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Behavioral Immunity and Social 
Distancing in the Wild: The Same  
as in Humans?

MARK J. BUTLER IV AND DONALD C. BEHRINGER

The COVID-19 pandemic imposed new norms on human interactions, perhaps best reflected in the widespread application of social distancing. 
But social distancing is not a human invention and has evolved independently in species as dissimilar as apes and lobsters. Epidemics are common 
in the wild, where their spread is enhanced by animal movement and sociality while curtailed by population fragmentation, host behavior, and the 
immune systems of hosts. In the present article, we explore the phenomenon of behavioral immunity in wild animals as compared with humans 
and its relevance to the control of disease in nature. We start by explaining the evolutionary benefits and risks of sociality, look at how pathogens 
have shaped animal evolution, and provide examples of pandemics in wild animal populations. Then we review the known occurrences of social 
distancing in wild animals, the cues used to enforce it, and its efficacy in controlling the spread of diseases in nature.
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Humans are currently beset by a pandemic caused   
 by the severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2), subsequently named COVID-19, which 
has upended modern human society’s economics, travel 
patterns, and social norms. COVID-19 is a member of the 
genetically diverse Coronaviridae, which infect humans, as 
well as a wide range of bird and mammalian hosts, includ-
ing bats, from which the virus putatively jumped into the 
human population (Sohrabi et al. 2020). The World Health 
Organization and the US Centers for Disease Control and 
Prevention have recommended enhanced personal hygiene 
measures (e.g., frequent hand washing, the use of disinfec-
tants), the use of personal protective equipment such as 
face masks, minimization of travel, widespread screening 
for infection, contact tracing, and the avoidance of close 
contact with other humans. The latter precaution—referred 
to as social distancing—is a term now common in the public 
lexicon and a behavior that has become a new social norm 
(Qazi et al. 2020, Wilder-Smith and Freeman 2020). Social 
distancing is a form of behavioral immunity, a more general 
phenomena first described in humans whereby individuals 
detect and avoid other individuals or environments in which 
the potential presence of disease-causing pathogens poses an 
increased risk of infection (Schaller 2006).

Humans are not the only animals that engage social dis-
tancing to thwart the spread of pathogens. A diverse assort-
ment of wild species also practice social distancing (Hawley 

and Buck 2020, Lopes 2020), a behavior that potentially 
plays a role in mitigating the challenges that emerging infec-
tious diseases pose for humans and wildlife alike (Townsend 
et al. 2020). We begin our discussion of social distancing and 
its relevance to the control of disease in wild animals start-
ing with the evolutionary trade-offs associated with social 
grouping, and the ways in which pathogens have shaped 
animal evolution. Despite host adaptations, pandemics are 
not uncommon in wild animal populations as demonstrated 
by a few examples that we describe. We go on to review 
known instances of social distancing by wildlife, summa-
rize the cues typically employed by animals to gauge the 
risk of infection, and explore evidence as to whether social 
distancing is effective in ameliorating the spread of disease 
in nature.

Sociality: Evolutionary benefits and risks
Animals cluster and socialize for many reasons. Local 
patchiness in animal spatial distributions is often an indi-
rect consequence of the capitalization of patchily distrib-
uted resources: food, water, shelter, or mating destinations. 
Aggregation has also evolved as an adaptation that congre-
gates individuals for protection from predators, defense of 
communal resources, mating opportunities, cooperative 
care of young, and exchange of information (Broom et  al. 
2020). But whenever animals aggregate, there are potential 
costs of that association. Close proximity increases the 
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probability of competition, cuckoldry, infanticide, inbreed-
ing, parasitism, and disease (Curley et al. 2015). The ability 
to identify and mitigate these risks allows animals to benefit 
from social interactions in spite of the drawbacks associated 
with aggregation (Curtis 2014) and the loss of interpersonal 
space (Prokopy and Roitburg 2001). Examples of such evo-
lutionary trade-offs crisscross animal lineages and ecological 
purposes: from female elk (Cervus elaphus) that temporarily 
abandon the safety of the herd and prime foraging habitat in 
favor of self-isolation favoring the survival of their newborn 
(Brook 2010) to spiny lobsters that typically congregate by 
day in rocky dens to ward off predators but eschew scarce 
shelters if they are already occupied by diseased conspecifics 
(Behringer et al. 2006, Butler et al. 2015). Among social spe-
cies, natural selection favors individuals who can balance the 
benefits and risks of sociality by recognizing and avoiding 
risky social situations (Loehle 1995).

