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Abstract

All functional languages need closures. Closure-conversion
is a compiler transformation that embeds static code into the
program for creating and manipulating closures, avoiding
the need for special run-time closure support. For call-by-
value languages, closure-conversion has been the focus of
extensive studies concerning correctness, such as type preser-
vation and contextual equivalence, and performance, such as
space usage. Unfortunately, non-strict languages have been
neglected in these studies. This paper aims to fill this gap.
We begin with both a call-by-name and a call-by-need
source language whose semantics automatically generates
closures at run-time. Next, we give type-preserving closure-
conversions for these two non-strict languages into a lower-
level target language without automatic closure generation at
run-time. Despite the fact that our source languages are non-
strict, we show that closures must be created eagerly, which
requires a strict notion of product in the target language. We
extend logical relation techniques used to prove compiler
correctness for call-by-value languages, to apply to non-
strict languages too. In doing so, we identify some important
properties for reasoning about memoization with a heap.

CCS Concepts: « Software and its engineering — Source
code generation.

Keywords: closure-conversion, call-by-name, call-by-need

ACM Reference Format:

Zachary J. Sullivan, Paul Downen, and Zena M. Ariola. 2021. Strictly
Capturing Non-strict Closures. In Proceedings of the 2021 ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation
(PEPM °21), January 18-19, 2021, Virtual, Denmark. ACM, New York,
NY, USA, 16 pages. https://doi.org/10.1145/3441296.3441398

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PEPM °21, January 18-19, 2021, Virtual, Denmark

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-8305-9/21/01...$15.00
https://doi.org/10.1145/3441296.3441398

Paul Downen
University of Oregon
Computer and Information Science
Eugene, Oregon, United States
pdownen@cs.uoregon.edu

74

Zena M. Ariola
University of Oregon
Computer and Information Science
Eugene, Oregon, United States
ariola@cs.uoregon.edu

1 Introduction

Correctly passing code requires closures: a data structure
combining code with its environment. This is pervasive
in functional languages, where higher-order function ar-
guments need to close over their free variables. The early
abstract machines for the A-calculus, like the SECD [15]
and Krivine [14] machines, automatically create closures at
runtime. Instead, closure-conversion embeds the instructions
for creating and manipulating these closures statically at
compile-time, writing them into the syntax of the program.
The transformed program is closer to real machine code,
which only has pointers to top-level functions absent of any
local scope. Previous work has investigated the efficiency
[3, 28, 29] and correctness [2, 19, 23] of closure-conversion,
and explored its application in more expressive languages
with dependent types [6] and mutable references [17].

This line of work, however, mostly applies to just strict
languages. Non-strict languages are rarely discussed, if at
all. Some work [3, 23] focused on languages in continuation
passing style (CPS), which subsumes call-by-value and call-
by-name semantics, but call-by-need is still left out. A call-by-
need CPS exists [22], but it requires a mutable store and is not
used in compilers for lazy languages. Rather, these compilers,
such as those for Lazy ML [5] and Miranda [24], rely on other
methods such as lambda-lifting. Haskell’s premier optimizing
compiler, GHC [26], does use closures, but they are only
considered as a small part of low-level code generation.

Delaying low-level details, like closures, can have a serious
cost to an optimizing compiler. Most optimizations are done
in the middle of the compiler pipeline, usually expressed as
transformations in the compiler’s intermediate language. If
closures are not introduced in this phase, they cannot par-
ticipate in the majority of the optimizations being done. In
contrast, work on intermediate languages that can express
low-level details like unboxed values [25], the arities and
representations of types [8], and join points [18] allows com-
pilers to generate more efficient code, by having different
optimizations iteratively improve one another’s output.

But doing this for closures—in the context of an interme-
diate language for a non-strict compiler—is not such an easy
feat. Of course non-strict languages create more closures:
every function argument or variable binding is delayed, cre-
ating closures that are not needed in a strict language. But
just making more closures is not enough: closures must be
strict! In a low-level language without automatic run-time
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closure support, the compile-time code for creating closures
cannot be lazily evaluated because by then it is too late to
capture the long-gone static environment. Instead, the en-
vironment must be captured now when it is available, with-
out inadvertently evaluating anything in the environment.
Closure-conversion in a non-strict language is a delicate
dance between the lazy and the eager.

This paper investigates the effect of evaluation strategy on
closure-conversion, with the interest of promoting closure-
conversion as a transformation in a non-strict intermedi-
ate language suitable for optimization. After reviewing the
well-known strict closure-conversion (Section 2) and its cor-
rectness, we show how closure-conversion of a non-strict,
call-by-name language cannot be embedded into a purely
call-by-name target language (Section 3), but rather strict-
ness is needed in the target language to create closures at
the right moment. Similarly, we show how call-by-need lan-
guages introduce yet another unintended interaction (Sec-
tion 4): some closures need to be memoized when they are
run, but others don’t. The contributions of this paper are:

o We specify call-by-name closure-conversion (Section 3.2)

to a call-by-value target and prove its correctness (The-

orems 3.1 and 3.3) with a logical relation between pro-

grams before and after conversion (Lemma 3.2).
o We specify call-by-need closure conversion (Section 4.3)
to a call-by-value target with mutable state to perform
memoization. We conjecture this conversion is cor-
rect, providing a heap-indexed logical relation (Con-
jecture 4.2), and identify several important properties
for reasoning about memoization with an explicit heap.
We introduce the concept of partial closure-conversion
(Section 5). In a manner similar to the worker/wrapper
transformation for unboxed types, only some closures
are written statically into the program with the rest
generated automatically at run-time. We illustrate that
the same partial closure-conversion works for both
call-by-name and call-by-need languages, and can cap-
ture memoization implicitly, without explicit mutable
state. By its nature, partial closure-conversion requires
both strict and non-strict bindings in the same inter-
mediate language.

2 Strict Closure-Conversion

High-level, higher-order languages—like typical functional
languages—make closures implicit. In these languages, the
run-time system will automatically generate closures as they
are needed while the program executes. In contrast, lower-
level languages—like C—do not; they may have raw function
pointers, but they do not close over their environment. In-
stead, C programmers must manually insert the instructions
into their programs to capture and access a local environ-
ment with a function pointer.
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Figure 1. Source typing rules
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Figure 2. Strict source semantics

Closure-conversion is tasked with translating from this
high- to low-level; to remove the need for automatic run-time
closure generation, by instead embedding the introduction
and elimination of closures into the syntax of a given pro-
gram. As review, let’s look at closure-conversion in strict
languages. Consider the following program:

letx=(lety=2+1inAz.y)in(x3)+(x 4) (1)

When x is called, y = 3 is no longer in scope. So the in-
terpreter must package this binding along with Az.y, to
remember it when the function is called. This program is
closure-converted to:

let x = (lety = 2+ 1 in pack ((y), A((v), 2). y))
in (unpack x as (e, ) in f (e,3)) +
(unpack x as (e, ) in f (e, 4))

Here, the A-expression Az. y in the source is replaced with
a data structure containing a representation of the environ-
ment and a closed function which accesses that environment.
Now, instead of the interpreter, the function definition and
call site themselves include logic for packing and unpacking
its local environment to find the binding of y.

