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Abstract

We study the degenerations of asymptotically conical Ricci-flat Kidhler metrics as
the Kéhler class degenerates to a semi-positive class. We show that under appro-
priate assumptions, the Ricci-flat Kidhler metrics converge to a incomplete smooth
Ricci-flat Kdhler metric away from a compact subvariety. As a consequence, we con-
struct singular Calabi—Yau metrics with asymptotically conical behaviour at infinity
on certain quasi-projective varieties and we show that the metric geometry of these
singular metrics are homeomorphic to the topology of the singular variety. Finally,
we will apply our results to study several classes of examples of geometric transitions
between Calabi—Yau manifolds.
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1 Introduction

Following Yau’s resolution of the Calabi Conjecture [63] the study of Ricci-flat Kihler
metrics has played a central role in geometric analysis. Subsequently, motivated by
questions in differential geometry, mathematical physics, and algebraic geometry there
has been a great deal of interest in extensions of Yau’s theorem to the complete,
non-compact setting [2,3,5,11,15-18,25,28,31,32,35,53,54,61,62], the degeneration
of Calabi-Yau metrics (see, for example, the surveys [56—58] and the references there
in), and the existence of Calabi—Yau metrics on singular spaces (see for example [24,
51]). In this paper we initiate the study of degenerations of non-compact Calabi—Yau
manifolds, and the existence of Calabi—Yau metrics on certain non-compact singular
varieties.

In the compact setting, a special class of Calabi—Yau degenerations are obtained by
degenerating the Kihler class. More precisely, fix a compact Calabi—Yau manifold X,
and let £ ¢ H"1 (X, R) denote the Kihler cone, consisting of all (1, 1) cohomology
classes admitting a Kzhler representative; K is an open convex cone in H!(X, R).
For each class [w] € K, Yau’s theorem [63] yields the existence of a unique Ricci-flat
Kihler metric wcy € [w]. Choose a family of Kéhler classes [w;] € K, ¢t € (0, 1] such
that [w;] — [a] € dK ast — 0. We are interested in understanding the geometry of
(X, wr,cy) ast — 0. Roughly speaking this question can be divided into two cases;
the collapsing case, when | x @" = 0, and the non-collapsing case, when / x>0
The non-collapsing case, is reasonably well understood, thanks to work of Tosatti [59],
Rong and Zhang [47], and the first author and Tosatti [13].

One way to construct a non-collapsed family of Calabi—Yau manifolds is as fol-
lows; suppose X is a normal, Gorenstein, projective variety with K x, trivial. Suppose
that 7 : X — Xg is a crepant resolution of singularities, and let [¢] = 7*[wo]
for some Kihler class [wg] on Xo. A family of Kihler classes on X converging
to [«] gives rise to non-collapsed family of Calabi—Yau metrics. In this case, the
results of [13] say that the Calabi—Yau metrics w; cy converge in CZOO‘;(X \Exc(m)),
to an incomplete metric wp cy and (X, w; cy) Gromov-Hausdorff converge to the
completion (X\Exc(), wo,cy). wo,cy descends to a Ricci-flat metric on X(r)eg, and
one can ask whether the metric geometry of wp cy is related to the geometry of
the Xo. In this case, assuming that [«] € H(X, @), Song [51], proved that
(X\Exc(7), wo,cy) = (X, wo,cy) is homeomorphic to Xo. In particular, this yields
the existence of a natural Calabi—Yau metric on the singular variety Xg.

In this paper we study degenerations of Calabi—Yau metrics on complete non-
compact Calabi—Yau manifolds asymptotic to a cone. Complete, non-compact
Calabi—Yau manifolds were first constructed by Tian—Yau in [53,54], and a plethora
of examples are now known to exist. A particular subset of these are Calabi—Yau
manifolds which are asymptotic to a cone at infinity, these are sometimes called
asymptotically conical Calabi—Yau manifolds. Conical Calabi—Yau manifolds are of
fundamental importance, since they arise as blow-up limits at the singular points in
the limit of a non-collapsing family of Kihler—Einstein manifolds (or more gener-
ally Kédhler manifolds with bounded Ricci curvature). The conical asymptotics should
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be regarded here as akin to the non-collapsing condition in the setting of compact
Calabi—Yau manifolds discussed above.

The first analytic construction of asymptotically conical Calabi—Yau manifolds
was given in [2,3,54], and the construction has been further refined by the work of
many authors, see [15-17,25,28,32,35,61,62] and the references therein. One nice
improvement given by these refinements is that, in analogy with Yau’s theorem in the
compact case [63], one is able to produce an asymptotically conical Ricci-flat Kihler
metric in every suitable Kéhler class on an asymptotically conical Kihler manifold
X . In particular, this yields families of degenerating asymptotically conical Ricci-flat
Kiher metrics, and one can then ask what properties limits of these spaces possess.

The motivation for studying these limits is twofold. First, there is a broad class of
non-compact examples which are expected to model the local behavior of Calabi—Yau
metrics on compact Calabi—Yau manifolds near certain singular limits. Understand-
ing the behavior of these “local" models through singular transitions will help to
sharpen our understanding of the degeneration of Ricci-flat metrics in the compact
setting. Secondly, understanding these metric limits allows us to prove the existence
of asymptotically conical Calabi—Yau metrics on singular spaces. These metrics can
be viewed as interpolating between affine varieties with conical Calabi—Yau metrics
(or equivalently, Sasaki—Einstein manifolds).