The power of pathogens
Among the most formidable costs of sociality is infection 
by pathogens, whose evolutionary power is reflected in the 
complex array of host adaptations and defenses present in 
the animal kingdom. Indeed, some theorize that the evo-
lutionary effect of pathogens is so great that it contributed 
to the emergence of sexual reproduction, the argument 
being that the resultant increase in genetic and phenotypic 
diversity buffers populations from devastating epidemics 
(Hamilton 1980, Hamilton and Zuk 1982, Loehle 1997, 
Morran et  al. 2011). The most obvious evolutionary adap-
tation by animals to infection is their immune system, the 
well-known suite of physiological mechanisms that provide 
relief from pathogens and parasites once acquired by hosts. 
But immune responses come at a cost: Some are direct (e.g., 
increase in metabolic rate, amino acid usage, or immunopa-
thology; Lochmiller and Deerenberg 2000, Brace et al. 2015, 
Cressler et  al. 2015), whereas others operate indirectly by 
posing trade-offs with important life processes (e.g., growth, 
reproductive success; Bonneaud et al. 2003, Genovart et al. 
2010). Although hosts can sometimes mitigate the energetic 
or physiological costs of immune function by increasing 
resource intake (Ruiz et al. 2010), in natural environments, 
resources are often limited. If so, the repeated activation of 
the immune system to ward off infection can reduce host 
fecundity, metabolic rate, and food acquisition (Lee 2006, 
Bashir-Tanoli and Tinsley 2014). Hosts are generally better 
off if their immune system is engaged infrequently, which is 
why adaptations such as social distancing play an important 
role in reducing the probability of host exposure to patho-
gens. But when host adaptations fail to protect them from 
disease, the effects of pathogens on animal populations can 
be striking, such as during panzootics—the animal equiva-
lent of human pandemics.

Panzootics in wild animal populations
Animals are plagued by pathogens to varying degrees. Some 
groups such as the Chiroptera (bats) tolerate a diversity of 

pathogens, including those that can be zoonotic (i.e., trans-
ferred to humans; Wibbelt et al. 2010, Streicker and Gilbert 
2020), whereas few pathogens are reported in other taxa 
(e.g., spiny lobsters, Palinuridae; Shields 2011). A number of 
factors, including phylogenetic history, environmental stress 
(e.g., temperature change, contamination), habitat degrada-
tion, and the introduction of a novel pathogen, can favor 
the rapid proliferation of a pathogen within animal popula-
tions, resulting in an epizootic (a nonhuman epidemic) or a 
panzootic if the geographic distribution of the event is large. 
There are many examples of epizootics and panzootics, but 
few are well known beyond the taxonomic borders of the 
scientists who study them.

For over 30 years, chytridiomycosis, caused by the 
pathogenic fungi Batrachochytrium dendrobatidis and 
Batrachochytrium salamandrivorans, has sent approximately 
7% of all amphibian species into decline, catastrophic 
decline (more than 90% reduction in abundance), or likely 
extinction (Fisher and Barner 2020). White-nose syndrome, 
caused by another pathogenic fungus, Pseudogymnoascus 
destructans, has killed millions of bats in North America, 
resulting in the loss of 90% of some species (Langwig et al. 
2016). Since its emergence in North America in 1999, West 
Nile virus has caused the decline of numerous bird species 
and has killed up to 45% of the American crow popula-
tion (LaDeau et  al. 2007). In Europe, rabbits (Oryctolagus 
cuniculus) are plagued by rabbit haemorhagic disease, which 
is caused by a calicivirus that rapidly spread worldwide in a 
panzootic (Abrantes et al. 2012). The virus is so effective at 
reducing rabbit populations that it was purposely introduced 
for rabbit biocontrol in Australia and New Zealand, where 
rabbits are pests.

