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ABSTRACT: Using a high-resolution atmospheric general circulation model simulation of unprecedented ensemble size,

we examine potential predictability of monthly anomalies under El Niño–Southern Oscillation (ENSO) forcing and

background internal variability. This study reveals the pronounced month-to-month evolution of both the ENSO forcing

signal and internal variability. Internal variance in upper-level geopotential height decreases (;10%) over theNorth Pacific

during El Niño as the westerly jet extends eastward, allowing forced signals to account for a greater fraction of the total

variability, and leading to increased potential predictability. We identify February and March of El Niño years as the most

predictable months using a signal-to-noise analysis. In contrast, December, a month typically included in teleconnection

studies, shows little to no potential predictability.We show that the seasonal evolution of SST forcing and variability leads to

significant signal-to-noise relationships that can be directly linked to both upper-level and surface variable predictability

for a given month. The stark changes in forced response, internal variability, and thus signal-to-noise across an ENSO

season indicate that subseasonal fields should be used to diagnose potential predictability over North America associated

with ENSO teleconnections. Using surface air temperature and precipitation as examples, this study provides motivation to

pursue ‘‘windows of forecast opportunity’’ in which statistical skill can be developed, tested, and leveraged to determine

times and regions in which this skill may be elevated.

KEYWORDS: Pacific-NorthAmerican pattern/oscillation; Planetarywaves; Rossbywaves; Climate prediction; Probability

forecasts/models/distribution; Statistical forecasting

1. Introduction

El Niño–Southern Oscillation (ENSO) is the most influen-

tial mode of global climate variability. ENSO usually develops

during early boreal summer, peaks in winter, and decays in

spring. Eastern Pacific tropical SST anomalies associated with

ENSO events result in anomalous convective tropical precip-

itation. The latent heating response in the tropical Pacific

drives divergent wind and vorticity anomalies in the upper

troposphere, which communicate with the extratropics via

Rossby waves. Due to the location of the extratropical diver-

gence and the Asian–Pacific jet, quasi-stationary Rossby wave

generation arises in preferred locations over the Pacific Basin

(Wallace and Gutzler 1981; Sardeshmukh and Hoskins 1988;

Bjerknes 1969), anchoring geopotential height (GPH)anomalies,

and influencing North American weather, largely through the

well-studied Pacific–North American (PNA) pattern (Bjerknes

1969; Wallace and Gutzler 1981; Trenberth et al. 1998).

Atmospheric general circulation models (AGCMs) are

useful for examining the effect of ENSO on the predictability

of the extratropical atmosphere (e.g., Lau andNath 1996; Yang

et al. 1998; Zheng et al. 2004;Matsumura et al. 2010; Branstator

and Teng 2017). Ensemble members, influenced by similar

lower boundary conditions but with perturbed initial condi-

tions, result in a myriad of climate realizations that span the

realistic range of atmospheric responses to boundary condition

forcing. Lower-boundary forced signals manifest in the en-

semble mean, working to make coherent anomalies despite the

interensemble member variability. However, the precise ex-

tratropical response to ENSO is difficult to determine as 1)

there is year-to-year SST variability among ENSO events (e.g.,

Deser and Wallace 1987; Newman et al. 2011; Johnson 2013)

resulting in an array of forced atmospheric responses (e.g.,

Barsugli and Sardeshmukh 2002; Johnson and Kosaka 2016)

and 2) it exists within a background natural climate variability,

which acts to mask the SST forcing.

If the response to lower-boundary forcing is understood,

then diagnosing and understanding the slow varying modes

inherent to the land and sea surfaces (i.e., ENSO, seasonal

snowpack, etc.) can aid in subseasonal-to-seasonal (S2S) pre-

dictions. Predictability is typically studied in a signal-to-noise

ratio (SN) framework, in which the influence of the forcing

is set in ratio against natural variability. SN has been used

in several previous studies to diagnose the predictability of

ENSO-driven cold-season extratropical circulation (e.g.,

Kumar and Hoerling 1998; Sardeshmukh et al. 2000; Peng and

Kumar 2005; Abid et al. 2015). The SN can be increased via two

pathways: 1) an increase in the influence of the forced com-

ponent (e.g., as prescribed by the influence of ENSO SST and
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atmospheric teleconnections) and 2) a significant decrease in

atmospheric internal variability.

Many studies have demonstrated that the forced atmo-

spheric response to interannual SST variations is important for

the interannual variations in midlatitude climates despite in-

ternal variability (e.g., Shukla and Wallace 1983; Kumar and

Hoerling 1995; Trenberth et al. 1998; Chen and Kumar 2015;

Kamae et al. 2017). Additionally, there is consensus that an

increased atmospheric forced component associated with

ENSO (dominantly in the warm phase) events leads to a higher

seasonal predictability within the PNA region (e.g., Kumar and

Hoerling 1998; Chen and van den Dool 1999; Sardeshmukh

et al. 2000; Peng and Kumar 2005; Abid et al. 2015) and over

the North Atlantic (e.g., Honda et al. 2005; Jiménez-Esteve
and Domeisen 2018; Ayarzagüena et al. 2018). However,

studies disagree on the magnitude of ENSO modulation on

internal atmospheric variability. Sardeshmukh et al. (2000)

show an increased (decreased) extratropical internal variability

duringElNiño (LaNiña). Others observed negligible changes in

the internal variability of GPH (Kumar and Hoerling 1998) or

associated surface variables (Chen and Kumar 2015) condi-

tioned on ENSO state. Kumar et al. (2000) documented a

nonlinear ENSOmodulation of internal atmospheric variability

in the PNA region, with El Niño decreasing extratropical 500-

hPaGPH internal variability over the North Pacific greater than

La Niña increased internal variability. However, this did not

significantly improve SN relative to the contribution of the en-

semble mean shift. Abid et al. (2015) and Peng and Kumar

(2005) both report significant decreases (increases) in internal

variability in El Niño (La Niña), leading to a significantly

enhanced (diminished) SN relationship. However, there is

evidence that these different conclusions may be due to the

inclusion of different ENSO events and the number of exam-

ined ensembles, as SN does not vary wildly between models

(Kang and Shukla 2006; Kang et al. 2011).

Trenberth et al. (1998) review studies that have diagnosed

tropical–extratropical interactions due to anomalous tropical

SSTs, and reveal key factors in determining the extratropical

response. These include the location and intensity of tropical

circulation anomalies, the effects of themean flow on planetary

wave propagation and forcing, interactions with midlatitude

storm tracks, and interference from the internal chaotic vari-

ability of themidlatitude circulation (Trenberth et al. 1998, and

references therein). The extratropical atmosphere has been

observed to respond nonlinearly to ENSO cold and warm

events, with a dominant SST forced response occurring in the

warm phase and a milder reaction during cold events (e.g.,

Hoerling et al. 1997; Jiménez-Esteve and Domeisen 2019).

Additionally, the impact of the annual cycle on the global wind

field, and thus the barotropic Rossby waveguide, leads to

drastic dynamic changes in the background state upon on

which low-frequency forcing acts (Seager et al. 2010; Souders

et al. 2014). Therefore, studies that examine the departure

from seasonal means rather than incorporating important

month-to-month differences are less effective and potentially

misleading, particularly in late winter early spring (Newman

and Sardeshmukh 1998). There has a been a recent re-

examination of ENSO teleconnection and their extratropical

manifestations (e.g., Zhang et al. 2014; Chen and Kumar 2015;

Deser et al. 2017, 2018). However, there has been much less

work that resolves the significant intraseasonal differences

sparking from a changing monthly background state.