Let us describe the set-up under consideration and state our main theorems. The ter-
minologies used in this section will be explained in the next section. Let (X, J, w, 2)
be an open Kihler manifold with trivial canonical bundle, with only one end which is
asymptotic to a Calabi-Yau cone (C, Jc, oc, Q2¢) with rate v > 0. Consider a linear
family of v-almost compactly supported Kihler classes [o;] = (1 — #)[ag] + t[a1] €
Hvl’l (X) for ¢ € (0, 1]. Suppose [«g] satisfies the following assumption.

Assumption 1 [«] contains a semi-positive form «g, and there exists g9 > 0 and
ay € PSH(X, ag) such that g + iaéw > gow for some Kihler form w on X.
Furthermore, assume that ¥ is smooth away from a compact analytic subvariety V C
X,and V = {y = —o0}.

Remark 1 We expect that Assumption 1 essentially always applies, possibly after
weakening the semi-positivity assumption. In fact, in analogy with the main result
of [13], we expect that

V= U Y
YCX:fy adim¥=0

where the union is taken over compact, irreducible analytic subvarieties. We will prove
this in a large class of examples; see the discussion in Sect. 3.1.

In [15], it is proved that for r € (0, 1] there exists a unique asymptotically con-
ical Ricci-flat Kéhler metric w; cy € [o;] satisfying the complex Monge—Ampere
equation

2 -
n __+n
W, cy =1 QAQ
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Our first theorem is the following,

Theorem 1.1 Let 0 < v < 2n and consider a linear family of v-almost compactly
supported Kdhler classes [w;] = (1 — t)[ag] + tw] € HVI’I(X, R) fort € (0, 1].
Suppose [o] satisfies Assumption 1. Let w; cy be the asymptotically conical Calabi-
Yau metrics in [w;]. Then, as t — 0, the Ricci-flat Kdhler metrics w; cy converge in
Crr (X \ V) to an incomplete Ricci-flat Kéiihler metric wo,cy on X \ 'V satisfying

oy =i"QAQ (1.1)

Moreover, we have

(1) wo,cy extends across V as a positive current with locally bounded potentials
and (1.1) holds globally in the sense of Bedford-Taylor [4].

(2) wo,cy is asymptotically conical at infinity and, outside of a compact set K C X,
wo,cy satisfies |Vk(a)0,cy —oC)|wc = O@r="=%), where r(x) = dist(xg, x) is
the distance to a fixed point with respect to the conical Kdhler metric wc.

(3) wo.cy is unique in the sense that, if w is any closed positive current in the class
[wo,cy] with locally bounded potentials, which is smooth on X\ V, asymptotically
conical at any rate § > 0, and satisfying (1.1) on X in the sense of Bedford-Taylor,
then v = wo,cy-

The reader may wish to compare this result with the analogous result in the compact
case [13, Theorem 1.6]. As discussed before, a natural way to construct examples where
Theorem 1.1 applies is to consider resolutions of singular varieties.

Theorem 1.2 Let (X¢, 2) be a normal, log-terminal, Gorenstein variety with Kx,
trivial, and suppose that Xo has compactly supported singularities and admits a
crepant resolution of singularities m : (X, Q) — (Xo, 2). Suppose that L — X
is an ample line bundle on X (see Sect. 5 for the definition of ampleness in this
context). Let [ag] = m*c1(L) € H*(X,R) and suppose that (X, J,w, Q) and
[w:] = (1 — D[ag] + tw] € Hvl'l(X, R) is a family of Kdhler classes satisfying
the same hypothesis as in Theorem 1.1. (In particular [ag] satisfies Assumption 1)
In the situation above the singular Ricci-flat current wy cy descends to a Ricci-flat
Kdihler current on X and satisfies

(1) wo,cy is a smooth Ricci-flat Kihler metric on P (X(r)eg).

(2) wo,cy descends to a Kdihler current on X, (i.e. wo,cy > w for some smooth
Kdhler form w on Xg)

(3) (X(r)eg, wo,cy) is homeomorphic to Xj.

(4) (X, w;,cy, p) pointed Gromov-Hausdorff converges to Xo with the distance func-
tion induced by wg cy.

A couple of remarks are in order concerning the assumptions of Theorem 1.2

Remark2 (1) Theorem 1.2 requires that Assumption 1 to hold for the class [«g]. As
pointed out in Remark 1, we expect that in this situation that we can always take

V=nr"] (X(S)i"g), and we will prove this is a large number of cases in Lemma 3.3.
Although we don’t actually need to assume this for the proof of Theorem 1.2.
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(2) The assumption on the existence of an ample line bundle L may seem at odds
with our discussion earlier in the introduction. In many cases where Theorem 1.2
applies, we will take L = Oy,. This can be done, for example, when Xy is
affine which is a natural setting for studying Calabi-Yau varieties with isolated
singularities.

We apply these results to study several classes of examples. Let us briefly describe
one particular class. Consider the quasi-homogeneous affine variety

Ypg={xy+zl —w? =0} C 4,

where without loss of generality we can assume p < g. Y, 4 is normal, Gorenstein
and log-terminal, and by [12] Y}, , admits a conical Calabi-Yau metric if and only if
q < 2p. A result of Katz [33] says that the Y, , admits p inequivalent small (and
hence crepant) resolutions resolutions p; : Y* — Y, ,, (and if p # ¢ then no small
resolution exists). We therefore have the following picture

y! Y2 ypr-1 ypP

with each pair Y, Y/ related by a flop. When p = 2, this is the well-known example
of the Atiyah flop [1]. In Sect. 6 we apply our results to this setting.