The rapid spread of pathogens now possible among 
humans because of more efficient and faster global travel 
is an obvious change in human–pathogen dynamics. The 
COVID-19 virus spread among humans across the globe in 
a matter of a few months (Boulos and Geraghty 2020), but 
that rate of spread is only slightly faster than that of some 
diseases in nature. For example, a herpes virus epidemic 
in pilchard fish spread along the Australian coast at a rate 
in excess of 1000 kilometers (km) per month, and morbil-
livirus infections spread among populations of seals and 
dolphins at more than 500 km per month (McCallum et al. 
2003). Calicivirus in Australian rabbits and West Nile virus 
in birds in North America have rates of spread in excess of 
100 km per month (McCallum et al. 2003). The rapid spread 
of terrestrial epidemics is often attributed to flying insect or 
migrating bird vectors (Altizer et  al. 2011). But in the sea, 
where animal vectors of disease are largely absent, pathogens 
are efficiently spread by ocean currents or by migratory fish, 
sea turtles, and marine mammals (Kough et al. 2015). The 
near extirpation of the ecologically important long-spined 
sea urchin (Diadema antillarum) throughout the Caribbean 
in the early 1980s provides a perfect example. In January 
1983, mass mortality of the previously abundant urchins 
was noted on coral reefs off the Caribbean coast of Panama, 
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and by January 1984, the mass-mortality event had swept 
throughout the Caribbean, killing upward of 95% of the 
urchins (Lessios et  al. 1984). It is also not uncommon for 
epizootics to emerge, spread uncontrollably over large areas, 
and then disappear before the causative agent can be identi-
fied. Such is the case for the long-spined sea urchin panzo-
otic, whose putative pathogen remains a mystery.

Pandemics are less common in modern human popu-
lations, owing to our more formidable surveillance and 
response mechanisms (Thompson and Brooks-Pollock 
2019). Unlike wild animals, humans also employ therapeu-
tics to blunt the impact of pathogens. Among the most effec-
tive are vaccines, which curtail recurring outbreaks through 
induced herd immunity before infections reach epidemic 
or pandemic levels. Many of the human viral diseases with 
which we are most familiar (e.g., smallpox, measles, polio, 
influenza) caused repeated pandemics throughout history 
until surveillance and immunization tempered or eliminated 
those outbreaks, as is hoped for with the recent approval of 
vaccines for COVID-19. But immunization is not practical 
for most wildlife populations, and the ecological conditions 
that spark outbreaks are considerably less certain than those 
for humans (Lloyd-Smith et al. 2005).

To counteract the transmission of infectious agents, 
humans and animals share the same general repertoire of 
natural defenses, including population subdivision and limi-
tations on connectivity, sanitation measures, individual social 

distancing, and host-specific innate and acquired immunity 
(figure 1). Humans have added therapeutics, such as vac-
cination to this catalogue of natural defense mechanisms, 
although some ants and bees consume plants and fungi that 
appear to have therapeutic properties (Spivak et al. 2019).

The prevention of disease in wild animal populations

Population subdivision.  At the largest scale, the spatial distribu-
tion (i.e., degree of fragmentation) of a population and the 
level of host connectivity among fragmented subpopulations 
influences the spread of disease. Fragmented populations, 
combined with the limited movement (i.e., connectivity) of 
individuals among subpopulations, offer a spatial bulwark 
against the spread of disease (McCallum and Dobson 2002, 
Brooks et al. 2008). However, such conditions also promote 
greater pathogen virulence (Cote and Poulin 1995, Thrall 
and Burdon 2003, Ezenwa 2004). Therefore, the spatial 
fragmentation of populations poses an evolutionary trade-
off with respect to defense against disease, which is com-
pounded by other well-known trade-offs associated with 
genetic bottlenecks, resource depletion, and susceptibility to 
environmental stochasticity (Schnell et al. 2013).