Increasing computational resources enable AGCMs to now

run at higher resolution, with larger ensemble sizes, and to

utilize longer historical records. These added statistics permit a

reexamination and further exploration of large-scale dynamics

and their influence on extratropical predictability from a SN

standpoint. In this study, we test the reliability of the PNA-

like response, and the effects on temperature and precipita-

tion anomalies associated with ENSO events. We employ a

high-resolution, large ensemble AGCM to examine the dy-

namic effect of anomalous ENSO forcing, and the seasonal

variations at monthly resolution. We then explore noticeable

differences in month-to-month internal variability driven by

changes in large-scale dynamics within the PNA sector. The

resulting monthly changes in SN relationships imply impor-

tant changes in the level of predictability of given variables.

Finally, to test the utility of the PNA driven changes, we di-

agnose whether the SN modulation manifests in monthly ob-

served anomaly composites and also to improved predictive

utility onmonthly time scales. Utilizing in situ observations, we

construct a simple probabilistic framework and adopt an in-

formation theory based potential predictability (PP) perspec-

tive (Kleeman 2002) to show the month-to-month impact of

ENSO on temperature predictability.

2. Data and methods

a. AGCM experiments

To diagnose the atmospheric response to prescribed

SST conditions, we utilize monthly mean values from a 100-

member ensemble AGCM. Ensemble data were produced

by the Meteorological Research Institute (MRI) AGCM,

version 3.2 (Mizuta et al. 2012) at a horizontal spectral reso-

lution with triangular truncation at wavenumber 319 and linear

Gaussian grid (TL319; equivalent to 60-km mesh) with 64

vertical layers (Murakami et al. 2012). The AGCM was driven

by observation-based SST, sea ice concentration, and radiative

forcing (greenhouse gases, aerosols, and ozone) from 1951 to

2010, derived from the Centennial In Situ Observation-Based

Estimates (COBE/COBE-SST2) (Hirahara et al. 2014). Small

SST perturbations based on slight adjustments to the empirical

orthogonal functions of the interannual variation of SST analysis

[see the appendix of Mizuta et al. (2017)] were added to the

COBESST to account for uncertainties in analysis (Hirahara et al.

2014). It has been shown that the spread in climate response due

to the perturbed SST is comparable to that due to initial condition

perturbations (Mizuta et al. 2017). Sea ice concentration was de-

rived from a quadratic equation on the sea ice/SST relationship

(Hirahara et al. 2014). This dataset, titled the Database for

ProbabilisticDescription of FutureClimateChange (d4PDF), has

been used to evaluate historical variations of atmospheric re-

sponses to global SSTvariability (e.g.,Kamaeet al. 2017;Mei et al.

2019; Naoi et al. 2020).More details of the experimental setup can

be found in Mizuta et al. (2017) and Kamae et al. (2017).
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Kang et al. (2011) showed that synoptic transients in the

Pacific basin comprise a large fraction of the signal and noise

associated with the PNA. The high resolution of d4PDF, a

state-of-the-art model with a physically consistent Northern

Hemisphere atmospheric response to slowly varying mode

forcing (e.g., ENSO, Pacific decadal oscillation, etc.) (Kamae

et al. 2017) will likely represent transients (Hertwig et al. 2015),

the atmospheric response to ENSO (Dawson et al. 2011),

midlatitude blocking (Davini et al. 2017), and major weather

regimes (Dawson and Palmer 2015) better than a low-resolution

model as shown by previous studies referenced here.

b. Definition of ENSO and compositing

We define the ENSO index as the 3-month running mean of

COBE-SST2 anomalies in the Niño-3.4 region (58S–58N, 1708–
1208W). Anomalies are derived from centered 30-yr base pe-

riods updated every five years, in the exact manner as NOAA’s

oceanic Niño index (ONI). Years are classified as El Niño (La

Niña) based on a December–February (DJF) value greater

(less) than 1K (21K) and a February–April (FMA) value

greater (less) than 0.5K (20.5K). These criteria result in 10 El

Niño and 9 La Niña years. Table 1 specifies the categorical

state of each year. We note that 8 of the 10 examined El Niño
events fall into the category defined in Johnson and Kosaka

(2016) that exceed the convective threshold in the eastern

Pacific [;0.7-K December–March (DJFM) average SST

anomaly in the region 58S–58N, 1608–1208W]. Diagnoses of

nonlinear responses between El Niño and La Niña states are

performed by regressing variables on contemporaneous

COBE-SST2 monthly anomalies in the Niño-3.4 region for

each state (El Niño/La Niña) independently, and examination

of the slope of the fit. All values are demeaned (base period

1951–2010) and linearly detrended prior to the regression.

We examinemonthly values for everymodel field. Temporal

resolution is set at one-month intervals to focus on the intra-

seasonal dynamical atmospheric response to ENSO events. As

El Niño’s effects are largely pronounced in boreal winter

(Philander 1989) and SST anomaly peaks in early winter

(Neelin et al. 2000), we focus on November–April. We exam-

ine only monthly anomaly fields. For demonstrative purposes,

in a few instances, the figures show an anomaly as well as the

background climatology; these exceptions will always be indi-

cated in the figure caption. We compute monthly anomalies,

for every field, by subtracting the climatology, derived from

the monthly mean using the base period 1951–2010. We then

linearly detrend each time series to reduce potential effects

of secular climate change. El Niño/La Niña composites are

formed by averaging themonthly anomalies of the years defined

in Table 1.

When testing significance on ensemble mean fields, we uti-

lize bootstrap methods by resampling all of the ensemble mean

monthly anomaly years in the record 1000 times and examine

the 5th and 95th percentiles from the synthetic distribution.

When examining the observational record, we utilize the

composite and sampling methods described in Deser et al.

(2017), where ENSO events are treated as exchangeable and

uncertainty in the composite mean is determined by random

sampling with resampling, again we sample the events 1000

times to determine confidence intervals.

c. Variable selection

We examine the Northern Hemisphere ENSO response on

upper-level and surface variables. The 200-hPa GPH and wind

anomalies are examined. The 200-hPa GPH is associated with

strong teleconnection modes (Mo and Livezey 1986) between

the tropics and the extratropics via changes in the large-scale

atmospheric circulation in the Pacific–American and Atlantic–

European sectors. The 200-hPa wind field, particularly in the

Pacific jet region, undergoes a seasonal extension and inten-

sification through early winter (November–January) as the

Northern Hemisphere midlatitude baroclinicity increases,

reaching its greatest zonal extent in February, and then retracts

and weakens through March and the early spring (see Fig. 1 of

Newman and Sardeshmukh 1998). Additionally, the 200-hPa

zonal winds are modulated in El Niño (La Niña) winter with a

southward (northward) shift, intensification (reduction) in

magnitude, and thus an increased (decreased) zonal extent [see

vector anomalies in Fig. 1 herein; see also Fig. 7 of Jiménez-
Esteve and Domeisen (2018)].

We examine 2-m temperature (T2m) and precipitation,

which are directly linked to the above mentioned 200-hPa

GPH and wind fields. During El Niño years anomalous

southerly winds advect warm marine air over northwestern

North America while anomalous northerlies bring cooler

continental air masses to the southeastern United States. A

strengthened storm track increases precipitation over much of

the southwestern United States, while leaving the northwest-

ern United States anomalously dry. We observe the opposite

relationship for La Niña seasons (e.g., Ropelewski andHalpert

1986; Dai and Wigley 2000; Jong et al. 2016; Deser et al. 2018,

and many others). We are motivated to study these surface

variables, in tandem with upper-level dynamics, in order to

improve ENSO based S2S forecasting accuracy, which benefits

vast swaths of North America’s populations.

d. Observations

Observed 200-hPa GPH anomalies are derived from

monthly data from the National Centers for Environmental

TABLE 1. The d4PDF defined ENSO states by year.

