290

we adopt the methodology developed by Tsamados et al.[39] to estimate the291

deviation from linear elasticity at a given length scale. The whole simulation292

box is deformed in increments of 10−7 strain. The virial contribution at each293

atom (Eq.3) is computed both at the initial as-quenched state (ΦG
i,0) and294

at the first onset of instability (ΦG
i,y), defined as the configuration prior to295

the first stress drop (at 0.012 ± 0.007%). Instead of applying a Gaussian296

windowing function as in Reference [39], we sum these local contributions297

from NH atoms within the sampling radius RH , to remain consistent with298

the uniform contributions from the ’free’ atoms when computing the local299
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Figure 4: Log-linear plot of deviation from 3D Hooke’s law versus averaging radius RH .
The standard errors are negligible compared with the size of the markers. The dotted line
is the guideline for 1%.

yield stress (∆τc). The stress change in this region is then approximated by300

SGi,RH
=

3

4πR3
H

NH∑
j

(
ΦG
j,y −ΦG

j,0

)
. (12)

By comparing the above two configurations, the atomic strain tensor cen-301

tered at each atom is calculated with varying cutoff radii RH according to302

References [5] and [69] using the OVITO open visualization tool[70]. A de-303

formation gradient tensor F i is computed by minimizing304

NH∑
j=1

|~rij,0F i − ~rij,y|2 , (13)

where ~rij,0 and ~rij,y are displacement vectors between atom j and i in the305

unstrained state and at the onset of instability respectively.[69] It follows306

that307

F i =

(
NH∑
j=1

~rij,0 ⊗ ~rij,0

)−1(NH∑
j=1

~rij,0 ⊗ ~rij,y

)
. (14)

The resulting atomic strain tensor centered at atom i is then calculated as308

EG
i,RH

=
1

2

(
F T
i F i − I

)
. (15)
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Consider the generalized 3D Hooke’s law in Voigt notation309

S̃ = C̃Ẽ (16)

where, for instance, sxx in S̃ and exx in Ẽ represent for the stress and strain310

components along x direction on the yz plane, and cijkl in C̃ denotes one of311

the 21 nonzero elastic constants from a 4th order elastic-moduli tensor. To312

solve for these 21 unknowns in the stiffness matrix, 21 linear equations must313

be generated from 4 independent deformations. The resulting solution is, in314

general, overdetermined. We apply the least-squares method[71] to optimize315

the 21 elastic moduli numerically. Preset bounds on the solutions are applied316

with regards to the bulk stiffness matrix of the whole system computed from317

LAMMPS.318

We then perform 11 independent deformations on the simulation box with319

the unit strain tensor320

EG
u =

√
2ψ2 − 4ψ + 8

ψ2 − 2ψ + 4


1 0 0

0
ψ

2
− 1 0

0 0 −ψ
2

 , (17)

in which triaxiality ψ = 0, 0.1, 0.2, 0.3, ..., 1. For an atom i, the deformations321

with ψ ranging from 0.1 to 1 overdetermine the elastic constants in Eq.16.322

The length scale dependence of the overdetermined elastic constants is as-323

sessed by varying RH from 2.5 to 10σ. At ψ = 0, an estimated stress tensor324

S̃
G′

i,RH
(in Viogt notation) is calculated by substituting the solved stiffness325

matrix and the strain tensor into Eq.16. Then S̃
G′

i,RH
is compared with the326

directly computed stress tensor S̃
G

i,RH
(in Viogt notation) from LAMMPS327

and its deviation is quantified by the relative root mean square as328

∆i,RH
=

√√√√√√
∥∥∥S̃G′

i,RH
− S̃Gi,RH

∥∥∥2
6
∥∥∥S̃Gi,RH

∥∥∥2 . (18)

In Figure 4, the mean deviation averaged among all the atoms are plotted329

against the averaging radius RH . If we choose the threshold for elastic be-330

havior to be ≤ 1% as in Reference [39], then the 3D Hooke’s law is valid at a331

length scale RH above 2.5σ, which can thus serve as the lower limit of Rfree332

for the local yield stress method in the 3D glasses.333
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6. Correlation between ∆τc and Plastic Events334

Next, we would like to assess the degree of correlation of the localized335

plasticity with the local yield stress, and in doing so determine an optimal336

length scale for Rfree. We consider multiple plastic events obtained by shear-337

ing with strain steps ∆eG = 10−6. Each plastic event is identified by a stress338

