JFP 28, €3, 64 pages, 2018. (© Cambridge University Press 2018 1
doi:10.1017/S0956796818000023

A tutorial on computational classical logic
and the sequent calculus

PAUL DOWNENand ZENA M. ARIOLA

University of Oregon, USA
(e-mail: pdownen@cs.uoregon.edu, ariola@cs.uoregon.edu)

Abstract

We present a model of computation that heavily emphasizes the concept of duality and
the interaction between opposites—production interacts with consumption. The symmetry
of this framework naturally explains more complicated features of programming languages
through relatively familiar concepts. For example, binding a value to a variable is dual to
manipulating the flow of control in a program. By looking at the computational interpretation
of the sequent calculus, we find a language that lets us speak about duality, control flow, and
evaluation order in programs as first-class concepts.

We begin by reviewing Gentzen’s LK sequent calculus and show how the Curry-Howard
isomorphism still applies to give us a different basis for expressing computation. We then
illustrate how the fundamental dilemma of computation in the sequent calculus gives rise to
a duality between evaluation strategies: strict languages are dual to lazy languages. Finally,
we discuss how the concept of focusing, developed in the setting of proof search, is related to
the idea of type safety for computation expressed in the sequent calculus. In this regard, we
compare and contrast two different methods of focusing that have appeared in the literature,
static and dynamic focusing, and illustrate how they are two means to the same end.

1 Introduction

One of the advantages of functional programming languages is their strong foun-
dation in mathematics. All functional languages are, in one way or another,
extensions of Church (1932) A-calculus—one of the original models of computation—
as a practical programming tool. And for statically typed functional languages,
the mathematical roots grow even deeper. In what’s now known as the Curry—
Howard isomorphism or proofs-as-programs paradigm (Curry et al., 1958; de Bruijn,
1968; Howard, 1980), mathematical proofs of a theorem are algorithmic programs
following a specification. This amazing harmony can be most clearly witnessed
in the one-for-one connection between the A-calculus and (Gentzen, 1935a) natural
deduction—a system that formally lays down the rules of intuitionistic logic. The rules
for justifying proofs in intuitionistic logic correspond exactly to the rules for writing
programs in functional languages, and simplifying proofs corresponds to running
programs. This connection has led to technical advances that flow both ways: not
only we can use mathematics to help write programs in functional languages, but
we can also write programs to help develop mathematics with proof assistants.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

2 P. Downen and Z. M. Ariola

Natural deduction is not the only logic, however. In fact, natural deduction has
a twin sibling called the sequent calculus, born at the same time within the seminal
paper of Gentzen (1935a; 1935b). Whereas the rules of natural deduction more
closely mimic the reasoning that might occur in the minds of mathematicians, the
rules of the sequent calculus are themselves easier to reason about, for example, if we
want to show that the logic is consistent. Furthermore, unlike natural deduction’s
presentation of intuitionistic logic, Gentzen’s sequent calculus provides a native
language for classical logic that admits additional reasoning principles like proof
by contradiction: if a logical statement cannot be false, then it must be true. As a
consequence, the sequent calculus clarifies and reifies the many dualities of classical
logic—*"“true” is dual to “false,” “and” is dual to “or”—as pleasant symmetries baked
into the very structure of its rules. Yet, even though these two systems look very
different from each other and have their own distinct advantages and limitations,
they are closely connected and give us different perspectives into the underlying
phenomena of logic. And from our point of view, the more vantage points we have,
the better.

But since the proofs-as-programs paradigm connects a logic like natural deduction
to a language like the A-calculus, should not there also be some programming
language that is connected to the sequent calculus in the same way? As it turns out,
there is (Herbelin 1995, 2005)! When interpreted as a programming language, the
natural symmetries of the sequent calculus reveal hidden dualities in programming—
input and output, production and consumption, construction and deconstruction,
structure and pattern—and makes them a prominent part of the computational
model. Fundamentally, the sequent calculus expresses computation as an interaction
between two opposed entities: a producer representing a program that creates
information, and a consumer representing an environment or context that observes
information. Computation then occurs as a communication protocol allowing a
producer and consumer to speak to one another. This two-party, protocol-based
style of computation gives a different view of computation than the one shown by
the A-calculus. In particular, programs in the sequent calculus can also be seen as
configurations of an abstract machine (Ariola et al., 2009), in which the evaluation
context is reified as a syntactic object that may be directly manipulated. And due
to the connection between classical logic (Griffin, 1990) and control operators like
Scheme’s (Kelsey et al., 1998) callcc or Felleisen’s ((1992)) ¥, the built-in classicality
of the sequent calculus also gives an effectful language for manipulating control
flow.

The computational interpretation of the sequent calculus is not just an intellectual
curiosity. Thanks to the relationship between natural deduction and the sequent
calculus as sibling logics (Gentzen, 1935b), the sequent calculus gives us another angle
for investigating real issues that arise in the A-calculus and functional programming,
from source languages down to the machine. For example, in a panel discussion
among leading type theorists (Singh et al., 2011), McBride points out how the poor
foundation for the computational interpretation of co-induction is a road block for
program verification and correctness, which is in contrast to the robust and powerful
treatment of induction in functional languages and proof assistants. However, the

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 3

symmetries of the sequent calculus show us how both induction and co-induction
can be represented as equal and opposite reasoning principles under the unifying
umbrella of structural recursion (Downen et al., 2015) for both ordinary recursive
types and generalized algebraic datatypes. This computational symmetry between
induction and co-induction is based on the duality between data types in functional
languages and co-data types as objects (Downen and Ariola, 2014), and gives a
more robust way for proof assistants to handle recursion in infinite objects.
Moving down into the intermediate representation of programs that exists within
optimizing compilers, the logic of the sequent calculus (Downen et al, 2016)
shows how compilers can use continuations in a more direct way with a “strate-
gically defunctionalized” (Reynolds, 1998) continuation-passing style (CPS). This
compromise between continuation-passing and direct style makes it possible to
transfer techniques between CPS (Appel, 1992) and static single assignment (Cytron
et al., 1991) compilers like SML/NJ with direct style compilers like the Glasgow
Haskell Compiler (GHC). For example, CPS can faithfully represent join points in
control flow (Kennedy, 2007), whereas direct style can use arbitrary transformations
expressed in terms of the original program (Peyton Jones et al., 2001). Finally,
the sequent calculus can also be interpreted as an even lower-level, machine-like
language for functional programs (Ohori, 1999), which can be used to reason
about fine details like manual memory management (Ohori, 2003). Therefore, the
computational interpretation of the sequent calculus acts like a beacon illuminating
murky areas in both the design and implementation of functional languages.

1.1 Overview

The objective of this paper is to give an introduction and tutorial to the computa-
tional interpretations of the classical sequent calculus as a programming language,
with a particular focus on the dualities found in computation and their connection
to functional programming. As the broad motivation is for modeling functional
programs, we assume that the reader is already familiar with the A-calculus,
natural deduction, and the Curry-Howard correspondence between these two formal
systems. We do not, however, assume any previous familiarity with the sequent
calculus, and will first provide a review of the sequent calculus as a system of logic
before illustrating how it can also be used as a system of computation. The goal
of this tutorial is to give a basic and broadly applicable introduction to a family
of formal programming languages based on the classical sequent calculus, for the
purpose of understanding their applications to functional programming. The reader
will then be equipped to adapt existing applications of the sequent calculus (like
those mentioned previously) to new scenarios and to use the sequent calculus to
discover and develop new solutions to problems in programming languages.

There are different possible computational interpretations that can be given to
the sequent calculus, which is partly due to two dilemmas that arise when designing
a language based on the sequent calculus. The first and most fundamental dilemma
of computation is that the evaluation of individual programs can easily have several
diverging paths to choose from that lead to different and incompatible futures. Thus,

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

4 P. Downen and Z. M. Ariola

a language for the sequent calculus needs an evaluation strategy—corresponding
to the difference between call-by-value (like ML) and call-by-name (like Haskell)
functional languages—for deterministically deciding which path to go down. The
second dilemma of computation is that important tasks can be buried within a
program, and those tasks must be brought to the surface to complete the evaluation
of the program. The job of bringing tasks to the forefront of a program—related to
focusing (Andreoli, 1992; Laurent, 2002) in logic—can be done at one of two points
in the lifetime of the program: either up front at “compile time” before the program
is evaluated, or in the moment at “run time” during the evaluation process.

To begin, we introduce and motivate the basic premise of the sequent calculus with
its contrast to natural deduction: whereas natural deduction is a logic about just
truth, the sequent calculus is a logic equally about both truth and falsehood (Section
2). With this premise in mind, we then review the original classical logic of the
sequent calculus: (Gentzen, 1935a) LK (Section 3). In order to draw a programming
language from LK, we need a little extra structure than the austere logic provides.
Thus, we introduce the core calculus (Herbelin, 2005) that lets us read proofs in
the sequent calculus as programs (Section 4). Although the core calculus is rather
basic, it is still expressive enough to exhibit the first computational dilemma of
evaluation strategy in the sequent calculus. We then populate the core calculus with
the logical connectives of LK to give the dual calculi that combine the languages
introduced by Curien and Herbelin (2000) and Wadler (2003; 2005) (Section 5).
The dual calculi solve the dilemma of evaluation strategy through the language:
the dual calculi are actually two different languages—one call-by-value and one
call-by-name—with a common syntax that are logically and computationally dual
to one another in a way that reaffirms (Filinski, 1989) observation. Additionally,
within the dual calculi, we have two approaches to address the dilemma of focusing
in the language: either through two different sub-syntaxes in the style of LKQ and
LKT (Curien and Herbelin, 2000) that are coordinated with the evaluation strategy
to only let us write well-behaved programs, or through adding the missing steps,
known as ¢-rules (Wadler, 2003), to the evaluation process.

2 Truth versus falsehood

Gentzen (1935a) simultaneously developed both natural deduction and the sequent
calculus as formal systems for symbolic logic: tools for studying propositions (which
we denote by the variables A4, B,C,...) that might be true or false. One of the
ground-breaking insights of the sequent calculus is the use of its namesake sequents
to organize the information we have about the various propositions in question. In
its most general form, a sequent is a conditional conglomeration of propositions:

AISAZ:"':AH l_ BlyBZS"'aBm

pronounced “Ay, A», ..., and A4, entail By, B, ..., or B,,,” which states that assuming
each of A,A,,...,A, is true then at least one of By, B,,...,B,, must be true. The
turnstile (F) in the middle of the sequent separates the sequence of hypotheses on

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 5

Left Right
Elimination ol-o oA o B
Al e Bl-e o4 eF B

Introduction Fe Fe o

Fig. 1. The orientation of deductions for conjunction (A).

the left, which we collectively write as I', from the sequence of consequences on the
right, which we collectively write as A.

This separation between the left and right sides of the sequent gives the essential
skeletal structure of the sequent calculus as a logic. As special cases, we can form
several basic judgments about logical propositions using our above interpretation
of the meaning of the sequents by observing that an empty collection of hypotheses
denotes “true” and an empty collection of consequences denotes “false” (both
written as e). A single consequence without hypotheses e - 4 means “A is true”,
a single hypothesis without consequences A - e means “A is false”, and the empty
sequent e |- e is a primitive contradiction “true entails false.” So already, the basic
structure of the sequent gives us a language for speaking about truth, falsehood,
and contradiction without assuming anything else about the logic.

The propositions that we deal with in both the logic of natural deduction and the
sequent calculus are meant to represent falsifiable or verifiable claims in a particular
domain of study, such as “0 is greater than 1.” However, in their simplest form,
these logics do not account for domain-specific knowledge and leave such basic
propositions as atoms or uninterpreted variables. Instead, the primary interest of the
logic is to characterize the meaning of logical connectives that combine or modify
existing propositions such as conjunction (4 A B), disjunction (4 V B), or implication
(A o B). Logic gives us a method for describing the logical connectives by asserting
the rules for valid inferences we can make of the form:

H, H, ... H,
J

where the validity of the conclusion J necessarily follows from the validity of the
several premises Hy, Hy, ..., H,, each of which stand for particular sequents.

For example, we can sensibly assert the validity of the deductions involving
conjunction shown in Figure 1 based on the meaning of conjunction. Due to
the interaction between entailment in the sequent (separating hypotheses from
consequences) and the line of inference (separating premises from conclusions), we
have two dimensions for orienting inference rules based on the location of their
primary proposition (marked with a box in Figure 1). On the one hand, rules where
the primary proposition appears to the right or left of the turnstile are called right
and left rules, respectively. On the other hand, rules where the primary proposition
appears below or above the line of inference are called introduction and elimination

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

6 P. Downen and Z. M. Ariola

Left Right
[4vB|-e [4VB]re ot-[4VB] Abe Bre
Elimination Al e Bhre oo
Al-e Blre oA e-B

Introduction [4VB]+e o-[4vB] e-[4VB]

Fig. 2. The orientation of deductions for disjunction (V).

Left Right

i58)e [8e +r[i38] ors
Elimination o4 Bhe o-B
oA Bhe A+ B

Introduction e s

Fig. 3. The orientation of deductions for implication ().

rules, respectively. This gives us four quadrants where the rules of inference for
conjunction might live.

e Right introduction: if both 4 and B are true then we can deduce that A A B
is true.

e Right climination: if 4 A B is true, then we can deduce that A4 is true and
likewise that B is true.

e Left introduction: if A4 is false then we can deduce that 4 A B is false, and
likewise if B is false.

e Left elimination: if it happens that A A B is false and also both A and B
are true, then we must have a contradiction somewhere, as this represents an
impossible situation.

Similar inference rules can be given for disjunction and implication under the same
right/left and introduction/elimination orientations as shown in Figure 2 and 3. It
is interesting to note that the premise to the right introduction rule for implication
does not have the same basic form of sequent as in all the other rules. It seems that
we need to use the inherent entailment built into sequents to confirm the truth of
an implication, so that from A - B (i.e., “A entails B”) we can deduce e - 4 > B
(i.e., “A implies B is true”).

With the dimensions of logical orientation illustrated in Figure 1-3, we can identify
one of the primary distinctions between natural deduction and the sequent calculus.
Natural deduction is exclusively made up of right rules—including both right
introduction and right elimination—and the sequent calculus is exclusively made
up of introduction rules—including both right introduction and left introduction.
But neither make use of the left eliminations. In other words, natural deduction is
concerned with verifying and using the truth of propositions, whereas the sequent
calculus is concerned with both the true and false introductions of logical connectives.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 7

A,B,C € Proposition :=X | T| L|AANB|AVB|—-4|ADB|A—B|vX.A|3X.4
T € Hypothesis ::= Ay,...,An
A € Consequence ::=Ay,...,Ay
Sequent :=TF A

Core rules:
THAA T AFAN c
_— t
ara ' TFAA "
Structural rules:

A A I-A4,4,A FA,AFA
rraa "R rara "t rraa R Tara CL
T'+AABA x I',B,A,THA “

THABAN I",4,B,T+A
Logical rules:

r-T,A TR no TL rule no LR rule rLEA L
Fr4,4 TEBA rara . rB-a

TFAAB,A TLANBEA TLANBEA 72
redA o TEBA - rArA TBEA
TFAVBA ! TFAVBA 2 [LAVBFA
TAFA THA4,A
—— =R _ L
TH-4,A [,-AFA
rAFBA THAA F’7BFA’D I'HAA T BEA r DAFBA
TFASBA ° I'T,ADBFN A I'THA—B,A A ILA-BFA
THAA XEFV(TEA) R [LA{B/X}FA
CFVXAA [VXAFA
T'+A{B/X} A TLAFA X&FV(TFA)
CH3XA,A [AXAFA

Fig. 4. Gentzen’s LK sequent calculus.

With this fundamental characterization of the sequent calculus in mind, we will delve
into the original sequent-based logic: LK.

3 Gentzen’s LK

Gentzen’s LK, a simple logic based extensively on the use of the sequents to trace
local hypotheses and consequences throughout a proof, is given in Figure 4. The
sequents are built out of finite, ordered sequences of propositions denoted by the
metavariables I and A, which may be (1) empty (written e), (2) a single proposition
(written as just A), or (3) a concatenation of two sequences (written with a comma
as I,T" and A, A'). Inference rules let us build proof trees by stacking inferences on
top of one another. In addition to the binary logical connectives for conjunction,

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

8 P. Downen and Z. M. Ariola

disjunction, and implication, as well as constants for truth (T) and falsehood (L), we
also include negation (written -4 and read “not 4) as a unary logical connective
and subtraction (written 4 — B and read “A4 but not B”) as the dual to implication.
Finally, LK also contains two quantifiers—universal (written YX.4 and read “for all
X, A”) and existential (written 3X.4 and read “there is an X such that A”)—that
abstract over propositional variables denoted by X, Y, or Z. More specifically,
the quantifiers act as binders for propositional variables: both VX.A and 3X.4
bind all occurrences of X in A (otherwise a variable is free), and propositions
are considered equal up to renaming of bound variables so VX.4 = VY .A{Y /X}
and 3X.4 = 3Y.4 {Y /X}. For simplicity, we limit the presentation to second-order
propositional logic, meaning that V and 3 only quantify over propositions, not
another domain of discourse, like numbers.

Core inference rules

The various inference rules of LK can be thought of in three groups that collectively
work toward different objectives. The first group, containing just the axiom (Ax)
and cut (Cut) rules, gives the core of LK. The Ax rule lets us draw consequences
from hypotheses with the understanding that “A4 entails A” for any proposition A.
The Cut rule lets us eliminate intermediate propositions from a proof. For example,
the special case of the Cut rule where the hypothesis I, I” and consequences A, A’
are all empty is

o4 Al e

ol-o

In other words, if there is a proposition 4 that we know is both true (e - 4) and false
(A F o), then we can deduce that a contradiction has taken place (e - o). We can
then use the intuitive reading of the sequents to extend this reasoning to the general
form of Cut, meaning that it is valid to allow additional hypotheses and alternate
consequences in both premises when eliminating a proposition in this fashion so
long as they are all gathered together in the resulting conclusion. Both Ax and Cut
play an important part in the overall structure of LK proof trees. The Ax serves
as the primitive leaves of the proof, signifying that there is nothing interesting to
justify because we have just what is needed. The Cut lets us use auxiliary proofs or
“lemmas” without them appearing in the final conclusion, where on the one hand
we show how to derive a proposition 4 as a consequence and on the other hand we
assume A4 as an hypothesis that may be used in another proof.

Cut

Structural inference rules

Next, we have group of inference rules aim to describe the structural properties
of the sequents themselves that arise from their meaning. The weakening rules
say that we can make any proof weaker by adding additional unused hypotheses
(WL) or considering alternative unfulfilled consequences (WR) since the presence
of irrelevant propositions does not matter. The contraction rules say that duplicate
hypotheses (CL) and duplicate consequences (CR) can just as well be merged into

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 9

one since redundant repetitions do not matter. And finally, the exchange rules say
that hypotheses (XL) and consequences (XR) can be swapped since the order of
propositions does not matter. So even though the hypothesis I' and consequence A
of a sequent are both formally represented by ordered sequences, the net effect of the
contraction and exchange structural rules is to make them behave like sets—wherein
order and amount is ignored—for the purpose of deriving proofs.

It may seem strange that the meaning of a sequent with multiple consequences is
that only one consequence must be true instead of all consequences being true. In
other words, the consequences of a sequent are disjunctive rather than conjunctive
so that, for example, A F B,C means “A entails B or C” instead of “4 entails B
and C.” One reason for this interpretation is that disjunctive consequences can be
weakened but conjunctive consequences cannot. For example, if we already know
that “A4 entails B or C” then we can deduce “A entails B or C or D” for any D
because we already know that either B or C is a consequence of A, so the status of
D is irrelevant. However, if we already know that “A4 entails B and C” then we do
not know much about “A entails B and C and D” in general, since D might not
actually follow from A at all. A similar argument also explains why the hypotheses
of a sequent are conjunctive rather than disjunctive. Therefore, the meaning of
sequents, where all hypotheses must entail one consequence, is essential for enabling
weakening on both sides of entailment.