Innate and adaptive immunity.  From simple protozoans to 
humans, all organisms have an innate immune system, whose 
function is to recognize and eliminate invasive elements 
determined to be non-self (Buchmann 2014). Although inver-
tebrates are only equipped with innate immunity systems, ver-
tebrate animals have evolved an adaptive or acquired immune 
component to augment their innate system. The core function 
of a host’s adaptive immune system is to recognize and dimin-
ish infection by pathogens via a complex array of physiologi-
cal responses. These immune system adaptations are derived 
from the host’s prior exposure to the same species or strain 
of pathogen. The exposure can be through prior infection, 
passive transfer from the mother, or vaccination. What is 
underappreciated is that invertebrate and vertebrate animals 
also engage in various behaviors that offer them behavioral 
immunity and that operate to reduce the probability of host 
infection and therefore preclude activation of their metaboli-
cally costly innate and adaptive immune systems.

Sanitation.  Like humans, social animals practice sanitation. 
Those behaviors include disinfection through grooming 
(e.g., many animal taxa; Sachs 1988, Konrad et  al. 2012, 
Zhukovskaya et  al. 2013), selection of habitats with fewer 
infectious agents (e.g., avoidance of habitats with high con-
centrations of feces; reindeer, kangaroo, fishes; Folstad et al. 
1991, Garnick et  al. 2010, Poulin et  al. 2012, Zhukovskaya 
et al. 2013, Bui et al. 2016), and rejection of potentially infec-
tive food sources (Caenorhabditis elegans, oysters; Meisel 
and Kim 2014, Ben-Horin et al. 2018), among other behav-
ioral sanitation strategies (Hart and Hart 2018).

Not surprisingly, species with the most advanced social 
structures—eusocial animals—have evolved the most 

Figure 1. Graphical depiction of the multiple lines of 
defense that hosts (e.g., rabbit silhouette) employ against 
pathogens (seen at four corners). The first involves 
population-level processes such as spatial structure (e.g., 
fragmentation) and population connectivity (e.g., reduced 
movement, migration). Social distancing by individual 
hosts confers an additional line of defense referred to 
as behavioral immunity, which also includes sanitation 
and quarantine behaviors. Finally, are the host’s own 
physiological responses to infection, conferred by innate 
immunity, acquired immunity, or both.
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sophisticated sanitation behaviors (Cremer et al. 2007, Hart 
2011). Eusocial animals have evolved a sophisticated social 
organization in which a single female or caste produces the 
offspring, and other castes of nonreproductive individu-
als cooperatively care for the young and the maintenance 
of the nest or colony. Those maintenance activities include 
behaviors that reduce the spread of disease through colony 
hygienics. For example, some ants use poisons to disinfect 
their colonies and prevent epizootics (Tragust et  al. 2013), 
and others (e.g., European fire ants, Myrmica rubra) remove 
potentially infectious ant corpses from the colony (Diez et al. 
2012). Similarly, honeybees (Apis mellifera) detect diseased 
or dead larvae, prepupae, and pupae while still in their brood 
chambers and remove them from the hive to reduce the 
likelihood of disease in the colony (Mastermann et al. 2001). 
Still other species of ants and bees practice altruistic suicide, 
in which infected individuals abandon their colonies as a 
sanitation measure to prevent the transmission of pathogens 
(Henize and Walter 2010, Rueppell et al. 2010). The converse 
of such altruistic behaviors is practiced by other species 
when uninfected members of the population drive away or 
avoid infected conspecifics (Daly and Johnson 2011), not 
unlike quarantine strategies used by humans. This has been 
observed in honeybees that act as guards at the entrance 
to their nest and deny entry to diseased bees, warding off 
parasite colonization of the hive (Drum and Rothenbuhler 
1985). Such antisocial behaviors serve to isolate and reduce 
household-scale interactions through social distancing and 
are distinct from behaviors associated with colony sanitation.