El Niño La Niña Neutral

Condition DJF ONI . 1K DJF ONI , 21K 1K , DJF ONI . 21K

Year 1957/58, 1965/66, 1968/69, 1955/56, 1970/71, 1973/74, Remaining

1972/73, 1982/83, 1986/87, 1975/76, 1984/85, 1988/89,

1991/92, 1994/95, 1997/98, 2009/10 1998/99, 1999/2000, 2007/08
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Prediction (NCEP)–National Center for Atmospheric Research

(NCAR) reanalysis (Kalnay et al. 1996) available on a 2.58 3 2.58
grid. Daily average T2m data are utilized from the NCEP

surface Gaussian product, which is available on the native

T-62 Gaussian grid (approximately 1.8758 3 1.8758) over

North America (Kalnay et al. 1996). Finally, monthly ob-

served precipitation is obtained from NOAA’s precipitation

reconstruction over land dataset interpolated onto a 18 3 18
grid (Chen et al. 2002). Every observed dataset spans years

1951–2019. All the datasets were downloaded from www.

esrl.noaa.gov/psd/.

e. Rossby wave source and wave activity flux

We examine the 200-hPa Rossby wave source (RWS)

(Sardeshmukh and Hoskins 1988):

RWS52z
a
D2 y

x
� =z

a
. (1)

The RWS is derived from the barotropic vorticity equation

and locates vorticity forcing. RWS is computed using the

magnitudes of the divergence D, the absolute vorticity za, and

the irrotational component of the wind yx . The RWS can be

decomposed to 1)2zaD, a vortex stretching term, representing

the effects of divergence on vorticity change, and 2) yx � =za,
the absolute vorticity advection by divergent flow, provided by

regions of strong vorticity gradient (i.e., subtropical jet). To

compute RWS terms we use the windpharms Python package

(Dawson 2016).

Following Takaya and Nakamura (2001) we use the hori-

zontal 200-hPa wave activity flux (WAF) to explore the sta-

tionary Rossby wave sources and wave propagation in the

extratropics. WAF is independent of the wave phase and

parallel to the local group velocity of stationary Rossby waves.

Monthly anomalies are regarded as perturbations. The hori-

zontal flux is given as

W5
P cosf

2jUj

8>><
>>:
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a2 cosf
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(c02

y 1c0c0
yy)

,

(2)

where P, U, V, c0, and a are pressure (scaled by 1000 hPa),

zonal climatological wind velocity, meridional climatological

wind velocity, perturbation geostrophic streamfunction, and

the radius of Earth, respectively. Subscript x denotes the lon-

gitudinal derivative ›/›l, y the latitudinal derivative ›/›f, l the

longitude, and u the latitude.

f. Variance patterns

To extract the leading patterns of variability, we perform

empirical orthogonal function (EOF) decomposition on

monthly anomaly 200-hPa GPH fields of the ensemble mean

and the internal variability fields. Decomposition is performed

on each calendar month independently, and the full ensemble,

and internal variability fields utilize all 100 members. All EOF

patterns are area-weighted by the square root of the cosine

(latitude), prior to decomposition. We express the orthogonal

spatial fields as the pointwise regression of each time series on

the one standard deviation change of the temporal principal

component (PC) modes.

FIG. 1. February and March ensemble mean monthly response to (column I) El Niño and (column II) La Niña:
composites of anomalous mean 200-hPa geopotential height (colorfill), 200-hPa winds (vector), and tropical pre-

cipitation (inset 158S–158N, 1308E–808W) for El Niño and La Niña. Anomalous geopotential height and black wind

vectors are shown for significant locations. Insignificant wind vectors are shown in gray. Insignificant tropical

precipitation is stippled. Significant confidence intervals are determined by bootstrap, with resampling across all

years 1000 times, and examination of the 5th and 95th percentile of the synthetic distribution. The white dot shows

the Aleutian low center of action.

5902 JOURNAL OF CL IMATE VOLUME 34

Brought to you by UNIVERSITY OF CALIFORNIA San Diego - SIO LIBRARY 0219 SERIALS | Unauthenticated | Downloaded 10/28/21 07:19 PM UTC

http://www.esrl.noaa.gov/psd/
http://www.esrl.noaa.gov/psd/


g. Signal-to-noise and potential predictability

With 100 ensemble members at 60-km resolution, d4PDF is

unmatched in SN literature, and provides a more constrained

estimate of the forcing. The deviation from the forced re-

sponse, or ensemble spread, gives an approximation of the

atmospherically derived internal variability.

We define context-dependent signal and noise as anomalies

from the ensemble mean and spread, respectively, consistent

with Kumar and Hoerling (1998). We note that the structure of

atmospheric internal variability can, and in general does, de-

pend on SST forcing. This dependence has been the subject of a

number of papers (e.g., Sardeshmukh et al. 2000; Schubert

et al. 2001; Abid et al. 2015). Strictly speaking, it is not valid to

refer to internal variability simply as ‘‘noise,’’ as this implies that

it is independent of the forcing. However, for brevity we refer to

SST independent internal variability as noise. We henceforth

derive the climate signal, for any variable x, as themonthlymean

anomaly of the ensemble mean state for individual months in a

particular year (a) and ensemble members (i):

X
a
5

1

100
�
100

i51

X
ia
. (3)

The internal variability of the system is what remains in each

ensemble, after removing the forced signal. Deviation from the

ensemble mean [Eq. (4)] represents the variability of the at-

mosphere determined by any perturbation unassociated with

the lower boundary condition and radiative forcing:

Y
a
5

1

100
�
100

i51

(X
ia
2X

a
)
2
. (4)

Spatially averaged (denoted by hi) signal and noise root-

mean-square (RMS) terms are defined as hXa
2i1/2 and hYai1/2

respectively with SN being a representation of the ratio of the

aforementioned terms (SN5 hXa
2i1/2=hYai1/2). This is analo-

gous to the conventional assessment of potential predictability

derived from standard ratio of variance analyses (Chervin

1986; Kumar and Hoerling 1995; Rowell 1998). SN is positive,

and values greater than 1 imply that signal is greater than noise.

Grid point RMS is area-weighted by the square root of the

cosine(latitude) for spatially averaged fields.

h. Kullback–Leibler divergence

To help verify the AGCM findings on observations, we

utilize the Kullback–Leibler (KL) divergence to assess the

potential predictability of a conditioned distribution against

climatology.

KL5�
I

i51

(p
i
)log

2

�
p
i

q
i

�
. (5)

The KL divergence is borrowed from information theory and

measures (in units of bits) the extent to which a distribution q

can be discerned from p (Kullback 1997). Here, since p and q

are the conditioned and climatological distributions, respec-

tively, the KL divergence can be interpreted as the extent to

which a particular condition (i.e., Niño-3.4 . 1K) informs the

model prediction beyond climatology alone. Formally, it

measures the number of excess bits needed to represent the

examined variable when the condition is ignored (MacKay

2003; Cover and Thomas 2006).

The use of the KL divergence for assessing the PP of a

forecast was proposed by Kleeman (2002). It has also been

used to evaluate the potential forecast skill for multiple at-

mospheric variables (e.g., DelSole 2004; Roulston and Smith

2002) and to evaluate the effect of ENSO on North American

T2m (Schamberg et al. 2020). In our analysis i will represent

categorical anomaly states of below normal, normal, and above

normal (i 2 {1, 2, 3}), using the 33rd and 66th percentiles to

quantize these states. Confidence intervals are determined by

bootstrap with resampling all years in the record 1000 times

and examine the 5th and 95th percentile from the synthetic

distribution.

3. Atmospheric response to ENSO

It is important to note that the following results are reflective

of the AGCM chosen for this analysis, and the ENSO event

selection criteria. The sensitivity and response to SST forcing

vary across individual models, resulting in varied ranges of

internal variance and predictable ENSO forcing in the tele-

connections. However, models with larger signals tend to have

larger noise, making PP vary weakly across models (Kang and

Shukla 2006).