Corollary 1.3 Let Y' be a small resolution of the Y, p singularity, and let wy denote
the Calabi-Yau metric on Y, p. Let [w;] := (1 — t)[ag] + t[w] be any linear family of
Kéihler classes on Y!, where [ag] € H"'(Y!, Q) is not Kéihler. Then forallt > O there
is an asymptotically conical Calabi—Yau metric w; cy € [w;]. Furthermore, there is
a partial resolution ji; : Y — Yy, pandamap v : Y! — Y such that the following
diagram commutes

yi 25 Y
Vi
Y

p.p

Ast — 0, ws cy converge in CIOOOC(Y" \Exc(v)) to an incomplete, asymptotically
conical Calabi-Yau metric @ on Y,Eg and (Y, w;) Gromov-Hausdorff converges to
(Yreg, w) which is homeomorphic to Y. Furthermore, if lag] = O then Y = Yp pr i IS
the identity, and @ = wq the Calabi-Yau metric on Y, p. In particular, when [ap] = 0,

foranyi, j the flop from Y' to Y7 is continuous in the Gromov-Hausdorff topology in
the sense that

i GH, GH i
(Yl? 'wt,CY) — (Yp,p’wo) — (Y'lv 'a)l‘,CY)
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A second general class of examples we consider gives rise to the following specific
example. Let X be a del Pezzo surface of degree d > 2, and let X = Bl »X be the
blow-up at a point p € X. Assume that X is Fano (and if d = 8 assume that X is
toric). Then the canonical cone

C := Spec @ HY(X, —K?m)

m>0

admits a conical Calabi—Yau metric [12,26,40,52,55]. Then we prove

Corollary 1.4 In the above setting, there is an asymptotically conical Calabi—Yau met-
ric on the relative spectrum Z := Spec (Kx ® mp) which is asymptotic at infinity to
the conical Calabi—Yau metric on C.

The metric on Z is constructed as a limit of asymptotically conical Calabi—Yau
metrics on a small resolution, and we again obtain a Gromov—Hausdorff covergence
statement; see Sect. 6 for a complete discussion.

We will explain a speculative picture in which that space Z can be viewed as a
cobordism between Sasakian manifolds; in this case, the link of the A; singularity
(topologically S? x $3) and the link of the cone C (topologically #(9 — d + 1)S? x
$3). The Calabi—Yau metric on Z upgrades this to a cobordism of Sasaki-Einstein
manifolds. In this picture the volume of the geodesic spheres can be viewed as a sort
of Morse function.

The examples above all come from (partial-)resolutions of Calabi—Yau cones. Our
theorem can also yield examples where the complex structure at co is not biholomor-
phic to the asymptotic cone.

Let X be an asymptotically conical Calabi—Yau manifold, then by [29], there exist
a normal Stein space Y with finitely many isolated singularities and there is a holo-
morphic map 7 : X — Y with connected fibers, is an biholomorphim outside the
singularities of ¥ and 7*Oy = Oyx. The map 7 contracts the maximal compact ana-
lytic subset of X and Y is called the Remmert reduction of X. Since Y is a Stein space,
it properly embeds into CV for some N sufficiently large. The singularities of Y are
rational [15, Theorem A.2], and hence Cohen-Macaulay, and since Ky is trivial and
Y is normal, it follows that Ky is trivial and Y is Gorenstein. Hence 7 is a crepant
resolution of Y.

Corollary 1.5 Assuming Assumption 1 holds for [ag] = 0, applying our theorem with
[ap] = 0 € H3(X,R), wo,cy descends to a singular CY current on Y and the AC
Calabi—Yau metrics w; cy in the classes t[w] € H 2(X,R) Gromov-Hausdorff coverge
to the Remmert reduction Y.

The outline of this paper is as follows. In Sect. 2 we discuss some basic properties
of asymptotically conical Kihler manifolds, and state two main propositions (Proposi-
tions 2.5, and 2.6). We give the proof of Theorem 1.1 assuming these two propositions.
In Sect. 3 we discuss the construction of good background metrics, and prove Propo-
sition 2.5. In Section 4 we prove some a priori estimates and deduce Proposition 2.6,
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completing the proof of Theorem 1.1. In Sect. 5 we use L? estimates to prove The-
orem 1.2. Finally, in Sect. 6 we explain examples where Theorems 1.1 and 1.2 are
applicable, and discuss a speculative Morse theoretic picture.

2 Preliminaries
2.1 Asymptotically conical Kahler manifolds

We quote here some basic definitions and an existence theorem for asymptotically
conical Calabi Yau metrics from [15].

Definition 2.1(A) An open Kdhler cone (C, Jc, wc, gc) is a Riemannian cone
(C, gc) with smooth link L that is additionally equipped with a complex structure
Jc such that the Kéhler form is wc = iaér% where r¢ is the distance function
from the tip of the cone.
(B) A Calabi-Yau cone (C, Jc, wc, gc, 2¢) is a Kédhler cone with an additional holo-
morphic volume form Q¢ such that a)g =i ”ZQC AQc.