Social distancing.  The extensive press coverage of the COVID-
19 pandemic has informed the public about the effectiveness 
of reducing close contact among humans to reduce the 
transmission of pathogenic viruses. The importance of local 
interactions in the transmission of communicable diseases 
among hosts has long been established in the scientific lit-
erature (Thrall and Burdon 2002, Brooks et al. 2008), as is 
the effectiveness of host segregation in reducing the spread 
of pathogens (Grenfell et  al. 1995, Riley 2007). Mankind 
is now engaged in a massive application of social isolation 
designed to confer on humans behavioral immunity to the 
COVID-19 virus.

Social distancing can only be effective if it exceeds the 
spatial scale over which pathogen transmission is likely. The 
present worldwide metric with respect to COVID-19 is the 
familiar recommendation that humans maintain a separa-
tion of at least 2 meters (approximately 6 feet). However, 
recent research on this indicates that gaseous clouds from 
human exhalations may travel even further (Setti et  al. 
2020). Measurements of the distance over which infectious 
pathogens can be spread among hosts are largely unre-
ported for wild animals. Among marine or aquatic species 
for which pathogen transmission is typically waterborne, 
it is the viability of the pathogen in the watery medium 
along with water current velocity that dictate the spread of 
infective agents (Kough et  al. 2015). Our own laboratory 

experiments with the Caribbean spiny lobster (Butler et al. 
2008) suggest that waterborne transmission of the PaV1 
virus among lobsters is on the order of 2 meters—a social 
distancing metric that is coincidentally similar to that 
designed to protect humans from infection during the cur-
rent COVID-19 crisis.

From primates to arthropods, the rather eclectic mix of 
species known to engage in social distancing (figure 2) sug-
gests that the phenomenon has evolved independently many 
times across animal taxa and its occurrence may perhaps be 
under reported. It is important to distinguish active social 
distancing from the behavioral byproducts of infection 
wherein sick individuals move less and therefore have fewer 
social encounters. True social distancing involves specific 
behaviors that have evolved in response to transmissible 
pathogens and parasites so as to increase spatial distances 
among conspecifics and therefore reduce the spread of 
disease. Chimpanzees (Pan troglodytes), our closest primate 
relative, are hypothesized to benefit from avoidance of 
individuals outside of their social group (Freeland 1976), 
and they ostracize individuals infected with communicable 
diseases such as polio (Goodall 1986). Mandrills, a more 
distantly related Old World monkey, select safe social part-
ners and avoid interactions with members of their group 
that they perceive to have orofecally transmitted parasites 
(Poirotte et al. 2017). Social distancing also effects reproduc-
tive interactions, as is seen among female house mice (Mus 
musculus domesticus) who avoid mating with parasitized 
males that could infect them (Kavaliers and Colwell 1995). 
However, the degree to which social distancing is expressed 
may vary depending on social relationships, such as kinship. 
Recent research with vampire bats (Desmodus rotundus) 
whose immune systems were experimentally challenged 
by lipopolysaccharide injections revealed that mother–off-
spring social interactions were less affected by illness than 
interactions with other conspecifics (Stockmaier et al. 2020).