Logical inference rules

Finally, we have the group of inference rules that aims to characterize the logical
connectives. These logical rules are generalizations of the introduction rules for
the connectives from Figures 1-3: the left rules are named with an L and the
right rules are named with an R. Compared to our basic observations, each logical
rule is generalized with additional hypotheses and alternative conclusions that are
“along for the ride,” similar to Cut. For example, the two left introduction rules for
conjunction in Figure 1 are generalized to
rLA-A IBEA
LAABF A AL LAANBFA N
which say that if A is a consequence of A and I', then A is just as well a consequence
of AN B and I" (and similarly for B). Likewise, the sequents ' - T,Aand I', L+ A
are true independent of I and A because T is trivially true and L is trivially false.
Since we also consider both logical negation (—A4) and logical subtraction (4 — B) as
connectives, they too are equipped with left and right introduction rules in Figure 4.
The rules for negation have the following special cases when I' and A are empty:
Al e oA

-R
.I——|A —|A|—0

-

In other words, whenever A is false we can infer that —A4 true, and whenever A4
is true we know —A is false. Similarly, the rules for subtraction have the following

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

10 P. Downen and Z. M. Ariola

special cases when the hypotheses and consequences are empty:

e-A Ble R AFB
eFA—B A—BFe

In other words, whenever both A4 is true and B is false we can infer that 4 — B
is true, and whenever 4 entails B we know that 4 — B must be false. Intuitively,
the subtraction A — B can be understood as a single connective with the same
logical meaning as the compound proposition A A (—B), in the same way that the
implication A — B can be understood as a connective with the same meaning as
(—A4) Vv B.

Perhaps the most subtle logical connectives in LK are the quantifiers V and 3. The
special cases of the introduction rules for VX.4 and 3X.4 when I' and A are empty
are as follows:

oA A{B/X}F e o A{B/X} Al e

e -VX.A R VXAl e VL e3X.A4 iR XAk e
For universal quantification over the variable X in A, if we can prove that A4 is
true without knowing anything about X then we can infer that VX.A4 is true, and
if we can exhibit a specific B such that 4 with B for X is false then we have
a counterexample showing that VX.4 is false. Existential quantification over the
variable X in A is reversed, so that exhibiting a specific B such that 4 with B
for X is true is an example showing that 3X.4 is true, whereas showing that A4 is
false without knowing anything about X lets us infer that 3X.4 is false. The extra
subtlety of the quantifiers lies in ensuring that we “know nothing else about X.” In
the sequent calculus, this extra constraint can be captured in the side condition that
the variable X does not appear free anywhere else in the sequent, written as the
premise X ¢ FV (I' F A) in both the VR and 3L rules.

Notice that this extra side condition really is necessary, since without it both
quantifiers collapse into one, which is clearly not what we want. For example, we
should expect that a V entails the corresponding 3, that is VX.A F 3X.A4, which is
proved as follows by choosing any arbitrary proposition B to substitute for X :

L

A(B/X|FAB/X]
VXA A{B/X}
VX AF3IXA

So every V entails the corresponding 3. Intuitively, the converse should not hold; it
should not be that an 3 always entails the corresponding V. However, consider the
following attempted proof of 3IX.A F VX .A4:

AFAY X g Fr(er 4
IXAF A

L X e Frraxare)
IXAF VXA VR

The this proof is only valid when the side conditions X are met: X ¢ FV (IX.A |- o)
is always true for any A but X ¢ FV (e I A) only holds when X does not appear free
in A. In other words, the V and 3 quantifiers are only logically equivalent when their
quantified variable is never referenced. When instantiating 4 as just X for example,

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 1

the sequent 3X.X F VX.X is not provable only because of the side conditions since
X is indeed free in X. Therefore, the side conditions on YR and 3L are essential for
keeping the intended distinct meanings of the quantifiers.

Collapsing V and 3 is not just troublesome for the quantifiers themselves, but
catastrophically collapses truth and falsehood in the logic as a whole. More
specifically, removing the side conditions from YR and 3L makes LK inconsistent
by making the contradictory sequent e e derivable. One such derivation of
contradiction is built in three parts. First, we can prove that 3X.X is true because
there is some provably true proposition in LK, for example T. Second, we can
prove that VX.X is false because there is some provably false proposition in LK,
for example L. Third, without the side conditions on free propositional variables,
we would be able to derive a proof of 3X.X F VX.X as seen above, which is the
glue that connects the first two parts together via cuts. In total, we would be able
to derive the following contradiction in LK:

Ax
_eET IR _IXXEX T VR - L
o dX.X XX EFVX.X Cut 1lFe VI
o VXX o yXXFe
Cut
oo

which is only ruled out by the side conditions on VR and 3L that prevent a proof
of the sequent 3X.X F VX.X.

3.1 Goal-directed proof search

LK enables a “bottom up” style of building proofs by starting with a final sequent
as a goal that we would like to prove and building the rest of the proof up from
there. When read in reverse, each logical rule identifies a connective in the goal
below the line of inference and breaks it down into simpler sub-goals above the
line. For example, let us consider how to build an LK proof that the proposition
((AANB)AC) o (B AA)is true. First, we begin with the sequent e - (AAB)AC) o
(B N A) as the goal and notice that the primary connective exposed in the only
proposition available is implication, so we can apply the right implication rule:

(AA&AbFBAA
e (AAB)AC)S (BAA) —

R

Next, we may break down the conjunction in the consequence B A A with the right
conjunction rule, splitting the proof into two parts:

mAmXCFB mAmXCFA
(ANB)ACFBAA
eF(AAB)AC)> (BAA) —

R

At this point, the consequences of both our goals are generic, lacking any specific
connectives to work with. Therefore, we must shift our attention to the left and

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

12 P. Downen and Z. M. Ariola

begin breaking down the hypotheses. Since the hypothesis (4 A B) A C contains a
superfluous C, we use the first left conjunction rule in both branches of the proof
to discard it:

AANBF B AL, AANBF A
(ANB)ACH B (ANB)ACHA
(ANB)ACHFBAA
e ((ANB)AC)D (BANA)
Now, we may apply another left conjunction rule to select the appropriate hypothesis
needed for both sub-proofs:

AV

> R

BF B AF A

AABFBA%w AABFAA%w
(ANB)ACFB """ (AAB)ACFA !

ANB)ACFBAA
F(AABIAC) > (BAA) 2R

And finally, we can now close off both sub-proofs with the Ax rule, finishing the

proof:
_BFB ™, VT e
AANBFB hd AANBF A }m
(ANB)ACFB """ (AAB)ACFA !

(ANB)ACFBAA
eF (AAB)AC) > (BAA)

> R

3.2 Consistency and cut elimination

One of Gentzen’s motivations for developing the LK sequent calculus was to
study the consistency of natural deduction. A consistent logic does not prove a
contradiction, so that no proposition is proven both true and false. More specifically,
we can say that a sequent calculus is consistent whenever there is no proof of the
empty sequent e - e, For a logic like LK, these two conditions are the same: from a
contradiction weakening gives us e - 4 and A4 I~ e for any A, and from any A4 that’s
proven both true and false, Cut gives us e | e. Consistency is important because
without it provability is meaningless: it is not particularly interesting to exhibit a
proof that some proposition A4 is true when we already know of a single proof that
shows every proposition is true (and false)!

So in the interest of showing LK’s consistency, how might we possibly begin to
build a proof of the empty sequent from the bottom up? Let us consider which of
LK’s inference rules (from Figure 4) could possibly deduce e |- o. It cannot be any
of the structural rules because they all force at least one hypothesis or consequence
in the conclusion below the line. Likewise, it cannot be any of the logical rules:
since they are introduction rules, they all include at least one proposition built from
a connective on either side of the deduced sequent. It also cannot be the axiom

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 13

rule, which only deduces simple non-empty sequents of the form A F A. Indeed, the
only inference rule that might ever deduce an empty sequent—and therefore lead to
inconsistency—is Cut as shown previously.

This observation that only cuts can lead to contradictions is Gentzen (1935b) great
insight to logical consistency. If we want to know that a sequent calculus like LK
is consistent, it is enough to ask if the Cut rule is important for provability. If Cut
is not essential in any proof, so any provable sequent can be deduced without the
help of Cut, then e - e is unprovable since it cannot be deduced without Cut. This
application highlights the importance of (Gentzen, 1935a) cut elimination (originally
called Hauptsatz), which says that every LK proof can be reduced to a cut-free one.

Theorem 1 (Cut elimination)
For all LK proofs of T' = A, there exists an alternate LK proof of I = A that does
not contain any use of the Cut rule.

Corollary 1 (Consistency)
There is no LK proof of e |- e,

The simplest cases of cut eliminations case are when an Ax axiom is cut with
a proof 2 of I' - A,A or & of I',A + A. This particular maneuver does not add
anything interesting to the nature of the underlying proof, and so correspondingly
eliminating the cut should just give the same proof back unchanged, as we can see
in both cases:

9 4

: - 2 - : &
THFAA AFA X : ArA rAra ;

TEAA S T gA TAFA Cul T A+A

Notice here that cutting an axiom with both £ and & does not change the sequent
in either conclusion, which comes from the precise way that Cut merges the side
propositions in the two premises. For &, the extra consequence A coming from the
axiom A F A replaces the cut A in exactly the right position, and likewise for &. If
Cut put the propositions of its conclusion in any other order, then we would need
to exchange the result of one or both of the above steps with XL and XR to put
them back into the right order.

The rest of the proof of cut elimination can be divided into two main parts: the
logical steps and the structural steps. The logical steps of cut elimination consider
the cases when we have a cut between two proof trees ending in the left and right
rules for the same connective occurring in the same proposition, and show how to
rewrite the proof into a new one that does not mention that particular connective.
The structural steps of cut elimination handle all the other cases where we do not
have a left and right introduction for the same proposition facing one another in
a cut. These steps involve rewriting the structure of the proof and propagating the
rules until the relevant logical steps can take over. The final ingredient is to ensure
that this procedure for eliminating cuts always gives a definite result, and does not
spin off into an infinite regress.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

14 P. Downen and Z. M. Ariola

Logical cut elimination steps

Notice how different inference rules of LK treat the division of extraneous hypotheses
and consequences among multiple premises differently. On the one hand, rules like
AR and VL duplicate the side propositions I' and A from the conclusion to both
premises. On the other hand, rules like Cut and > L merge different side propositions
from the two premises into the common conclusion, creating an ordering between
them during the merge. Why are these particular rules given in such different styles,
and why is the particular merge order chosen? One way to understand the impact
of these details is to look at the interaction between the logical and structural rules
during cut elimination, so let us examine a few exemplary steps of the cut elimination
procedure when logical rules meet each other.

First, consider what happens when compatible AR and AL; introductions, with
premises &1, &5, and &, respectively, meet in a Cut :

71 % &
: : : 7 &
I'F4,A THBA DA+ A : :
AR ALy : :
TFAAB,A AABFE A CHAA TLARA
I'T-A.A e T DTEAA ut

Reducing this cut involves selecting the appropriate premise &; of the AR introduc-
tion so that it can meet with the single premise of AL;. The number of cuts are not
reduced by this step, but instead the active proposition A A B of the cut has been
reduced to 4, which (non-trivially) justifies why this step is making progress in the
cut elimination procedure.

Not every cut-elimination step winds up so neatly organized, unfortunately, and
sometimes the result is necessarily out of order and must be corrected. For example,
consider the following reduction step of a Cut between compatible =R and —L
inferences with premises & and &, respectively:

7 & 4 7
rAFA ' AN I'FAN T,AFA
’ —|R ’ _|L ! / Cut
TF—A4,A . —AF A . LI FAA LR
'TFA.A . TITRAACT

Here, the Cut we get from reducing the proposition =4 to A4 results in a sequent
that is out of order compared to the conclusion we started with. Thus, we need
to re-order the sequent with some number of XL and XR exchanges to restore
the original conclusion. The fact that reducing a negation introduction cut inverts
the order of propositions comes from the inherent inversion of negation: there’s no
obvious way to prevent this scenario by modifying Cut.

A similar re-ordering occurs with implication, where a Cut between compatible
> R and o L inferences, with premises &, &1, and &, can be reduced as

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 15

follows:
7 &
7 é1 62 é1 : :
: : : ILAFB,A T",B-A"
[LAFE BA I'FAA T',BFA ' FAN T".T,AF N'A Cut
rrAsBAR T rassraa_t LT A AN "
" T,TF A" A A Cut . Trrra.aaibAR

Here, we start with the side-propositions of &1 and &, merged together with > L,
but after reducing the Cut, & lies in between the two of them, so the conclusion
must be re-ordered to match the original. The need to place & in the middle comes
from the fact that its concluding sequent has A on the left and B on the right, so our
only available cuts must correspondingly place & to the left and &, to the right, no
matter how they are nested.

Finally, we can see how the free variable side conditions on the VR and 3L rules
play a key role in cut elimination. For example, consider the following reduction
step of a cut between compatible VR and VL inferences with & and &, respectively:

7 &
: : 7 {(B/X} 8
I'AA I'A{B/X}FA : :
TFVXAA I,VXAFA I'-A{B/X},A T A{B/X}FA
I'TFA.A Cut _ ' THAA Cut

Notice that in order to make a direct cut between & and &, we need to substitute
B for X in 2 to make the two sides match up properly. The fact that X does not
occur free in I' - A means that after substitution, both I' and A remain unchanged
in the conclusion of the proof. If instead X appeared free somewhere in I' or A,
then the logical cut elimination step for V would change the conclusion that ruins
the result of the procedure. As we saw previously, without the side conditions the
V and 3 quantifiers are equivalent, which lets us derive a proof of the contradictory
sequent e - e that is ruled out by cut elimination. So the side conditions on the VR
and 3L rules are not just a useful aid to cut elimination, but are crucial to the entire
endeavor.

Structural cut elimination steps

The logical steps may be the primary focus of cut elimination, but there are still more
cases they do not cover. In particular, what happens when one of the weakening,
contraction, or exchange rules immediately precedes a cut? The full cut elimination
procedure must also account for the structural steps in which a cut is forced to
interact with a structural rule.

The most straightforward structural step of cut elimination handles the case of
weakening adding an unused proposition right before its cut. Such a cut is eliminated
by deleting the partner premise of the cut. For example, for the WL rule which adds

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

16 P. Downen and Z. M. Ariola

the unused hypothesis 4 in the cut, we can discard the proof of 4 as follows:

¢
9 : &
r'EN :
THFAA TLAFA r'EA
— 2 Wi WR,XR
I'TFA.A U T TrRAA

Dually, a cut of an unused consequence A introduced by WR can be eliminated
by discarding the other premise that uses A as a hypothesis. Note that in the case
where both premises to the cut end in a weakening, both of these dual steps can
sensibly apply, leading to a potential non-deterministic choice in the cut elimination
procedure.

The structural step for contraction is similar, but one premise is duplicated rather
than discarded. For example, for the CL rule which merges two duplicate hypotheses
in the cut, we can duplicate the proof of A as follows:

7 s
: / : !
P g THAA TAdRN

. : ; T ATFAA

L TLAARN TFAA T.LAFAA XL[

S) , , "

FFAA TLAFA I'I,TF A, A A
7 S Cut ————— CL,CR,XR
T TEAA — T'TrAA

And the dual structural step involving CR is symmetric to the above. As before with
weakening, in the case where the cut proposition is contracted on both the left and
right, there is a non-deterministic choice of which structural step to apply.

The trickiest structural rules to accommodate during cut elimination are the
exchange rules. By reordering the sequent, these can have the effect of moving the
active proposition of interest in rules like Cut or the logical rules, so it is held on the
inside of the sequent (next to). To get around this issue, we can handle exchange
by generalizing the Cut rule to allow for the cut proposition to appear anywhere in
the sequent as follows:

I'FALAAN THLAT EA
I, T, T A ALA,

CutX

Note that this generalization from Cut to CutX does not change that sequents can
be proved: Cut is an instance of CutX and CutX is derivable as a combination of a
Cut and potentially many X Ls and X Rs. However, the more general form of CutX
lets us express a cut elimination step where the exchange rules are folded into the
cut. In the case, where the cut proposition is exchanged with XL we have the step

&
g : 7 &
: I,4,B, T - A : :
THALAA, ThB AT, FA XL THALAA;, ThABT,FA
T, TL,T F AL AL A, CutX T T T F AL AL A, CutX

and the step for XR is symmetric to the above.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 17

So the CutX rule makes the structural steps for exchange trivial. However, this
generalization of cut means that there are many more cases to consider. Because
the cut proposition may not be the active proposition on the inside of the sequent,
it may happen that the rules immediately proceeding the CutX have nothing to
do with the cut. In these cases, we need yet more structural rules that commute a
cut with other rules when they do not interact with one another. As an example
of structural commutation, we could have the following weakening on the left of A
followed by a cut of C, which is reduced as follows:

s g s
2 : E / :/ !/
: F/Z,C’I“fl = A I+ Al,C,Az rzacar1 HA
; 1T — ; CutX
T'FALC A FQ,C,F’,AFA’ anrl,rl—A,Al,A2
CutX WL, XL
[0, A T FA AL = DILATEANALA

As an example of logical commutation, we could have a conjunction introduction
of A A B on the left followed by a cut of C, which is reduced like so

9 &
THACA T,C.T,AFN
& — - CutX
p Fz,rl,A,FFA,Al,Az
; rLer ARy T, LA A, A A, XiLl
IHALCA T,CILANBFA "' I, T,ANBF A, AL Ay
TLOLAABLFN.ALA, YUY . T ArBIrAALA L

There are many more such commuting steps for all the cases where the cut
proposition is not the active one next to the turnstile, each of which push the
cut up into the premis(es) of the proceeding rule similar to the above examples.

3.3 Logical duality

Another application of sequent calculi is to study the dualities of logic through the
deep symmetries of the system (Gentzen, 1935b). The turnstile of entailment (F)
provides the pivot of duality separating left from right and true from false. Logical
duality in the LK sequent calculus expresses a relationship between the connectives
that follows De Morgan’s laws about the way negation distributes over conjunction
and disjunction:

—(A A B) 4F (=A) V (—B)

—(4V B) 4F (=A) A (—B)
Here, we interpret the equivalence relation 4 4+ B as the mutual provability of
A and B: that both A - B and B - A are provable. Focusing on the opposite

roles of the left and right sides of a sequent, we can immediately observe that the
introduction rules of conjunction and disjunction from Figure 4 are mirror images

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

18 P. Downen and Z. M. Ariola

Duality of sequents:

CHA)2AL T (A1,... A))E 2 AL AL
Duality of propositions:

x)t&x (~A)" & —(ah)
(AAB): £ (A1) v (BY) (AVB): £ (A1) A(BY)
(ADB)" £ (BY)—(A) (B—A)" £ (A1) D (BY)
(VX.A)* 2 3x.(a1) (IX.A)t 2 vx. (A1)

Fig. 5. Duality in the LK sequent calculus.

of one another by flipping the sequents across their turnstile. Similarly, > and — are
dual to one another as well as both the V and 3 quantifiers, and negation is its own
dual, with both =R and —L reflecting the same inference flipped about entailment.