2.1 Strict Source Language: V

To specify closure-conversion in general, we need to de-
fine the source language being translated. For illustration,
we will use a small expression language with constants,
A-expressions, and let-expressions. Let-expressions are in-
cluded as real syntax, instead of syntactic sugar for applied
functions, since they can be given a more direct translation.

LMNeExpu=n|x|Ax.M|MN |letx=MinN
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Figure 3. Strict target language typing rules

Sx)=V

Num ST Uy v

Elm Uy n var

G N 7. M) U Ax. M 29T
&My Jqr Ax. L
EIN) gy V (&, x > V[ L) g~ R
& ||MN) lqr R
ElIM Uy W Ex—=>WIN) gV
(Z||letx=MinN) o V

|| Mo) U Vo | Mn) bay Vi
Product
E 1 Mo, ..., Mp)y by (Vo,......, Vi)
E My Uy (Voo Va)
(x0 = Vo,....xn = V| N) g R c
(= || case M of (x0,...,%n) = N) lq» R ~%¢
E M) g V

(2 || pack M) | pack V Pack

ElIM Uy V. Ex—VIN) Ly R
(2 || unpack M as x in N) |4~ R

Unpack

Figure 4. Strict target language semantics

Type System. The source type system is a typical exten-
sion of the simply typed A-calculus shown in Figure 1. This
type system serves to show how closure-conversion pre-
serves types, and how it compares with types in the target.

Type =
Type Environment :=

int|r—>o0o
e| T, xir

7,0 €
I'e

Operational Semantics. To emphasize the creation and
destruction of closures, we present a big-step operational
semantics with a local environment wherein the construction
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of closures is explicit. It evaluates a pair of an environment
and an expression, i.e. a configuration, to a value.

C € Configuration == (3 || M)
Y € Environment = Variable — Value
V,We Value z=n|(E,Ax. M)

The rules for strictly evaluating an expression are pre-
sented in Figure 2. In our source semantics, the Lam rule
knows how to automatically construct a closure and the
App rule knows how to unpack it, instantiate its local en-
vironment, and jump into the body with the value of the
actual parameter. Closure-conversion aims to remove any
knowledge of closures from these run-time rules.

2.2 Strict Target Language: V"’

The target language of closure-conversion can sometimes
be the same as, or a sub-language of, the source. However,
in our case, the target is a different language, extending the
source with products and existentials needed for closure-
conversion. Also note that in the target, all A-expressions
will be closed.

L,M,N € Expression u=n|x|Ax.M|MN
| letx=Min N | (My, ..., M,)
| case M of (x¢,...,xp) > N

| pack M | unpack M as x in N

Type System. New types are added to the target language
for products and existentials. The latter requires the addition
of type variables as well. To keep track of the type variables
introduced by existential types, we add a typing context for
live type variables A, which guarantees their freshness.

7,0 € Type u==int|r—>o0o
|toX X1, | X|3IX. T
I'e TypeEnv ==¢|T,xiT
Ae TypeVars ==¢|AX

The full set of typing rules is given in Figure 3. The rule essen-
tial to closure-conversion is the closed function rule which
types the body of the function with nothing in the context
except the formal parameter. This ensures that the run-time
semantics need not generate closures for A-expressions.

Operational Semantics. In the source language, the set
of values was not a subset of the surface language because
evaluation rules must form and return closures instead of
A-expressions. In contrast, the closed functions of the target
language are already values; they can be compiled simply
into function pointers.

Ce Config == M)
>e Env = Variable — Value
V,.We Value :=n|ix.M|M,...,V,)|packV

The source (Figure 2) and target (Figure 4) language seman-
tics both contain a Lam and an App rules, but they behave dif-
ferently. In the target, Lam simply returns the A-expression; it
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Expression Translation

CCyln] = n
CCyx] = x
CCylet x=M in N]| = let x=CCq[M] in CC[N]
CCyllAx. M] = pack (%), A((#), x).CC [M])
where FV(Ax. M) = §j = yo,...,Yn
CCy[M NJ = call (CCy[M], CCq[NT])
call(M,N) def unpack M as (y, f) in f (y,N)
Type Translations
Valy[int] = int
Valy[t = o] = 3IX. XXX X Valy[r] — Valy[o])
Envyle] = ¢
Envy|T,x:t] = Envy[T], x:Valy[r]

Figure 5. Strict closure-conversion: V — V’

does not construct a closure since the function must already
be closed. At the call-site, the target App rule correspond-
ingly expects to find just a A-expression, and jumps into a
function body with only a binding for its parameter in the
otherwise-empty environment.

2.3 Transformation

Strict closure-conversion is shown in Figure 5. In the trans-
lation of expressions, functions are transformed into pack-
ages containing a closed function and a data structure. The
generated closed function knows how to access this data
structure to re-instantiate the local environment in its body.
(We use pattern-matching A-expressions as syntactic sugar
for case expressions.) Applications (M N) are transformed—
assuming M will evaluate to a closure—into code extracting
the environment and function from M, and then calling that
function with the environment and argument N, as defined
in the shorthand call(M, N).

Since functions become data structures, we must translate
the type of a program as well. Function types are translated
to an existential which hides the type of environment used.
Thus, two functions with the same type but different environ-
ments will still have the same type after closure-conversion.
For instance, Ax. x and Ax.y, which are both functions of
type int — int, will be converted into programs of type
AX.X X (X x int — int).

2.4 Properties

Type Preservation. Closure-conversion is defined so that
all well-typed expressions in the source are translated to
well-typed expressions in the target. This can be proved by
induction over the typing derivation.

Theorem 2.1 (Type Preservation). If T + M :
Envy[T] + CCy[[M] : Valy[r].

T, then

Semantics Preservation. The correctness theorem that
we will focus on is that a program and its translation evaluate
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Figure 6. Strict closure-conversion logical relations

to the same integer value.The proof depends on a family of
logical relations, given in Figure 6, between source and target
syntactic categories indexed by the type of the term'. For
example, elements of the relation Vi [int — int] are pairs
of source and target values that behave like functions from
integers to integers. The relations have the signatures:

My € Type — P( x Config)
Ey € TypeEnv — P( X Env)
Vy € Type - P( X Value)

The “top level” relation in the family is for source and
target configurations M.y . If the source configuration eval-
uates to a value, then the target configuration must evaluate
to a related value?. The relation &« states that a source and
target environment are related when they map variables to
values related at their assigned types. Finally, the relation
Ve between source and target values varies depending on
the type. Numbers are related only if they are identical. For
function types, a source closure is related to a packed tar-
get value if they behave the same for any pair of related
source-target arguments. That is, the source configuration
performing the function call must be related to the target
configuration performing the function call.

The adequacy lemma shows that well-typed terms in the
source translate to terms that, when both are lifted to con-
figurations with related environments, produce related con-
figurations. It can be proved by induction on the typing
derivation (as shown in Appendix A).

Lemma 2.2 (Adequacy). IfT + M : 7 and (>,2") € E¢[T],
then (|| V1), (3" || CCy M) € Moy [r].

The correctness of whole programs closure-conversion is a
consequence of adequacy applied to an empty environment.