Species that congregate in large aggregations to reduce 
predation risk or improve foraging success (e.g., flocks of 
birds, herds of ungulates, schools of fish) are at a particularly 
high risk of infection by pathogens and parasites, so many 
have evolved behaviors to reduce that risk. For example, 
house finches (Carpodacus mexicanus) avoid other finches 
that are experimentally sickened (Zylberberg et  al. 2013), 
a dramatic change for this highly social, flocking species. 
Laboratory studies of juvenile three-spined stickleback fish 
(Gasterosteus aculeatus) confirm that individual fish avoid 
schools of conspecifics if the school contains individuals 
infected with ectoparasites (Dugatkin et  al. 1994). Healthy 
bullfrog tadpoles (Rana catesbeiana) avoid other tadpoles 
infected by a fungus (Candida humicola) that reduces tad-
pole growth and can lead to death (Kiesecker et  al. 1999). 
Similarly, chorus frog tadpoles (Pseudacris regilla) exposed 
to the free-swimming infectious stages (cercariae) of trema-
todes, exhibited bursts of activity (e.g., fast swimming, 
twisting) not seen in unexposed tadpoles (Daly and Johnson 
2011). Moreover, experimentally anesthetized tadpoles that 
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Figure 2. Summary of host taxa, their pathogens, and types 
of social behaviors used by the host to reduce infection by 
the pathogen.

could not engage in bursts of activity were 20%–40% more 
likely to become infected and, when infected, harbored three 
times as many parasitic cysts. Guppies (Poecilia reticulata) 
infected by an ectoparasite (Gyrodactylus turnbulli) are 
shunned by other guppies in the school (Stephenson et  al. 
2018). Social distancing is also common in social arthropods 
such as hymenoptera (ants, bees, wasps) and spiny lobsters 
(Rosengaus et al. 1999, Behringer et al. 2006, de Roode and 
Lefevre 2012, Anderson and Behringer 2013, Bulmer et al. 
2019).

For the past two decades, we have investigated social 
distancing among Caribbean spiny lobster (Panulirus argus) 
and its consequences for transmission of a novel virus 
(PaV1), the first member of the new Mininucleoviridae 
family (Subramaniam et al. 2020). Unlike the solitary clawed 
lobsters (Homaridae) that occur in the North Atlantic and 
with which North Americans and Europeans are most 
familiar, the more geographically widespread spiny lobsters 
(Palinuridae) are social. Nocturnal foragers, they rest and 
aggregate for protection by day in rocky dens in groups of a 
few to hundreds of individuals (Zimmer-Faust and Spanier 
1987). Seasonal migrations of spiny lobsters also occur en 
masse, strung out on the seafloor in dramatic single-file 
lines or queues (Herrnkind and Cummings 1964, Kanciruk 
and Herrnkind 1978). Juvenile Caribbean spiny lobsters are 
particularly susceptible to the PaV1 virus, which is transmit-
ted short distances in the water among lobsters and is lethal 
in more than 90% of infections (Butler et al. 2008). However, 
healthy lobsters detect and avoid PaV1-infected lobsters, 
refusing to share shelters with their diseased conspecif-
ics (Behringer et  al. 2006), a behavior that is regulated by 
chemical cues (Anderson and Behringer 2013).

Social distancing cues
Although a number of species of wild animals engage in 
social distancing, they all require a means by which unin-
fected individuals can detect infectious conspecifics; that 
is, they must respond to a cue that is a reliable predictor of 
the risk of infection. Human social distancing and the cues 
we use to detect infected people differ fundamentally from 
the practice in wild animals. Moreover, infected hosts can 
sometimes be asymptomatic, providing no visual, auditory, 
or olfactory cues indicating infection. It is this lack of obvi-
ous cues that makes recognition of COVID-19 infections so 
problematic. Absent diagnostic testing, humans rely on visual 
cues such as a feverish appearance (Curtis et al. 2004) or audi-
tory cues such as a cough, a sneeze, or language to avoid pre-
sumably infectious individuals (Angle et al. 2016, Townsend 
et al. 2020), but the accuracy of those cues for determining a 
disease state is often low (Michalak et al. 2020).