Definition 2.2(A) A Kihler manifold (X, J, g, w) is called asymptotically conical if
there exist a Kihler cone (C, Jc, gc, wc) and a diffeomorphism @ : C\ Br(0) —
X \ K for some K CC X and o is the vertex of the cone C, and v > 0 such that
the following hold

IVK(@*T = Jo)ge + IVH (@ 0 — w0)lge = 0" ™), VkeN

where the covariant derivatives are taken with respect to gc. We say that X asymp-
totic to C with rate v.

(B) We say that an open Calabi-Yau manifold (X, J, w, 2) is asymptotic to the Calabi-
Yau cone (C, Jc, wc, Qc) with rate v if (X, J, g, ®) is asymptotic to the Kéhler
cone (C, Jc, gc, wc) with rate v, and, in addition

IVK(@*Q — QC)ge = O(rg"™5)

Remark 3 (1) On any asymptotically conical Kéhler manifold, we can always find a
smooth function r : X — R satisfying r = r¢ - ®~! away from some compact
set K where r¢ is the radial distance on the cone C, and furthermore, r satisfies:
IVr| 4+ r|V2r| < C. We will call such an r a radius function.

(2) Infact, itis shownin [15, Lemma 2.14] that ®*J — J¢ always decays at the same
rate as ®*Q — Qc, so it suffices just to assume | VX (P*Q — Q¢) lgc = or~vh).

(3) We will often say (X, J, g, ) is an asymptotically conical Kdhler manifold if it
is asymptotic to some Kéhler cone (C, Jc, gc, @c) at some rate v > 0 by some
map ®. We will therefore often suppress the map @, with the understanding that
all asymptotics are measured with respect to the diffeomorphism ®. Furthermore,
when & is implicit, we will often abuse notation and write wc, Jc, 2¢ in place
of @ H*we, (P~ H*Je, (@~ H*Qc.
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(4) On an asymptotically conical Kihler manifold with rate v we will often refer to
a (1,1) form « being asymptotically conical. By this we mean that there is a
compact set K such that, on X\ K the form o defines an asymptotically conical
Kéhler metric with rate v.

We now quote a versions of the d3-lemma which hold on asymptotically conical
Calabi-Yau manifolds, see [15] for a proof.

Proposition 2.1 (99-lemma, [15], Corollary A.3) Suppose X is an asymptotically con-
ical Kdhler manifold with trivial canonical bundle, then

(1) If a is an exact real (1, 1)-form on X, then o = iddu for some smooth function u.

(2) Ifdimc X > 2, then if o is an exact real (1, 1)-form on X \ K for some compact
subset K, then there exist a compact set K’ containing K such that o = i90u on
X\ K

2.2 Kabhler classes on AC Kdhler manifolds

We recall the definition of a v-almost compactly supported class, this is defined in
[15], but our definition is slightly different.

Definition 2.3 Let X be an asymptotically conical Kihler manifold, then for any class

[a] € H*(X,R), we say that

(1) [«]is a Kéhler class if it contains a positive real (1, 1)-form o > 0

(2) [a] is a v-almost compactly supported class if it contains a real (1, 1)-form &
satisfying |V¥E| = O (r—"7%)

and we will denote the set of all v-almost compactly supported classes by Hvl'l(X ).

Remark 4 Definition 2.3 is slightly more restrictive than the definition given in [15]

where it is only required that the form & be defined away from a compact set. But by

the second part of Proposition 2.1, the condition in [15] implies our condition in the
case when X has trivial canonical bundle and dim¢ X > 2.

In [15], it is shown that if [«] is a v-almost compactly supported and Kibhler,
then one can always construct an asymptotically conical Kéhler form w € [«] with
IVE(w — we)| = O@r~"~%). We will recall this construction below in Section 3.

2.3 Weighted Holder spaces and solvability of Poisson’s equation

Let us recall some useful Holder spaces defined on asymptotically conical manifolds
and some basic theorems regarding the solvability of Poisson equations, which will
be useful for us later on. For a detailed treatment of these material, see [38,39].

Definition 2.4 Let X be a AC Kihler manifold as above.
(1) We define the C f)‘f (X) norm of a function as follows
k
— y+ivJ L
il her = > sup [P T VIu| 4 [V ules

Jj=0
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where r is a radius function and

|VEu(x) — Vku(y)q

[VkM]Ciy_k_a = sup [min(r(x), r(y))? e d(x, )

x#y,d(x,y) <8

where § > 0 is the convexity radius of X (i.e. balls of radius less than § are
convex), and |V¥u(x) — Vku(y)| is defined by parallel transporting Vku(x) along
the minimal geodesic from x to y.

(2) We define CS"V (X) to be the intersection of Cf)‘f (X) overall k > 0.

(3) We will also often use the following space C SOV (X \ V), which we define to be
the space of functions u € Cp> (X \ V) such that (1 — y)u € CSO},(X), where x
is a cutoff function with compact support that is equal to 1 in a neighborhood of
V. Where V is the compact analytic subset coming from Assumption 1.

With these definitions, we now recall a quantitative version of the d9-Lemma for
asymptotically conical Kdhler manifolds with non-negative Ricci curvature, which is
proved in [15].