(sp) drop, and the yield point is recorded as the last configuration prior to339

instability. Considering two consecutive events, the end of the former event340

also serves as the reference point of the subsequent event, which is identified341

as the last configuration prior to a stress (sp) increase after a relaxation.342

We locate the triggered plastic rearrangement and characterize its nature by343

comparing the configuration after relaxation to the configuration at the yield344

point. These two configurations are denoted by subscripts e, for end, and345

y, for yield, respectively. At each atom, the deviation from affinity D2
min is346

calculated as347

D2
min,i =

Ncut∑
j=1

|~rij,yF i − ~rij,e|2 , (19)

where, we solve for F i as described in Eq.14. Ncut is the number of neighbor348

atoms within a cutoff radius 2.5σ[5] to the center atom i. At the Nth plastic349

event, the local yield stress ∆τc is computed centered at atom aN with the350

maximum value of D2
min in the as-quenched configuration, and then this351

∆τc,aN is compared with the distribution of ∆τc above. To be consistent with352

the prior studies in the 2D LYS method[43, 42], we quantify the correlation353

as354

CN = 1− 2Pc (∆τc,aN ) , (20)

where Pc is the cumulative distribution function of ∆τc.355

For the first 200 identified plastic events, the correlation averaged over356

every 20 plastic events in 3 independent KA glasses is plotted against the357

number of the plastic event in Figure 5(a). The corresponding total average358

with each Rfree is presented in Figure 5(b). The local yield stress (∆τc)359

computed for Rfree = 5σ exhibits the highest total averaged correlation with360

the plastic events. The mean correlation with Rfree = 5σ remains positive361

through ∼ 2.5% strain, about 1/3 of the yielding strain. The correlation of362

the first plastic event is shown separately by the solid markers in Figure 5(a),363

and these correlations decay rapidly with the number of plastic events with364

larger Rfree values. The predictivity of the local yield stress method in 3D365

appears reasonably good in this preliminary study in which we consider only366
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the local probing that perfectly aligns with the deformation imposed at the367

box boundary. This optimal Rfree ∼ 5σ is consistent with the length scale of368

the prior study in the 2D LYS method[43, 42], but the corresponding volume369

is significantly more substantial with 600 ∼ 700 atoms in each probing region370

in 3D.371

We note that there exist some negative correlations in Figure 5(a) and372

(b). As discussed in the previous 2D LYS studies[43], the LYS measurements373

using larger values of Rfree fail to account for the secondary STZs because374

their signature is obscured by other nearby low yield-stress STZs. In other375

words, spatial resolution is lost by increasing local patch size. This leads to376

rapid decay in the correlation at higher strains. The fact that off-axis rear-377

rangements were not probed is also expected to result in the over-estimation378

on the local yield stress (∆τc).379

17



0 20 40 60 80 100 120 140 160 180 200
-0.5

0

0.5

1
(a)
0.58 1.15 1.43 1.65 1.82 1.9 2.06 2.18 2.26 2.39

3 4 5 6 7 8 9 10 11
-0.2

0

0.2

0.4 (b)

Figure 5: (a) Plot of correlation from Eq.20 versus the Nth plastic event with 3.75σ(?),
5σ(◦), 7.5σ(�), and 10σ(4). The hollow markers denote data points averaged over every
20 plastic events for 3 independent KA glasses. The 4 solid markers denote the mean
correlation over the 3 glasses at the 1st plastic event. The standard errors are presented
by the errorbars. The upper x-axis marks the corresponding triggering strain for each
averaged correlation. The dotted line works as a guidance for C = 0. (b) Plot of the
correlation averaged over all the plastic events in Subplot (a) versus Rfree, with standard
errors denoted by errorbars. The correlation with Rfree=2.5σ is excluded due to its
relatively large deviation from Hooke’s law (see Figure 4).
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7. Variation in Orientation, Rotation and Triaxiality380

𝜸
(𝜶, 𝜷)

Figure 6: Schematics of rotating and probing a local region. The ’frozen’ atoms in trans-
parency form a shell of the core ’free’ atoms shown in solid color. The black arrows on
the local boundary denote the loading given by EL

u in Eq.22 before (upper left) and after

(upper right) the rotation. ( ~Xa, ~Ya, ~Za) represents for the coordinate system of the atoms

rotating about ~Xa counter-clockwise with angle γ (green arrows) and then aligning ~Xa

with a direction ~O (yellow arrows). ~O (yellow arrows) is sampled with respect to the face
norms in a regular dodecahedron in the middle.