Humans also produce unique body odors when our 
immune systems are activated (Olsson et al. 2014), a change 
in odor that our canine companions can detect (Angle et al. 
2016). But we humans are poorly equipped to recognize the 
subtle changes in odor associated with infection, because 
our olfactory senses have diminished through evolutionary 
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time. This loss in olfactory acuity represents an evolution-
ary trade-off in favor of the development of enhanced brain 
function and greater reliance on vision and verbal com-
munication. Indeed, half of the genes that code for olfac-
tory receptors in humans are now nonoperational, a loss 
in olfactory function that is among the most rapid of any 
animal lineage examined—four times faster than any other 
primate (Gilad et  al. 2003). However, human reliance on 
vision has resulted in our keen ability to identify individu-
als by appearance rather than by smell, which has changed 
the means by which humans detect illness in conspecifics. 
Indeed, humans are socially perceptive enough to iden-
tity potentially infected conspecifics through their physi-
cal appearance or behaviors (e.g., coughing or sneezing, 
bedraggled appearance, lethargy) and tend to avoid contact 
with them (Schaller and Park 2011). Taken to the extreme, 
human xenophobic behavior and disgust toward out-groups 
is theorized to have evolved as cultural traits that reduce 
the transmission of pathogens (Navarrete and Fessler 2006, 
Curtis et al. 2011).

In contrast, olfaction appears to be the 
most important mechanism used by wild 
animals to detect illness in conspecifics, 
and some animals then use that infor-
mation for social distancing (figure 3). 
Chemical cues emitted from bullfrog 
tadpoles (Rana catesbeiana) infected by 
a potentially deadly fungus (Candida 
humicola) elicit an avoidance response 
by healthy tadpoles (Kiesecker et  al. 
1999). Healthy spiny lobsters use odors 
to detect infected conspecifics that they 
ostracize. The common guppy (Poecilia 
reticulata) is unusual in that it uses 
both visual and olfactory cues to avoid 
conspecifics infected by an ectopara-
site (Gyrodactylus turnbulli; Stephenson 
et al. 2018). Auditory detection of infec-
tious individuals appears to be uncom-
mon in nature. A rare example occurs 
in termites that produce vibrational 
signals when they encounter spores of 
pathogenic fungi (Rosengaus et al. 1999, 
Bulmer et  al. 2019) and, in response, 
their termite nestmates flee from the sig-
nal, which is hypothesized to reduce dis-
ease within the termite nest. But is there 
evidence that social distancing actually 
reduces the spread of disease in nature?

Effectiveness of social distancing in 
wild animals
For a behavior to evolve as a defense 
against pathogens, it must reduce or 
eliminate infections that negatively alter 
host fitness (Hart 1990). But the effec-

tiveness of host behavior in mitigating pathogen infection 
remains largely unquantified relative to immunological 
defenses, with a few exceptions (Hart 1990, Ezenwa 2004, 
Raberge et  al. 2009). Stephenson and colleagues (2018) 
demonstrated in a laboratory transmission experiment that 
when guppies avoided infected conspecifics, the speed 
of ectoparasite transmission and the number of parasites 
transmitted declined. In another laboratory study, investiga-
tors controlled the exposure of ant (Lasius niger) colonies 
to a fungal pathogen (Metarhizium brunneum), measured 
the subsequent transmission of the pathogen, and quanti-
fied changes in ant social patterns using a network model 
(Stoeymeyt et al. 2018). They found that pathogen exposure 
induced behavioral changes in exposed ants that altered the 
colony’s social contact network and helped contain the out-
break of disease. Lopes and colleagues (2016) used a hybrid 
experimental or modeling approach to assess the effect of 
social behavior on disease transmission in mice. They first 
simulated a disease outbreak in wild house mice by simulat-
ing infections in tagged mice, then monitored their social 