Proposition 2.2 (Quantitative dd-lemma, [/5], Theorem 3.11) Suppose X is an
asymptotically conical Kihler manifold with Ric > 0, then there exist g > 0, such
that for any 1 an exact (1, 1)-form with n € C=,(X) for 0 < & < &g, then n = i90u
foru e C3°..

Now we wish to recall some Fredholm theory in the spaces C'i;‘ (X), which is
a Banach space with the norm || - || che defined above. In this setting, the Laplace
-V

operator A : CfJ’f;‘;(X ) — Cf;‘ (X) is a bounded map of Banach spaces, and there

is a well-developed Fredholm theory for these spaces on an asymptotically conical
manifold (see, e.g. [39]), which we summarize below.

Definition 2.5 Let (C, g¢) be a Riemannian cone of real dimension n over a smooth
compact manifold L" !, then we denote the set of exceptional weights of the cone C,

-2 [(n—2)2
P = _n2 + (n4) + A : Ais an eigenvalue of Aja-1

These correspond to the growth rates of homogenous harmonic functions on the cone
(C, g0).

The following theorem summarizes Fredholm theory on an asymptotically conical
manifold

Theorem 2.3 ([39], Theorem 6.10) Suppose (X, g) is an asymptotically conical Kdih-
ler manifold of dimension 2n. Consider the mapping

A CHPX) — b0 2.1)

and let P be the set of exceptional weights of the asymptotic cone
(C, gc). Then:
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(1) The operator (2.1) Fredholm if —y ¢ P.
(2) The operator (2.1) is surjective if —y € (2 —2n,00) \ P
(3) The operator (2.1) is injective if —y € (—00,0) \ P

Remark5 We note that P N (2 — 2n,0) = @, hence (2.1) is an isomorphism for all
—y € (2—-2n,0).

Now we state a general theorem regarding the solvability of the complex Monge-
Ampere equation on an asymptotically conical Kédhler manifold, which is proved in
[15].

Theorem 2.4 ([15, Theorem 2.4]) Let (X, J, w) be a open Kiihler manifold asymptotic
to a Kdhler cone (C, Jc, wc) with rate v > 0, and suppose [ € Cfoy_2(X), then
following Complex Monge—Ampere equation then admits a solution

(w+i33p)" = el "

with w, = w +idd¢ > 0 and

(1) If y +2 > 2n, then we can take ¢ € C5°,, and ¢ is the unique solution in C5°, .
(2) If y +2 € (2,2n) then we can take ¢ € Cfoy and ¢ is the unique solution in CSOV.
(3) If y +2 € (0, 2) and —y is not an exceptional weight, we can take ¢ € CSO},.

2.4 Proof of Theorem 1.1

We breakdown the proof of Theorem 1.1 in the following two propositions, and we will
give the proof of Theorem 1.1 assuming these results. We will prove Proposition 2.5
in Sect. 3 and Proposition 2.6 in Sect. 4. Theorem 1.2 will be proved in Sect. 5.

Proposition 2.5 (Constructing background metrics) Supposev > 0, andlet (X, J, o, 2)
be an asymptotic to a Calabi-Yau cone (C, Jc,wc, Qc) with rate v. Suppose
that —v € (—2n,0) and —v + 2 is not an exceptional weight. Suppose [o;] =
(1 = Dol + tag] € Hvl’l(X) is a linear family of Kdhler classes in Hvl'l for
t € (0, 1], and suppose that [ap] € Hul’1 has a semi-positive representative o. Then
there exists ¢ > 0, a compact set K C X and a smooth family of real (1, 1)-forms
wy € [a;] fort € [0, ] satisfying the following:

(1) @ > O0forallt € (0, ¢].

(2) @y = 0and wy = ag on a compact set K CC X. (In fact, we can choose this
compact set K to be as large as we like)

(3) On X\K there holds |Vk(c?)l —wc)lge < Crf"’kfor allt € [0, €] for a constant
C independent of t.

2
(4) There exist y > 0 such that, on X\K the Ricci potentials f; = log* QAL catisfy

w0

the asymptotics |V* f;| < Cr="=> "% uniformly in 1.

Proposition 2.6 (A priori estimates) Let (X, J, w, 2) be asymptotic to a Calabi-Yau
cone (C, Jc,wc, QLc) with rate v > 0, and Hvl’l(X) 3 [a;] = (1 — tH)[ag] + tlo]
is a linear family of Kdhler classes for t € (0, 1] satisfying Assumption 1, and let
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w; € [ay] be the forms constructed in Proposition 2.5. Let ¢; be the solution of the
complex Monge-Ampere equations

(@ + i) = el (=i QA Q) 2.2)

obtained from Theorem 2.4. Then the following estimates hold uniformly in t

(1) lgi| = C.

(2) @1 is uniformly bounded in Cy, (X \ V).

(3) There exista compact subset K C X containing V such that the following estimate
hold outside of K

|VEg, | < Crmrk

for C independent of t.