We expect that the local yield stress (∆τc) is anisotropic in glasses. To ex-381

plore this anisotropy, we vary the local probing and explore the ∆τc yield sur-382

face in a representative and efficient way. For this purpose, we transform EL
u383

to a rotated unit strain EL∗
u by applying the rotation matrix R

(
~O(α, β), γ

)
384

EL∗
u = RT

(
~O(α, β), γ

)
EL
uR
(
~O(α, β), γ

)
. (21)

In order to maintain an orthogonal simulation box, we rotate the atoms in385

the local region such that the principal axes of EL
u align with the basis vec-386

tors that define the simulation box, illustrated in Figure 6. R
(
~O(α, β), γ

)
387

represents the general rotation tensor expressed as a function of ~O, an arbi-388

trary unit vector with which the x axis is brought into alignment, specified389

in terms of (α, β), a polar and an azimuthal angle respectively, and γ, an390

angle that describes a prior rotation about the x axis. To sample ~O evenly391

in 3D, we utilize the face norms of a regular dodecahedron. The resulting392

19



rotation is illustrated in Figure 6. The atoms within the cut-out sphere are393

first rotated by an angle γ counterclockwise about ~Xa that is then rotated394

to align with a direction ~O. After the rotation operation is applied on the395

atoms, a loading EL
u is imposed on the local boundary. The deformation396

imposed on the principal axes may be expressed in terms of triaxiality ψ as397

EL
u =

ω
√

2ψ2 − 4ψ + 8

ψ2 − 2ψ + 4


1 0 0

0
ψ

2
− 1 0

0 0 −ψ
2

 , (22)

where, ω = −1 (compression) or +1 (tension). ψ ranges from 0 to 1 inclu-398

sively, and in doing so determines the symmetry of the loading. If ψ = 0,399

EL
u =

ω
√

2

2

1 0 0
0 −1 0
0 0 0

 , (23)

and a uniaxial loading strain is thus applied. With zero strain along z axis,400

this plane strain deformation recovers the local probing studied in the prior401

work regarding the two-dimensional LYS method[42, 43]. As ψ increases to402

1,403

EL
u =

ω
√

6

2


1 0 0

0 −1

2
0

0 0 −1

2

 , (24)

resulting in a biaxial loading that is symmetric about the x axis.404

For the sake of a preliminary study regarding the anisotropy of the local405

yield stress (∆τc), we focus on the region centered around the single atom406

with the most dramatic plastic rearrangement as characterized by D2
min from407

Eq.19 applied to the first plastic event identified in Figure 3 during the408

deformation of a 3D KA glass. When computing ∆τc, we choose Rfree = 5σ409

as the optimal length scale in the LYS method. Then we systematically vary410

the triaxiality ψ to take the values 0, 0.2, 0.4, 0.6, 0.8, and 1.0. At each411

ψ, we consider 6 orientation directions of ~O(α, β) as shown in the middle of412

Figure 6. For each ~O(α, β), the rotation angle γ is set to be 0◦, 30◦, 60◦, 90◦,413

120◦, and 150◦.414
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In Figure 7, the calculated local yield stresses (∆τc) are presented in a415

series of 2D plots with variation in rotation (γ), orientation ( ~O), triaxiality416

(ψ) and loading direction (ω). Each plot corresponds to a chosen set of ψ417

and ~O, and the resulting ∆τc from both compressive and tensile loadings is418

plotted for each value of γ. As expected, the projection must be a circle when419

ψ = 1 since EL
u in Eq.24 is symmetric about the x axis. As ψ decreases to 0420

(from right to left), ∆τc loses this symmetry. The resulting ∆τc projections421

from both loading directions (ω = −1,+1) are consistent in their elongation,422

and it is generally the case that the compressive ∆τc is slightly larger in423

magnitude than its corresponding tensile ∆τc, particularly for larger values424

of ψ.425

In previous sections, the deformation on the box boundary given by EG
u426

is identical to the shear of the local probing used to analyze the local value of427

∆τc given by EL
u . Here, we are able to cross-compare the propensity for the428

applied global loading to trigger the local yield stresses (∆τc) measured along429

multiple probing directions, projecting each ∆τc along the applied loading430

direction by calculating431

f 2
p = EL∗

u : EG
u , (25)

432

pf =
f 2
p

|f 2
p |

√
|f 2
p |, (26)

such that the projected local yield stress is expressed as433

∆τy =
∆τc
pf

. (27)