IFor readability, we use different colors for and target syntax. For
syntax that is the same in the source and target, the font is black.
ZUnfortunately, this also means that if a source configuration does not
evaluate to a value, then any target configuration is related to it trivially.
When considering well-typed source programs, an evaluation is always
derivable. Thus, this is not a problem in our restricted setting.
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Theorem 2.3 (Closure-Conversion Preserves Evaluation).
Ifer M :int, (¢ || M) Y nimplies (¢ || CCqr[M]) Uq» n.

3 Non-strict Closure-Conversion

Previously, closure-conversion translated functions of a strict
source language into a closure—data structures containing a
closed function and a representation of its environment—in
a strict target language. Can we do the same thing for non-
strict languages? That is, can we convert a non-strict source
language to a non-strict target language that lacks automatic
closure management at run-time?

To answer these questions, we first need to know how
non-strict data types are evaluated, since closures will be
constructed with them. In strict languages, data are evaluated
before they are considered a value; in contrast, non-strict
data are not evaluated until forced by their context, i.e. until
they are pattern matched®. For example, a non-strict existen-
tial package has the following semantics, based on delayed
evaluation rules for data in lazy languages, e.g. Launchbury’s
natural semantics extended with constructors [16]:

Pack

(Z || pack M) U n (2, pack M)
(EIIM) Iy E packL) (E,x- (L0 [IN) xR
(2 || unpack M as x in N) xR

Unpack

To avoid evaluating inside of the data constructor until pat-
tern matching, a non-strict evaluator must return a closure to
capture the environment needed to evaluate it later. But this
gets us nowhere! The point of closure-conversion is to elimi-
nate the need for automatic closure management at run-time
(i.e. in the semantics). Yet, when trying to eliminate auto-
matic closure management, we introduced a new type...that
requires automatic closure management at run-time.

Our goal is to simulate the non-strict Pack and Unpack
rules above in the text of the program, so the instructions for
capturing and restoring the environment are in the compile-
time code, not the run-time system. The root of the problem
for non-strict closure-conversion, then, is that before pack
returns, it needs to look up the current definitions of its
free variables in scope, so that these bindings can actually be
captured in the environment value it contains. In other words,
pack must be strict—to some degree—in its argument. But
we also must be careful to not introduce too much strictness.
In a non-strict evaluation of example (1),

letx=(lety=2+1inAz.y)in(x3)+(x 4)

we must not evaluate the expression 2 + 1 bound to y when
the closure is formed; rather, computation of y itself must
still be delayed until its value is forced. Thankfully, this
complication, too, is solved by closure-conversion. In general,
bound, delayed computations, like let y = 2+1in... might
also refer to other free variables, so the right-hand-sides

3Non-strict data is closely related to codata types [10], which are defined
entirely by their forcing contexts.
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Figure 7. Non-strict source semantics

must be closure-converted like functions. As a consequence,
delayed computations bound by let- and A-expressions will
also be converted to values—in the sense of call-by-value—
ensuring that they are not evaluated too early.

In brief, a non-strict closure-conversion must transform
A-expressions, application arguments, and let-bound expres-
sions into strictly-constructed packages of their free variables
and a closed function. Applying such a transformation to
our example program would produce the following output
(to keep the example simple, we did not construct closures
for x, 3, and 4):

let x = (let y = pack ((), A().2 + 1)
in pack ((y), A((y), z).unpack y as (e, f) in fe))
in (unpackx as (e, f) in f (e, 3))+(unpack x as (e, f) in f (e, 4))

In addition to the function closure needed in strict closure-
conversion, we have added a closure construction for the
binding of y. This solution means that every function and
let-expression in the target language will be strict. Thus,
the target language of the non-strict closure-conversion is
indeed that of strict closure-conversion: V”’.

3.1 Non-strict Source Language: N

The non-strict source language makes use of the same expres-
sion syntax and type system as the strict source language.

Operational Semantics. In a non-strict language, all val-
ues are thunk closures which contain the suspended compu-
tation code and the environment it needs to execute. Unlike
our strict source, values stored in the environment are differ-
ent from the results of evaluation in the non-strict source.

C € Configuration == (X || M)

> € Environment = Variable — Value
V,We Value = (2, M)

Re Result z=n| (2, Ax. M)

The evaluation rules are given in Figure 7. The variable
rule unpacks and evaluates the object it looks up in the
environment. The application rule must handle two differ-
ent types of closures: it must unpack the function closure
returned from evaluating the left-hand-side and it must con-
struct a thunk closure for the formal parameter. The Let rule
instead only constructs the closure for the bound expression.
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Expression Translation

CCuln] = n
CCulx] = evalx
CCullet x=M in N]| = let x=pack ((3), A(§).CCn[M])
in CCA[N]

where FV(M) =/ = yo.. ... yn

CCulAx. M]| = pack ((5), A(#), x).CC N IM])
where FV(Ax. M) = §j = yo,...,yn
CCNIM NI = let z = pack ((§), A(%).-CCnINT))
in call (CCuy[M]], z)
where FV(N) = § = yo,....yn
eval M % unpack M as (y, f) in f y

call(M, N) %

Type Translations

unpack M as (y, f) in f(y, N)

Resy[[int] = int
Resyflt = o] = 3IX. X X (X x Valy[[r] = Resnlo])
Valy[[r] = 3X.X X (X — Resy|[r])
Envnyle]l = ¢
Envn(T,x:it]l = Envny[T], x:Valn(z]

Figure 8. Non-strict closure-conversion: N' — V’

3.2 Transformation

Non-strict closure-conversion, transforming A into V", is
presented in Figure 8. Echoes of the source semantics are
seen in the transformation. Variables are converted into code
for unpacking thunk closures as we see in the Var rule. Ap-
plications are converted into code that turns arguments into
thunk closures like the App rule. The non-strict transforma-
tion is careful to distinguish thunk closures from function
closures. Whereas the former contains a closed function from
some environment, the latter contains a closed function that
takes a pair of some environment and a formal parameter.

Extending the strict type translation to a non-strict lan-
guage requires a different translation for values and results.
Intuitively, the three type translations can be thought of
as a translation of expressions that we intend to evaluate
to results (Resy ) versus placing them in the environment
(Val ), along with translation of the environment needed for
evaluating an expression (Envy). The result type translation
of a function has changed from the strict closure-conversion
to reflect that it now accepts only thunks as arguments.

Type Preservation. Like strict closure-conversion, the
non-strict transformation preserves typing derivations.

Theorem 3.1 (Type Preservation). If T' + M :
Enva(IT] F CCu[M] : Resn( 7]

T, then

Semantic Preservation. Repeating the theme of distin-
guishing values and results, the family of logical relations
from strict closure-conversion can be modified to work for
the non-strict transformation with similar modifications to
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Malel € (O VR Uy 1) =
AR, R") € Ruyl[z]. (C" Un R}
enlll % {¢.3) | Vxr) €T
(2(x), 2(x)) € Vulr]}
Valrl & (1), pack (V7 V)
LA, Ce [l VEVEY) € Ml
Rulint] € {(nn)|nez)
Rullr — '] def {C, ), pack (V/, Vf’))
| (W, W’) € Vulr].
(x> W M)

el VEVE W) € Mul'l}

Figure 9. Non-strict closure-conversion logical relations

those of the semantics and type translations. Thus, the non-
strict family of relations in Figure 9 includes a separate rela-
tion for values and results:

My € Type —  P( x Config)
En € TypeEnv —  P(Lnvx Env)

Vy € Type - P( X Value)
Ry € Type —  P( X Result)

The Ve relation has become the result relation R for
non-strict closure-conversion. The relation for values, Vy,
is new. A source value, which is a thunk closure, is related to
a target package when they form related configurations by
unpacking and applying their respective enclosed environ-
ments. As before, adequacy of this logical relation (whose
proof is shown in Appendix B) implies correct evaluation.