Since each connective has a dual counterpart, we can express the duality of
sequent calculus proofs—for every LK proof & of a sequent:

2
Ap,..., A2, A1 F B, B,,..., B,
there is a dual proof Z of the dual sequent:
@J_

BL,...,BYBi AL AL, ... AL

n

The duality relation on judgments and propositions, is given in Figure 5. Note
that the duality operation A may be understood as taking the negation of the
proposition, =4, and pushing the negation inward all the way using the De Morgan
laws, until a proposition variable X is reached (Gentzen, 1935b).

Theorem 2 (Logical duality)

For any LK proof @ of the sequent T+ A, there exists a dual proof 2+ of the dual
sequent A+ T,

Note that Gentzen did not consider the dual counterpart to implication as a
connective, as we do, but rather eliminated implication from the system by encoding
it in terms of disjunction and negation given above for the purposes of establishing
duality.

Due to the natural syntactic symmetry of the LK sequent calculus, logical duality
comes from an exchange between left and right: left rules mirror right rules
and hypotheses to the left of entailment mirror consequences to the right. Thus,
establishing logical duality in the sequent calculus follows from a straightforward
induction on the structure of proofs, working from the bottom conclusion up to the
axioms.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 19

Non-contradiction and excluded middle

To illustrate how the left and right sides of proofs get swapped, consider the case
when the bottom conclusion is inferred from a use of the AR rule:

7 ¢

IF'A4,A TFBA
TFAAB.A

Then by the inductive hypothesis, we get a proof Z+ of (I' - 4,A)* = A+, A+ T+
and a proof &+ of (I' F B,A)* = AL, B+ F I't, from which we can deduce
(TFAAB,AS 2 AL (44 v (BY) - T by VL:

7 &

AL AtETE AL BLETY
AL ALV BIFTE

VL

The duality of proofs in the LK sequent calculus means that if a proposition 4 is
true, so that we have a proof of e - A4, then its dual must be false, so that we have a
proof of AL I e. Analogously, if a proposition A4 is false, then its dual must be true.
For example, consider the following general proof of the law of non-contradiction,
stating that 4 A (—A) is false:

A A X

AN(—A)F A
14A(ﬂALﬁAF-o_1AL
AN(—A)LAN(—A) Fe 1
An(-A) e CL

ALy
L

Duality gives a general proof of the law of excluded middle, stating that 4 vV (—A)
is true:
Ara ™
A AV (—A) R
OF-ﬁAﬂ4v(ﬁA)_1vR
o AV (=A),AV (—A) ;
cFAv(-a ¢
The existence of a general proof for the law of excluded middle (e - A V (—A4))

is forced by Theorem 2 because we have a general proof for the law of non-
contradiction (A A (—A4) - e).

VR4

4 A core calculus

The logics of natural deduction and the sequent calculus are rather different from
one another. As previously discussed in Section 2, one major point of distinction
between the two styles of logic is that natural deduction is right-handed, favoring
truth to the exclusion of falsehood, whereas the sequent calculus is ambidextrous,

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

20 P. Downen and Z. M. Ariola

directly handing truth and falsehood on both the left and right sides of entailment.
That means that the sequent calculus does not correspond to the A-calculus the same
way that natural deduction does. So what might a programming language based on
a sequent calculus like LK look like?

Before delving into the entirety of LK, let us first consider a core language shown
in Figure 6, (Herbelin, 2005) ufi-calculus, that corresponds to the core part of LK
and lies at the heart of several sequent-based languages (Curien and Herbelin, 2000;
Wadler, 2003; Munch-Maccagnoni, 2009; Curien and Munch-Maccagnoni, 2010),
including the one we will explore. Notice that the language of types in this core
lacks any logical connectives, so that the only types are uninterpreted variables X,
Y, Z, etc. The pji-calculus is a bare language for describing only input, output,
and interactions: the types on the right side of a sequent describe the outputs of
a program and the types on the left side of a sequent describe the inputs of a
program. When the two opposite sides come together—when the opposed forces
of input and output meet—we have an interaction that sparks computation. Note
that the type system brings out an aspect of deduction that was implicit in the
sequent calculus: the role of a distinguished active proposition that is currently
under consideration. For example, in the AR rule from Figure 4, we are currently
trying to prove the proposition 4 A B, so it is considered the active proposition of
the conclusion I' = 4 A B, A.

By putting attention on at most one active proposition, we get three classifications
of sequents: active on the right, active on the left, or passive (without an active
proposition on either side). These three forms of sequents likewise classify three
different forms of ufi expressions that might be part of a program:

e An active sequent on the right (I' F v : A|A) describes a term v that sends
information of type A as its output (that is, v is a producer of type A).

e An active sequent on the left (I'le : 4 - A) describes a co-term e that receives
information of type A as its input (that is, e is a consumer of type A).

e A passive sequent (¢ : (I' A)) describes a command c that is an executable
program capable of running on its own without any distinguished input or
output.

In each case, the environments I" and A describe any additional passive (non-active)
inputs and outputs to an expression by specifying the types of free variables (x,...)
and free co-variables (o,...) that expression might reference, respectively. Like in LK,
these environments are finite, ordered sequences which may be (1) empty (written
), (2) a variable or co-variable paired up with its type (written x : A and o : A,
respectively), or (3) a concatenation of two sequences (written with a comma as I, T”
and A, A’). As a further constraint, we stipulate that each variable and co-variable
can appear at most once in an environment, so that the concatenation of repeated
type assignments like x : A,x : B or o : A, : B is undefined.

The expressions of the pfi-calculus come from the axiom and cut rules of LK plus
an additional pair of activation rules AR and AL. The Ax rule of LK is divided
into two separate rules in ujfi: the VR rule creates a term by just referring to a
variable available from its environment, and similarly the V'L rule creates a co-term

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic

A,B,C € Type
v e Term

e € Colerm

¢ € Command
T" € InputEnv
A € OutputEnv
Sequent

=X

t=x|ua.c

n=a | fix.c

= (ve)

n=x1 A, X L Ap

=y Ay, a4y
w=TFv:A|A)|(T|e:AFA)|c: (TEHA)

21

Core rules:

x:AkFx:4]| VR la :AFa:A 'L
c:Tka:4,A)
Il'Fua.c:A|A

c:(Tyx:AFA)
I'ixc:AFA

Thv:iAd|A T'|e:AFN

Cut
Oley: (@, TFa) "

Structural rules:
c: (TFA)
c:(T)x:AFA)

c: (TFA)

¢:(Tha:4,A) WL
c:(THB :4,a :4,A)
cla/B}:Tha:4,A)

c:(THAa:AB :BA)

c:(Ty)x:A4,y:AFA)
c{x/y}: (T,x:AFA)

c:(Ty:Bx:A,TFA)

XR XL
c:(CHAB :B,a : A,AN) c:(Ix:A4,y:B,TFA)
'kv:C|A R F'Fv:C|A WL
I'tv:Cla:4,A Ix:AFv:ClA

R Tx:A4,y:AFv:C|A L
x:AFv{x/y}:C|A

I'tv:C|B 4,0 :A,A
TEvi{a/B}:Cla:4,A

Tkv:ClAa:A4,p :BA
TEv:C|AB :Ba:A,N

Iy:Bx:ATkFv:C|A
IMx:4,y:BTFv:C|A

I'le:CHA

- Tle:CFA
I'le:Cha:4,A

Ix:A|le:CEA
Ix:A,y:A|le:CHA

R Ix:A|e{x/y}:CFA L

I'le:CHB 4,0 : A,A
Tle{a/f}:Cra:4,A

Tle:C-Aa:A,8:BN
Tle:CFAB :Ba:AN

Iy:Bx:AT|e:CHA
IMx:4,y:BT|e:CHA

Fig. 6. ufi: The core language of the sequent calculus.

by referring to a co-variable. The Cut rule connects a term and co-term that are
waiting to send and receive information of the same type, so that the output of the
term is forwarded to the co-term as input (and dually, the input of the co-term is
drawn from the output of the term). Finally, the activation rules AR and AL pick a

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

22 P. Downen and Z. M. Ariola

particular (co-)variable from the environment of a command to activate by creating
an output or input abstraction, respectively. Intuitively, if the variable x stands for
an unknown input in a command c, then the input abstraction fix.c is a co-term that,
when given a place to draw information, will bind that location to the input channel
x while running c. Dually, if the co-variable « stands for an unknown output in a
command c, then the output abstraction uo.c is a term that, when given a place to
send information, will bind that location to the output channel & while running c.

Structural rules and static scope

To give a full account of the static semantics of the uji-calculus, we need to address
the issue of how the structural properties of the sequent calculus are represented.
For instance, the co-term fiz.(x|o:} should have the type x : X | fiz.(x|o) : Y F o : X,
but the core typing rules alone are not enough. Rather, the structural properties
of sequents (weakening, contraction, and exchange) define the meaning of static
variables and co-variables.

Similar to LK, the structural properties of sequents in ufi can be expressed by
explicit structural rules that allow for a single (co-)variable to appear any number of
times in an expression. The full collection of these structural scoping rules are shown
in Figure 6, which corresponds one-for-one with the structural rules of Gentzen’s
LK sequent calculus over each form of ujfi expression. The weakening rules say that
even if a free (co-)variable is in scope in an expression, it does not have to be
referenced, as in the co-term Jiz.(x|o):

x:XkFx:X| VR lo: X Foa:X VL

(xJo) :(x : X Fa:X)
(x|o) :(x: X,z:Y Fa:X)
XX | fizdx|e) Y Fo: X AL

Cut

WL

The contraction rules say that a free (co-)variable can be referenced an addi-
tional time by renaming two distinct (co-)variables into one, as in the command

(o (ylo) | fiz.(yla)) :

y:Xl—y:X\VR \ﬁ:Xl—ﬁ:XVL x:Xl—x:X|VR |oc:X|—oc:XVL

ETEE T EP oo e Xraix)
<y||/3):(y:X|—5:Y,/3:X)AR (x|ary 1 (x : X,z : Y Foa:X)
y:XkFusylpy:Y|p:X XX | fzdx|oy : Y Fa: X

(o YIBY Iz (xle)) - (x : X,y X Fa:X,f:X) “

(o (xIB) iz (xfo)) = (x - X B o X, B2 X)

CL

Finally, the exchange rules say that the order of the (co-)variables in scope does not
matter. Notice that none of these rules are syntactically visible in their expression.
Unlike the axiom, activation, and cut rules that only apply to expressions starting
with a very specific form like a (co-)variable, abstraction, or interaction, the structural
rules could potentially apply to expressions of any form so they are not directed by
syntax.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 23

The form of the structural rules in Figure 6 shows the role of the active sequents
for controlling the impact of structural rules on the principle type of interest. In
particular, the type of the term in the sequent I' F v : 4 | A and the type of the
co-term in I' | e : A F A cannot be subject to weakening, contraction, or exchange.
Instead, structural rules only apply the (co-)variables in the environment, meaning
that if we want to contract or weaken the type of a (co-)term with one of its free
(co-)variables, we must first associate its input or output with another (co-)variable
by forming a command like so

I'Fv:A|la:A |p:AFp: A VL I'Fv:A|A |Ja:AFa: A VL
W) :(CFB:Au:AA) (W) (T F o : A,A) u
Wl T Fa:4h) R W) ((TFp Ba An 'R

' po(vfo) :A|A R I'Fup.(v|a) :B|oa:AA AR

and symmetrically for co-terms. Likewise, if we want to exchange the current active
type of a (co-)term with another one in the environment, we need to take a similar
detour through a command that explicitly switches the primary input or output
channel as follows:

I'tv:A|p:B,A |a:Aa:A VL x:AI—x:A|VR ILy:Ble:AFA
Wl (Tha:Ap B.A) ™ xXle) - (C.y ‘Bix - AF A) Cut
(v]e) : (T B :B,a:A,A) XR (x|e) :(I',x : A,y : BFA) XL
T'Eup.(v]o) :B|a:AA AR I,x:A]|y.(x|e) :BFA

4.1 Two dual substitutions

Having examined the static properties of the ufi-calculus—its syntax and types—we
still need to consider the dynamic properties of uji, to explain what it means to run
a program. To answer the question “what is computation in the sequent calculus?”
we turn to cut elimination (previously mentioned in Section 3.2) that outlines a
method of reducing commands as the main unit of computation. In other words,
computation in ufi is the behavior that results from cutting together a compatible
producer and consumer in a command, so that they may meaningfully interact with
one another. In the bare pfi-calculus with no logical connectives, we can only have
three forms of commands: a cut between (co-)variables (x|«), a cut with an output
abstraction (uo.c|e), and a cut with an input abstraction (v|fix.c). In the first case,
a command (x|a) represents a basic final state that can reduce no further, and even
though its typing derivation contains a Cut, it is a trivial sort of cut that corresponds
more closely to a passive version of LK’s Ax:

x:AFXx:A| VR |l iAo A VL

(xlo) :(x A F o :A) Cut

In the second two cases, we can capture the meaning of input and output
abstractions via substitution —written as {v/x} and {e/a}—in the style of § reduction

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

24 P. Downen and Z. M. Ariola

in the A-calculus as illustrated by the following u and i operational rules:

() (ucle) o clefa} (B) (vlx.c) = ¢ {v/x)

The [i reduction step substitutes the term v for the variable x introduced by an
input abstraction, distributing it into the command ¢ to the points where it is
referenced. The u reduction step is the mirror image, which substitutes a co-term e
for a co-variable o introduced by an output abstraction. Both of these substitution
operations must take care to avoid capturing the free variables of the substituted
(co-)terms as in the A-calculus. Definitions of capture-avoiding substitution and the
free variables found in (co-)terms and commands (denoted by FV (¢), FV (V), FV (e))
can be found in Section 6.

The u and Ji substitution steps eliminate a cut, but how do they correspond to cut
elimination in LK? The procedure described in Section 3.2 does not appear to use
a substitution operation, only a collection of small, local manipulations of cuts. As
it turns out, the substitutions used by the u and [rules correspond to the structural
steps of LK cut elimination, except performed all at once instead of incrementally.
Cuts of a passive proposition can be viewed as a substitution for a (co-)variable and
the substitution operation itself exhaustively applies the steps that commute logical
and structural rules with passive cuts. For example, the commutation of an active
cut with a passive cut corresponds to the equation

(vle) {v'/x} = (v {v'/x}le {v'/x})

that defines one case of substitution. In effect, this transports a passive cut to all
of its active positions within a proof as one step, and the activation rules for u-
and [i-abstractions explicitly signal that a cut is passive. And as additional logical
rules are added later in Section 5, similar commutations are uniformly characterized
by the standard rules of substitution. The cut elimination steps for weakening and
contraction on the active proposition of a cut then correspond to properties that
the substitution operation satisfies

clefa}=c (a @& FV(c) (c{a/p}){e/a} =cle/f}{e/a} (o0& FV(e))
clo/xp=c (x¢FV() (c{x/yP{v/x}=clo/y}{v/x} (x¢&FV(v))

or in other words, substituting for a (co-)variable that is never referenced does
nothing, and substituting for a merged pair of (co-)variables is the same as
substituting for both individually.

We can now give two different formalizations of the dynamic semantics of the ufi-
calculus, each of which have their own distinct purpose. The first is the operational
semantics of pji that explains exactly step-by-step how to execute a command by
performing repetitions of the p and [i operational rules (i.e., the reflexive, transitive
closure of the — relation written +»). Note that, unlike in the A-calculus, the next
step of the operational semantics is immediately obvious in the pji-calculus and
needs no search to identify: the next step of a command is always found at the
top-level if there is one.

The second is the rewriting theory of uji that provides more opportunities for
reductions, including performing a step before it would normally occur during

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 25

the execution of a command (as in a pre-processing pass or optimization) or
additional reductions that do not occur during execution (i.e., are not one of the
operational rules defining —) but preserve its behavior nonetheless. Single-step
rewriting is denoted by — and allows the reductions to apply in any context (i.e.,
— is compatibly closed), and the multi-step rewriting is denoted by — (i.e., — is the
reflexive, transitive closure of —). For the ufi-calculus, single-step rewriting includes
the u and [t operational rules given above, as well as some additional rules. In
particular, the following #, and #; reductions that eliminate trivial output and input
abstractions are allowed, because they do not change the extensional behavior of
the (co-)terms:

(1) po (o) — v (& FV () (1) fixxle) »> e (x & FV(e)

In other words, the term that sends the output of v to o only to forward that
information along as its own output is the same as v itself. Dually, the co-term that
binds its input to x only to forward that information along to another co-term e
can be written more simply as just e. In all, the rewriting theory of uji is formed
by repetitions of ufin,n; reductions in any context, and is defined in more detail in
Section C3.

4.2 The fundamental dilemma of computation

Unfortunately, the aforementioned operational semantics for ujfi is non-deterministic,
to the point where program execution may take completely divergent and unrelated
paths. The non-determinism of the uji-calculus corresponds to the fact that the cut
elimination for LK included critically non-deterministic choices between structural
rules. The phenomenon is embodied by the fundamental conflict between input and
output abstractions, as shown by the two dual u and ji reductions for performing
substitution:

e {(fix.ca) /o ey (uoner|fix.ca) > 2 {(poncr)/x}
Both the term po.c; and co-term [ix.c, are fighting for control in the above command,
and either one may win. The non-deterministic outcome of this conflict is exemplified
in the case where neither o« nor x are referenced in their respective commands by
weakening

1y (uecr|ficer) =g e

showing that programs may produce different results each time they are run, since the
same starting point may step to two different and completely arbitrary commands.
This form of divergent reduction paths is called a critical pair and is evidence that
the rewriting theory is not confluent. A confluent system guarantees that reductions
can be applied in any order and still reach the same result. From the perspective of
programming language semantics, this type of non-determinism can be undesirable
since it makes it impossible to predict a single definitive result of a program since
there may be multiple incompatible results depending on the choices made during
execution. If we want to regain properties like confluence or determinism, which are
enjoyed by the A-calculus, then some of these freedoms must be curtailed.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

26 P. Downen and Z. M. Ariola

V € Value, ::=x E € CoValue, ::=e

Operational rules:

(uev) (ua.c||E) — c{E/a} (dy) Vlax.c) — e{V /x}

Rewriting rules:
1u) ma) —v (a@&FV() (ma) dx(xle)—e (x&FV(e)

. - J
Cua, ©

5 Hofly

€ =i, €

Fig. 7. The call-by-value (v) semantics for the core pujfi,-calculus.

In order to recover determinism for the sequent calculus, Curien and Herbelin
(2000) observed that we only need to choose an evaluation strategy that determin-
istically picks the next step to take by giving priority to one reduction over the
other:

Call-by-value consists in giving priority to the u redexes,
while call-by-name gives priority to the [i redexes.

Prioritization between the two opposed sides means that there must be some potential
u or [i redexes that we could reduce but choose not to, thereby yielding priority to
the other side of the command. From another viewpoint, choosing a priority between
the two sides of a command is the same thing as choosing a restriction on the terms
and co-terms that can be substituted by the x and fi rules. And reversing directions,
choosing which terms and co-terms are substitutable by u and i reductions also
chooses the evaluation strategy.

Reflecting the above observation back to the calculus, we can restore determinacy
to the operational semantics and confluence to the rewriting theory by making the
substitution rules strategy-aware: i only substitutes values for variables and u only
substitutes co-values for co-variables. In other words, the decision of which values
and co-values are substitutable is enough information to determine an evaluation
strategy in the uji-calculus. To get call-by-value reduction, we can restrict the notion
of value to exclude output abstractions and leave co-values unrestricted, thereby
giving priority to the p redexes as shown in Figure 7. Dually for call-by-name
reduction, we can restrict the notion of co-value to exclude input abstractions
and leave values unrestricted, thereby giving priority to the i redexes as shown in
Figure 8. Notice that in any case, the #, and 5 reductions are not affected by the
restrictions on (co-)values, because they do no substitution and are sound under
any choice of evaluation strategy. These restrictions on substitution give us exactly
(Curien and Herbelin, 2000) notions of the call-by-value and call-by-name, which
restores determinacy and confluence to the semantics of ufi. Excluding a (co-)term
from the collection of (co-)values effectively prioritizes it by blocking opposing
reductions, whereas including a (co-)term as a (co-)value diminishes its priority since
it can be deleted or duplicated by substitution.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 27

V € Valuey, ::=v E € CoValue, =«
Operational rules:

(#4n) (wa.clE) — c{E/a} (din) Vlax.c) — e{V/x}

Rewriting rules:
) malla)y—v (@ ¢FVE) ma) pAxde) —e (x¢&FV(e))

- /
€, € .
7 Mnltn
€ “unitn €

Fig. 8. The call-by-name (n) semantics for the core pji,-calculus.