If EL∗
u = EG

u , then pf = 1 and the deformation on the box boundary aligns434

perfectly with the local probing when computing ∆τc. This is the case for435

our results in the previous sections. If 0 < pf < 1, the stress along EG
u must436

be greater than ∆τc itself in order to trigger the same local rearrangement437

probed by EL∗
u . If pf < 0, it indicates that the loading via EG

u contributes438

in the opposite direction as that applied during the local probing EL∗
u . This439

should indicate that it is impossible to trigger such a rearrangement by ap-440

plying this EG
u .441

The projected local yield stresses (∆τy) along EG
u in Eq.11 are mapped in442

Figure 8 with the same presentation as in Figure 7. Due to the fact that ∆τy443

varies over a very large range, from -20ε/σ3 to 20ε/σ3 after being scaled by444

pf in Eq.27, we only present the resultant ∆τc with ~O1 corresponding to the445
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1st row in Figure 7, which are found to be generally lower in magnitude than446

those in other orientation directions. With all negative ∆τy values neglected,447

all subplots are scaled to a radius of 5ε/σ3. The minimum positive ∆τy along448

all other ~O orientations is indicated by black dotted circles as a reference in449

each plot. The black crosses label the five smallest positive ∆τy values. The450

∆τy locally probed with EL
u in Eq.6 ranks as the 4th least in its value. This451

EL
u aligns perfectly with EG

u in the prior section, and the difference from the452

lowest ∆τy is ∼ 8% and is small in comparison to the highest level of the ∆τy453

scale, 20ε/σ3. This indicates that the easiest-to-trigger local rearrangement454

doesn’t necessarily align with the loading imposed at the boundary, and the455

difference between the two appears to predominantly associated with the456

triaxiality ψ.457

We are also curious to compare the triaxiality ψ of the corresponding458

local rearrangement centered at this targeted atom when applying EG
u on the459

boundary. The atomic strain with averaging radius 5σ is computed according460

to Eq.15 by comparing the yielding configuration with the initial state. This461

strain tensor is an ’average’ over the probing region, and this can be compared462

to the local probing presented by the effective unit strain tensor EL∗
u in Eq.21463

after normalization. Accordingly, the eigenvalues of the normalized atomic464

strain tensor are then compared to EL
u in Eq.22 and the resulting value of465

ψ is 0.465. This value falls between ψ = 0.4 and ψ = 0.6 which correspond466

to the 2nd and the 1st lowest ∆τy marked in Figure 8. In addition, the467

pf between the probing EL∗
u and the above averaged atomic strain yields468

∼ 0.938 for the minimal ∆τy higher than pf ∼ 0.896 found for the ∆τy469

when the local regions are probed aligning perfectly with the loading on the470

boundary (the 4th lowest). This high degree of correspondence indicates471

that the triggered local plastic event isn’t necessarily in alignment with the472

loading on the boundary, but, rather the local arrangement could be well473

predicted by the minimum ∆τy from the local yield surface. The correlation474

might be improved if a more complete range of local probing were undertaken475

at each sampling point, particularly with respect to the triaxiality ψ.476
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Figure 7: ∆τc with variation in triaxiality ψ horizontally and orientation ~O vertically. In
each subplot, rotation angle γ is plotted as the angle counterclockwise from the horizontal
axis pointing to the right, and the magnitude of ∆τc is represented by the distance from
the origin. Blue 4 and red ◦ denote the results for ω = −1 and +1 in Eq.22 respectively.
All subplots are scaled with the limits of the axes as 5ε/σ3. The original data can be
found on Johns Hopkins University Data Archive[54].

23



4 3 2

1
5

Figure 8: Projected local yield stress (∆τy) calculated by Eq.25 to 27 with EG
u in Eq.11.

Only ∆τy with ~O1 is plotted corresponding to the 1st row in Figure 7. Black crosses
mark the five lowest values of ∆τys with labeling 1 next to the smallest value. The black

dotted circle labels the magnitude of the minimum ∆τy among all other ~O orientations as
a reference in each plot. All subplots are scaled with the limits of the axes as 5ε/σ3. The
original data can be found on Johns Hopkins University Data Archive[54].
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8. Conclusions477

By applying the local yield stress (LYS) method to a computational model478

of a three-dimensional glass and varying the local probing over a range of479

triaxialities (ψ), orientations ( ~O(α, β)), rotations (γ), and directions (ω), we480

are able to obtain a sense of the complexity of the response of the glass481

microstructure when subjected to shear. We note that the optimal length482

scale for this analysis (approximately 5 atomic diameters in radius) is just483

above the smallest length scale at which the 3D Hooke’s law remains valid,484

as was the case in 2D, although significantly more atoms reside within the485

resulting probing region (600-700 atoms) due to the higher dimensionality.486

When we are limited to probing at a shear identical to the loading on the487

boundary, the mean correlation after noise reduction persists through the488

first 200 identified plastic events or 1/3 the yielding strain (∼ 7%). The489

local yield stress surface is significantly anisotropic. And the projected local490

yield stresses (∆τy) with respect to the loading on the boundary does a very491

good job of predicting the sense of the shear at the first yield event. It is492

thus anticipated that the correlation of the yield stress analysis might be493

improved by characterizing the entire yield surface, rather than only the494

shear commensurate with that applied at the boundary, on each sampling495

point.496
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Appendix A. Sample Preparation508