During El Niño, the Pacific warm pool (and thus anomalous

precipitation) shifts eastward. Forced by strong divergence at

the upper levels in response to this precipitation, the Northern

Hemisphere has a forced anomalous GPH response (Deser

andWallace 1990). Figure 1 shows the ensemblemeanmonthly

composite of anomalous GPH in February and March by

ENSO state. The leading mode of forced tropical precipitation

(not shown) has a correlation to the Niño-3.4 index of 0.92 for

the cold season [November–March (NDJFM); correlation on

seasonal mean]. Anomalous tropical SSTs peak during

December and fade through the remainder of winter and early

spring. However, precipitation in the tropics is not controlled

solely by SSTs, but modulated by the convective threshold

(Gadgil et al. 1984; Graham andBarnett 1987; Johnson andXie

2010). Due to higher climatological SSTs in combination with a

retained El Niño SST signature in late winter and early spring,

the upper-level divergence, and thus teleconnection, remains

active well beyond the peak of tropical SST anomalies (Xie

et al. 2018; Guo et al. 2019). Hoerling et al. (2001) credits the

convective threshold as the source of a longitudinal shift in the

North Pacific teleconnection between strong and weak ENSO

events. The forced tropical precipitation response for every

examined field peaks in February and remains anomalously

strong into March. The extratropical GPH ENSO response is

well studied, and a pressure pattern similar to the PNA

emerges as a stationary Rossby wave (Wallace and Gutzler

1981). This PNA-like pattern is characterized by a deepened

Aleutian low (AL), an increased Canadian high, and a deep-

ened Florida low pattern extending into the Atlantic. A clear

longitudinal shift is evident in the magnitude of the GPH

anomaly in the late El Niño season (Figs. 1a and 1b, white dot;
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see also Fig. S1 in the online supplemental material for the full

wintertime season anomalies). Additionally, the ENSO-forced

North Atlantic response (Honda et al. 2001; Honda and

Nakamura 2001) is not apparent until February/March, and

shows a weaker anomalous response to ENSO forcing than the

PNA. DJFMA ensemble mean monthly composites of anom-

alous GPH by ENSO state are shown in the supplemental

material (Fig. S1).

ENSO anomalous upper-level winds are mostly geostrophic

as evidenced by the 200-hPa anomalous wind vectors parallel

to the 200-hPa GPH anomalies. The large-scale (synoptic)

Pacific trough (ridge) is thus able to bring warm marine (cool

polar) air into western North America, altering the surface

temperatures (Zhou et al. 2014) during an El Niño (La Niña)
event. Additionally, there is a distinct latitudinal shift in the

subtropical jet (Fig. 2) that migrates from north to south (;58
as measured by the maximum zonal winds) throughout the

ENSO season (Fig. 2). It is observed that due to the deep-

ened (shallowed) Aleutian pressure anomaly, the jet stream

is magnified (diminished), moves southward, and extends

FIG. 2. Ensemble mean monthly (December–April) response to (column I) El Niño and (column II) La Niña:
composite 200-hPa anomalies of Rossby wave source (colorfill), and anomalous divergent winds (vector), along

with anomalous tropical precipitation (inset 158S–158N, 1308E–808W) and 200-hPa zonal wind (climatology 1
anomalies; 45, 50, 55, and 60m s21 shown with black contours; 60m s21 is shown in bold). Significant Rossby wave

source is shown. Insignificant anomalous tropical precipitation is stippled. Significant vectors are shown in black

and insignificant in gray. Significant confidence intervals are determined by bootstrap, with resampling across all

years 1000 times, and examination of the 5th and 95th percentiles of the synthetic distribution. The white dot shows

the location of maximum 200-hPa zonal wind.
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(contracts) across the Pacific during El Niño (La Niña) (Norris

2000) (Figs. 1 and 2). This alters the longitudinal location of the

jet exit region, the region of highest variability (Athanasiadis

et al. 2010).

a. Rossby wave source

The ENSO RWS is depicted in Fig. 2. During El Niño (La

Niña), anomalous divergence (convergence) is produced from

deep tropical convection, with flow peaks at the edges of the

heating region, resulting in anomalous convergent (divergent)

regions in the subtropics. In the North Pacific, the position of

the jet anchors the source term and often determines the major

Rossby wave response of the North Pacific (Hakim 2003).

Under the influence of the seasonal jet cycle, and the evolving

ENSO precipitation signal (Fig. 2, inset), the peak response

shifts east and west throughout the season, leading to a shifting

center of action in the extratropical GPH response (Fig. 1,

white dot). Interestingly, the teleconnection pattern shifts 7.58
(108) from east to west alone between February and March of

El Niño (La Niña) years, owing to the major contraction of the

mean subtropical jet (Fig. 1). To first order, the monthly El

Niño and La Niña response is symmetric, but the asymmetrical

components, outside the strongest response regions, lead to

important dynamic differences (Feng et al. 2017). The most

notable asymmetry occurs in March when the El Niño com-

posites show an extended positive RWS term that spans most

of the Pacific while the RWS of the La Niña counterparts is

relatively muted (Figs. 2g,h). Generally, asymmetry (in am-

plitude and position) is observed between the cold and warm

composites, notably in the eastward shifted and amplified

anomalous GPH and the Pacific extension of the RWS term

(Figs. 1 and 2). Zhang et al. (2014) and Feng et al. (2017) have

recently reexamined the asymmetrical components of the

ENSO response and found they are driven by the background

state of the atmosphere and play an important role in how

ENSO affects the North American climate.

Figure 3 shows the forced RWS and its components for each

ENSO category in the characteristic RWS anchoring region for

boreal winter (Dawson et al. 2010; Nie et al. 2019), 258–408N,

1458E–1558W.We find a significant nonlinear RWS response to

SST forcing between El Niño and La Niña seasons, with an

increased sensitivity in El Niño periods (Fig. 3d). The nonlin-

earity is demonstrated by the slope of a linear fit calculated by

regressing RWS on corresponding positive and negative Niño-
3.4 anomalies (respectively) utilizing every monthly value in

DJFM. The difference of these slopes is significant at the 10%

level. We find no significant difference in the magnitude of the

Niño-3.4 anomaly between El Niño/La Niña in any month over

December–April (DJFMA; Fig. 3e). This nonlinear response

to categorical ENSO states is a well-noted phenomenon (e.g.,

Hoerling et al. 1997, 2001; Hoerling and Kumar 2002; Johnson

and Kosaka 2016; Jiménez-Esteve and Domeisen 2019;

Trascasa-Castro et al. 2019), although the exact source of the

nonlinearity in the extratropics is still subject to debate

(Frauen et al. 2014). Many studies point to the convective

precipitation response to tropical SST as a contributing factor

(e.g., Hoerling et al. 2001; Chung and Power 2015). We find

the observed RWS nonlinearity is alleviated somewhat (but

remains significantly different) when regressing the RWS on

tropical precipitation (not shown). The nonlinear response is

seen in the magnitude of difference in the vortex stretching

term for either ENSO state. The anomaly difference of the

RWS term for cold and warm states is greatest in March,

where both za and D remain highly anomalous in the warm

phase (Fig. 3c). For both phases of ENSO, the RWS

anomaly peaks in February, with near equal magnitudes in

January and March of El Niño years (Fig. 3c). The absolute

vorticity advection opposes the vortex stretching term, thus

weakening the total RWS in DJF. However, the magnitude

of yx � =za decreases back to climatology in March, dimin-

ishing the March RWS drop from the February RWS peak

(Figs. 3b,c). April sees a nearly full decay of the RWS. We

observe an asymmetric ENSO response in every examined

monthly ensemble mean anomaly variable (GPH, RWS,

divergent wind, etc.).