5 The dual calculi

With the core ufi language firmly in place, we can now enrich it with additional
programming constructs that correspond to the logical elements—the connectives
and logical rules—of Gentzen’s LK sequent calculus. The syntax and typing rules
for these extra logical constructs are shown in Figure 9, which extends the core
ufi-calculus from Figure 6. To help syntactically distinguish terms from co-terms, we
use the notational convention throughout that round parentheses are the grouping
brackets for terms, and square brackets are the grouping brackets for co-terms.
The correspondence with LK is that by erasing program-level constructs of a typing
derivation and replacing type constructors with the corresponding logical connectives
(replacing — with o, x with A, etc.,), we get an LK proof derivation: there is an LK
proof derivation of I' + A if and only if there is a typing derivation of ¢ : (I" - A')
for the I, A’ corresponding to I', A and some command ¢, and similarly for typed
terms (I"Fv : A | A’) and co-terms (I | e : A"+ A).

This language combines both (Curien and Herbelin, 2000) Aufi-calculus (the
portion associated with implication) and (Wadler, 2003) dual calculus (the portion
associated with conjunction, disjunction, and negation which was directly inspired
by Auji) into a single calculus corresponding to all of the simply-typed LK sequent
calculus. Furthermore, the quantifiers of LK are interpreted as a sequent calculus
version of system F (Reynolds, 1983; Girard et al., 1989): universal quantification
(V) acts as an abstraction over types analogous to implication, and existential
quantification (3) is the mirror image of V. We refer to this combined language here
as the “dual calculi” because, as we will soon see, the language is the basis for two
different but highly related calculi that exhibit dual computational behavior to one
another.

Since the right introduction rules for logical connectives are shared by both
natural deduction and the sequent calculus, the dual calculi terms for creating
results of product, sum, and function types have the same form as in the A-calculus.
Units are introduced by a constant, (), products are introduced by pairing, (v,v’),
sums are introduced by injection, inj(v) and iny(v), and functions are introduced
by ZA-abstractions, Ax.v. Additionally, the terms for creating results of universally
quantified types are A-abstractions, AX.v, as in system F, and the results of

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

28 P. Downen and Z. M. Ariola

AB.CETipe =X |1|0|AxB|A+B|-A|A—B|A—B|vX.A|3XA
veTerm:=x|pa.c| ()] (wv)|ini(v)]iny(v) | not(e) [Ax.v]|e-v| AX.v| B@v
e€ CoTerm :=a | jix.c|[] | out[e] | outs[e] | [e,e] | not[v] | v-e | A .e | B@e | AX.e
¢ € Command ::= (v|e)

Core rules:
x:AkFx:4]| VR la:Ara:4 'L
c:(Tka:4,A) c:(Tyx:AFA)
I'Fua.c:A|A I'|ixc:AFA

Thv:Ad|A T |e:A-AN
(e : (T, TF A,A)

Cut

Structural rules:
The same weakening (WL, WR), contraction (CL,CR), and exchange (XL,XR) as in Fig. 6.

Logical rules:

—FF IR — 0L
r=(0):1|A no 1L rule no OR rule rij:0FA
F'Fv:4A|A THV:B|A I'le:AFA I'le:BFA
; XR XLy XLy
I'WV):AxB|A I'|outi[e] :AXxBFA I'|outyle] :AXBEA
Tkv:d|A R F'Ev:B|A R Ile:AFA T|€:BEA L
CHim():A+B[A ' Trim(Wv):A+B[A * T|[ec]:A+BFA
Tle:AFA TEv:4A|A 7
't not(e): =4 | A B I'|notly]: =4+ A B
Ix:AFv:B|A 2 TEv:A|A T'|e:BFA
TFixvid—B|A I'.T|[ve:d—BFAA
TEv:A|A T'|e:BEA Ile:dFa:BA
I'Thev:Ad—B|A, A [|la.e:A—BFA
TEv:iA|A X¢FV(IEA) Ile:A{B/X}FA
TFAX.v:VXA|A T |B@e: VXA A
ThviA(B/X}|A Tle:AFA X¢FV(TFA)
T'FB@v:3X.A|A I AX.e:3XAFA

Fig. 9. The syntax and types for the dual calculi.

existentially quantified types are “masked” terms, B(@uv, that hide some occurrences
of the type B in the underlying term v from being visible from the outside. In
contrast, the left introduction rules of the sequent calculus are distinct from the
right elimination rules of natural deduction, so the difference between the A-calculus
and the dual calculi really appears when results are used.

Instead of function application, the left implication introduction —L builds a
co-term that represents a call-stack. If v is a term that produces a result of type

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 29

A, and e is a co-term that consumes a result of type B, then the call-stack v - e is
a co-term that works with a function value of type A — B by feeding it v as an
argument and sending the returned result to e. For example, given that x; : A,
Xy @ Ay, x3 : Az, and f : B, then the call-stack x; - [x2 - [x3 - f]] is expecting to
consume a function of type 4; — (4, — (43 — B)):

VR X3ZA3|—X3IA3|VR |ﬁB|—[))BVLL
VR Xy Ay Fxp i Ay | x3:A3|x3-p:4A43—> B+ B L_)
X1 A Foxg A | X3 A3, %2 As | x2-x3-f: A > A3 >BFp:B
N

X3 IA3,X2 ZAz,xl 2A1|X1'X2'X3'ﬁZA1—>A2—>A3—>B|—ﬁZB

Like the common notational convention in the simply-typed A-calculus that the
function type constructor associates to the right, so that 4, - A, > A3 - B =
A; — (43 — (A3 — B)), we adopt a similar notational convention that the call stack
constructor associates to the right, so that x; - x2 - x3 - = x1 - [x2 - [x3 - S]]

The left introductions for the other type constructors follow a similar pattern,
with each one building a co-term that expects to consume a value of that type.
There are two left conjunction introductions corresponding to the two projections
out of a product. If e¢; is a co-term that consumes a value of type A4, then XL,
builds the co-term out;[e;] that works with a value of type A x B by projecting out
the first element of the product and sending it to e; when needed (and similarly for
the second projection out;[e,] built by X L,). If e; and e, are co-terms that consume
values of type 4 and B, respectively, then +L builds the co-term [ej, e;] that works
with a value of type A4 + B by checking its constructor: an injection of the form
in1(v1) has the value of v; sent to e; as needed, and likewise an injection of the form
iny(v2) has the value of v, sent to e; as needed. The co-term for the empty type O is
a constant, [], which observes an impossible term that cannot produce any output.
The co-term for VL is similar to the call stacks of —L, so that if e is a co-term that
consumes a value at the particular type A {B/X}, then B@e works with a value of
the general type VX.A by first specializing the polymorphic value and then passing
it along to e. Perhaps the most unusual co-term comes from 3L, but this is just the
mirror image of the VR term. If e is a co-term that consumes a value of type A4,
containing a generic type variable X, then 3L gives the abstracted co-term AX.e
that works with a value of type 3X.4 by instantiating X with the value’s hidden
type before passing the underlying value to e.

The two type constructors that are not typically found in the A-calculus, but
sometimes in a sequent calculus like LK or the dual calculi, are negation and
subtraction. The negation type —A represents an inversion between producers
and consumers—terms and co-terms—during computation. Intuitively, negation
expresses a form of continuations: a term of type —A is actually a consumer of A.
The right negation introduction allows terms to contain consumers, so that if e is a
co-term expecting an input of type 4 then —R builds the term not(e). Dually, the left
negation introduction allows co-terms to contain producers, so that if v is a term
expecting to output a result of type 4 then —L builds the co-term not[v]. When a

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

30 P. Downen and Z. M. Ariola

Ve Value, :=x| (V,V) |int(V) | ina(¥V) | not(e) | Ax.v|e-V | AX.v| B@V
E € CoValue, ::= e

Operational rules:

B) (", 7)llout(E]) — (Vi|E) B (imNIELEa]) — (VIIE)
B.) (not(e)|Inot[v]) — (vlle)

B,) Axv|V-E) — {V/xHE) (B)) (E-Vlia.e)— (V]e{E/a})
®BY) (AX.V[B@E) — (v{B/X}|E) (B, (B@V||AX.e) — (V|le{B/X})
Rewriting rules:
ot

c—p C

Fig. 10. The f semantics for the call-by-value (v) half of the dual calculi.

negated term and co-term meet each other in a command, the inversion is undone
so that their underlying components change places and continue the interaction.
The subtraction type A — B is dual to a function type: whereas a function represents
an answer that depends on another answer, a subtraction represents a question that
depends on another question. The left subtraction introduction allows for consumer
transformations which are mirror images of A-abstractions, so that the —L rule builds
a co-term of the form Ja.e of type A — B when e is a consumer of A that references
a co-variable o of type B. On the other side, the right subtraction introduction pairs
up a producer and a consumer, so that if v produces an A4 result and e consumes
a B result then the —R rule builds the term e - v of type 4 — B. Subtraction gives
another way for continuations to appear in terms, so that a result of type A — B
yields both an answer (4) and a question (B) at the same time.

The above intuition on the dynamic meaning of types in the dual calculi can be
codified into an operational semantics. Recall from Section 4.2 that the semantics
of the core pji-calculus was split in two to restore determinacy and confluence: one
semantics corresponding to call-by-value and the other to call-by-name. Likewise,
there are two deterministic operational semantics and two confluent rewriting
theories for the dual calculi, so that the same language bears two different calculi
(hence the name). Since both semantics of the core pfi-calculus are already given
in Figures 7 and §, we only need to suitably expand the notions of value and
co-value to accommodate the new (co-)term introductions and explain the logical
steps of cut elimination (referred to by the common name f) that occur when two
opposed introduction forms of the same type meet in a command. The call-by-value
p operational rules are given in Figure 10 and the call-by-name f§ operational rules
are given in Figure 11, both of which extend the core semantics from Figures 7 and
8, respectively. Thus, we end up with the call-by-value y,ji,f, operational semantics
and p,fi,nnpfs rewriting theory as well as the call-by-name w,u,f, operational
semantics and fi, 1,z Py rewriting theory for the dual calculi. The f*, 7, and f~
rules come from (Wadler, 2003) dual calculus, whereas the ™ rule is inspired by
(Curien and Munch-Maccagnoni, 2010) revision of the Zufi-calculus. The reason this

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 31

V € Value, ::=v
E € CoValue, =« | out[E] | outy[E] | [E,E] | not[v] | v-E | Aa . | BQE | AX .e

Operational rules:

B) (A 1)lloutE]) — (VIE) B (n(V)[EnE2) — (7 |ED
Bn) (not(e)[[not[v]) — (v]e)

B Axv|V-E)— {V/x}HIE) (By) (E-V|ia) (V]e{E/a})
B (AX.v|B@E) — (v{B/X}|E) (B,) (B@V||AX.¢) — (V||le{B/X})
Rewriting rules:

cip
c—p ¢ "

Fig. 11. The f semantics for the call-by-name (n) half of the dual calculi.

differs from the original = rule (Curien and Herbelin, 2000) for the Zufi-calculus,
(oxolo’ - €) (0 fix.(v]e)) x ¢ FV (e)

will show up later on in Section 5.2.

Notice that, like in the core pfi-calculus, the form of the operational f§ rules are
the same in both semantics, so that the only difference is the definition of value and
co-value referred to in those rules. The rule of thumb is that a f rule only applies
when an introductory value and co-value interact in a command. For example, the
call-by-value B rule will only project from a pair value to extract a component that
is also a value. These restrictions are captured in the call-by-value definition of value
that admits only “simple” terms and hereditarily excludes complex terms like po.c
(representing an arbitrarily complex computation before yielding a result on o) from
the values of product and sum types, which matches the behavior of products and
sums in strict functional languages like ML. However, there is no such restriction
on co-terms in the call-by-value operational semantics, and as such any co-term
counts as a co-value. Dually, the call-by-name f,° rule will only project out of a pair
when it is needed by a projection co-value to send that component to the underlying
co-value. These restrictions are captured in the call-by-name definition of co-value
that admits only “strict” co-terms and hereditarily excludes complex co-terms like
fix.c (representing an arbitrarily complex computation before demanding a result
for x) from the co-values of product and sum types. However, there is no restriction
on terms in the call-by-name operational semantics, and as such any term counts as
a value.

5.1 Untyped fixed points and infinite loops

It’s worthwhile to mention that although the dual calculi are primarily seen as typed
languages, their semantics do not use any type information to run commands. We
can therefore execute untyped commands as well as typed ones, which of course
creates the possibility of getting stuck at fatal type errors. Untyped commands

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

32 P. Downen and Z. M. Ariola

also open up the possibility of running general recursive programs, which can be
encoded in a similar manner as in the A-calculus without any additional features
of the language. For example, Curry’s untyped fixed-point Y combinator in the
A-calculus:

Y = 2f.(Ax.f (x x)) (Ax.f (x x))

can be analogously defined in the dual calculi using functions as

Y = Af o (ZxpBfluy-Cxlx - p) - BIAXpB(Fluy-(x]x - 7) - B)) - o)

The two share analogous behavior: in the A-calculus Y f = f (Y f) and in the
dual calculi (Y |f - o) = (flup(Y |f - B) -). Also analogous to the non-terminating
untyped term Q = (Ax.x x) (Ax.x x) in the A-calculus, the dual calculi both have
non-terminating untyped commands, which can be written using functions or more
simply with negation:

Q = (not(fux.(x[not[x]))Inot[ua.(not(x)|o)])

For example, in the call-by-name operational semantics, we have the following
infinite execution of Q:

Q £ (not(7ix.(x|not[x1))Inot[ua. (not(x)]2)])
g, (po.{not(o) e} | fix.(x[not[x]))
7 (pe.{not(a) o) [notuar. (not(a)o)])
—,, (not(not[ua.(not(a)|o)])|not[ue. (not(er)|or)])

gy (por.(not(ar)|or) [not[por.(not(ar) [or)])

ECREE

Note that encoding general recursion in the untyped sequent calculus requires
some logical connective, like negation or implication. The core uji-calculus gives a
more restrained language of binders and substitution that does not express general
recursion even in the untyped calculus, where general (and non-confluent) u- and fi-
reduction is still strongly normalizing (Polonovski, 2004)—that is, there are no infinite
sequences of pjfi-reductions. This fact is in contrast with the untyped /-calculus that
can express general recursion, because f-reduction is not strongly normalizing in
the untyped calculus.

5.2 Focusing on computation

There is a problem lurking in the f-based operational semantics for the dual calculi.
Consider how we would evaluate the projection out;((f 1),2) in a call-by-value
functional language like ML. First, we would compute the application f 1 to
construct the pair value, then we would compute the out; projection of that pair
and extract the value returned by f 1 as the result of the expression. However, if we
represent this program as the following command in the call-by-value dual calculus,
where o stands for the empty or top-level context that is implicit in the functional

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 33

expression:

((uBF11- B)), 2)lout [o])

we find that no operational rule matches this command, so we are stuck! This is
not just a problem with the call-by-value operational semantics. The command

((1,2)Jout; [fix.(0]o)])

that corresponds to the expression let x = out;(1,2)in0 in a functional language, is
also stuck in the call-by-name operational semantics.

This is clearly an undesirable situation that breaks the connection between the
A-calculus and dual calculi—we should not get stuck on such commands with
unfinished computation in introduction forms—so something needs to be done
to refocus the attention in a command to the next step of computation. As it
stands now in the dual calculi, we either have too many programs with unexplained
behavior, or too few behaviors for executing programs. Correspondingly, there are
two general techniques to remedy prematurely stuck commands and restore the
connection between A-calculus and the dual calculi:

(1) The static approach (Curien and Herbelin, 2000) removes the superfluous
parts of the syntax that cause f reduction to get stuck, but are not necessary
to express all the same computations as the original language.

(2) The dynamic approach (Wadler, 2003) adds the necessary extra steps to
the operational semantics that [ift buried computations to the top of the
command, so that they are exposed and may take over control of the
computation.

Both of these techniques can be viewed as an application of an idea called focusing
(Andreoli, 1992; Laurent, 2002) from proof search at different points in a programs
life—either at “run time” or at “compile time”—to make sure that the call-by-
value and call-by-name semantics are complete without missing out on any essential
capabilities of the language.

Static focusing

For the static method of focusing, consider which syntactic patterns could lead to
B-stuck commands. In the call-by-value command above, (((uB.(f|1 - B)), 2)|out;[«]),
the problem is that a pair with a non-value component (namely the first one) is
interacting with a projection co-value. Because the pair does not have values for
both components, the S operational step does not apply. Dually, the call-by-
name command above, ((1,2)|out;[fix.(0]«)]), puts a pair value in interaction with
a projection that has a non-co-value component. Because the projection does not
contain a co-value, the ;¢ operational step does not apply. After examining all the
f, rules, we see that the call-by-value f§, operational semantics is only equipped
to deal with certain introduction forms containing values (namely the pairing xR,
injection +R, and masking IR terms as well as calling —L co-terms). Similarly,
the call-by-name f,, operational semantics is only equipped to deal with certain

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

34 P. Downen and Z. M. Ariola

introduction co-terms containing co-values (namely the projection XL, matching
+L, and calling — L, and specializing VL co-terms).

We can rule out the problematic commands via static focusing by limiting
ourselves to a sub-syntax of the dual calculi. However, since each operational
semantics (both call-by-value and call-by-name) have difficulty with different parts
of the syntax, static focusing effectively splits the language in two: one sub-syntax
for each evaluation strategy. For call-by-value, we must bake in the notion of
values into the syntax and restrict the xR, +R, —R, 3R, and —L inference rules
appropriately. Doing so gives us the LKQ sub-calculus (Curien and Herbelin,
2000) shown in Figure 12. Notice how the sub-syntax of LKQ no longer lets
us write terms like inq(uf.c) and (pfi.ci, ufr.c2) because a p-abstraction is not
a value; instead such terms can only be written with intermediate bindings as
poc(up.clix.(ing(x)|o)) and po(upy.ciffixr.(ufa.cafixa.((x1,x2)|o))) reminiscent of
CPS (Reynolds, 1993). The statically focused calculus makes the call-by-value
evaluation order more explicit in the program itself. Similar such restrictions are
imposed on the term constructors of subtraction and existential types, and on
the argument of function call stacks. Dually for call-by-name, we must bake
in the notion of co-values into the syntax and restrict the xL, +L, —L, VL,
and —R inference rules appropriately, giving the LKT sub-calculus shown in
Figure 13. Notice that the sub-syntax of LKT instead prevents us from writing
co-terms like out; [fty.c] and [fiy.cy, fiys.c2] because a fi-abstraction is not a co-value;
instead such co-terms can only be written indirectly as jix.(uo.(x|out [«])|fy.c) and
fux. (o (o (x| [org, 021) | fya.c2) | fvi.c1), which is symmetric to the explicit bindings
forced by LKQ.