In each sample, 1,000,000 atoms are simulated in a cubic simulation box509

with periodic boundary conditions along the x, y and z axes. The system510
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is comprised of 80% large atoms (A) and 20% small atoms (B). We apply511

a smoothed 6-12 Lennard-Jones(LJ) potential to quantify the interatomic512

interactions as follows[43]:513

When r ≤ rin,514

Uαβ(r) = 4εαβ

[(σαβ
r

)12
−
(σαβ
r

)6]
+ C ′, (A.1)

When rin < r ≤ rout,515

Uαβ(r) = C0 +C1(r− rin) +C2(r− rin)2 +C3(r− rin)3 +C4(r− rin)4, (A.2)

When r > rout,516

Uαβ(r) = 0, (A.3)

with517

C ′ = C0 − 4εαβ

[(
σαβ
rin

)12

−
(
σαβ
rin

)6
]
, (A.4)

518

C0 = −(rout − rin) [3C1 + C2(rout − rin)] /6, (A.5)
519

C1 = 24εαβσ
6
αβ(r6in − 2σ6

αβ)/r13in , (A.6)
520

C2 = 12εαβσ
6
αβ(26σ6

αβ − 7r6in)/r14in , (A.7)
521

C3 = −[3C1 + 4C2(rout − rin)]/[3(rout − rin)2], (A.8)
522

C4 = [C1 + C2(rout − rin)]/[2(rout − rin)3]. (A.9)

α and β denote particle species A or B. In LJ units, all quantities are rep-523

resented in terms of particle mass m, which is equivalent for both species,524

interatomic distance σ, and interaction energy ε. Consequently, time is mea-525

sured in units of t0 = σ
√
m/ε, temperature in units of ε/kB, pressure and526

stress in units of ε/σ3, etc. In the Kob-Aderson[47] model, the bonding en-527

ergies are εAA = 1.0ε, εBB = 0.5ε, εAB = εBA = 1.5ε, and the equilibrium528

particle spacings are σAA = 1.0σ, σAA = 0.88σ, σAB = σBA = 0.8σ.[24] This529

potential field is smoothed from rin = 2.0σ to rout = 2.5σ via a polynomial530

function with coefficients C0,C1, C2, C3 and C4 as shown in Eq.A.2, to avoid531

any discontinuity in the force associated with the potential’s short-ranged532

cutoff.533

26



Appendix B. Deviation from Hooke’s Law534

Appendix B.1. Elastic Constants for the Bulk Glasses535

To estimate the bulk elastic constants, the simulation box is loaded inde-536

pendently along xx, yy, zz, or sheared along xy, xz, yz up to 1 × 10−7 strain537

using the athemal quasi-static (AQS) method [55, 56, 39, 57, 58, 59]. After538

strain is applied along each of the six probing directions, the elastic constants539

are calculated such that540

cAB = sA/eB (B.1)

with A and B taking the values xx, yy, zz, xy, xz, or yz. For each loading,541

both positive and negative strain are applied and averaged. The cAB =542

cBA elements are symmetrized as (cAB + cBA) /2 for the off-diagonal elastic543

constants.544

Appendix C. Variation in Orientation, Rotation and Triaxiality545

The Projected Local Yield Stress ∆τy546

The patterns of the Projected Local Yield Stress ∆τy are presented in547

Fig. C.9. In the array of plots, triaxiality (ψ) is varied horizontally and548

orientation ( ~O) is varied vertically. In each plot, rotation angle (γ) is the549

angle counterclockwise from the horizontal axis pointing to the right, and the550

magnitude of ∆τc is represented by the distance from the origin. Blue 4 and551

red ◦ denote the results for ω = −1 and +1. Black crosses mark the five lowest552

values of ∆τy where the label 1 indicates the smallest value. In addition, solid553

and hollow markers denote positive and negative sign respectively. In order554

to show the full range of values, each plot is scaled with the limits of the555

axes varied to ±5, ±10, ±15, and ±20ε/σ3, and this variation in scaling is556

denoted by the yellow, light green, green, and dark green backgrounds, as is557

shown in the bottom subplot.558
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Figure C.9: Projected local yield stress (∆τy).
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