b. Wave activity flux

WAF is diagnosed using Eq. (2) to explore month-to-month

Rossby wave propagation. Figure 4 shows the forced monthly

composites of ENSO WAF (vector), the anomalous 200-hPa

GPH (colorfill), and the anomalous RWS (contour). In both

ENSO states, WAF emanates from the strong RWS at the exit

of the Pacific jet through the Aleutian low (AL) toward North

America. The December El Niño Canadian limb of the tele-

connection pattern shows a stronger anomalous signal than the

corresponding Niña composite. By January in the El Niño
season a canonical wave train has emerged, with the classic

four-pole PNA pattern. The January La Niña composite

shows a strong AL signal but mostly insignificant WAF over

land. WAF peaks in February, with a fully developed wave

train pattern in both ENSO phases. This corresponds with the

strongest PNA-like anomaly GPH pattern. The maximum

Florida limb of the teleconnection pattern, for both WAF and

GPH anomalies, is observed in March of Niño seasons. The

Niña pattern has diminished greatly by March and both WAF

and GPH appear relatively weak in April. Across the season

the WAF shows an extreme asymmetry between El Niño and

La Niña, varying with the asymmetric GPH anomalies.

Interestingly, the El Niño/La Niña pathways appear different

in Rossby wave propagation for the Florida low GPH anom-

alies with El Niño WAF showing a more southerly route

[consistent with Seager et al. (2010)].

The Icelandic low (IL; ;648N, 308W) undergoes a seasonal

shift in phase expression between early [November–December

(ND)] and late season [February–March (FM)] ENSO states.

This is a well-studied shift that is robust in the observa-

tional record (e.g., King et al. 2018) although climate models

typically do not represent the early season mechanism well

(Ayarzagüena et al. 2018). The d4PDF captures the early-

season IL anomalies in the ensemble mean (Figs. 4a,b), which

stem from increased precipitation anomalies in the Gulf of

Mexico leading to enhanced anomalous RWS at 250 hPa

(Figs. 2a,b). A late-season emergence of an anomaly in the IL

occurs in February/March of El Niño years. In February a wave
train emanates as an extension of the PNA-like pattern, ex-

tending the Canadian high and Florida low into the Atlantic.
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A large body of literature finds that the late season ENSO

influence on the IL is due to changes in stratospheric circula-

tion (Trascasa-Castro et al. 2019, and references therein). We

observe an additional tropospheric pathway with significant

RWS terms stemming from increased precipitation (precipi-

tation anomaly not shown) in the Gulf of Mexico and Florida

region interacting with the Atlantic jet, which is energized and

extended in El Niño years (Figs. 2e,g). We see a particularly

nonlinear RWS andWAF response betweenMarch of La Niña
and El Niño years in this region, with El Niño leading to the

shallowing of the surface IL anomalies, and the negative phase

of the NAO. This late-season development of the IL and

peaking of the Florida low PNA-like pattern was also observed

in multiple studies and referred to as the Aleutian–Icelandic

low seesaw index (AII) (e.g., Honda et al. 2001; Honda and

Nakamura 2001; Honda et al. 2005).

FIG. 3. (a) Vortex stretching (VS). (b) Absolute vorticity advection by divergent flow (AVA). (c) Rossby wave

source (RWS) anomaly for El Niño (red line), neutral (black line), and La Niña (blue line) year (categorized in

Table 1) composites. (d) Average RWS anomaly index with respect to the Niño-3.4 anomaly for individual months

DJFM. Red (blue) markers indicate El Niño (La Niña) years. Diamond marker indicates the class (Niño/Niña)
composite mean. The dashed red (blue) line indicates the linear fit calculated using every positive (negative) Niño-
3.4 anomaly. The slope of each line is shown with 2s uncertainty determined by bootstrap, with resampling across

all years, 1000 times. (e) Composite El Niño and La Niña (negative) anomaly SST in the Niño-3.4 region for years

specified in Table 1; 5th and 95th confidence intervals are shown, determined by bootstrap with resampling 1000

times. VS, AVA, and RWS are area averaged in the region 258–408N, 1458–1558W.
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c. Additional sources of ENSO-forced extratropical waves

Although we focus on the dispersion of Rossby waves ex-

cited by tropical heating, extratropical waves are additionally

generated and anchored due to barotropic energy conversion

from the subtropical jet deceleration (dU/dx, 0) in the jet exit

region and synoptic-scale transient eddy vorticity fluxes. Both

mechanisms are modulated by ENSO. Jet deceleration allows

waves to effectively extract kinetic energy from the zonally

asymmetric climatology, via an energy transfer from the cli-

matological stationary eddies to the anomaly (Simmons et al.

1983; Branstator 1989, 1992; Feldstein 2002; Athanasiadis et al.

2010). The anomalous synoptic transient activity along the

Pacific storm tracks—which is extended eastward to the jet exit

region during El Niño years (Seager et al. 2010; Harnik et al.

2010)—produces the seasonal-mean transient eddy vorticity

flux convergence anomalies that reinforce the local signals of

seasonal-mean circulation anomalies (Held et al. 1988; Straus

and Shukla 1997). Moreover, the downstream propagation of

transient eddies from the Pacific to the Atlantic basin provides a

tropospheric pathway for NAO-related GPH anomalies (Li and

Lau 2012; Jiménez-Esteve and Domeisen 2018) during ENSO.

4. Signal versus noise

We examine the leading mode of variability in two cate-

gories: the internal variability and the forced response (Fig. 5,

columns I and II, respectively). The leading mode of variability

accounts for ;20%–30% (month dependent) of the full vari-

ability (not shown), and both internal variability and the forced

response have loadings in the PNA regions. However, distinct

differences are observed. Note that the internal variability

(Fig. 5, column I) patterns have a far southward extent of the

Canadian high pressure system that largely covers the western

United States, and the forced response has a linked low pres-

sure system between the AL and the Florida low (Fig. 5, col-

umn II). The forced pattern more closely resembles the El

Niño composites (see loading locations of Fig. 4) and the

anomaly strength in the principal component agrees with this

finding (not shown).

FIG. 4. Ensemblemeanmonthly (DJFMA) response to (column I) El Niño and (column II) La Niña: 200-hPa TN
wave activity flux (WAF) composite (vector), 200-hPa geopotential height anomaly (colorfill), and anomalous

Rossby wave source [contour; purple (positive), green (negative); intervals 6 at 10, 20, and 25 3 10211 s21]. Only

significant geopotential height is shown. Significant WAF vectors are shown in black. Significant confidence in-

tervals are determined by bootstrap, with resampling across all years 1000 times, and examination of the 5th and

95th percentiles of the synthetic distribution. White dot shows the Aleutian low center of action.
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Although the NAO loadings are present in the internal

signal throughout boreal winter, the forced negative NAO

signal does not emerge until February. The NAO, with the

exception of very low-frequency forcing signals, is not neces-

sarily strongly forced by an oceanic mode (Stephenson et al.

2000). However, ENSO-forced PNA/NAOpatterns/signatures

can be spurred by the PNA’s advection of air masses, which

leads to baroclinic waves forming the North Atlantic storm

track (Pinto et al. 2011). By this mechanism, a negative

interannual correlation between the intensities of the Aleutian

and the Icelandic lows reaches a value of ;20.7 between the

indices averaged from February to mid-March in observations.

(Honda et al. 2001; Orsolini et al. 2008). During February and

March, the leading forced modes (Figs. 5h,j) show loadings

consistent with a negative NAO phase (Barnston and Livezey

1987) that is correlated with the Niño-3.4 signal (Huang et al.