The associated type systems separate the restricted notions of (co-)values from
general (co-)terms through a new form of focused sequent with a stricter sense of
active formula held in a stoup (Girard, 1991). LKQ introduces values in the focus
of a stoup on the right (' -V : 4 ; A) and LKT introduces co-values in the focus
of a stoup on the left (I' ; E : A - A), which differ from the more general sequents
(T'Fv:A]Aand I' | e :+ A) that allow for any (co-)term and not just (co-)values.
The new form of sequent calls for additional focusing structural rules FR (in LKQ)
and FL (in LKT), which acknowledge that every value is a term and every co-value
is a co-term. However, the reverse of the focusing rules—which would say that
every (co-)term is a (co-)value—are omitted in LKQ and LKT because they would
collapse the distinction between (co-)values and (co-)terms enforced by the stoup. As
a consequence of the fact that the stoup is one-way, the focus of the inference rules
is forcibly maintained through type checking: working bottom-up, once a (co-)value
is in focus in the stoup, our active attention cannot move to any other type in the
sequent, thereby limiting the derivations we can build on top of focused sequents.

As it turns out (Curien and Munch-Maccagnoni, 2010), distinguishing (co-)values
in type systems like LKQ and LKT correspond with the technique of focusing in
proof theory developed by Andreoli (1992), Girard (1993; 2001), and Laurent (2002).
If we erase the program-level annotations of typing derivations, the active position
in a sequent disappears but the one-way stoup remains giving us two different
sub-logics of the LK sequent calculus corresponding to LKQ in Figure 14 and LKT

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A,B,C € Type
v € Term

V € Value
e € CoTerm

c € Command

A tutorial on computational classical logic 35

2=X|1]|0|AxB|A+B|-4|A—B|A—-B|VX.A|3X.4
w=V|ua.c

s=x| O] (V) [ing(V) [ing(V) | not(e) |Axv]|e V| AX.v| B@V
m=a | fix.c|[]|outie] | outsle] | [e,e] | not[v] | V -e Ha .e| B@e | AX.e
= (ve)

Sequent := (TFv:A|A)|(TEV:A4;A)|(T]e:AFA)|c: (THA)
Core rules:
x:Abx:4; VR la:AFa:4 VL
c:(Tka:4,A) c:(Tyx:A4AFA)
Il'tpa.c:A|A I'|axc:AFA
THV:A:A TEv:A|A T'e:AFAN c
- t
TFV:A|A Wle): (O,TFA,A)
Structural rules:
I'tV:.C;A WR T'EV:C;A Wi
I'tV:Ci;a:4,A Ix:A-V:C;A
TEV:C;p:4,a:4,A Tox:A,y:AFV:C;A L
rtvi{a/B}:C;a:4,A Lox:AEV{x/y}:C;A
I'-V:C;Aa:AB:BN Iy:Bx:ATFV:C;A
XR XL

I'V:C;AB :Ba:AN

Ix:4,y:BTFV:C;A

And the same weakening (WL, WR), contraction (CL,CR), and exchange (XL,XR) as in Fig. 6.

Logical rules:

— 1R
r-(:1;A
I'V:4d;A THV':B;A

no 1L rule

Ile:AFA

0L

no OR rule r[]:0FA

I'le:BFA

TH(V,V'):AxB;A

I'EV:A;A I'tV:B;A

I'|outi[e] :AXBFA

XLy XLy

I'|outyfe] :AXxBFA
I'le:AFA T|é:BEA

+R
Thin(V):A+B;A

Tle:AFA
———— R
I'knot(e): =4 ;A

Ix:AFv:B|A
TFixvid—B;A

R

THV:A;A T |e:BFAN
I'Tke-V:A—B;AN A

I'tv:Ad|A X¢FV(TEA)
IF'EAXv:VX.A;A

THV:A{B/X};A

I'king(V):4A+B;A

+R,

T|leé]:A4+BFA
Thvid|A
—_—m ‘|L
I'|not]v]: =4+ A

THV:4A;A T'|e:BFA

I |[V-e:d—BFAN

I'le:AFa :BA
[|la.e:A—BFA
I'le:A{B/X}+A
I' B@e:VX.AFA

Tle:dFA X¢FVTEA)

TT 8@V 3xA:A R

[|AX.e:3XAFA

Fig. 12. LKQ: The focalized sub-syntax and types for the call-by-value dual calculus.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

36

A,B,C € Type
v € Term

e € Colerm
E € CoValue

¢ € Command

n=FE|fx.c

= (vlle)

Sequent

x:AbFx:4;
¢:(Tha:4,A)
I'Fua.c:A|A

Thv:Ad|A T'|e:A-AN

VR

P. Downen and Z. M. Ariola

c=X|1|0|AxB|A+B|~4|A—B|A—B|VX.A|3X.A
s=x|ua.e| ()] (wv) |in () |ina(v) | not(e) | Axv | E-v]| AX.v| B@v

c=a |[]| out [E] | outs[E] | [E,E] | notp] | v-E | Aa .e | BQE | AX .e

= (Tkv:A|A) | (T|e:AFA) | (T;E:AFA) |c: (THA)

Core rules:

la:AFa 4 VL

c:(Tyx:AFA)
I'ixc:AFA

I';E:AFA

(v|e) : (T, T+ A',A)

Cut FL

T|E:AFA

Structural rules:

I';E:CHA
I';E:Cha:4,A
I';E:CEB :A,a:4,A
IE{a/f}:Cta:4,A
T;E:CHAa: A8 :BN
I;E:CFAPB :Ba:AN

WR

I';)E:CHA

Tox:4;E:CEHA WL

Ix:A4A,y:A;E:CFA L
Ix:A;E{x/y}:CFA

I'y:Bx:AT;;E:CFA X
I x:4,y:BT;E:CFA

And the same weakening (WL, WR), contraction (CL,CR), and exchange (XL,XR) as in Fig. 6.

Logical rules:

1R

r=(0):1|A no 1L rule

Thv:id|A THY:B|A r

JEAEA

0L

no OR rule r;[]:0FA

I';E:BEA

T'FWV):AxB|A

Thv:d|A v

I;out)[E]:AXBFA
:B|A

XL X
I';outy[E]:AXBFA

T;e:AFA T;e:BEA

R
TEim():A+B|a

T'kiny(v)
Ile:AFA
—— — __ R

I'not(e): =4 | A

Ix:AFv:B|A
N

I'Axv:4A—BJ|A

R

Tkv:4A|A T';E:BFA

I'Thev:iAd—B|AN A

THv:A|A X¢FV(THA)
THAX.v:VX.A|A

Thv:A{B/X}+A
THB@v:3X.A|A

+R,

+L
tA+B|A

T;[E,E:A+BFA
I'kv:d4d|A .
I';notly]: =4+ A h
Tkv:A|A T';E:BEA
LU v E:A—BFAN

I'le:AFa :BA
I;la.e:A—BFA

T;E:A{B/X}FA
I';BWE :VX.AFA
Cle:AFA X¢FV(TEFA) -
I:AX.e:3XAFA

Fig. 13. LKT: The focalized sub-syntax and types for the call-by-name dual calculus.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 37

A,B.C € Proposition :=X | T| L|ANB|AVB|-A|ADB|A—B|VX.A|3X.A
T" € Hypothesis ::= Ay,...,An
A € Consequence ::=Ay,...,A,
Sequent :=TFA|T'F4;A

Core rules:
y THAA T AFAN c THA:A
—_— t —_—
ara Ar4; T 'TFAA " rraa R
Structural rules:
A '-C;A A 'C;A
— 2 R — " L
rraa "R TFC;4,A T rara "t rAFC;A F
rEAAA r=CiddA rAdra r44r-Cia
TFAA rrc;4,A F TAFA rArc;a F
TFAABA r THC;AABAN I',B,ATFA “ I'BATEC:A
T A B, AN THECABAN —F T ABTFA U ABTHC A F
Logical rules:
- T [
r=T;A R no TL rule no LR rule) N i L
Fr4:A TEBiA o rara o rB-a o
TFANB;A TLAANBEA 7! TLANBEA '~ 2
rea:a TEB:A rA-a TBEA
TFAVB;A ! TFAVB;A 2 TLAVBFA
TAFA THAA
TF—d;A T,-AFA
T, A+ B,A THA;A T.BFA o, Trdsa I, B A T, AFB,A
TFADB;A I'',T,ADBFAN A I'THA-B;A A TLA-BFA
THAA X¢FV(THA) R T A{B/X}FA
TFVYXA;A T VX AFA
THA{B/X};A . TLAFA X¢FV(TFA)
TFaxXA4;A [AXAFA

Fig. 14. The sub-logic of the LK sequent calculus corresponding to LKQ.

in Figure 15. Notice how, even without the explicit notion of values and co-values,
the stoup still manages to restrict the possible derivations that might be built on top
of it. For example, a proposition in the stoup cannot be subject to structural rules.
These restrictions imposed by focusing can help guide the bottom-up development of
a proof tree, cutting out unneeded flexibility from the inference rules that encourage
proof development to “fail early.” In the LKQ sub-logic, when the VR; rule is
applied to the conclusion I' H AV B ; A we get the premise ' F A ; A where A4 is
still in focus, forcing us to keep working with A to see if we made the correct choice
(perhaps B was the correct disjunct to prove). Dually in the LKT sub-logic, when

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

38 P. Downen and Z. M. Ariola

A,B,C € Proposition :=X | T| L|ANB|AVB|-4A|ADB|A—B|VX.4|3x .4
I" € Hypothesis ::= Ay,...,An
A € Consequence ::= Ay, ..., Ay,
Sequent :=TFA|T;4AFA

Core rules:
) THFAA T AFA ur T AFA
ara AF4 T ' TFA A " rara T
Structural rules:
TEA T;CHA TEA T;CHA
—=" 2 R —= 2
rraa "R O;CraA F rara "t rA,c-a F
rEA4a riCrada o rAAFA rAA4:CEA
TFAA r;cra,a F TAFA r4.,cra F
TCHAABAN r FiCHAA4BA ', B ATHFA L I'BAT:CEA
A B AN TCFABAN *F T ABTFA T ABT;CFA T F
Logical rules:
[T -
I'-T,A R no TL rule no LR rule I'; LEA L
FEAA TEBA ridba o riBEA
TFAAB,A T;AANBEA ! T;AANBFA 2
red4A o THBA o TidFA TiBEA o
TFAVBA ! TFAVBA 2 T;AVBFA
rArA THA4,A
TF—A,A T,-AFA
rArBA - TEAA IiBEN 0 TEAA TGBEN L TARBA
TFASBA " T T.A>BFAA ',TFA-BA A T;A-BFA
PEAA XEFVIES) T;A{B/X}FA L
TFVXAA T;VXAFA
TEA{B/X}A TLAFA X¢FV(TFA)
T 3XAA C;3XAFA

Fig. 15. The focused sub-logic of the LK sequent calculus corresponding to LKT.

the AL rule is applied to the conclusion I' ; A AB I A we get the premise I' ; 4 - A
which forces us to keep working with the 4 in focus in case it was the wrong choice
(perhaps B was the correct assumption to use). So in proof search, focusing makes
the search algorithm more efficient by cutting down on the search space, whereas in
calculi, focusing identifies a well-behaved sub-syntax for the operational semantics.

Dynamic focusing

For the dynamic method of focusing, consider which steps were missing from the
operational semantics. So instead of ruling out troublesome corners of the syntax, we

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 39

F € FocusCxt = (0,v) | (7,0) | iny (O) | inp(0J) | e- O B@O
L € CoFocusCxt :=-¢
Operational rules:
() (FDIE) = Glax(FRIIE)) (v Value,,x ¢ FV(F)UFV(E))
(sv) VL] = vlax- (VL)) (v ¢ Valuey, x ¢ FV(L)UFV(V))
Rewriting rules:

(v) FM = up Olax(FB)) (v¢ Valuey, x ¢ FV(F),p ¢ FV(F)UFV(v))
(v) LD =y vlax-OILKD) (v ¢ Valuey, x ¢ FV(L), y ¢ FV(L)UFV(v))

Fig. 16. The ¢ semantics for the call-by-value (v) half of the dual calculi.

will add additional steps to kick-start stuck commands. Recall that in our stuck call-
by-value command, (((uf.(f]1 - B)),2)|out;[o]), the B operational step was stuck
because a pair with a non-value component needs to interact with a projection. One
thing we can do in this situation is lift the non-value component out of the pair and
assign it a name via an input abstraction. Such a step reveals a hidden p, reduction
and lets the computation continue to bring the application of f to the top:

((uB-(f1L-), 2)louty [a]) o (uB(fI1 - B)|Ex.((x, 2)|out; []))
=y, (fI1 ix((x, 2)[outy [o]))

Now, assuming that the call to f returns the result 3, the computation can continue
along to present 3 as the result to o, yielding the desired answer:

(fI1 - fix.{(x, 2)Jouty [o])) + (3] fix.((x, 2)|outy [«]))
7, ((3,2)|outy [a])
g (3o

That one extra lifting step was all that was needed to continue the computa-
tion and get to the final command. Likewise, the stuck call-by-name command
((1,2)|outy [fix.(0]e}]) has a non-co-value component in the projection, so we can
similarly lift the component out of the projection and assign it a name via an output
abstraction:

((1,2)[outy [x.(0en)]) =2 (uB-((1,2)[out [B]) | fx.(O]or))
7, (0]o)

Lifting non-(co-)value components out of introduction forms of (co-)terms seems to
be the missing step in f-stuck commands.

The full set of such lifting rules are given in Figure 16 for the call-by-value
semantics and Figure 17 for the call-by-name semantics. These operational rules
give a minimal set of extra steps required to reduce hidden computations nested
deeply inside terms and co-terms in a way that matches the call-by-value and call-by-
name semantics for the A-calculus. Additionally, the rewriting rules are generalized
to operate on terms and co-terms directly, making it possible to lift the appropriate
sub-computations out of (co-)terms in any context, rather than only in commands.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

40 P. Downen and Z. M. Ariola

F € FocusCxt := v
L € CoFocusCxt ::=out|[LJ] | outa[TJ] | [L,e] | [E,0 | v-O| B@O

Operational rules:

() (FIEIE) — wa . (Fla)|E)e) (e CoValuey, a ¢ FV(F)UFV(E))
() VlLlel) = (wa . (ViLla])le) (e ¢ CoValuen, o ¢ FV(L)UFV(V))
Rewriting rules:

() Fle|—up.ua.(FlallB)le) (e¢ CoValuey,a ¢ FV(F), B ¢ FV(F)UFV(v))
(sn) Lle] — ay.(ua . (y|Lla])|e) (e ¢ CoValuey,a ¢ FV(L), y ¢ FV(L)UFV(v))

Fig. 17. The ¢ semantics for the call-by-name (n) half of the dual calculi.

For example, the call-by-value operational rule ¢, lets us lift out the non-value v
in the command (iny(v)|o), whereas the generalized rewriting rule lets us lift out v
directly in the term iny(v) itself by abstracting over the co-variable o:

iy (0) =g, penolfix.(ing (x)]a)

This extra generality is necessary when we want to use the rewriting theory to
aggressively perform lifting reductions in advance, as we soon will in the following
subsection. Furthermore, note that extending the semantics of the dual calculi with
the ¢ rules preserves determinism of the operational semantics and confluence of the
rewriting theory, since there are no critical pairs between the ¢ rules and ufin,nup
rules in either the call-by-value or call-by-name calculus.

For the u,fi,f,c, call-by-value operational semantics, the net effect is that the final
commands are always a value yielded to a co-variable or a simple co-value (that is,
a co-variable or a left introduction co-term) applied to a variable as follows:

FinalCommand, ::= (V|a) | (x| E)
V € Value, ::= x| (V,V')|iny(V) | iny(V) | not(e) | Axv |e- V | AX.v| B@V
E, € SimpleCoValue, ::= o | out;[e] | outs[e] | [e,e] | not[v] | V - e | Aoe | B@e | AX e

Dually for the p,ft,f,c, call-by-name operational semantics, the final commands are
always a simple value (a variable or an introduction term) yielded to a co-variable
or a co-value applied to a variable as follows:

FinalCommand, ::= (Vo) | (x|E)
Vy € SimpleValue, ::= x| (v,v") | in(v) | ina(v) | not(e) | Ax.v | E v | AX.w | B@v
E € CoValue, ::= o | out;[E] | outz,[E] | [E,E'] | not[v] | v+ E | Jo.e | BQE | AX .e
If we only take well-typed commands into consideration, then we get a standard
type safety theorem which says that well-typed commands always reduce to a final

command, and do not get stuck on any interacting (and potentially mismatched)
introduction forms:

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 41

Theorem 3 (Type safety)
For any command ¢ : (I' - A):

o if c+» ' by the u,fi,fvrc, operational semantics, then ¢ : (I' = A) and ¢ is
irreducible (i.e., ¢’ v5) if and only if ¢’ is a call-by-value final command, and

e if c+» ' by the p,fi,fuc, operational semantics, then ¢ : (I = A) and ¢ is
irreducible (i.e., ¢’ v) if and only if ¢’ is a call-by-name final command.

This statement of big-step type safety follows from the small-step lemmas of progress
and preservation (Wright and Felleisen, 1994), which can easily be confirmed by
induction on typing derivations and inversion on the possible operational steps.

Lemma 1 (Progress and preservation)
For any command ¢ : (I' - A):

Progress: either c is a call-by-value (respectively, call-by-name) final command or
there is a command ¢’ such that ¢ — ¢’ by the call-by-value p,fi,f,c, (respec-
tively, call-by-name u,fi,fnc,) operational semantics, and

Preservation: if c— ¢ by either the call-by-value p,fi, g, or call-by-name p,pt,fnc,
operational semantics, then ¢’ : (I' F A).

Recall that Aujfi-calculus originally used a different 8 rule for functions, namely
(B7) (axolv" - e) = (V'] 7ix.(v]e)) x & FV(e)

This f~ works the same for both call-by-name and call-by-value reduction; since
the argument v’ is bound to x with an input abstraction, the rules of the core uji-
calculus take over to determine whether or not the argument is evaluated now (by a
U, reduction, for example) or later (by a ji, reduction). Furthermore, this form of
reduction applies more often than the strategy-specific 5, and f,, so we might ask
if it avoids the need of focusing for functions altogether. Unfortunately, the general
B~ rule still suffers a similar, if more subtle, fate as the strategy-specific f rules.
For example, consider the command (f|uf.(1]o) - fix.(O]o)) that corresponds to the
expression letx = f (abortl)inO in a functional language containing the control
operator abort that halts the current computation and yields its argument as the
result. In call-by-value this expression should evaluate to 1, and in call-by-name it
should evaluate to 0, but the f~ rule does not help us since there is a free variable
f instead of a A-abstraction. In this command, the ¢ rules are still necessary to get
the final result, and unfortunately combining the general f~ rule with ¢ creates a
mild form of non-determinism in the operational semantics since some f~ redexes
are also ¢~ redexes (though the associated rewriting theories are still confluent).
As it turns out, though, the combination of lifting and strategy-specific
reductions are more powerful than the generalized f— rule. In call-by-value, the
combination of ¢,”, fi,, and ;> exactly simulate the Aujfi-calculus f~ rule as follows:

(Zxvo" - e) = [c)(Axv|y. (' |ix.(y]x - €))) = [)v'|fox.(Ax.o]x - e))
= [BI=1[o]Kv' [fex.(v]e))

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

42 P. Downen and Z. M. Ariola

In call-by-name, observe that the combination of uf’s f~ and u, rules simulate
the call-by-name-specific 8, even when the call stack is not a co-value,

(Zxv]o" - e) — [B71W'|7x.(v]e)) — [un] (v {v'/x}[e)

but together the fi,n,f; ¢, rules perform the same reduction as follows:

(Ax.o]v" - e) —, (Axv|fy-(po(ylo" - a)|e)) —p, (pow(Axolo" - a)le)
=g (po(v {v'/x}o)e) =y, (v {v'/x}]e)

So even though type safety (Theorem 3) cannot dispense with the ¢ rules by adopting
the Aufi-calculus’ original S~ rules, we can still rely on the combination of strategy-
specific ¢ rules from Figures 10, 16 and Figures 11, 17 to get all the same results
with deterministic operational semantics.