Lemma 3.2 (Adequacy). IfT + M : 7 and (>, %) € Ex[T],
then (|| V1), (37 || CCAIMTD) € Mplz]

Theorem 3.3 (Closure-Conversion Preserves Evaluation).
Ifer M:int, (¢ || M) Un n implies (e || CCAM]) Unr n.

4 Lazy Closure-Conversion

When we applied strict closure-conversion to our non-strict
language, we found that closures need to be strict and that
we need to close over arguments of functions. This forced us
to use a strict target language even when closure-converting
non-strict programs. Running an analogous experiment, con-
sider the call-by-need evaluation of the resulting program
from non-strict closure-conversion (again, avoiding the clo-
sures necessary for x, 3, and 4) of the program in (1).

let x = (let y = pack ((), A(). 2 + 1)
in pack ((y), A((y), z).unpack y as (e, ) in fe))
in (unpackx as (e, f) in f (e, 3))+(unpack x as (e, f) in f (e, 4))

Since the transformation replaces every binding with a strict
binding, we are left with a program with only strict bindings.
Thus, the two evaluations of the thunk bound to y are no
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longer shared. A proper lazy closure-conversion should share
computations; that is, thunk closures must be evaluated at
most one time.

An obvious solution is to add a restricted form of mutable
references to the target language and replace thunks after
their evaluation. Instead of closure-converting a function
argument to a thunk, it will be closure-converted into a
pointer to a heap-allocated tagged thunk. We will use the
following shorthand for tagged heap storage:

f .
store M < new (inr M)

At the thunk’s call site, i.e. a variable lookup in the source, we
will generate code that checks the tag to determine whether
to simply return a value or to evaluate the thunk and update
the pointer. This, we capture in a memoization macro:

memo x def case !x of
inlv —-o
inr t — unpack t as (y,z) in
letv=2zyin
let _ =(x:=1inlv)inv

In our example, applying these ideas to the thunk created
for y yields the following target program:

let x = let y = store (pack ((), A(). 2 + 1)))
in pack ((y), A(y), z).memo y)
in (unpackx as (e, ) in f (e, 3))+(unpack x as (e, f) in f (e, 4))
We arrive at a lazy closure-conversion in modifying the

non-strict transformation by inserting these thunk mutating
macros at the locations where source variable bindings are in-
troduced (i.e. let-bound expressions and function arguments)
and eliminated (i.e. variable lookup).

4.1 Lazy Source Language: £

Operational Semantics. The major difference in the lazy
semantics versus strict and non-strict is the addition of the
heap. This means we must now distinguish results, values,
and answers. Answers are the set of normalized expressions
and results now contain an updated heap and an answer.
Configurations include a heap and an environment. Whereas
heaps hold thunks and answers at specified locations, en-
vironments are only a mapping from variables to locations
into the heap.

C € Configuration == (| X | M)

de Heap = Location — Heap Object
le Location

O € Heap Object == (Z,M)|A

Y € Environment = Variable — Value

Ve Value = Location

Ae Answer w=n| (2, Ax. M)

Re Result = Heap X Answer

The big-step evaluation rules are specified in Figure 10.
Just like the other two source languages, the Lam rule must
construct a function closure. Like the non-strict language,
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N O(3(x) = A .
@My Uz @n " @21 U @a
OE(x) = (M) (@[3 || M) g (@,4)
update(®’, 3(x), A) = ®”
VarMemo

@131 Uz (@A)
@ 13 1 Ax. My Uz (@, (5 Ax. M) ™

(@12 M) g (@, Ax. 1))
alloc(®/, (3,N)) = (,®")
@ |2, x> 1L IgR
@IZIMN) LR
alloc(®, (Z, M) = (L,®") (@ [|Z,x—I||N)InxR
(@2 letx=MinN) |, R
Heap Semantics
l¢Dom(®) ' ()=M VI'e Dom(®)-{I}). (") =2'(I")
alloc(®, M) = (I,®")
Il € Dom(®) @'(I)=A VI € (Dom(®’) - {1}). &(") = d’'(l")
update(®, [, A) = &’

App

Let

Figure 10. Lazy source semantics

ANTHFM: 7T
ATHINIM:7+0

NTHM:op+o0r
AT, x:oj v N:7t AT, x0or+L:7T

AT+ case Mof {inlx — N;inrx > L} : 7

; ATHFM: o I
"OATrinrM:r+o ™

CaseSum

ANTrM: 7t N ATHFM:refr Deref
ATrnewM:refr o ATFIM:z O
ATrM:refr ANTEN:7
Mutate

ATHFM:=N:1

Figure 11. Typing rules for V)’ extending V’

the App rule constructs a thunk closure, but here it is added
to the heap and a pointer to it is passed in the environment.
The differential treatment between closure types is more ob-
vious in a lazy language: function closures are returned from
evaluations, whereas thunk closures are passed as pointers
to the heap where they can be updated.

We model heaps as objects in which we only know how
to allocate, update, and lookup. Since our heaps remain ab-
stract, our heap semantics specifies only the properties that
allocation and update operations must satisfy. Allocation
requires that we are allocating a fresh variable, the new heap
correctly returns the expression being allocated, and every-
thing else in the heap remains unchanged. Update requires
that the variable is already in the heap, that the new heap
correctly returns the value, and that everything else in the
heap remains unchanged.
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4.2 Strict Target Language with Mutation: V/

In order to handle the added problem of updating thunks, the
strict target language for lazy closure-conversion extends
V'’ with sums and mutable references.

LM,Ne Exp ==n|x|Ax.M|MN
|letx=Min N
| (Mo, ..., My,)

| case M of (x¢,...,xp) > N

| pack M | unpack M as x in N

| inl M | inr M

| case L of {inl x —» M;inr x —» N}

Typing Rules. The typing rules for this target language
are given in Figure 11. They are a direct extension of the rules
for the strict target language V. Heap manipulation in V)’
is through reference types, a la SML. This can be seen in the
Mutate rule wherein a reference to an integer, for instance,
is a different type ref int that can only be updated with
another integer. Assignment expressions will return a value
of the empty product type (i.e. 1) which we denote by ().

Operational Semantics. Our strict, mutable target lan-
guage can do away with the distinctions between heap ob-
jects, answers and values that were present in L. Now, both
heaps and environments may contain any value. Results are
pairs of a heap and value.