Now we prove Theorem 1.1 given the above two propositions

Proof of Theorem 1.1 Let [a;] = (1 — 1)[@] + t[ew], then by Proposition 2.5, we can
construct a sequence of background metrics @; € [«;] satisfying the properties stated
in the Proposition. Then using these as background metrics, we can write down a
family of complex Monge-Ampere equations

(@ + 93" = el (=i QA Q)

then by the Theorem 2.4, the equations are solvable for + > 0, and Proposition 2.6
applies to the family of solutions ¢;. Once we have the a priori estimate, it’s then clear
that by taking a subsequence, we can take a limit ¢, — ¢g in Cpx. (X \ V), which
satisfies the equation

(G0 + i09¢0)" = i QA Q 2.3)

smoothly away from the analytic set V. Moreover, ¢q is a bounded by the uniform
CY estimate of ¢r, hence @y + iaégoo extends as a non-negative current on X by
[30], and it does not charge any analytic subsets, so the equation (2.3) holds globally.
From Proposition 2.5 (2), and Proposition 2.6 (3), we see that wy, is asymptotically
conical. It only remains to establish the incompleteness and uniqueness statements of
g, in Theorem 1.1. The incompleteness of wy, follows from the diameter bound in
Lemma 4.14, while the uniqueness is established in Theorem 4.15 O

3 Background metrics

The goal of this section is to prove Proposition 2.5, which constructs a family of “good"
background metrics @; € [«;] whose Ricci potentials decay faster than quadratically.
Indeed, it is easy to construct w; € [«;] satisfying only the first two conditions of
Proposition 2.5. However, the proof of the a priori estimates of Proposition 2.6 depends
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crucially on the additional decay of the Ricci potentials. This idea is used in [15] (see
also [14, Prop. 4.2.6]).

From now on we fix an open Calabi-Yau manifold (X, J, €2) asymptotic to some
Calabi-Yau cone (C, Jc, Q¢c, oc, gc) atrate v > 0. In the following proposition, we
summarize a construction of asymptotically conical Kihler (semipositive) forms in
almost compactly support classes, which is based on [15].

Proposition 3.1 Suppose [«] € Hul'l(X ) contains a (semi-)positive form o, then there
exist a (semi-)positive form w € [a] which agrees with « in a compact set K and
satisfies the asymptotics |V¥(w — wc)| = OG5 forr > 1.

Proof This follows from construction in [15, Theorem 2.4]. O

Proposition 3.2 Suppose that (X, J, Q, wy, 81)iel0,1] are a smooth family of data
which is asymptotic to the cone (C, Jc, Qc, wc, gc) at the rate —v € (—2,0).
Suppose that for t € (0, 1], w; are asymptotically conical Kdhler metrics and wg
is asymptotically conical and semi-positive (1, 1) form. Let f;, t € [0, 1] be the Ricci

20
potentials of w;, defined by eft = ’w# and suppose there is a compact set K C X
so that on X\K, f; satisfy the following asymptotics:
(1) |fil<Cr

(2) V¥ filge < Cr=P=k

where C is independent of t and v < B < 2n — 2 and — B + 2 is not an exceptional
weight.

Then there exist ¢ > 0 and a family of functions u; for t € [0, €] such that the
following are satisfied

(1) There exist a compact subset K C X such that supp(u;) C X \ K
2) a)lk—i— idou; > O—%:l-;ilfp(ut)

3) |Vk';;|gc <Cr e

(4) |VFEL] < CrmPtah

(5) Away from a compact set K, we have

(w; +i33u)" = eli=1i o = QA

where |V ft/| < Cr=2P=* outside a compact set K.

where the constant C is independent of t. In particular, this means if we set w, =
wr + 100uy, then w, converges to wc at the same rate as w;, but the Ricci potentials
fi of w; decays a rate of —2.

Proof We can essentially follow the same procedure as in [15, Lemma 2.12]. First we
want to solve the equation

Ay i =2f
for t > 0, away from a compact set while controlling of the growth of the solutions.

@ Springer



On the degeneration of asymptotically conical Calabi-Yau metrics

We now fix a standard cutoff function y : R — R with

0 forx<l1

XO=0 forx =2

and satisfy 0 < x < 1, |x/| <2, |x”| < 5. Then we define {g : X — R by setting
Cr(x) =x (%), and let ¢ be any metric on X. Then set

g =0-¢REg+ 8

Since wy is semi-positive and asymptotically conical we can choose R sufficiently large
so that go is an asymptotically conical Riemannian metric. Then for all ¢ € [0, 1], g;
defines a background metric and for ¢t € (0, 1], this metric is equal to the w; away
from a compact set.

If —B + 2 is not an exceptional weight, then Ag, : C foﬂ pn—C foﬂ is surjective by
Theorem 2.3, so we can always solve the equation

A Iz ﬁt = 2{ R f t
foru; € Cioﬂ - In fact, by the Implicit Function Theorem [22, Proposition 4.2.19], we

can find a family of smoothly varying solutions for ¢ € [0, ¢), and such that following
bounds hold uniformly for small ¢.

(1) |VKa,| < CrA+2k
k 0y —B+2—k
) |VFSe) < cr P

If we set u; = ¢sii, then u, is supported on supp(¢s), and then we have

i90u;| < |2s1100tiy| + [id/1100s]| + 2]0s] ||
< CesrP + Cr P2 9d¢s| + CrPH vy
< Cr P(gs +rIVes| +r21iddgs)
< Cr P(gs + SIVEs| + $?iddgs))

but since {s(x) = X(%), we see that
IVesl =S~ x'Vrl < s~
and
i99¢s| < S "IV + 11~ liddr| < €S2
where we used that r|iddr| < C. So we have
i99u| < CrP(¢s +©)
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and iddu;, is supported on the support of {s. Hence for S sufficiently large, we can
ensure that w; 4+ iddu; > 0 on the supp(u;).
Away from the compact set K, we have

(w; +i00u,)"
oyl

=1+ f; + 0(|iddu,|?)