1998) and peaks in the late winter/early spring. There has been

much work on the dispersive characteristics of climate models

FIG. 5. (column I) Internal variability and (column II) forced leading EOF mode of 200-hPa atmospheric geo-

potential height variability, calculated for each month individually, with percentage variability explained by this

mode, for eachmonth, and the correlation of the principal component to the concurrent Niño-3.4 anomaly index (at

top right). PCs are normalized to unit variance.
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and seasonal-to-multiseasonal predictability of the NAO (e.g.,

Shi et al. 2015; Scaife and Smith 2018; Weisheimer et al. 2019).

The NAO fraction of variance is low compared to the forced

ensemble counterpart in every month. However, it has been

observed that the NAO is more predictable (in a signal-to-

noise framework) than climate models typically represent it to

be (Scaife and Smith 2018; Siegert et al. 2016; Zhang and

Kirtman 2019) and a model postprocessing variance adjust-

ment (Smith et al. 2020) could show a more enhanced variance

fraction of the full ensemble in the ensemble mean.

The leading mode pattern accounts for ;40%–70% of the

forced response variance and its principal component corre-

lates with the Niño-3.4 anomaly index at ;0.65–0.90, month

dependent. TheDJF average fraction of variance in the leading

mode (;58%) agrees well with previous studies of ENSO

forced variance [e.g., 53% (Kumar et al. 2005) or 56.2%

(Zhang et al. 2016)]. However, the forced PNA-like pattern is

particularly dominant in FM (;66% of variance) and corre-

lates strongly with the Niño-3.4 index (;0.9).

a. ENSO modulations of internal variance

Motivated by the important role the AL plays in modu-

lating North American weather (e.g., Gibson et al. 2020),

200-hPa GPH signal and noise (Fig. 6a) over the North Pacific

(308–608N, 1658E–1308W) is diagnosed. Climatologically, GPH

noise is greatest during boreal winter, peaks in February, and is

lowest in summer (Fig. 6a, solid black line). Internal variability

is significantly (although weakly) different from climatology in

February of La Niña years (Fig. 6a, solid blue line). We find a

modulation of the GPH noise conditioned on the ENSO state

(Fig. 6a). With adjustments of up to ;10% (by percentage

difference) of modulated RMS across DJFM (Fig. 6a) in El

Niño. This is a similar finding (although;7% less) than that of

Abid et al. (2015) in El Niño years. Abid et al. (2015) attributed

the modulation of noise in ENSO years to extratropical tran-

sients, and not to increased tropical precipitation variability

[tropical variability, which is proportional to SST magnitude,

increases (decreases) in El Niño (La Niña) years; Peng and

Kumar 2005]. The forced AL peaks in February of El Niño

years, diminishing slightly throughMarch. Owing to decreased

noise and increased signal in February andMarch, the regional

SN approaches 1 in these months.

Figure 7 displays the FM ENSO spatial modulation of the

internal variability via monthly composites of GPHRMS noise

with climatological noise depicted in solid contours. ENSO

modulation is most apparent in JFM, with a peak in February.

Noise modulation becomes effective for PP in March of El

Niño years, as noise climatologically decays in concert with an

El Niñomean shift (Figs. 6a and 7, black contour). The internal

variability is largely decreased (increased) during El Niño (La

Niña), with the exception of the jet exit region, which is the

highest source of variability in either ENSO state. The ENSO

effect on internal variability is stronger in the warm phase than

in the cool phase (cf. Figs. 7c and 7d). La Niña noise in the

northwest Pacific is significantly increased in DJF, peaks in

February, and decays back to climatology by March (Fig. 6a).

Abid et al. (2015) found similar diminished noise in the ex-

tratropical PNA region during El Niño events. Abid et al.

(2015) point to the noise intensification associated with baro-

tropic instability in the PNA region as a possible driver

(Simmons et al. 1983; Branstator 1985). Eastward (westward)

extensions (contractions) of the zonal jet are collocated with

decreased (increased) noise in the western Pacific and over the

southern United States. The areas of increased (decreased) El

Niño (La Niña) noise (;408N, 1508W) are directly related to

the shift in the Pacific jet exit region (Fig. 7). DJFMA ENSO

spatial modulation of the internal variability via monthly

composites is shown in the online supplemental material.

b. Signal-to-noise ratio

Using SN as a proxy for PP (Sardeshmukh et al. 2000), we

examine 200-hPa GPH, T2m, and precipitation SN during

ENSO events. Area-averaged SN for GPH, T2m, and precip-

itation is shown (Figs. 8a,b,c, respectively) in the PNA sector

(defined here as 258–708N, 1558E–608W). T2m SN is only ac-

counted for over land. FMA GPH SN shows a significant dif-

ference between ENSO categories (Fig. 8a). Temperature and

precipitation show a significant difference in March and April

FIG. 6. (a) Yearly development of composite RMS signal (dotted line) and noise (solid line) area averaged in

(b) the region of interest (308–608N, 1658E–1308W) for El Niño (red), La Niña (blue), and neutral (black) years, as

defined in Table 1, for monthly values from 1951–2010. Error bars show the 5th and 95th percentile bounds de-

termined by bootstrap with resampling 1000 times across all El Niño years. The leading mode of variance (DJFMA

seasonal mean) in the region of interest in (b), PC is normalized to unit variance.
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(Fig. 8b). El Niño/La Niña precipitation is significantly differ-

ent in March (Fig. 8c). We observe a statistically significant

(10%) nonlinearity (diagnosed as described above) of month-

to-month SN across all variables conditioned on the Niño-3.4
anomaly (Fig. 8d; T2m and precipitation not shown). Figure 9

shows the monthly composites of SN across North America for

GPH and T2m. The teleconnection most dominantly affects

T2m in El Niño in northwestern North America (NWNA),

through the advection of warm marine air. The NWNA T2m

SN increases in January, peaks in March, and remains ele-

vated during April, shifting northward throughout the season.

We theorize the April NWNA T2m SN to be a manifestation

of a decreased snowpack from the previous month’s warm

temperature anomalies (Zhang et al. 2011). The American

southeast T2m is also affected by the southernmost limb of

the PNA pattern. Northern Mexico and Florida show the

most consistent, and significant SN, which peaks in March of

El Niño years. The temperature SN patterns match the Deser

et al. (2018) observed and simulated ENSO anomaly seasonal

composites well, but they occur in distinct months in boreal

winter, rather than showing a full seasonal shift. This could

indicate that averaging over a season acts to mute the forced

ENSO signal. Additionally, La Niña SN is generally weaker

in the T2m field, in agreement with diminished dynamic

model forecast skill when compared to El Niño seasons (Chen
et al. 2017).

GPHSN is greater over the PNA region, in ELNiño than La
Niña, showing patterns that match the forcing signal (Fig. 4).

Figure 10 shows the monthly composites of SN across North

America for GPH and precipitation. La Niña SN only peaks in

the southern half of the AL region (Figs. 10f, h), where internal

variability is low (Fig. 7). GPH SN does not peak in the IL

region, although in observations northern Canada and the

eastern United States show a significant shift in temperature

anomalies (see Deser et al. 2018). This is an indication that the

northern limb of the PNA teleconnection response in d4PDF is

potentially overdispersive.

We detected low precipitation SN across the ENSO seasons

(Fig. 10). FM SN shows an emergent reflection of the well-

studied meridional dipole of ENSO precipitation over western

America (Dettinger et al. 1998). GPH patterns are often rep-

resented well (Flato et al. 2013), and an increased northern

continental SN value in El Niño could be indicative of SST-

forced anomalous GPH patterns steering precipitation events

away from the NWNA to impact more southerly locations.

The largest source of SN in both ENSO states is in the

eastern Pacific (;308N, 1358W), highlighted by Zhou et al.