C € Configuration == (® | X | M)
de Heap = Location — Value
le Location
> € Environment = Variable — Value
Ve Value s=n|Ax. M| Vo, ..., V)
| pack V | inl V | inrV | I
Re Result = Heap x Value

The semantics is given in Figure 12. Unlike the syntax and
typing rules for V', which were a direct extension of the
target language V’, all of the evaluation rules differ because
they must pass the heap around explicitly. For instance, the
product evaluation rule is limited to left-to-right evaluation
of its components. In the non-mutable target language, this
order was irrelevant.

The new mutable references rules make use of the same
heap interface as our lazy semantics. The New rule evalu-
ates its argument to a value, places that value in the heap,
and returns its location in memory. The dereference rule
evaluates its argument to a location and returns the value
at that location. Finally, the mutation rule will evaluate the
left-hand-side to get the location where the right-hand-side’s
value will go. After the update, a mutation will return the
empty product ().

4.3 Transformation

The lazy closure-conversion transformation is found in Fig-
ure 13. Our lazy source language’s different variable lookup
rules are encoded in a single case expression (defined by
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memo): either the heap location contains a thunk or a normal
form. The application case is the same as in the non-strict
closure-conversion case, but the thunk is tagged as a thunk
with inr and it is placed in the heap with new instead of in
the local environment. The type translation reflects the heap
allocation with a ref type and the thunk tagging with a sum
type in the Val g [[r] translation.

Interestingly, the cases for already normalized expressions
(i.e. numbers and manifest functions) are the same for strict,
non-strict, and lazy closure-conversion.

Theorem 4.1 (Type Preservation). If T + M : 7, then

Envy [T+ CCM] : Rese[z]-

4.3.1 Semantics Preservation. The technique to reason-
ing about semantics that we used in the strict and non-strict
setting does not easily apply to the lazy one because answers
can depend on mutable objects in the heap. In effect, the use
of a heap dislocates bindings from their static scope. Clo-
sures capture only pointers into the heap, and evaluating an
expression must use the dynamically newest heap, rather
than the purely static bindings that were possible for strict
and non-strict evaluation. For example, consider evaluating

letx=1+1
inlety=x+2
inx+y

First, thunks for x = 1+ 1 and y = x+2 get added to the heap,
®;. Then, the addition x + y forces x, returning the result
2 in an updated heap ®, where x has been evaluated. Next,
addition forces y so that x + 2 is evaluated in the newest heap
®,, not the heap @, that was available at its binding site.

In general, function application places a thunk value rep-
resenting the delayed argument in the current heap found
at the time of the call. Later, that thunk may be retrieved
when that argument is forced, and it must be evaluated with
the state of the heap at the time of forcing, not at the time
when it was bound. Therefore, we need to be able to reason
about evaluating arguments not just now—when the binding
is formed—but also later—when the argument is needed.

In order to specify the behavior of evaluation at different
points in time as the dynamic heap changes, we need to en-
hance our logical relations to be indexed by the current state
of the heap. A heap-indexed family of logical relations for
lazy evaluation is given in Figure 14, with these signatures:

My € Type — P( x Config)

Ry € Type— X Heap — P( X Result)
&Er € TypeEnv — X Heap — P(Env X Env)
Ve € Type— X Heap — P( X Value)

Ar € Type— X Heap — P( X Ans.)

Environments, values, and answers all depend on a heap
by containing variables which map to pointers. Thus, we
augment their relations to depend on a pair of current source
and target heaps to specify their meaning. &, must look up
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Figure 12. V/: Strict mutable target language semantics

bindings in both the static environment (to get a location)
and then the dynamic heap (to get a value). V' relates heap
objects (closures and answers) that yield the same result
in the current heap—the conversion from heap objects to
computable configurations is given by the operations

config, € X
configq, € Heap X Heap Object — Config

—

A is almost the same as before, except that the function
arguments 1/ and W’ get passed via references to the heap.
(For clarity, we avoided using our black-box heap allocation
in this definition.)

In contrast, configurations and results contain the heaps
that they depend on, and they specify the impact of their
heap as it evolves over time. The logical relation M ; ensures
that a source-target pair of configurations, (0, || > || /) and
(@] || 2" || M), gives related results when evaluated now in
their current heaps @, and ®. But crucially, Mz should hold
in the future as well: evaluation still gives back related results
when ©; and @] are replaced by any future heaps ©, and ;.
This extra generality is expressed by quantification over all
(01, @) C (02, @), where the relation C is meant to denote
that (9., ®;) is a pair of related source-target future heaps
that might come from evaluation with (0, ®]). The logi-
cal relation R ; ensures that a source-target pair of results,
(D, A) and (@), A’), contain related answers in their respec-
tive current heaps ¢, and ®,,. But in addition, R o [t][(D 1, @)
also ensures that the contained heaps ¢, and @/, are indeed
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possible future heaps of an older @, and @, used to evaluate
the result, as expressed by (0, @) C (D, @)).

4.3.2 Future Heaps. Note that while Figure 14 makes use
of the notion of future heaps, written as (0, ®]) E (0, @7),
it does not define the C relation. We conjecture that this
last missing piece will make it possible to reason about the
adequacy of the logical relation in Figure 14, which implies
correctness of lazy closure-conversion:

Conjecture 4.2 (Adequacy). There is a definition of T such
that the following holds: IfT + M : 7 and (>, X")e&E £ [T](D, D7),
then (( || 2 || M), Q" [| 2" [ CC[M)) € Mz].

While we leave the definition of C as an open problem,
we can still specify the essential properties of future heaps
required to prove Conjecture 4.2. Of course, this relation
should be reflexive and transitive, which follows the usual
intuition of “future” states. The most important property is
that the & ¢, Vr, and A  relations are immortal: all relations
under a particular source-target pair of heaps continue for
all future heaps, and never die.

Property 1 (Immortality). For all (
following hold:

,®)) T (1,,)), the

L If(A, ANeA L[ (D1, @) then (A, A)eA [T (D2, ©)).
2. If(0,0N)eVr](V1, @) then (O, O)eVe[t](D,, @)).
3. If (7, 3)€E £ [T1(D., @) then (7, 5)€E £[T(D., D}).
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Expression Translation

CCxn] = n
CCr[x] = memox
CCrlletx=MinN] = letx=
store(pack((y), A(7)-CC £[M]))
in CC,[N]

where FV(M) = § = yo,...,yn

CCrlAx. M] = pack ((§). A((#)), x). CC £[M])
where FV(Ax. M) = § = yo,...,yn
CCr[MN] = letx=
store(pack((y), A(4)-CC,[N1))
in call (CC z[[M]], x)
where FV(N) =4 =yo,...,yn
def
memo x = case lx of
inlv—>vo
inrt —
unpack t as (y, z) in
letv=zyin
let _ =(x:=inlv)inv
store M def new (inr M)
call (M,N) def unpack M as (y, f) in f (y,N)
Type Translations
Resp[int] = int
Respllr = o] = 3IX. XXX xValg[r] = Resglol)

Valpllr] = ref (Resglr]l +(3X. X X(X — Res z[7])))
Envyle]l = ¢
Envy[T,x:c] = Envg[T],x:Val[r]

Figure 13. Lazy closure-conversion

Immortality is a form of monotonicity property, the tem-
poral relationship between heaps (as (01, ®]) E (0, 7))
is preserved as a logical relationship between typed cor-
rectness properties (e.g. A£[t(01, ®]) € A£[[r](D2, D7)).
Notice that the immortality property for & implies any
heap object accessible through a variable x will remain ac-
cessible so long as x is in scope. The immortality property for
V¢ holds by virtue of its definition in terms of M s, which
already abstracts over future heaps, so long as C is transi-
tive. Immortality of A ; requires something more. Because
At — '] stores functions arguments on the heap, future
heaps must be preserved under extension.