=1+ fi+ 06~

, we have

so setting f/ = f; — log (w;+i)anam)"
t

(w; +i00u)" = ef’_ff/a);1
and f/ = f; —log(1 + f; + O (r~?#)) has the desired asymptotics. O

Remark 6 1f —p + 2 is an exceptional weight, we can apply the proposition with §+ ¢
in place of B for ¢ arbitrarily small (since the exceptional weights are discrete). We
can then repeatedly apply Proposition 3.2 to improve the decay of Ricci potential for
a family of metrics until we obtain the decays we need.

The two previous propositions combined proves Proposition 2.5.

Proof of Proposition 2.5 By Proposition 3.1, we can find a semi-positive form wg €
[ao] satisfying the asymptotics |Vk (wc — wo)| = O(r~"7%) and a metric w; € [o1]
satisfying the same asymptotics, then if we write w; by linearly interpolating between
wo and wy, then clearly w; are positive for r > 0 and satisfy the desired asymptotics,
and the Ricci potentials f; satisfy IVEf,| <C(Q+r)~""%.If v > 2, then we can take
y = v and we are done, otherwise, we can apply Proposition 3.2 repeatedly to improve
the asymptotics of the Ricci potentials until they decay faster than quadratically. 0O

3.1 Kahler currents and Null loci in the asymptotically conical case

Before proceeding we would like to briefly discuss Assumption 1. Recall that if (X, w)
is compact Kihler and let K be the Kihler cone of X. Let [] € K is a nef class with
/ o' > 0, then, by results of Demailly-Paun [21] there is a function ¥ : X —
R U {—o00} such that

o+ /193y > ew
for some ¢ > 0, ¥ is smooth on the complement of an analytic subset Z, and {{y =

—oo} = Z. Furthermore, by results of the first author and Tosatti [ 13] ¢ can be chosen
so that the analytic subvariety Z is given by

Null):= [ J Vv

fV odimV —q
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where the union is taken over irreducible analyitic subvarieties V' C X. We expect
that a similar result holds in the asymptotically conical setting. We make the following
conjecture

Conjecture 1 Suppose [a] € Hvl’1 (X, R) is a limit of v-almost compactly support
Kdihler classes. Then there is a function  : X — RU{—o00} suchthata++/—100y >
ew for some asymptotically conical Kdhler form w. Define

Nullw):= ) v (3.1)

Jy adimV=0

where the union is taken over all compact, irreducible, analytic subvarieties V C X.
Then Null(«) is an analytic subvariety, and \r can be chosen so that  is smooth on
X\Null(e) and

{Y = —o0} = Null(x).

At a purely moral level, the reason that non-compact analytic subvarieties should
not enter into the definition of Null(«) in the asymptotically conical setting is that,
at least when [«] admits a semi-positive representative, Proposition 3.1 yields the
existence of a form & € [«] which is asymptotically conical. Thus, if V is a non-

compact subvariety, then | v ad4imV — 400, Of course, this is purely moral reasoning,
since the integral |, v a9mV s not independent of the representative of [«].

Lemma 3.3 Conjecture 1 holds when, [«] is semi-positive and the cone at infinity is
quasi-regular.

Recall that the cone (C, Jc, Q¢, wc, gc) is quasi-regular if the holomorphic vector
field r¢ % ——=1Jc (rc %) integrates to define a C* action.

Proof By aresult of Conlon—Hein [17], building on work of Li [35], if (X, J, 2, w, g)
is asymptotically conical Calabi—Yau with quasi-regular Calabi—Yau cone at infinity,
then there is a complex, projective orbifold M without codimension 1 singularities,
and a orbidivisor D with positive normal orbibundle such that M = X U D, and
—Ky = g[D]forsomeg > 1.Furthermore, every Kéhler form on X is cohomologous
to the restriction of a Kéhler form on M, and the restriction map H LMy - H2(X) is
surjective. Let [w;] = (1—1)[ao]+t[wo] € H! (X) be afamily of v-almost compactly
supported Kdhler classes fort € (0, 1]such that [¢g] is semi-positive. In fact, according
to [15, Proposition 2.5] all Kéhler classes on X are 2-almost compactly supported, so
the assumption of almost compact support can be dropped. Let [&], [&o] € H! (M)
be such that [@] is Kéhler, and [®] | y = lwol, [&0]| y = lao]. Since a is semi-positive,
and D has positive normal bundle, the argument in the proof of [17, Theorem A] shows
that we can find a constant C > 0 so that [&@g] + C[D] is semi-positive, and positive
in a neighborhood of D. Furthermore, since D|p is positive, after possibly increasing
C we can assume that

/ ([&ol + C[DD" > 0
M
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Let 1 : M — M be a resolution of singularities, obtained by blowing up smooth
centers. Since X is smooth, and M has only codimension 2 singularities, we can
assume that 77 | x is an isomorphism, and that 7 is an isomorphism at the generic point
of D. Let E denote the exceptional divisor of w, and let D = 7~ (D) be the total
transform of D. Now we have

*[&] + C[D]

is nef, and big by Demailly-Paun [21]. By the results of [21] and the first author
and Tosatti [13] there is a Kéhler current in 7*[&g] + C[D] which is smooth on the
complement of Null (77 *[&p]+ C [D]). LetY C M beanirreducible analytic subvariety
of dimension p > 0. If Y N7~ (D) = @, then