Static versus dynamic focusing

Now that we have two different methods for addressing f-stuck commands, one
question still remains: what do the static and dynamic methods have to do with
one another? As it turns out, they are compatible and complementary solutions
to the same problem—two sides of the same coin—that apply the same essential
idea at different times. First, one of the major features of static focusing in proof
theories and type systems is that the apparent restriction on inference rules is
no real restriction at all: every program (i.e., proof) in the original system has a
corresponding program with the same type (i.e., specification) in the focused sub-
system. We can make this claim more formally for LKQ and LKT by observing
that the syntactic transformations in Figures 18 and 19 translate general dual calculi
expressions into the LKQ and LKT sub-syntaxes, respectively, with the same type
(which can be confirmed by induction on syntax and typing derivations). These
translations are defined in such a way that an expression that happens to already lie
in the LKQ sub-syntax is not altered by Q-focusing translation, and likewise LKT
expressions are not altered by T-focusing translation.

With the focusing translations and the ¢ rewriting theory in hand, we can now
observe that both the static and dynamic methods of focusing amount to the same
thing. In particular, notice that the LKQ sub-syntax is just the ¢,-normal forms
from the original dual calculus and the Q-focusing translation performs call-by-value
gp-normalization, and similarly the T-focusing translation is just call-by-name ¢,-
normalization into the LK T sub-syntax of ¢,-normal forms, which can be confirmed
by induction on the syntax of (co-)terms and commands.

Theorem 4 (Focusing)
e In the call-by-value dual calculus, every LKQ command, term, and co-term is a
co-normal form, and c—», [c]?, v—», [v]9, and e—., [e]2.
o In the call-by-name dual calculus, every LKT command, term, and co-term is a
cn-normal form, and c—, [c]T, v—>, [v]T, and e—, [e]T.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 43

[ve)] £ (D121 1el®)

[]2 2 x
[uo.c]® 2 pa[c]?

10122 () [2]° £ o
[02)]2 2 per (D10 [(e)] Q) [Axe]® 2 x [
[V)]@ £ o (]9 - ([(V)12 o)) e[

[v.v)]2 2 (vI2. [v']9) [outi[e]]? £ out;[[e]]
lin(M]2 £ pa (2 v fim(oplay Lol = 1% []°)
[in:(V)]© 2 ini([V]9) [rotl/]® £ not[[+]°) v ¢ Value,
[not(e)]2 £ not([¢]) [v-e]? 2 fx. (V]2 ay- (] [y~ €]©))
[[lxv]]QAlx [[v]]Q v e]]Qé[[V}]Q'He]]Q

o1 2 po (B10)ax (10 xle)) [Rece]® 2 Aol
[e-V]© 2 [e]°-[V]° [B@e]? £ B@[e]?

[AxV]° 2 AX.[/]° [AX.c]2 2 AX.[]°
[B@v]® £ po([v]?||ax.([B@x]?||)

[B@Vv]? £ Be[v]?

Fig. 18. The Q-focusing translation to the LKQ sub-syntax.
[vle)]” & (17 Ile]™)
[o] 2o
[x.c]” & fux.[c]”

[2 0" 21
[nad’ 2 pafd" foutifel]” £ ix- (ot (xl outifod]) 1)

0 20 [out;[E]]" £ out;[[E]"]
()] 2 (17,] [le,e1]" 2 fux. (o (x| [[er, €]) I [e] ™)

lim()]" 2 ins(B17) 112, €)" 2 ix. et (o) TE, o] el

[not(e)]” £ not([e] ") [E.E H]T £ [[e1" 7[[El]]] e ¢ CoValue,

Ax]” 2 Ax[v]” [not]" £ not[[v]"]

[e-v]” 2 po.(up(B - Pl ey [l 2 mefpa(llv- el)]
[E-] 2 [E] " v-E]" &]" - [E]"

[AX)T & AX.] [tae] 2iale]”

[s@]" £ sap]” [Becl” 2 fix.(ue (x| [B@a]”) [[e]")

[B@E]" £ B@[E]T
[Ax.e]" £ Ax.[¢]"

Fig. 19. The T-focusing translation to the LKT sub-syntax.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

44 P. Downen and Z. M. Ariola

Therefore, the difference between the static and dynamic methods of focusing
is not a matter of what but when: do we prefer to leave ¢ redexes to happen
during execution, or would we rather reduce them all up front as a preprocessing
pass?

Abstract machines

The operational semantics of the core and dual calculi is relatively straightforward
to specify and execute: reduction rules are checked against and applied directly to
commands. The situation in the term-based A-calculus, however, is not so easy; the
next step to take may not be found directly at the top of the term itself, but may be
buried somewhere deep inside. Therefore, an operational semantics for the A-calculus
must also include a search for the next step which is very different from the way that
the A-calculus is implemented on a real machine. To help bridge the gap between the
mathematics and the machine, we can instead use an abstract machine for evaluating
terms. As opposed to an operational semantics that composes together reduction
with a recursive search function as separate steps, an abstract machine is an iterative
interpreter that weaves both parts of evaluation together. To achieve this iterative
structure, an abstract machine for the A-calculus does not act on terms in isolation,
but on a configuration including both terms and a representation of their context
for evaluation. By having direct access to the evaluation context, it can be built up
to search deeper into a term for the next step and then broken down to propagate
results back up.

Let us now consider two different abstract machines for the A-calculus, one im-
plementing call-by-name evaluation and one implementing call-by-value. Although
abstract machines usually implement variable binding explicitly with an environment
that is part of the machine configuration to be closer to a real implementation, here
we will remain more abstract by using substitution-based machines. First, consider
the following substitution-based Krivine-style machine (Krivine, 2007) for call-by-
name evaluation:

(v V'|E) ~ (w|E[O0])
(Ax.0|E[D V') ~» (v {v'/x}|E)

The configuration for this machine contains two parts—a A-calculus term v and an
evaluation context E—so that (v|E) can be understood as “the term v found inside
the context E.” This machine uses two forms of evaluation context—the application
of the computation in question to an argument, E[[] v'], and the empty context,
O—for finding the next f-redex to perform. The first rule is searching for the next
step of the operational semantics; given an application v v/, the function v must
be evaluated first, which is done by looking at v inside the larger context E[[J v].
The second rule is performing a function call by f reduction; if an abstraction
Jx.v is found inside an application to v/, then the result v {v'/x} is returned to the
surrounding evaluation context.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 45

Second, consider the substitution-based CEK-style machine (Felleisen and Fried-
man, 1986) for call-by-value evaluation:

(v v'|E) ~ (|E[E v])
(VIE[O o]) ~ (w|E[V OI)
(VIE[(Ax.v) Q) ~> (v {V/x}|E)

Compared to previous machine, this machine uses one additional form of evalua-
tion context—the application of a function value to the computation in question
E[V O]—for finding the next f-redex to perform. The first rule is the same as before.
The second rule is new, and reflects the fact that in call-by-value arguments must
be evaluated before function calls can be performed; when the function of a call is
found to be a value but its argument is not, then our attention must shift to the
argument to search for the next step. The third rule is a rephrasing of the reduction
rule from before; if a value V is found inside of an application of the abstraction
Jx.v, then the result v {V/x} is returned to the surrounding evaluation context.

Since the dual calculi effectively represents evaluation contexts with an explicit
syntactic object e, it gives us an abstract language for abstract machines (Ariola et al.,
2009). In particular, we may view the syntax of the dual calculi as a higher-level
representation of the above substitution-based abstract machines. The A-calculus
term can be represented by a dual calculus term v, the evaluation context can
be represented by a co-term e, and the configuration of the machine can be
represented by a command c. Interestingly, though, the treatment of focusing in
abstract machines tends to be asymmetrical depending on the evaluation strategy:
call-by-value abstract machines (like the CEK machine above) tend to rely on
dynamic focusing that happens during execution, whereas call-by-name abstract
machines (like the Krivine machine above) tend to maintain static focusing.

We can relate the states of the call-by-name Krivine machine to the call-by-name
dual calculus by translating the evaluation contexts to co-terms. The empty context
can be represented by just an arbitrary co-variable o, and the application to an
argument is represented directly as a call stack co-term: E[(J v'] £ v/ - E. With this
interpretation, the first rule of the machine states the relationship between function
application in the A-calculus and call stacks in the dual calculus, and the second rule
is exactly the 5, operational step:

(0 0'|E) = (uoefole’ -) |E) — [l (o’ E) = (IE[D v'])
(UxolEID) = Gl E) > [87 [nll (0 {t/ /x} | E)

Note that if we always start with a co-value in the machine state then the first rule
only ever builds co-values in the LKT sub-syntax. For example, by evaluating a
term v in the “empty context” as (v]«), the co-term in the machine will always be a
chain of call stacks with some number of arguments like vy - v; - v3 - v4 - . Therefore,
this Krivine-style machine operates within the statically focused LKT sub-syntax.
Now consider how to apply this relationship to the call-by-value CEK machine and
the call-by-value dual calculus. We can extend the previous translation of evaluation

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

46 P. Downen and Z. M. Ariola

contexts to co-terms so that an applied function value is represented indirectly with
an input abstraction: E[V O] = fix.(V|x - E). With this interpretation, the first rule
of the machine relates function application and call stacks as before, the second rule
of the machine is exactly the ¢, operational step, and the last rule is a combined
Fu;” step:
(0 V'|E) = (poe.Qulo" -) |[E) >, (vlv - E) = (|E[O v'])
(VIEIQ v]) = (Vv - E) =, (wlix.(V]x - E)) = (v|E[V OI)

(VIE[(Ax.v) OI) = (VIiy.(Ax.v]y - E)) —p, (Axo|V - E) — [B7 [o])(v {V/x}E)

Notice that this machine does not necessarily operate within the focused LKQ
sub-syntax: the first rule might push a non-value computation onto a call stack. In
this case, the ¢, rule is needed to refocus the machine during execution. Of course,
we could avoid the need for ¢, reduction at run-time by changing our interpretation
of application to pre-c,-normalize the call stack, as in E[v] = fix.(v|fiy.(x|y - E)).
However, this is just a matter of taste since the two timings of focusing amount to
the same thing (Theorem 4).

5.3 Call-by-value is dual to call-by-name

We now turn to the duality for which the dual calculi are named. We saw how
the symmetries of the sequent calculus present a logical duality that captures De
Morgan duals in Section 3.3. This duality is carried over by the Curry—-Howard
isomorphism and presents itself as two dualities in programming languages:

(1) a duality between the static semantics (types) of languages, and
(2) a duality between the dynamic semantics (reductions) of languages.

These dualities of programming languages were first observed by (Filinski, 1989)
from the correspondence with duality in category theory, which was later expanded
upon by Selinger (2001; 2003) in the style of natural deduction. Curien and Herbelin
(2000) and Wadler (2003; 2005) brought this duality to the language of sequent
calculus, and show how it is better reflected in the language as a duality of syntax
corresponding to the inherent symmetries in the logic.

The static aspect of duality between types comes directly from the logical duality
of the sequent calculus. Since duality spins a sequent around its turnstile, so that
assumptions are exchanged with conclusions, we also have a corresponding swap in
the programming language. The dual of a term v of type A is a co-term of the dual
type and vice versa, so that the term and co-term components of a command are
swapped. Likewise, the duality on types lines up directly with the De Morgan duality
on logical propositions. For example, since the types for pairs (x) and sums (+)
correspond to conjunction (A) and disjunction (V), we have the same relationship
with the duality operation:

(4 x B)" £ (41) + (BY) (A + B)" £ (47) x (BY)

Also following the De Morgan duality, negation (—) is self-dual.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 47

Duality of sequents:

(c:(CHA)S &ct (AT ET)

CHv:A|AT 2 A vhat Tt (T]e:AFA)F 2 At Fet At T
(tn Any xS AN 2 X ALt A (AL o A R Aot t AT
Duality of types:

(x)- 2%
TLE 1taT
(AxB)" & (A1) +(BY) (A+B)" & (A1) x (BY)
(A—=B)t &(BY)—(ah) (B—A)" & (aY) = (BY)
(vx.A)* £3x.(A%) (3x.A)* £vX.(AT)
(~A)T &)
Duality of programs:
(viey" £ (et v*)
()" 2% o] 2@
(wot.c)™ £ fiot.ct [fix.c]* 2 ux.c*
0- 21 I*£0
(viva)t & vy ler,e2] ™ £ (et)
in;(v) £ out;[vt] out;le]t £ in;(e*
not(e)® £ notfe"] not[v]* £ not(v')
(Axv)t 2 Az vt Aoelt 2 Aa.(vh)
(e-v)t 2t vt [v-e]t 2yt et
(AX .v): £ AX.[vH] [AX.e]* 2 AX.(e1)
(B@v)*: £ B@vt| [B@e]*: £ B@(et)

Fig. 20. The duality relation between the dual calculi.

With the dual counterpart to functions in place, the full duality relationship of
types and programs of the dual calculi is defined in Figure 20, where we assume an
underlying bijection, denoted by X and @, between variables and co-variables.This
relationship is not just a syntactic word game, but it gives us a duality between
the typing derivations of terms and co-terms (Curien and Herbelin, 2000; Wadler,
2003):

Theorem 5 (Static duality)
e The command c : (I F A) is well-typed if and only if the command c¢* : (A - T')
is.
o Theterm T v : A| A is well-typed if and only if the co-term A+ | vt : AL - T
is.
o The co-term T | e : A+ A is well-typed if and only if the term A+ F e+ : A+ | T+
is.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

48 P. Downen and Z. M. Ariola

Furthermore, if a command, term, or co-term lies in the LKQ sub-syntax, its dual
lies in the LK T sub-syntax and vice versa.

Also, notice that the duality operation is involutive on the nose: the dual of the
dual is exactly the same as the original.

Theorem 6 (Involution)
For all commands ¢, terms v, and co-terms e of the dual calculi, 2w

et 2

L2y and

The dynamic aspect of duality takes form as a relationship between the two
reduction systems for evaluating programs: call-by-value reduction is dual to call-
by-name reduction. That is, if we have a command ¢ that behaves a certain way
according to the call-by-value calculus, then the dual command c¢' behaves in a
correspondingly dual way according to the call-by-name calculus, and vice versa.
The two operational and rewriting semantics mirror each other exactly, rule for rule.

Theorem 7 (Dynamic duality)
¢ =unpe ¢ if and only if ¢ >y pp,c, ¢, and dually ¢ =y gp,c, ¢ if and only if
et unpe ¢ And analogously for the rewriting rules.

This duality relationship inherent to computational interpretations of the sequent
calculus is a useful vehicle for exploring programming language design and imple-
mentation. Because duality is so syntactic in this language, once the general pattern
is set up no cleverness is needed to exploit it: terms are mirrored by co-terms, and
so we can always ask what happens when they switch places. For example, even
though we have presented LK and the dual calculi with subtraction from the start,
it was actually developed after the fact as a means to complete duality (Curien and
Herbelin, 2000). Once a sequent-based language with functions is developed, there is
a glaring gap of symmetry begging one to ask “what happens when A-abstractions
and call-stacks switch places?” Similarly, this syntactic form of duality was used
to ask (Wadler, 2005), and subsequently answer (Ariola et al., 2011), the question
“if call-by-value is dual to call-by-name, then what is dual to call-by-need (Ariola
et al.,, 1995)?” By figuring out what is a call-by-need sequent calculus, the dual to
call-by-need comes for free.

6 Conclusion

We have now seen how the sequent calculus gives us a programming language for
classical logic by using the Curry—-Howard isomorphism to derive another view of
computation. This view lets us look at functional programming from a lower level
using a language tailored for representing abstract machines. The important role of
contexts is always in the background of the /-calculus and functional languages—for
example, when studying the semantics of the A-calculus, contexts explicitly arise in
abstract machines, operational semantics, and CPS—and the sequent calculus gives
a first-class body to the essence of contexts. The language of the sequent calculus
also lets us see the computational meaning of dualities in logic as it is expressed
directly in the syntax of programs, showing us

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 49

e the duality between call-by-value and call-by-name evaluation,
o the duality between manipulating values and manipulating contexts, and
e the duality between types in programming languages, like products and sums.

And in the context of functional programming, these kinds of dualities can be used
to tackle difficult issues like deriving well-founded principles of co-induction from
the more intuitive principles of induction (Downen et al., 2015). We also saw how
the concept of focusing from proof search can be used to maintain type safety
in the sequent calculus, so that we avoid getting prematurely stuck while keeping
computation at the top of a command. The two approaches to focusing in the syntax
or in the reductions amount to the same end, and just differ in their timing: static
focusing (i.e., translating to the LKT and LKQ sub-syntaxes (Curien and Herbelin,
2000)) occurs during “compile-time” and dynamic focusing (i.e., performing ¢-
reductions (Wadler, 2003)) occurs during “run-time.” For an alternative view and
introduction to the sequent calculus from the perspective of proof search rather than
computation see (Pfenning, 2010b), and for an application of focusing for deciding
equivalence of typed A-calculus terms see (Scherer, 2016).

In our experience, we have found that the sequent calculus provides an enlightening
and practical alternative perspective to functional programming that complements
the foundations based on the A-calculus. For example, variations on the A-calculus
are popularly used as an intermediate language in real-world compilers of functional
programming languages, so that the compiler can reason about and optimize pro-
grams. Given the machine-like nature of the sequent calculus, perhaps which would
make for a good intermediate language, too? To answer this question, we designed
such an intermediate language and implemented it as a plugin for the GHC (Downen
et al., 2016), and obtained a representation that was a compromise combining the
advantages of the A-calculus in both direct style and CPS. Of particular note, we
learned how join points—which are a useful feature in both CPS (Kennedy, 2007)
and static single assignment (Cytron et al., 1991) intermediate languages—are still
important and can be incorporated in a direct style language. From this experiment,
we used the connection between natural deduction and the sequent calculus (Gentzen,
1935b) to develop a minimal extension to GHC’s existing intermediate language that
incorporates the join points from our sequent-based language. As a result, we found
that real functional programs benefited from the extension of GHC with join points
(see https://ghc.haskell.org/trac/ghc/wiki/SequentCore for more details of
GHC’s use of join points in practice), confirming that the sequent calculus can serve
as a catalyst in the practice and implementation of functional languages.

In this paper, we only covered the basics of using the sequent calculus as the core
for a programming language. One topic that we did not cover, but is of increasing
importance for the foundations of functional programming, is the concept of polarity.
In terms of computation, polarity takes into consideration not just the operational
meaning of each type (i.e., f-conversion in the A-calculus) but also the observational
meaning of types (i.e., n-conversion in the ZA-calculus). Instead of deciding on a
single strategy for the language once and for all, the programs of each type are
evaluated according to their “optimal” strategy which maximizes their observational

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

50 P. Downen and Z. M. Ariola

properties. For example, #-conversion for functions types happens on terms in the
sequent calculus, so expressions of function type should be evaluated with the call-by-
name strategy to let #-conversion be as strong as possible. In contrast, #-conversion
for sums types happens on co-terms in the sequent calculus, so expressions of
sum types should be evaluated with the call-by-value strategy for the same reason.
This difference in # comes from properties of the inference rules for types and
lets us divide types into two camps: the positive types like sums that warrant a
call-by-value interpretation and the negative types like functions that warrant a call-
by-name interpretation. Lecture materials by Zeilberger (2013), Pfenning (2010a),
and Graham-Lengrand (2016) give an introduction to the idea of polarity in logic
and languages.