Figure 3. Animals from a wide range of taxa use olfactory and visual cues to 
detect and distance themselves from infected members of their population, 
whereas only humans and ants have been documented to use auditory cues. 
(a) Human (Homo sapiens; photograph: GoToVan, Flickr), (b) mandrill 
(Mandrillus sphinx; photograph: Zweer de Bruin), (c) house mouse (Mus 
musculus; photograph: David Illig, Flickr), (d) bullfrog tadpole (Lithobates 
catesbeianus; photograph: Dave Huth, Flickr), (e) honeybees (Apis mellifera 
with parasitic mite Varroa destructor; photograph: AbsoluteFolly, Flickr), 
(f) European fire ant (Myrmica rubra; photograph: Ryszard, Flickr), 
(g) Caribbean spiny lobster (Panulirus argus; photograph: Donald C. 
Behringer), (h) guppy (Poecilia reticulata; photograph: Holger Krisp), 
(i) mosquitofish (Gambusia affinis; photograph: Robert Hrabik, Missouri 
Department of Conservation), (j) three-spined stickleback (Gasterosteus 
aculeatus; photograph: S. Rae, Flickr), (k) chimpanzee (Pan troglodytes; 
photograph: Matthew Hoelscher, Flickr).
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interactions. They observed reduced social connectivity of 
immune-challenged mice compared with others, which sub-
sequent modeling demonstrated to be theoretically effective 
in reducing the spread of disease. Despite the ingenuity and 
compelling insights these studies offer into the potential 
effectiveness of social distancing in slowing the spread of 
disease, they all relied either on laboratory studies of wild 
animals or modeling to gauge behavioral effectiveness.

Tests of whether social distancing is effective in reducing 
the spread of disease in nature are few. The reasons for this 
are simple. First, there are relatively few documented cases 
of social distancing in wild animals. Second, it is nearly 
impossible to conduct a controlled experiment testing the 
effectiveness of social distancing among wild animals in a 
natural setting. So our research team took advantage of a 
natural experiment to test the practice and outcome of social 
distancing among Caribbean spiny lobsters in their natural 
habitat (Butler et al. 2015). In 2007, a mass die-off of sponges 
in the Florida Keys (Florida, United States) resulted in the 
loss of the primary shelter used by juvenile lobsters over a 
region of approximately 2500 square kilometers. Lobsters 
responded to this loss of shelter by hyperaggregating in the 
few remaining shelters such as coral heads (figure 4), which 
increased their potential exposure to the contagious PaV1 

virus. Despite this large-scale spatial reorganization of the 
lobster population, viral prevalence in lobsters remained 
unchanged after the sponge die-off and for years thereaf-
ter. Field experiments demonstrated why the disease did 
not spread uncontrollably in the population as might be 
expected: Uninfected lobsters exhibited social distancing 
and vacated shelters if occupied by PaV1-infected lobsters 
despite the scarcity of alternative shelters and the higher 
risk of predation incurred when searching for a new shelter 
(Behringer and Butler 2010, Butler et al. 2015). These empir-
ical results were confirmed in simulations from a spatially 
explicit, individual-based epidemiological model (Dolan 
et al. 2014). Combined, the results of these field experiments 
and simulation modeling provide compelling evidence that 
social distancing can prevent epizootics in a wild animal 
system, which is mirrored in the current human experience 
with COVID-19. The varying degrees of social distancing 
edicts imposed by different countries, states, and localities in 
response to the COVID-19 pandemic and the corresponding 
inverse relationship with levels of viral transmission provide 
a similarly convincing argument for the effectiveness of 
social distancing in humans.

Conclusions
Pathogens have immense power to drive population dynam-
ics, alter community stability, and manipulate the behavior 
of animals. The COVID-19 pandemic underscores that 
power in human society but also highlights the effectiveness 
of behaviors such as social distancing in ameliorating the 
spread of disease. But social distancing as a mechanism of 
behavioral immunity is not a unique human construct. A 
number of species spanning the animal kingdom have inde-
pendently evolved behaviors to thwart pathogens, augment-
ing their innate and acquired immune systems. Animals 
that are evolutionarily distant from humans—such as ants, 
bees, and lobsters—use social distancing effectively and effi-
ciently, perhaps in part because of their keen ability to detect 
subtle cues of infection in others. The examples of social 
distancing in wild animals in the present article, although 
they are compelling, are likely a small fraction of those that 
actually exist in nature and reflect the limited investigations 
conducted thus far on this phenomenon in the wild. What 
lessons might we learn about the human experience with 
pandemics from an expanded view of diseases, their spread, 
and their prevention in nature?
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