(2014), as enhanced (diminished) westerlies steer extra-

tropical storms to a more southerly (northerly) position during

El Niño (La Niña), causing increased (decreased) precipita-

tion. Additionally, northern Mexico and Florida show a sig-

nificant SN, magnified in La Niña years. Previous studies have

shown significant influence of tropical SST anomalies on North

American precipitation variability (e.g., Seager et al. 2005;

Meehl and Hu 2006; Dai 2013; Burgman and Jang 2015).

Accurately representing precipitation involves heavily pa-

rameterized processes, and linking to surface fields (topogra-

phy, coastline, vegetation), making it difficult when compared

to T2m representations.

5. ENSO potential predictability and observations

Using SN as a proxy for PP, we have demonstrated month-

to-month ENSO-driven changes in GPH, T2m, and precipita-

tion in the d4PDF model ensemble. We now verify these

findings on observations. The following analysis is performed

on all years shown in Table 1 and extended to include years

(2010–19) that are beyond the d4PDF record. Apart from 2015/

16 (El Niño) and 2010/11 (La Niña), every added year is ENSO

neutral.

FIG. 7. February and March RMS noise response to (column I) El Niño and (column II) La Niña, with a com-

posite map of anomalous RMS noise 200-hPa geopotential height (colorfill); values that are not significant are not

shown. The climatology of RMSnoise is shown in black contours (60, 70, 80, 90, 100, 110, and 120m; 100m shown as

the bold contour). Composite zonal wind is in green contours [40, 50, and 60m s21 (climatology1 anomalies), the

60m s21 contour is shown in bold]. Significant confidence intervals are determined by bootstrap, with resampling

across all years 1000 times, and examination of the 5th and 95th percentile of the synthetic distribution.
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Figure 11 shows the d4PDF ensemble spread, d4PDF forced

ensemble mean, observed composite mean, and every ob-

served value of the PNA (Figs. 11a,b) and the AII (Figs. 11c,d).

The PNA is defined at 200 hPa by the four-point index de-

scribed in Wallace and Gutzler (1981) and is constructed using

standardized anomaly time series at each point. The resulting

index is normalized by the standard deviation of the combined

DJF values. The AII is defined at 200 hPa in the characteristic

regions described in Honda et al. (2005) and is calculated as the

normalized anomalous IL intensity subtracted from the nor-

malized anomalous AL intensity. Each index uses values from

1951 to 2010 (the d4PDF period of record) to form the nor-

malization climatology. The model mean and spread in the

PNA/AII match the observed values well. PNA composite

mean displacement for d4PDF and observations both peak in

March of El Niño years with a near-zero anomaly shift in

November, December, and April. In agreement with the

d4PDF, LaNiña has a generally weakermean shift and sits well

within the d4PDF model spread. The La Niña signal fades in

March/April. The AII observed mean sits well within the

spread of the d4PDF model. Using the IL index alone gives a

good fit between model spread and observations, but a

dampened magnitude (not shown), compared to the AII.

Figure 12 shows the observed monthly composite of anom-

alous precipitation and 200-hPa GPH fromDecember to April

by ENSO state.We now list noticeable similarities between the

observed monthly anomalies (Fig. 12) and the SN relationships

displayed in Fig. 10. 1) The significant AL and Florida low

GPH anomaly match nearly exactly for each ENSO state

across the full season, and in LaNiña theALGPH composite is

collocated with the low GPH noise anomaly shown in d4PDF

(Fig. 7, column II; ;408N, 1508W). 2) December shows very

little GPH or precipitation anomaly signal especially affecting

the North American west coast. 3) La Niña composites show

less significant anomaly than the El Niño counterpart, in pre-

cipitation and GPH. 4) The Gulf of Mexico and Florida are

FIG. 8. Area averaged (258–708N, 1558E–608W) signal-to-noise ratio for (a) 200-hPa geopotential height (b) 2-m

temperature (values over land only), (c) precipitation, and (d) geopotential height SN with respect to the Niño-3.4
anomaly, calculated for individual months (DJFM only). Red (blue) markers indicate El Niño (La Niña) years.
Dashed red (blue) line indicates the linear fit calculated using every positive (negative) Niño-3.4 anomaly. The

slope of each line is shown with 2s uncertainty. The 5th and 95th percentile confidence intervals are determined by

bootstrap, with resampling across all years, 1000 times.
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particularly attenuated in La Niña. 5) March El Niño pre-

cipitation extends farther into the continental United States.

We note that specific months magnify specific anomaly

loading locations throughout the ENSO season highlighted

in the seasonal composite seen in Deser et al. (2017, 2018).

For completeness, we show the same figure but for observed

monthly temperature anomalies in the online supplemental

material (Fig. S3).

The largest precipitation pattern discrepancy occurs in the

western United States shown in JFM, which is shifted into the

eastern Pacific in the d4PDF SN (Fig. 10 vs Fig. 12).

Additionally, there is a clear model bias associated with the

high-pressure limb of the PNA pattern in northeast Canada.

This could be an indication of d4PDF overdispersiveness of the

northern limb of the PNA pattern across the ensemble mem-

bers, and a lack of forcing in the early season, which is con-

sistent with the findings of Scaife and Smith (2018) and Smith

et al. (2020) that the NAO is more predictable than climate

models typically demonstrate.

To test the utility of the PNA-driven changes in SN on ob-

servations, we adopt an additional potential predictability

metric developed from KL divergence (KLPP) to show the

ENSO forcing on temperature predictability. We build distri-

butions following the probabilistic framework in Johnson et al.

FIG. 9. Monthly (DJFMA) signal-to-noise relationship for temperature (colorfill) and 200-hPa geopotential

height (contour, 0.2 intervals beginning at 0.6, with 1 shown as the bold contour) for (column I) El Niño and

(column II) La Niña years (as defined in Table 1).
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(2014) and examine the T2m distributions for the weekly av-

eraged temperature anomaly shifts conditioned on an ENSO

state. These calculations are performed using observations,

and not the d4PDF model. An observation is quantized into

one of three divisions (below normal, normal, above normal),

based on the highest probability tercile determined by the state

of ENSO. The KL divergence is then computed [Eq. (5)]. We

again show a monthly granularity to observe the evolution of

potential forecast skill.

To illustrate, at every grid point we develop a climatological

weekly temperature distribution across all years, using average

weekly T2m observations. We use the 33rd and 66th percentiles

FIG. 10. As in Fig. 9, but for North American precipitation (colorfill) and 200-hPa geopotential height (contour)
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to quantize the anomaly value into categorical states

T 2 fbelownormal, normal, above normalg. Therefore we

have threshold values to divide anomalous temperature into

equally probable categories ([P(belownormal), P(normal),

P(above normal)]5 [1/3, 1/3, 1/3]) for a climatological distri-

bution [q; Eq. (5)]. Next, we examine the anomaly distribution

conditioned on ENSO state against the climatological 33rd

and 66th percentile thresholds, and determine the categorical

probability of each tercile of the conditioned distribution (e.g.,

[P(below normaljNi~no), P(normal jNi~no), P(above normalj
Ni~no)]5 [0, 0, 1]), where the probability is determined by the

number of observed categorical states ([below, normal, above])

divided by the total number. The conditioned probability dis-

tribution p [Eq. (5)] is then compared to the climatological

probability distribution q using Eq. (5). This is very similar to an

evaluation of the Climate Prediction Center’s probabilities of

tercile-based category product, and demonstrated to be an ef-

fective distance metric for ENSO effects on T2m (Schamberg

et al. 2020). The KL divergence is a quantification of the infor-

mation lost if a forecaster were to ignore that it was an ENSO

year, and can be loosely thought of as a quantification of the

forcing of the anomaly probability. Encouragingly, all of the

KLPP patterns resemble the seasonal anomalies presented in

(Deser et al. 2018).