Property 2 (Extension). If (©;,®7) C (D,, ©),

dom(®;) Ndom(®:) = 0 = dom(®,) N dom(D-), and
dom(®7) N dom(P%) = 0 = dom(P}) N dom(P3),

then (( ) (@, @) E (( )s (@, @5)).

Additionally, when evaluation forces a variable, the result
of that variable gets memoized, which causes an update to
the heap. This, too, must be a possible future heap.
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def

Melel Qo o, @) s ) M7y
| V(01, ) E (D2, @)
VIO L ) U 1) =
34, R') € R [el(D0, @)).
(@ 1157 || M) Uy R'Y
Rl @) € g, @), )
| (2,0) € (0, ])
A LAY € A L[]0, @)
&N, {3 | V() e T
(00 (x)), (3 (x)))
€ V[rl(0, )}
Velel, o) % 0,0
| (config (0, 0), conﬁg(V[/(@’, 0")
e M}
Arlint]@. @) ' {(n)|nez}
Agle = WO @) E (000, pack(VL V)
| VOV, W) € VeIl ).
(0L W Sy L)
KO Vs Wl V|V (VL))
e Mg[«'1}
config £(0, (5, 1) € (@
config £(0, (7, 1 00) € (@ )
config ;(0,m) & (@]l en)
configy (2, in1 V) © @ e) vy
configy (@, inr(pack(Ve, V7)) (@ [l £ || Vy V)

Figure 14. Lazy closure-conversion logical relation

Property 3 (Memoization). If(>,%) € E£[T, x:c (D1, D)),
config (D1, D1 (2(x))) bz (P2, 4)
config, (07, P}(2'(x))) Uy (25, A")
update(®d,, >(x), A)=D4, and update(d’, 3/ (x), A" )=, then

(02, @) E (05, 05")

5 Partial Closure Transformation

Since both strict and non-strict closure-conversion trans-
lates to the same strict target language, non-strict closure-
conversion is essentially equivalent to a thunking transfor-
mation followed by strict closure-conversion. The switch
in evaluation strategy effectively forces closure-conversion
to be delayed until code generation, at the end of the com-
pilation pipeline. Indeed, we see that closure-constructing
is introduced during code generation phase of the Glasgow
Haskell Compiler (GHC) [26]. If we wish to optimize the code
introduced by lazy closure-conversion, then it would be bet-
ter if it could be done in GHC’s lazy core language wherein
we already know how to do many kinds of optimizations.
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Fortunately, introducing the strict pairs and closed func-
tions needed for closure-conversion into a non-strict or lazy
intermediate language is similar to the problem of adding un-
boxed types to Haskell, which must also be strictly evaluated.
Peyton Jones and Launchbury [25] have already shown how
to perform unboxing selectively during compilation through
the worker/wrapper transformation. Therein, a worker com-
putation on unboxed values is wrapped in a lazy interface
after some strictness analyses which determines when un-
boxing is safe to do preemptively. This technique can apply
to closure-conversion. For example, suppose that we have
the following code that we wish to closure-convert locally:

letx=y+1linx+x
We can introduce a worker $x that is the strict closure-
converted form and replace x with a wrapper that knows
how to evaluate the worker:
let [$x] = pack ((y), Al(y)].y + 1) in
let x = (unpack $x as (e, ) in f[e]) in
X+x

The square brackets in 1et [$x] = rhs in body indicate that a
strict binding, where rhs will be evaluated before binding the
value to $x and evaluating body. In this instance, strictness
is essential to capture the definition of y in the package
before proceeding. The second binding instead creates a
non-strict binding that points to it. Indeed, this technique
works for both non-strict and lazy languages. Under call-by-
name evaluation, this expression will place a closure for the
unevaluated x in the environment, which gets recomputed
every time x is forced. Under call-by-need evaluation, the
non-strict let will allocate a memoized closure for x in the
heap, which is evaluated at most once.

5.1 AnIL for Partial Closure-Conversion

Syntax. In order to perform partial closure-conversion
within our non-strict source N, it must be extended with
strict let-expressions, strict closed functions, and strict prod-
ucts and existentials. The different functions have differ-
ent syntax for A-expressions and applications. Like our let-
expressions in the example above, strict functions and appli-
cations are marked with square brackets. The syntax of the
extended language, N’, is defined as:

LM,NeExp s=n|x|Ax.M|MN |letx=MinN
| Alx]. M | M[N] | let [x]=M in N
| (M07~~-9Mn)
| case x of (xg,...,xn) @ N
| pack M | unpack M as x in N

Type System. The main difference with the type system
of Figure 1 is the presence of two different function types:
The normal arrow (—) denotes a lexically scoped non-strict
function and the arrow (++ ) denotes a closed strict function.
Figure 15 just shows the rules for these functions and their
applications. Application typing requires that the correct
kind of function is being applied.
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exTFM:o
ATHAXI.M:74+b o
ATFM:t+po ANTHFN:7T
A;THM[N]: o

Closed SLam

Closed SApp

Figure 15. Strict and non-strict function types in N’

S(x)=S

El0 0w s % EIARM Uy Al M Sk
1 M) Up Alx]. L
GIN) Uy S (exioSIIL) Iy R
SApp

(NI MINT) Uy R

Figure 16. Evaluation rules for strict functions in N’

(WWfun) Ax.M — let[$f] = pack((yo,-.-.,Yn),
Ao, - - -, yn), x)]. M)
in  Ax.unpack $f as (e, f) in
fl(e.x)]
where FV(Ax. M) = yo, ..., yn
(WWarg) MN — let[$x] = pack((yo,--->Yn),
Alwo, .- -, yn)]. N)

in M (unpack $x as (x,y) in y[x])
where FV(N) = yo,...,yn

Figure 17. Worker/Wrapper non-strict closure-conversion

Operational Semantics. Like the types and syntax, the
sets for values and results for partial closure-conversion are
the combination of the non-strict source and the strict target
sets for values and results.

Ce Config = (3 || M)
Y € Environment = Variable — Value
V,We Value x=S|P
Se Strict Val s=nl|Ax]. M| (So,...,Sn)
| pack S
P € NonStrict Val == (I, M)
Re Result x= S| (2, Ax. M)

The operational semantics for N is a combination of strict
and non-strict evaluation. We extend the semantics given in
Figure 7 with the strict operational rules for pairs, packages
and let-expressions of the form let [x]=M in N (as given
by the operational rules in Figure 4). Also strict functions
and their applications follow a strict evaluation order. For
clarity, we give the rules in Figure 16.