The polarized approach shows how we can design languages that incorporate both
eager and lazy evaluation to take advantage of the strengths of both evaluation
strategies without bias as to which one must be the “default” throughout programs.
But even for functional programming languages which (largely) use a single default
strategy, polarity still gives us new insights. For example, polarity gives a logical
reconstruction of pattern-matching as found in functional programming languages
(Zeilberger, 2009) and shows us how to better reason about the equivalence of
functional programs using sum types (Munch-Maccagnoni and Scherer, 2015).
Polarity first arose hand-in-hand with focusing in the study of proof search (Andreoli,
1992; Laurent, 2002), and interestingly it too says something important about
computation. Whereas focusing tells us how to focus attention on sub-computations,
polarity tells us how to adapt the dynamic meaning of types (i.e., how programs
are evaluated) to match the static meaning of types (i.e., how programs are type-
checked). Since the logic of the sequent calculus is the lingua franca of proof
search, the sequent calculus serves as an intermediate common language which
lets us discover the surprising connections between proof search and programming
languages.

Acknowledgments

We would like to thank Luke Maurer, Philip Johnson-Freyd, Matthias Felleisen, and
the anonymous reviewers for their thorough and helpful feedback for improving this
paper. This work has been supported by the National Science Foundation under
Grant no. CCF-1423617 and Grant no. CCF-1719158.

References

Andreoli, J.-M. (1992) Logic programming with focusing proofs in linear logic. J. Log. Comput.
2(3), 297-347. doi: 10.1093/logcom/2.3.297.

Appel, A. W. (1992) Compiling with Continuations. New York, NY, USA, 1992: Cambridge
University Press. ISBN 0-521-41695-7.

Ariola, Z. M. & Herbelin, H. (2003) Minimal classical logic and control operators.
In Proceedings of 30th International Colloquium in Automata, Languages and
Programming:(ICALP 2003). Berlin, Heidelberg:Springer, p. 871-885. ISBN 978-3-540-
45061-0. doi:10.1007/3-540-45061-0 68.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 51

Ariola, Z. M., Bohannon, A. & Sabry, A. (2009) Sequent calculi and abstract
machines. ACM Trans. Program. Lang. Syst. 31(4), 13:1-13:48. ISSN 0164-0925. doi:
10.1145/1516507.1516508.

Ariola, Z. M., Herbelin, H. & Saurin, A. (2011) Classical call-by-need and duality. In
Proceedings of 10th International Conference in Typed Lambda Calculi and Applications
(TLCA °’11). Berlin, Heidelberg: Springer, pp. 27-44. ISBN 978-3-642-21690-9. doi:
10.1007/978-3-642-21691-6_6.

Ariola, Z. M., Maraist, J., Odersky, M., Felleisen, M., & Wadler, P. (1995) A call-by-
need lambda calculus. In Proceedings of 22nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’95). New York, NY, USA: ACM,
pp- 233-246. ISBN 0-89791-692-1. doi: 10.1145/199448.199507.

Church, A. (1932) A set of postulates for the foundation of logic. Ann. Math. 33(2), 346-366.
doi: 10.2307/1968337.

Curien, P-L. & Herbelin, H. (2000) The duality of computation. In Proceedings of 5th ACM
SIGPLAN International Conference on Functional Programming (ICFP ’00). New York,
NY, USA: ACM, pp. 233-243. ISBN 1-58113-202-6. doi: 10.1145/351240.351262.

Curien, P-L. & Munch-Maccagnoni, G. (2010) The duality of computation under focus.
In Proceedings of 6th IFIP TC 1/WG 2.2 International Conference in Theoretical
Computer Science (TCS *10). Held as Part of WCC 2010, TCS, Berlin Heidelberg: Springer,
pp. 165-181. ISBN 978-3-642-15240-5. doi: 10.1007/978-3-642-15240-5_13.

Curry, H. B,, Feys, R. & Craig, W. (1958) Combinatory Logic, vol. 1. North-Holland Publishing
Company.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., & Zadeck, F. K. (1991) Efficiently
computing static single assignment form and the control dependence graph. ACM Trans.
Program. Lang. Syst. 13(4), 451-490. ISSN 0164-0925. doi: 10.1145/115372.115320.

de Bruijn, N. (1968) AUTOMATH , A Language for M athematics. Technical Report 66-WSK-
05, Technological University Eindhoven.

Downen, P. & Ariola, Z. M. (2014) The duality of construction. In Proceedings of 23rd
European Symposium on Programming in Programming Languages and Systems (ESOP
’14). Held as Part of the European Joint Conferences on Theory and Practice of Software,
Lecture Notes in Computer Science, vol. 8410, Berlin Heidelberg: Springer, pp. 249-269.
ISBN 978-3-642-54832-1. doi: 10.1007/978-3-642-54833-8_14.

Downen, P.,, Johnson-Freyd, P. & Ariola, Z. M. (2015) Structures for structural recursion. In
Proceedings of 20th ACM SIGPLAN International Conference on Functional Programming
(ICFP ’15). New York, NY, USA: ACM, pp. 127-139. ISBN 978-1-4503-3669-7. doi:
10.1145/2784731.2784762.

Downen, P., Maurer, L., Ariola, Z. M. & Peyton Jones, S. (2016) Sequent calculus as a compiler
intermediate language. In Proceedings of 21st ACM SIGPLAN International Conference
on Functional Programming (ICFP ’16). New York, NY, USA: ACM, pp. 74-88. ISBN
978-1-4503-4219-3. doi: 10.1145/2951913.2951931.

Felleisen, M. & Friedman, D. P. (1986) Control operators, the SECD machine, and the
J-calculus. In Proceedings of the IFIP TC 2/WG2.2 Working Conference on Formal
Descriptions of Programming Concepts Part 111, pp. 193-219.

Felleisen, M. & Hieb, R. (1992) The revised report on the syntactic theories of sequential
control and state. Theor. Comput. Sci. 103(2), 235-271. ISSN 0304-3975. doi: 10.1016/0304-
3975(92)90014-7.

Filinski, A. (1989) Declarative Continuations and Categorical Duality. Master’s thesis,
Computer Science Department, University of Copenhagen, 1989.

Gentzen, G. (1935a) Untersuchungen iiber das logische schlieBen. I. Math. Z. 39(1), 176-210.
ISSN 0025-5874. doi: 10.1007/BF01201353.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

52 P. Downen and Z. M. Ariola

Gentzen, G. (1935b) Untersuchungen iiber das logische schlieBen. I1. Math. Z. 39(1), 405-431.
ISSN 0025-5874. doi: 10.1007/BF01201363.

Girard, J.-Y. (1987) Linear logic. Theor. Comput. Sci. 50(1):1-101. ISSN 0304-3975.
doi:10.1016,/0304-3975(87)90045-4.

Girard, J.-Y. (1991) A new constructive logic: Classical logic. Math. Struct. Comput. Sci. 1(3),
255-296. doi: 10.1017/S0960129500001328.

Girard, J.-Y. (1993) On the unity of logic. Ann. Pure Appl. Log. 59(3), 201-217. ISSN 0168-
0072. doi: 10.1016,/0168-0072(93)90093-S.

Girard, J.-Y. (2001) Locus solum: From the rules of logic to the logic of rules. Math. Struct.
Comput. Sci. 11(3), 301-506. ISSN 0960-1295. doi: 10.1017/S096012950100336X.

Girard, J.-Y., Taylor, P. & Lafont, Y. (1989) Proofs and Types . New York, USA: Cambridge
University Press. ISBN 0-521-37181-3.

Graham-Lengrand, S. (2016) The Curry-Howard view of classical logic: A short
introduction. Lecture Notes for the MPRI course on Curry-Howard correspondence
for Classical Logic. URL http://www.lix.polytechnique.fr/~lengrand/Work/
Teaching/MPRI/Notes.pdf. Unpublished Manuscript.

Griffin, T. G. (1990) A formulae-as-types notion of control. In Proceedings of the 17th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 90, New
York, NY, USA: ACM, pp. 47-58. ISBN 0-89791-343-4. doi: 10.1145/96709.96714.

Herbelin, H. (1995) Séquents qu’on calcule: de linterprétation du calcul des séquents comme
calcul de A-termes et comme calcul de stratégies gagnantes. PhD thesis, Université Paris 7,
January 1995.

Herbelin, H. (2005) C’est maintenant qu’on calcule : Au coeur de la dualité. Habilitation thesis,
Université Paris 11, 2005.

Howard, W. A. (1980) The formulae-as-types notion of constructions. In To H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic Press, pp. 479—
490. ISBN 0123490502. Unpublished manuscript of 1969.

Kelsey, R., et al. (1998) Revised? report on the algorithmic language Scheme. Higher-Order
and Symb. Comput. 11(1), 7-105. ISSN 1573-0557. doi: 10.1023/A:1010051815785.

Kennedy, A. (2007) Compiling with continuations, continued. In Proceedings of the 12th ACM
SIGPLAN International Conference on Functional Programming, ICFP 07, New York, NY,
USA: ACM, pp. 177-190. ISBN 978-1-59593-815-2. doi: 10.1145/1291151.1291179.

Krivine, J.-L. (2007) A call-by-name lambda-calculus machine. Higher-Order Symb. Comput.
20(3), 199-207. ISSN 1388-3690. doi: 10.1007/s10990-007-9018-9.

Laurent, O. (2002) Etude de la polarisation en logique. PhD thesis, Université de la
Meéditerranée - Aix-Marseille I1.

Munch-Maccagnoni, G. (2009) Focalisation and classical realisability. In Computer Science
Logic: 23rd international Workshop, CSL 2009, 18th Annual Conference of the EACSL, CSL
2009, Berlin Heidelberg: Springer, pp. 409-423. ISBN 978-3-642-04027-6. doi: 10.1007/978-
3-642-04027-6_30.

Munch-Maccagnoni, G. & Scherer, G. (2015) Polarised intermediate representation of lambda
calculus with sums. In Proceedings of the 30th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2015, pp. 127-140. doi: 10.1109/LICS.2015.22.

Ohori, A. (1999) The logical abstract machine: A Curry-Howard isomorphism for
machine code. In Functional and Logic Programming: 4th Fuji International Symposium,
FLOPS ’99, Berlin, Heidelberg: Springer, pp. 300-318. ISBN 978-3-540-47950-5. doi:
10.1007/10705424_20.

Ohori, A. (2003) Register allocation by proof transformation. In Programming Languages
and Systems: 12th European Symposium on Programming, ESOP 2003 Held as Part of the

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 53

Joint European Conferences on Theory and Practice of Software, ETAPS 2003, ESOP 2003,
Berlin Heidelberg: Springer, pp. 399-413. ISBN 978-3-540-36575-4. doi: 10.1007/3-540-
36575-3.27.

Parigot, M. (1992) 1 m-calculus: An algorithmic interpretation of classical natural deduction.
In Logic Programming and Automated Reasoning: International Conference, LPAR ’92,
pages 190-201, Berlin, Heidelberg, July 1992. Springer Berlin Heidelberg. ISBN 978- 3-540-
47279-7. doi:10.1007/BFb0013061.

Peyton Jones, S., Tolmach, A. & Hoare, T. (2001) Playing by the rules: Rewriting as a practical
optimisation technique in GHC. In Haskell Workshop 2001. ACM SIGPLAN.

Pfenning, F. (2010a) Lecture notes on focusing. Lecture notes for the Oregon
Programming Languages Summer School 2010 course on Proof Theory Foundations,
Lecture 4. URL http://www.cs.cmu.edu/~fp/courses/oregon-m10/04-focusing.pdf.
Unpublished Manuscript.

Pfenning, F. (2010b) Lecture notes on sequent calculus. Lecture Notes for the Carnegie Mellon
University course 15-816 on Modal Logic, Lecture 8. URL http://www.cs.cmu.edu/~fp/
courses/15816-s10/1lectures/08-seqcalc.pdf. Unpublished Manuscript.

Emmanuel, P. (2004) Explicit Substitutions, Logic and Normalization. PhD thesis, Université
Paris-Diderot — Paris VII, Jun. 2004.

Reynolds, J. C. (1983) Types, abstraction and parametric polymorphism. In Proceedings of
the IFIP 9th World Computer Congress, Information Processing 83. Amsterdam: Elsevier
Science Publishers B. V. (North-Holland), pp. 513-523.

Reynolds, J. C. (1993) The discoveries of continuations. Lisp and Symbol.
Comput. 6(3-4), 233-248. ISSN 0892-4635. doi: 10.1007/BF01019459. URL
http://dx.doi.org/10.1007/BF01019459.

Reynolds, J. C. (1998) Definitional interpreters for higher-order programming
languages. Higher-Order Symbol. Comput. 11(4), 363-397. ISSN 1388-3690. doi:
10.1023/A:1010027404223.

Scherer, G. (2016) Which Types Have a Unique Inhabitant? Focusing on Pure Program
Equivalence. PhD thesis, Université Paris-Diderot.

Selinger, P. (2001) categories, Control and duality: On the categorical semantics of the
lambda-mu calculus. Math. Struct. Comput. Sci. 11(2), 207-260. ISSN 0960-1295. doi:
10.1017/S096012950000311X.

Selinger, P. (2003) Some remarks on control categories, 2003. URL http://mathstat.dal.
ca/~selinger/papers/controlremarks.pdf. Unpublished Manuscript.

Singh, S., Peyton Jones, S., Norell, U., Pottier, F., Meijer, E., & McBride, C. (2011) Sexy
types—are we done yet? Software Summit. URL https://www.microsoft.com/en-us/
research/video/sexy-types-are-we-done-yet/.

Wadler, P. (2003) Call-by-value is dual to call-by-name. In Proceedings of the 8th ACM
SIGPLAN International Conference on Functional Programming. New York, NY, USA:
ACM, pp. 189-201. ISBN 1-58113-756-7. doi: 10.1145/944705.944723.

Wadler, P. (2005) Call-by-value is dual to call-by-name, reloaded. In Proceedings of
16th International Conference in Term Rewriting and Applications (RTA ’05)., Berlin
Heidelberg: Springer, pp. 185-203. ISBN 978-3-540-32033-3. doi: 10.1007/978-3-540-32033-
3_15. URL dx.doi.org/10.1007/978-3-540-32033-3_15.

Wright, A. K. & Felleisen, M. (1994) A syntactic approach to type soundness. Inform. Comput.
115(1), 38-94. ISSN 0890-5401. doi: 10.1006/inco.1994.1093.

Zeilberger, N. (2009) The Logical Basis of Evaluation Order and Pattern-Matching. PhD thesis,
Carnegie Mellon University.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

54 P. Downen and Z. M. Ariola

Zeilberger, N. (2013) Polarity in proof theory and programming. Lecture Notes for the
Summer School on Linear Logic and Geometry of Interaction in Torino, Italy. URL
http://noamz.org/talks/logpolpro.pdf. Unpublished Manuscript.

Appendix A. Classical versus intuitionistic logic and computation

The fact that the LK sequent calculus can prove the law of excluded middle
(A V (—A)), assured by duality of the law of contradiction (—(A4 A (—A4))) in Section
3.3, means that it is a proof system for classical logic. In contrast, intuitionistic
logic is missing duality since it accepts non-contradiction in general, but rejects
the universal truth of laws like excluded middle or double negation elimination
((m(—A)) o A), only allowing for specialized proofs depending on the particular A
in question. Intuitionistic logic also only validates three of the four De Morgan
laws for commuting negation with conjunction and disjunction, rejecting =(AAB) o
(—=A) V (—B) in particular, showing another break of duality.

(Gentzen, 1935a) introduced another sequent calculus called LJ for formalizing
intuitionistic logic instead of classical logic. Notice that the LK proof of excluded
middle made critical use of multiple consequences and contraction on the right of
the sequent in order to apply both VR; and VR; to the same original consequence.
Without the ability to manipulate sequents with multiple consequences, the general
proof that 4 Vv (—A) is true for any A would not be possible. Such a restriction
would break the symmetry of LK—as multiple hypotheses cannot be mirrored by
multiple consequences—and destroy the duality that let us convert the general proof
of non-contradiction into a proof of the excluded middle. LJ is thus defined as the
restriction of LK where sequents contain exactly one consequence at all times. Note
that with this restriction, LJ does not allow for the right structural rules WR, CR,
and XR since they necessarily involve sequents with more than one consequence.
For the same reason, LJ does not include the logical connectives for negation (—)
and subtraction (—), since the introduction rules for these connectives do not fit
within the single-consequence discipline. In their place, they can be encoded in terms
of the other connectives in LJ as -4 =A4 — 1 and A — B = A A (—B).

The LJ sequent calculus has a close relationship with (Gentzen, 1935a) system
NIJ of natural deduction, which is naturally a proof system for intuitionistic logic
already. More specifically, NJ proofs can be converted to equivalent LJ proofs,
and vice versa. The NJ system of natural deduction is shown in Figure A1, which
corresponds to the polymorphic A-calculus with products, sums, and existential types
shown in Figure A2. We call a leaf of an NJ proof tree that is not closed off by
an axiom (an inference rule with no premise) a free assumption of that proof tree
and call an NJ proof tree without any free assumptions a closed proof. Similarly,
a variable found in a A-calculus term that is not under a matching binder of that
variable (introduced by a A or case term) is called a free variable, and a term
without any free variables is called a closed term. With this terminology in mind, the
correspondence between the two is that there is an NJ proof derivation of B with free
assumptions Ay,..., A, if and only if there is a typing derivation for some term M : B
with free variables x; : A41,...,x, : A,. By taking advantage of the correspondence

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 55

A,B,C € Proposition :=X | T| L|AANB|AVB|ADB|VYX.A|3X.A

1
J— T —_
T ! no TE rule no 1/ rule C LE
A B ANB ANB
I B N o NE} 5 NE,
1% B
B AVB C C
I B V) |
ave ave " c W
g X
B ADB A4
ADOB 2l T
DX EFV(x)
A VX.A
— VE
vxa A{B/X}
g X
DX EFV(+)
A{B/X} w4 € (X ¢ FV(C))
JEy .
xa ! c Xox

Fig. Al. Gentzen’s NJ system of natural deduction.

between NJ and the polymorphic A-calculus and between the LJ restriction of LK
and the analogously restricted dual calculi with a single output, we can demonstrate
the correspondence between NJ and LJ as a translation on programs. Consider
the mutual translations between the polymorphic A-calculus and single-output dual
calculi shown in Figure A3. The fact that these two translations preserve types
means that the logics of LJ and NJ prove the same propositions true.

Theorem 8 (Well-typed translation)

(a) If M : A is a well-typed J-calculus term with free variables of type I, then
[+ [M]Y : A is a well-typed pure dual calculi term.

(b) If T F v : A | is a well-typed pure dual calculi term then []"' : A is a
well-typed A-calculus term with free variables of type T.

(c) If ¢ : (T F o : A)is a well-typed pure dual calculi command then [c]N7 : A is
a well-typed A-calculus term with free variables of type T.

(d) If T'| e : BF o : A is a well-typed pure dual calculi co-term, then for all
well-typed A-calculus terms M : B with free variables of type T, it follows that
[e]N/[M] : A is a well-typed J-calculus term with free variables of type T.