Figure 13 shows the monthly T2m KLPP for DJFMA in

respective El Niño (column I) and La Niña (column II) sea-

sons, and the composite observed GPH anomaly (contour).

KLPP is stippled for values significant at the 10% level.

Largely, the observed KLPP matches the SN relationships

displayed in Fig. 9. In agreement with the d4PDF, the results of

the KLPP divergence indicate the following monthly patterns

for T2m: 1) El Niño KLPP is larger than La Niña, 2) little to no

KLPP exists in December for either El Niño or La Niña, 3)
KLPP begins to develop over Mexico in January of El Niño
and is strongest across the southern half of North America in

FM, 4) January and February of LaNiña years see a peak in the
KLPP in the Gulf of Mexico and Florida region, 5) reliable

NWNAKLPP emerges in February and peaks inMarch, and 6)

KLPP inNWNA shifts northward inApril of ElNiño years and
KLPP vanishes in April of La Niña years.

FIG. 11. Monthly d4PDF (a),(b) PNA index and (c),(d) AII index mean and 5th and 95th percentiles across 100

ensemblemembers (open circle) and for observations (diamond, showing observation compositemean fromENSO

years; observed values shown in gray dot) for (left) El Niño and (right) LaNiña years. The observationmean spread

is estimated from bootstrap with resampling 1000 times across years. The d4PDF ensemble intervals are estimated

from bootstrap with resampling 1000 times across all members.
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Differences between d4PDF SN and T2M KLPP exist. We

note that these could be due to the internal variability of the at-

mosphere and the limited number of observations or attributable

to d4PDFmodel biases. In observations there is a clear shift of the

T2m associated with the high-pressure limb of the PNApattern in

northeast Canada in January (Fig. 13c). This could be an indica-

tion of d4PDF overdispersiveness of the northern limb of the

PNA pattern across the ensemble members, and a lack of ENSO

forcing in the early season. This is consistent with the findings of

Ayarzagüena et al. (2018) and Smith et al. (2020), which show that

FIG. 12. (column I) El Niño and (column II) La Niña monthly composite of observed precipitation (colorfill) and

200-hPa geopotential height (contour; negative dashed). Contour intervals are set at 20m; the 0-m contour is shown

in bold. Precipitation is stippled when significant (plus sign). Geopotential height is stippled when significant (star).

Significant confidence intervals are determined by bootstrap, with resampling across all years 1000 times, and

examination of the 5th and 95th percentiles of the synthetic distribution.
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the NAO is more predictable than climate models typically

demonstrate. Additionally, February andMarch of La Niña years
show a distinct KL divergence spike centered over Oregon/

Washington. Figures 9a and 9b show very little SN in this re-

gion. This could be attributable to an overdispersion of the

Canadian limb of the PNA in La Niña seasons in the d4PDF, as a

distinct trough is shown in March of observations (Fig. 12h).

The presented KLPP has implications for the contempo-

raneous signal between tropical ENSO SSTs and North

American T2m or precipitation. However, the conditional

distributions developed are dependent only on the knowledge

of the contemporaneous ENSO state and the present month.

The correlation between February andMarch Niño-3.4 indices
is 0.96 and the correlation between December and March is

FIG. 13. (a)–(j) Observed monthly (DJFMA) T2m Kullback–Leibler divergence (KL) (tercile discrete) for

(column I) El Niño and (column II) La Niña years. Significant values of KL are stippled. Significant confidence

intervals are determined by bootstrap, with resampling across all years 1000 times, and examination of the 5th and

95th percentiles of the synthetic distribution. (k),(l) Land area averaged bits by month conditioned on ENSO phase

(258–658N, 1708E–608W, the region shown in (i)]. Contours show the observed 200-hPaGPH anomaly composite in

20-m intervals; 0-m contour shown in bold.
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0.87; thus, these findings have serious implications for monthly

and seasonal forecast skill.

6. Summary and discussion

Leveraging an atmosphere model ensemble, we examine the

Northern Hemisphere’s forced response to El Niño–Southern
Oscillation (ENSO). We diagnose signal-to-noise (SN) rela-

tionships for 200-hPa geopotential height (GPH), 2-m tem-

perature (T2m), and precipitation as a function of the amplitude

and phase of tropical Pacific SST forcing, and amplitude of the

natural variability at a monthly temporal resolution. Further,

we verify the model findings by examining the potential

predictability (PP) of those surface variables developed from

observations with implications for subseasonal-to-seasonal

(S2S) forecasting.

The forced teleconnection is examined with Rossby wave

source (RWS) and wave activity flux analyses. The forced

pattern is generally nonlinear and asymmetric with respect to

categorical ENSO states, which has been noted in multiple

studies (e.g., Abid et al. 2015; Johnson and Kosaka 2016; Feng

et al. 2017; Zhang et al. 2019). The RWS cold season vortex

stretching term is of weaker magnitude than its warm phase

counterpart, resulting in nonlinear Rossby wave forcing. The

forced 200-hPa GPH is a consequence of this nonlinearity with

warm events showing an increased amplitude as compared to

their cold phase counterpart.

Appreciable dynamic evolution occurs on monthly time

scales and is potentially an important component to increasing

S2S forecast skill. The forced response evolves temporally

across the ENSO season (November–April), due to differences

inmonthly strength and location of the tropically driven upper-

level divergence and the Pacific jet. The combined effect of

persistent forced signal and decreased atmospheric noise re-

sults in February and March showing the greatest PP in every

examined variable, andDecember showing weak to no PP. The

dominant signal for both the internal variability and the forced

response is a Pacific–North American (PNA)-like pattern

(Wallace and Gutzler 1981). The pattern is particularly robust

during February and March of warm phase events.

An open question remains around the forced El Niño PNA

GPH anomaly in March and January. Although the RWS is

nearly identical (Fig. 3), the March GPH anomaly is greater

(Fig. 4). This phenomenon is observed in other AGCM SN

studies (e.g., see Fig. 3 in Honda et al. 2005). Jiménez-Esteve
andDomeisen (2018) show a decrease in transient eddy forcing

during March, and therefore barotropic energy conversion

from the jet exit region could be a potential pathway. The exact

mechanism is not clear and requires focused research.

Zhou et al. (2014) notes that in a warmer climate, the large-

scale 200-hPa pattern associated with El Niño shifts eastward,

associated with an eastward shift of the tropical precipitation

pattern. Importantly, the Pacific maximum of precipitation,

coincident with the jet exit region and the PNA teleconnection

pattern (;408N, 1408W), is projected to shift eastward in a

warmer climate, impacting the western coast of North America.

This coincides with the peak SN region in ENSO events

(Fig. 10d–g) and could lead to an increase in skill for North

American West Coast precipitation prediction. Additionally,

the changes in circulation lead to an eastward and southward

shifted temperature anomaly due to an increase in warm advec-

tion by the Aleutian low westerlies. These patterns imprint on

late-season peak SN areas (Fig. 9g) and could increase fore-

cast skill of temperature anomalies over large swaths of North

America. This necessitates an intraseasonal exploration of

the changes of ENSO SN in a warmer climate.

Month-to-month ENSO dynamics and the background

seasonal cycle lead to distinct teleconnection patterns. These

patterns result in a myriad of signal-to-noise relationships that

can be exploited for forecasting. New interest has arisen for

statistical models (i.e., deep learning) for S2S forecasting owing

to recent computational advances, algorithmic toolbox devel-

opment, and successes in the Earth sciences (e.g., Abadi et al.

2015; Ham et al. 2019). Proper training data periods must be

utilized to capture these relationships and more skill may be

gleaned from intraseasonal rather than seasonal algorithm de-

velopment. This study joins Ayarzagüena et al. (2018) and King

et al. (2018) in warning against seasonal mean analysis due to a

shifting ENSO teleconnection and noise background state.
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