5.2 Partial Transformation

Since the transformation is local, we can specify it with two
rewriting rules (Figure 17): one to add function closures and
one to add thunk closures.
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Type Preservation. By inspecting which rule is applied,
we can show that the worker/wrapper transformation pre-
serves types. And unlike the total transformation, we do not
need to specify a type translation. The WWfun rule intro-
duces a strict binding of type Resy [t — o] as a worker and
then eliminates it in the wrapper, yielding the same output
type as the input. The situation is similar for WWarg. If we
let WW stand for both rules, we have:

Theorem 5.1 (Type Preservation). IfT + M : 7 and WW F
M — M, thenT + M’ : 1.

6 Related Work

Lambda-Lifting. The approach to handling free vari-
ables found in early compilers for lazy languages is lambda-
lifting [4, 7, 12, 24]. Instead of capturing environments with
products as in lazy closure-conversion, lambda-lifting f-
expands out all of the free variables of functions leaving
a partially-applied closed function in its place. Once in this
form, the program can be executed on the G-machine [13].
Closure-conversion can be seen as taking lambda-lifting a
step further by choosing a more concrete representation, i.e.
products, for partially-applied closed functions.

Correctness of Closure-Conversion. Our work follows
closely the approach of Minamide et al. [19] who show the
use of existential types for strict closure-conversion type
preservation and prove correctness with a family of type
indexed logical relations. Our presentation differs in that our
semantics is defined for pairs of environments and expres-
sions, which must be carried through to our definitions of
logical relations. Since the work of Minamide et al., many
notable theorems have been added to our understanding of
call-by-value closure-conversion. These include the preser-
vation of observational equivalence [2] and space safety [23].

Reasoning about Heaps. A common solution to reason-
ing about heaps is to use Kripke-esque or possible worlds
approaches to logical relations [1, 11, 27], wherein the worlds
are some notion of heap or store. Notably, Ahmed’s disser-
tation [1] develops a logical relation specifically for reason-
ing about call-by-value programs with a mutable store. Her
model fits the property of call-by-need that a value stored in
the heap at one time is not necessarily the same as the one ac-
cessed later. However, her language differs from call-by-need
in non-trivial ways. Firstly, a language with mutable refer-
ences allows one to create cycles in the heap (the expression
stored at r contains a reference to r):

let r = ref (Ax.x) in
let f=Ax.!rx in
r= f;lr 42
Though cycles in the heap are possible in any language with
general recursion, we study the simpler simply-typed call-by-
need language which cannot create them. The cycles forced
Ahmed to use a powerful technique known as step-indexing
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to give well-founded logical relations for her language. A
second difference with this work is that the call-by-need
mutable store is fundamentally different from that of a call-
by-value language with mutable references. In the latter, the
program itself manages the allocation and mutation of the
values in the store, whereas in call-by-need all updates to
the store are governed by the semantics of the language.

Reasoning about Call-by-Need. Recent work by Dow-
nen et al. [9] presents models of call-by-need that may be
suitable for our purposes. However, their language seman-
tics differs from ours in several ways: they reason about a
reduction theory, they do not consider an explicit, separate
heap and bound variables are maintained by the structure
of the coterm or context. An explicit heap model exists for
call-by-need classical realizability [20], but it cannot reason
about updates to the heap. Both of these approaches are
analogous to an ordered heap model wherein looking up
variables in the heap allows us to split it into two. As we are
focused on lazy languages for compilation and such a model
does not match that of C or common garbage collectors, it is
not entirely applicable. Fortunately, Mizuno and Sumii [21]
define a notion of accessibility for explicit, unordered heaps
for Launchbury’s lazy semantics. Though their relation and
semantics do not take the exact same form as ours, it appears
as a promising fit for Conjecture 4.2.

7 Conclusion

Here we have shown how closure-conversion is not just
for strict languages; it applies to non-strict ones, too. Our
main insight is that the creation of closures must be done
eagerly, to correctly capture the static environment, even for
non-strict languages. Yet, a mixture of strict and non-strict
functions allows us to locally closure-convert only parts of a
program, instead of requiring a global transformation. We
proved correctness of closure-conversion for call-by-name
languages, and illustrated a heap-indexed logical relation for
reasoning about correctness of call-by-need closure conver-
sion. As future work, we intend to further develop the use of
partial closure-conversion for optimization in the intermedi-
ate language of compilers for call-by-need languages. We also
plan to elaborate the heap-based techniques for reasoning
about effectful memoization of purely functional programs,
which could be applicable to fully proving correctness of
call-by-need closure conversion, as well as other program
transformations that interact with memoization.
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A Adequacy of Strict Closure-Conversion

Lemma A.1 (Weakening).
If (ZIM)J R, then (X', Z||M) - R.

Proof. By induction on the derivation of (X || M) |4 R. O

Lemma A.2 (Strengthening). If (2,2’ || M) |4~ R and
FV(M) N dom(X) = 0, then (3 || M) |+ R.

Proof. By induction on the derivation of (3,3’ || M) [
R. O

Lemma 2.2 (Adequacy). If T+ M :7 and (2,%") € E4/[T],
then (¢ || V1), (27 || CCy[MT)) € My (7]

Proof. By induction on the typing derivation of T + \ : ,
for a generic (>, %) € Ey[I']:
CaSE (Num)T + n: int.
So M = n, CCq[[n] = n, and we must show that
(), (37 1l n)) € Mey[[lint].
The only evaluations are (> || n) |4 nand (" ||
n) o n.
We have (n, n) € Ve [int] by definition of Vey [int].
Therefore, (> || n), &’ || n)) € Mv[int].
Case (Var) T + x : T because (x : 7) € T.
So M = x, CCq[x] = x, and we must show that
(N x), &l x)) € Moy[r].
The only evaluations are (> || x) [ >(x) and
E %) Y ().
From the assumptions (>, 2") € E¢/[T] and (x : 7) €
T, we know (2(x), 2/(x)) € Vy[r] by definition of

Eq[T].
Therefore, ((> || x),(Z" || x)) € M«|[z] by the
definition of M.
CasE (Lam) T + 17y > 1y because I, x: 1y F NV @ 1.
Sor=1—>omn M= ,and

CCyllx NT = pack(VZ, V)
Ve = (Yo, sYn)
Vi = Mo yn).x). CCy[NT)
where FV/( ) = . We must show that
(€l ), & CCy e NT)) € Myllr — 7]
The unique evaluations are (> || Yo (2, )
and
E I CCy 4. NT) Y CCo[[ 1 NT[Z'].
It suffices to show that ((*, ), CCy[l 1= e
Vol — ]
Suppose an arbitrary (W, W’) € Vg [r], and note
that (O, x > W), ,x > W) € Ey|T,x : ]l

by definition of &4 and the assumption (>, %’) €
Ev[I].
From the inductive hypothesis on I',x : 7; F

73, we know ((*,x = W || V), (X, x — W ||

CCy[N)) € My[z].
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Assuming (>, x [| N) U R, there must be a
(R, R") € Vey[ 2] such that
& x> W | CCy[[NV]) Ugr R’ by the definition
of M«y.