Theorem 9 (LJ-NJ provability)
A proof of Ay,...,A, b B is derivable in LJ if and only if a proof of B with free
assumptions Ai,...,Ay is derivable in NJ.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

56 P. Downen and Z. M. Ariola

A,B,CcType:=X|1|0|AXxB|A+B|4A—B|VX.A|3x .4
M,N,P € Term ::=x

| () | (caseM of)

| (M,N) | out; (M) | outs (M)

Ling (M) | iny(M) | (caseMofin; (x) = N|iny(y) = P)
|Ax.M|MN

| AX.M | M B

| B@M | (case M of X@x = N)

Typing rules:
10
— ——— OF
(:1 no 1E rule no L/ rule caseMof : C 0
M:4 N:B <] M:AxB < M:AxB W Ey
(M,N):AxB out;(M): 4 outy(M): B
—_— —_—s Y
x:A4 * J’:.B
M: 4 M:B M:A+B N:C P:C
+I +1 +1
in(M):4A+B ! iny(M):A+B 2 (caseMofin(x) = N|iny(y) = P):C ~
x
x:
M:B 3 M:4—B N:4 E
Ax.M:4— B MN:B
C(XEFV(x)
M:A M:VX.A
AXM VXA X MB:A{B/X}
x:4 *
C(XEFV(+)
M:A{B/X} M:3XA4 N:C XEFV(E) o,
B@M : 3X A o

(caseMofX@x = N):C ’

Call-by-name rewriting rules:

B out;(My, M) — M;
case in;(M) of

B ing(x1) = Ny — Ni {M/x;}
in(x2) =N,

B7) (Ax.M) N — M{N/x}

B (AX.M) B— M{B/X}

8 e MO Ny (v}
X@y= N

Fig. A2. The polymorphic A-calculus.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 57

Translation from NJ to LJ:

[~ 2«
014 20 [easeMof]~ £ par.(IM]X|[)
[N 2 (], [VT-) fout (M) 2 e (M]X Jouti[a)
case M of L
lins (M1 2 iny([M]-) i () = N|| 2 oI VT), (P o))
in(y) =P
[AxM 2 2x M [M NI 2 pa (M1 IV - @)
IAX M 2 AX.[M] MBI 2 pa (] |Bea)
L]
[Bem]” £ pe M- ﬂxg " Nﬂ 2 o {[MIY JAX fix. V] @)

Translation from LJ to NJ:

[vle)I™ & [e]™ [Iv]™]

[£ x []™ 20O
Twe.c]™ 2 [V [ax.c]™ £ 1etx = Qin [V
[01% £ [01™ £ caseDlof
[rv)I™ 2 (0™, [20Y) - [outie][Y £ [e]Y [outi(D)]
case [Jof
lini()™ £ iny(v]Y) ller. 2]V & iny (x) = [Ki]V]
iy (y) = [K2]™ [y]
[Ax]™ £ 2x.)V Iv-e]™ 2)™ [T V]
[AX] & Ax]V [B@e]™ £ [N [0 B
@)™ 2 pe v [[/N\X.e]]Njé caselJof

X@x = [e]™[x]

Fig. A3. Translations between the polymorphic A-calculus and the pure dual calculi.

Furthermore, because of the consistency of LJ (coming from the consistency of
LK by cut elimination in Theorem 1), the correspondence between LJ and NJ
means NJ is also consistent. Because NJ does not use sequents, we cannot state its
consistency in terms of the contradictory sequent e - e. Instead, we can say that
NI is consistency because the provability of propositions is not a trivial predicate:
there exist some propositions with proofs and some propositions without proofs.
For example, T is axiomatically true in NJ, whereas L does not proof because that
would mean that e - | can be proved in LJ which would lead to an impossible
contradiction caused by L L and Cut.

Corollary 2 (Consistency)

There are propositions A and B such that a closed proof of A is derivable in NJ and
a closed proof of B is not derivable in NJ.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

58 P. Downen and Z. M. Ariola

This gives us a close relationship between the two alternative formalizations of
intuitionistic logic: NJ and LJ. If we want to find a system of natural deduction that
corresponds with the full classical LK sequent calculus, we would have to extend the
NI basis to include proofs of classical reasoning principles. If we are only interested
in provability, a direct way to extend the intuitionistic natural deduction NIJ to
classical logic is to add a sufficiently expressive classical reasoning principle as an
axiom to the system. For example, we could add the law of excluded middle to NJ
to get NK as Gentzen (1935a) did.

However, there is a more programmatic way of looking at the difference between
intuitionistic and classical logic. It turns out that u-abstractions let programs
manipulate their own control flow similar to Scheme’s (Kelsey et al., 1998) callcc
control operator, or Felleisen’s (1992) € operator. Intuitively, a use of callcc or an
abort can be read in terms of an output abstraction that duplicates or deletes its
bound co-variable, respectively, to perform contraction or weakening on the active
type of the term as seen in Section 4:

callcc(Aov) = po.(v]or) abortc = ud.c (0 & FV(c))

This phenomenon is a consequence of Griffin (1990) observation that under the
Curry-Howard correspondence, classical logic corresponds to control flow ma-
nipulation, along with the fact that the LK sequent calculus formalizes classical
logic. Under this interpretation, multiple consequences in the sequent calculus
correspond to multiple available co-variables that give the program multiple possible
exit paths. The weakening and contraction rules on the right for these multiple
consequences correspond to deleting or copying an exit path, respectively. Indeed,
multiple consequences with right-handed structural rules may be seen as the logical
essence for this “classical” form of control effects (so called for the connection
to classical logic as well as callcc being the traditional control operator), since
extending natural deduction with multiple consequences, as in (Parigot, 1992) Au-
calculus. This gives rise to a programming language with control effects equivalent
to the A-calculus with a primitive callcc operator given the type for Pierce’s law
VXVY.(X —» Y) > X) > X (Ariola and Herbelin, 2003) or with a primitive ¢
operator given the type for double negation elimination YX.(X —» 1) —» 1) —» X,
which uses the empty type L.

Appendix B. An implicit treatment of structure

The traditional LK sequent calculus from Figure 4 represents the structural prop-
erties of sequents—exchange, weakening, and contraction—explicitly in the form of
inference rules. However, there are alternate sequent calculi and variations on LK
that forgo these structural rules by baking the properties deeper into the logic itself,
which is especially common when formalizing the type systems for core programming
languages based on the sequent calculus (Curien and Herbelin, 2000; Wadler, 2005;
Curien and Munch-Maccagnoni, 2010; Munch-Maccagnoni and Scherer, 2015). The
first change along this line is to treat the hypotheses and consequences of sequents
as unordered collections of propositions, for example building sequents out of sets or
multisets. This way, the exchange rules XL and XR do not do anything at all, since

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 59

the sequents in the premise and conclusion are considered identical. The second
change is to rephrase the core axiom and cut rules in a way that bakes in weakening
and contraction as follows:
I'kA,0 T,4F96
LAF A0 X TFo

ut

Contraction is completely implicit when hypothesis and consequences are represented
by sets: I, 4,4 and T', A are already the same set. And in any case, even if multisets
are used, contraction can still be derived from these above new Ax and Cut rules.
CL is derived as

TAAFS T.AF A0 X
TLAF o ut

and the derivation of CR is similar. Weakening, unfortunately, cannot be directly
derived in the same manner as contraction, but instead it is admissible. That is to
say, given any proof of the sequent I - 4, we can build similar proofs I', 4 I ¢, and
'+ A4,6 by pushing the unused A through the proof until it is finally discarded by
the generalized Ax rule or another axiom like TL or LL.

In terms of provability—the question of which sequents can conclude a valid proof
tree—the versions of LK with explicit and implicit structural rules are the same.
In the implicit system, exchange is invisible, contraction is a consequence of axiom
and cut, and all weakening is pushed to the leaves. Furthermore, the two different
versions of the axiom and cut rules are interderivable with respect to their different
logics. The explicit Ax rule in Figure 4 is a special case of the implicit one above,
whereas the implicit Ax rule can be expanded into many weakenings followed by
the explicit rule. Likewise, the explicit Cut rule can be derived from the implicit
rule by weakening the two premises until they match, whereas the implicit Cut rule
can be derived from the explicit rule by contracting the result of the conclusion to
remove the duplication. Therefore, up to provability, the choice between these two
different styles for handling the structural properties of sequents in a classical or
intuitionistic logic are a matter of taste.

On the same subject, it is also sensible to consider an alternate version of left
implication introduction and right subtraction introduction that duplicates rather
than splitting hypotheses and consequences among the premises in the style of our
revised Cut above:

I'tA4,0 T,BE I'kA4,0 T,BF6
LA>BFo TFA—B,o

In the presence of structural properties (either explicit or implicit), the two different
> L and —R rules are equivalent up to provability. However, if we want a more
refined view of the structural properties, as in sub-structural logics like linear logic
(Girard, 1987), then these differences become more acute and must be considered
carefully.

The implicit treatment of structural rules in LK corresponds to the variant of
the core pji-calculus type system shown in Figure Bl. In this formulation, there is
no explicit use of structural rules in a typing derivation, but instead the structural
properties of sequents follow from the natural scoping rules for static (co-)variables

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

60 P. Downen and Z. M. Ariola

Mx:AbFx:A4|A "R I'a:AFa:4,A VL
¢:(Tha:4,A) c:(Tyx:AFA)
= AR = AL
Ilua.c:4|A I|ixc:AFA

Thv:A|A Tle:dFA
(Vlle) : (T A)

Cut

Fig. B1. Implicit (co-)variable scope in the core ufi typing.

in the ufi-calculus, more closely analogous to the treatment of variable scope in the
A-calculus. During type checking, an output abstraction I' - po.c : 4 | 6 (dually an
input abstraction I' | fix.c : A F o) signals that the active type A may undergo an
arbitrary number of structural rules depending on how o (dually x) is referenced in
c. During execution, the behavior of structural rules are implicitly implemented by
the substitution operation used by u and /i reduction, corresponding to the structural
steps of a cut elimination procedure.

As with logic of LK in, the choice between the two formulations of the scoping
properties of ufi (co-)variables is somewhat arbitrary and a matter of taste. Since
we are dealing with a calculus corresponding to classical logic, both treatments of
structural properties are equivalent to each other in a sense—both formulations will
admit type checking the same expressions, even in richer extensions of the core
language. However, the two formulations have their own advantages. The implicit
scoping presented in Figure B1 is concise and forgoes the redundancy of repeated
rules, whereas the explicit scoping presented in Figure 6 easily allows for a more
refined analysis of the structural properties and exploration of sub-structural calculi
(Munch-Maccagnoni, 2009) corresponding to sub-structural logics that forbid certain
uses of structural rules. The most important thing, though, is that something is done
to express the scope of (co-)variables in the classical language ufi.

Appendix C. Terminology and notation

Here, we give definitions for the common notations and terminology used in this
article, namely: free variables (Section Cl1), substitution and « renaming (Section
C2), and (deterministic) operational semantics, and (confluent) rewriting theory
(Section C3).

To avoid too much redundancy, we will only consider the definitions for the dual
calculi explicitly. The corresponding definitions for the core uji-calculus follow the
appropriate subset of the dual calculi, and the relevant definitions for LK come
from the following relationship between logical connectives and type constructors:

T=1 1=0 ANB=AXxB AVB=A+B A>B=A->B

The rest of the logical connectives (-, —, ¥, 3X) correspond to the type constructor
of the same name. So the definitions of free variables, substitution, and o renaming
for LK propositions can be translated from the corresponding definitions for dual
calculi types.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 61

C1 Free variables

The set of free variables of a type are defined by the following function:

FV : Type — @(TypeVariable)
FV(X) = {X} FV(=A) = FV(A)
FV(AxB)=FV(A)UFV(B) FV(A+ B)=FV(A)UFV(B)
FV(A— B)=FV(A)UFV(B) FV(A—B)=FV(A)UFV(B)
FV(VX.A) = FV(4) —{X} FV(3X.A) = FV(A)—{X}

The main lines of note is that X has exactly itself in its set of free variables, and
the quantifiers V and 3 bind their given type variable, thereby removing it from
their set of free variables. In contrast, the free type variables of sequents is defined

pointwise in terms of the above function by collecting together the union of all the
free variables in each type:

FV(X,, IA,,,...,Xl IA1 I—(Xl ZBl,...,OCm IBm)
= FV(A,)U---UFV(A))UFV (B))U---UFV (B)

The set of free variables in commands, terms, and co-terms follows a similar logic
to the free variables in types, where (co-)variables are their own free sets, and binders
(w, o, 2, 7, A, A) remove their bound variable from the free set. For the purpose of
representing the result of the FI/ function on commands and (co-)terms, we use the
set AnyVariable which is the union of all variables (x,...), co-variables (o,...), and
type variables (X,...):

FV : Command — ¢(AnyVariable)
V((vle)) = FV (v) U FV (e)
FV : Term — @(AnyVariable) FV : CoTerm — @(AnyVariable)
FV(x) £ {x} FV () = {o}
FV (po.c) = FV (¢) — {a} FV (fix.c) = FV (c) — {x}
FV ((v,0")) = FV (v) UFV (V) FV ([e,€]) = FV (e) U FV (€)
FV (ini(v)) £ FV (v) FV (out;[e]) £ FV (e)

V (not(e)) = FV (e) FV (not[v]) = FV (v)

FV (Axv) = FV (v) — {x}
FV(e-v) = FV(e)UFV (v)
FV (AX.v) = FV (v) — {X}

FV (B@v) 2 FV(B)UFV (v)

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at

FV (Jo.e) 2 FV (e) — {o}
FV(v-e)=FV(v)UFV (e)
FV(AX.e) 2 FV (e) — {X}

V(B@e) = FV (B)U FV (e)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

62 P. Downen and Z. M. Ariola

C2 Substitution

The main obstacle in capture-avoiding substitution is to ensure that, when substi-
tuting underneath a binding form, the bound variable is not free in the expression
being substituted under the binder, which is the action known as capture. The
capture-avoiding substitution of C for Z in a type A, written 4 {C/Z}, is defined as
the following partial function:

xiczy={¢ 1317 (-4){(C/Z} = ~A{c/zZ})
(4% B)(C/Z) 2 (4(C/Z}) x (B(C/Z)) (A+B)(C/Z} = (A(C/Z})+(BIC/Z))
(4= B){(C/Z} 2 (4{C/Z}) ~ (BIC/Z}) (A—B)(C/Z)} = (A(C/Z})— (BIC/Z})
(VX.A) (C/Z} 2 VX (A{C/Z)) (3X.4)(C/Z) £ IX.(A(C/Z))
if X ¢ FV(C) if X ¢ FV(C)

The main lines of interest is what happens during X {C/Z}, in which we must
check whether X and Z are the same type variable to determine whether X is left
unchanged or replaced with C, and during (VX.4){C/Z} and (3X.A){C/Z}, in
which we must check that X is not a free variable of C to avoid capture and fail to
produce any result in that case.

At the level of programs, capture-avoiding substitution follows a similar pattern.
Substituting values for variables is defined as:

(vle) {V/z} = (w{V/z}le{V/z})

(e)X if x#z N
x{V/z} {V Gl a{V/z} £
(pone) {V/z} = pou(c {V /z}) [fix.c] {V/z} = fixc {V /z})
if oo ¢ FV (V) if x¢& FV (V)
0,0 {V/z} = W {V/2},0' {V/z}) le,e1{V/z} = [e{V/z},e {V/z]]
ini(v) {V/z} Zimi(v {V/z}) out;[e] {V/z} = out;[e {V /z}]
not(e) {V'/z} = not(e{V/z}) not[v] {V/z} = not[v {V /z}]
(xv){V/z} 2 Ix.(v{V/z}) oel {V/z) £ Joule{V /z}]
if x ¢ FV (V) if oo ¢ FV (V)
(e-0){V/z} = [e{V/z}]-(w{V/z}) [v-el{V/z} =@ {V/z}) [e{V/z]]
(AX0){V/z} 2 AX.(v{V/z}) [AX.e] (V/z) £ AX.[e{V/z}]
if X ¢ FV (V) if X ¢ FV (V)
(B@u){V/z} = B@(v{V/z}) [B@e] {V/z} = B@[e{V/z}]

Here, we must decide whether x is replaced in x{V//z}, and be careful to avoid
capture when going under the binders g, fi, 2, 4, A, A by failing to produce a result
in the worst case. Substituting co-values for co-variables is defined analogously to
the above with the same free variable checks for capture-avoidance and where two

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

A tutorial on computational classical logic 63

base cases for variables and co-variables are changed to the following:

o ifa#Fy

JLAEE a{E/y}é{E i

Additionally, substituting types for type variables in commands and (co-)terms is
also analogous to the above, where we have fewer places that we need to check for
capture (because variables and co-variables cannot appear in types), but also need
to distribute substitution into existential hiding (B@v) and universal instantiation
(B@e) as follows:

x{C/Z}=x a{C/Z} = u
(Ax){C/Z)} £)x.(v{C/Z}) (Joe) {C/Z) £ Ja(e{C/Z))
(B@v){C/Z} = (B{C/Z})@(v{C/Z}) [B@e]{C/Z}=(B{C/Z})@[e{C/Z}]]

To get around the partiality of the above substitution operations, we can use
o renaming to replace bound variables and avoid undefined cases. Intuitively,
for any instance of substitution, the primary expression being substituted into
(be it a type, command, term, or co-term) can always be « renamed into an
equivalent expression for which substitution has a definite result: for all 4, Z, and
C there is a B =, A4 such that B{C/Z} is defined. The « renaming rules of types

arc:
VX.A=,VY.(A{Y /X)) IX.A=,3Y.(A{Y /X))
Similarly, the o renaming rules of terms and co-terms are:
pone =y up.(c {p/o}) fix.c =, fiy.[c {y/x}]
ixv =y Ay.(v{y/x}) Jov =, 2B.[e{B/x}]
AX.v =, AY.(v{Y/X}) AX.e =, AY.[e{Y/X}]

C3 Rewriting and operational semantics

The single-step operational relation (¢ — ¢’) is a relation between commands
defined by the operational rules stated previously: ¢ — ¢’ if any of the indi-
vidual rules apply. The operational semantics (c+» ¢’) is the reflexive, transitive
closure of the single-step operational relation defined by the following inference
rules:

i ¢ Inclusi c—»c >
o | lctusion Reflexivity

Transitivity

c>»cC c+»c”

An operational semantics is deterministic when each command can step to at most
one other command, i.e., ¢ — ¢y and ¢ — ¢, implies that ¢; and ¢, are identical
commands.

The single-step rewriting relation (—) is a family of relations between commands,
terms, and co-terms, respectively, defined by the rewriting rules stated previously

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

64 P. Downen and Z. M. Ariola

and closed under the following compatibility inference rules:

c—c v—v e—¢é c—c
poe — poc’ (v]e) — (v']e) (v]e) = (vle’) fix.c — fix.c'
vy — v vy > Uh e — € ey — ¢
(v1,v2) = (v}, 02) (v1,02) = (v1,05) [e1,e2] — [€], ea] [e1,ea] — [e1, €]
v—ov e—¢é v—v e— ¢
in;(v) — in;(v) not(e) — not(e') not[v] — not[v'] out;[e] — out;[¢']
v— v v— v e—¢ v—v e—¢ e—é
Axv —> Axv ev—e v e v—eée-v ve—ov-e vie—v-e Ame— Joe
v v—ov e— ¢ e—¢

AX.o — AX.D B@u — B@y' B@e — B@e¢' AX.e — AX.e

The rewriting theory (—») is the reflexive, transitive closure of the family of single-
step rewriting relation defined by analogous inference rules as for the operational
semantics: an inclusion, reflexivity, and transitivity inference rule for each of
commands, terms, and co-terms. A rewriting theory is confluent if any two divergent,
many-step reductions join back together, i.e., c— ¢y and ¢—» ¢, implies that ¢; —» ¢’
and c¢;— ¢’ for some ¢/, and similarly for reductions on terms and co-terms.

Downloaded from https://www.cambridge.org/core. University of Oregon Library, on 29 Oct 2021 at 18:45:48, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50956796818000023

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956796818000023
https://www.cambridge.org/core