Expanding, (¢ || V/ ((%'(50)...... % (). W) Lo
R’ as well by strengthening (Lemma A.2) the evalua-
tion
x> W CCy[VT) Lo R

Therefore, ((*, ), CCy [l 1[Z’]) is in the rela-
tion Vey[[7; — 2] by definition of Ve, and thus

(1l 5 G CCy[ie VD) € Mylm —
Tg]].
Case (App) T + : 7 becauseI' + NV : 7/ — 7 and

T+0:7.

So M = )
CCy[N O] = call(CCy[[N],CCy[[O]), and we
must show that ((* || ), & || CCyl " e
My (]

Suppose that (> || Y U4 K. The conclusion of that

derivation must be an instance of App by inversion,
which gives us

LN By (5, A1)
2. MOy Uy
3. x> W L)y Uy

From the first inductive hypothesis, we know

(), & CCyINT)) € My[r'—7].

It follows that there is a

(¢, ), pack(V/, Vf’)) € Vyllr’—r] such that
ENCCy Ny Uy pack(V/,V)) by definition of
Moy ’

From the second inductive hypothesis, we know
] O), &7 || CCy[[OT)) € My[ir’]. Likewise, it
follows that thereisa (X" || CC[[O]) U4 W’ such
that (W, W’) € V[ r'].

We also have ((>,x — [| L), (e || W(Vé» wW’)) €
My [[r], from the definition of
(¢, ), pack(V/, Vf’.)) € Vylr' — r]. It fol-
lows that there is a (7, R") € V[ r] such that (¢ ||
VIV W) b R

Expanding, we get that
& || call(CCy V], CCy[O])) U R as well by
weakening (Lemma A.1) (¢ || Vf’(Ve’, W’)) Jy R to
EVAVE W) by R

Therefore, ((> || N O), (' || CCy[
relation M« [[7]] by definition of M4,.

Case (Let) T + : 7 because T +
Ix:t/+O:1.
So M =

1)) is in the
: 7/ and

and

1= let x = CCy V]
in CCy 0]

CCy[
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We must show that

co )
L2 eCyll M
€ My[r]
Suppose that (> || Y J R. The con-

clusion of that derivation must be an instance of Let
by inversion, which gives us

LN oy

2.4 1Oy Uy

From the first inductive hypothesis, we know
(2l W) G CCyINT)) € Moy[[z’] Tt follows
that there is a (3’ || CCy[[N]) Jo W’ such that
(W, W) € Vy[[r']. We also know that
( , 2, x = W) € EyT,x:z’] by the defi-
nition of & and the assumption (7, 3) € E/[T].
From the second inductive hypothesis, we know that
(« I O), x> W || CCy[O])) is in
My [[z’]. It follows that there is a (', x —> W’ ||
CCy[lO) U R’ such that (R, R") € Vy[r].
Therefore,

1 )
L& eyl m
€ My[r] o

B Adequacy of Non-strict
Closure-Conversion

Lemma 3.2 (Adequacy). IfT + M : 7 and (>, %) € En[T],

then (¢ || M), (2 || CCaIMT)) € Mu[7]

Proof. By induction on the typing derivation of T' + M : 7,
for a generic (>, 2") € EN[[T']. The cases for Num and Lam
are analogous to Lemma 2.2. The remaining two cases are:
Case (Var) T + x : 7 because (x : ) € T.
So M = x, CCu[[x] = eval x, and we must show that
(M), 7 I CCallx)) € Mpliz].
From the assumptions (>, %) € Ex[T] and (x : 7) €
T, we know (>:(x), 2’(x)) € Vn(r] by definition of
ENIT]. Furthermore, the definition of Vy forces
(x) = (24, M) and 2"(x) = pack(V,, Vf’), such that

(004 1V V1) € Mz,
Assume the source evaluation (> || x) |n K. By
inversion on this derivation, (>; || M) n

We are guaranteed related results (2, R") € Ra[lz]
such that (¢ || fo V/) Jo» R’ from the definition of
(G A0, e T VEVE)) € Mple-

Expanding, we have (3’ || CCn/[[x]) 4 R” from the

above evaluation.
Therefore, (> || x), (3" || CCx[x]})) € Mn(] by

the definition of M.
Case (App) T + : 7 becauseI' + NV : 7/ — 7 and
F'rO:7.
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So M = ,FV(O) = {yo, .- -, yn},

CCN[N O] = let x = W’
in call(CCANV], x)
W’ = pack(W/, Wf’)
Wi = Ao, - - -»yn).CCN[C]
W, = (o), - .., % (yn))

and we must show that My([z] contains ({* ||
), G CCNINY OT)).

Suppose that (7 || Y Un E. The conclusion of that
derivation must be an instance of App by inversion,
which gives us
LN U (G, A )

2. x> (L0) 1) U

From the first inductive hypothesis, we know
(W) G CENINTY) € Myllr"—r]. It fol-
lows that there is a (1, ), pack(V, VJZ)) in the
relation Ry [[z"— 7] such that (X || CCA[V]) U
pack(V/, Vf/) by definition of M.

From the second inductive hypothesis, we know
(G O), 1 CCMOT) € Ml

Note that (¢ || Wf’. W/ U RUECE" || CCAIOT) U
R’ by strengthening (Lemma A.2).

It follows that ({> || V), (e || Wff W/)) € Mylr] and
so ((2, 0), W’) € Vu[r’] by definitions of M and
Vn.

From ((>,, ), pack(V/, Vf’)) € Ryl[r’ — 7] and
(2, 0), W) € Vylr'l, we know

(x> CLO) L) Ce 1 VE (VWD) € Mnllr]]

This gives (7, R") € Ry[lr] such that
(e || Vf’ (VZ,W’))) Jar R’; and likewise, we know
from the weakening lemma (Lemma A.1) that (3’ ||
VLV W) Uy R

Expanding (3’ || Vf/ V., W) Uy R’, we have
&I CCuN OI)) U R

Therefore, (> || Y|l CCall 1)) is in
Myl ] by definition of M.
Case (Let) T + : 7 because T' + N : 7/ and
Ix:t/+O:1.
So M = ,FV(V) ={yo,...,yn},and
CCy[ IT=1letx=Ww’
in CCN[O]

W’ = pack(W,, Wf’)
W = Ayo, - - - yn)-CCHIN]
W, =" (Wo), - -2 (yn))
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We must show that

1l )
S Cenl
€ Mulrl

)

Suppose that (> || Y Un . The conclu-
sion of that derivation must be an instance of Let by
inversion, which gives us ( I O) Un

From the first inductive hypothesis, we know
(V) G2 CCAINTD) € Mp[r’]l. From the
definition of My, it follows that (3’ || CCA/[V]) In
R’ such that (R, R") € Ryl 7]

Note that (¢ || Wf’. W/) Un R’ as well by strengthen-
ing (Lemma A.2) (X’ || CCAIINVT) Uy R’ From this
and the definition of Vy, it follows that ( ,W') e
Vulz']. Thus, ( , 2, x > W’)is in the
relation E ([T, x:7’] by the definition of & 5y and the
assumption (>, ) € Sy[T].

From the second inductive hypothesis, we know that
« IO (X, x> W’ || CCAIOT)) €
My 7’]. It follows that there is a
& x> W CCALOD) Un R such that (7, R) €
Rzl

Therefore, using Let reduction in the target

1 )
(2 CCwl
€ Myl

»
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