/ (m*[&o] + C[D])? = / af
Y z(Y)

andso Y C Null(w*[&o] + C[D]) if and only if 7 (Y) C Null([eg]). Now suppose that
YN Y (D)Nnn=1(X) # ¥. Let &g + CBp + ~/—19du be the smooth semi-positive
representative of [@g] + C[D] which is positive in a neighborhood of D. Then, since
7 is an isomorphism at the generic point of ¥ we have

f(ﬂ*[&o]—l-C[D])p =f [ﬂ*(&o+CﬁD+«/—_135u)]p+/ (&0
y Y\(ENY)

7 (Y)
47, CBp + vV—130u)? > 0,

where the last inequality follows from the fact that &9 + CBp + +/ —19du > 0 and
there is a neighborhood of 7 (Y) N D where &g + CBp + +—100u > 0. Thus we
have

Null(7*[&0] + C[D]) N (1 (D))* = = =" (Null([ao])) .

Since  : M\ ~!(D) — X is an isomorphism, the result follows. O

4 A priori estimates

In this section, we prove Proposition 2.6. Let us first recall the general setup of the
proposition. Let (X, J, w, €2) be an asymptotically conical Calabi-Yau manifold which
is asymptotic to the Calabi-Yau cone (C, Jc, wc, 2¢) with rate v > 0, and [o/] =
(1 —=0)[ao] +tla1] € Hvl’1 fort € [0, 1] is a family of v-almost compactly supported
classes such that [«;] is Kéhler for ¢ > 0. Suppose [«g] satisfies Assumption 1. Then
let o; € [oy] for ¢ € (0, 1] be a family of asymptotically conical Kéhler metrics
satisfying the conclusion of Proposition 2.5. Then by Theorem 2.4, we can solve the
equation

(@r + i) =" QA Q(=e1a])
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for ¢, € CZ,(X), the our goal in this section is to prove a priori estimates on the
potentials ¢; that are uniform in ¢ as ¢t — O.

4.1 Uniform estimates

In this section, we prove a uniform bound for ¢, that is independent of 7. In the compact
case, such an estimate can be proved using pluripotential theory following the seminal
work of Kolodziej [34], see [24]. Pluripotential methods allow one to obtain an estimate
with a sharper dependence on the data of the right hand side. However, such methods
are hard to adapt to the non-compact setting and no proper analogue of such estimates
are known. It would be of interest to try to find extensions of the pluripotential estimates
to the non-compact setting, as it would give a sharper estimates which would apply
more generally to singular Calabi—Yau manifolds not admitting crepant resolutions.
Instead, we will use an idea based on the original argument of Yau [63] using the
Moser iteration. However, following an idea of Tosatti [59] we perform the Moser
iteration using the Calabi—Yau metrics w,, = &; +1i d9¢; as background metrics. The
advantage of this trick is that since the metrics wy, are Ricci flat and asymptotically
conical, they have a uniform Sobolev inequality by results of Croke [19] and Yau [64].

Proposition 4.1 The metrics wy, satisfy a uniform Sobolev inequality of the form

—1

A\
(/ |u|~li"Q/\Q)
X

Proof 1Tt suffices to prove the result for compact supported smooth functions. Results
of Croke [19] and Yau [64] show that for a compactly supported function u, with
supp(u) C 2 for an arbitrary relatively compact set 2 C X, (4.1) holds for a constant
C, depending on an upper bound for the diameter of €2, a lower bound for the volume
of 2, and a lower bound for the Ricci curvature. We only need to exploit the scale
invariance of these quantities for asymptotically conical Calabi-Yau metrics. Fix a
point xo € X. Since w,, are asymptotically conical, for R sufficiently large we have

2 .n? A
< C/X|d”|wwln QAQ 4.1)

Vo, (Br(x0)) ~ R**Vol,,.(L)

Doy
where L is the link of the cone, identified with {rc = 1} C C, and the volume is
computed using the conical Calabi-Yau metric wc. Therefore, if wg = R _za)wt, then
with respect to the rescaled metric the diameter is 1, and the volume is Vol (L).

Since (4.1) is scale invariant, the result follows. m]

Proposition 4.2 Given solutions ¢; to (2.2), with |Vkg| = O~ =%) we have the
following uniform estimate for the potential

|§0t| = C”q)t ”L”(i"zﬂ/\f_Z)
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=2 > 1 and C depending on n, p, and a uniform bound on ||~ —1| .4

forany p >
forq € [p, o]

Proof If we set T; = Zk —0 a)% N 1=k then we can rewrite the equation as
. a —_ . 2 —~
—iddg AT, = (e = DI"QAQ
multiplying both sides by |¢;|”?~2¢; and integrating, we get
—/ e P2 @iddr AT, = / 91720~ — DT QA D
M M

we will integrate by parts on the first term
- / @i |P 2 @ridde AT,
M
= lim (—/ Iwzlpzsoziaésot/\Tz>
R—o0 Br
= lim ((p—l)/ |¢t|l’—2ia<owéswn—/ |¢t|P—2¢ti5¢,AT,)
R—o0 B, 9BR

4(p — 1 - -
= e —1) 5 )/ ia|<p,|§ /\Blwzlg AT, — lim / loe 1P 2@ridy A Ty
p M R—o0 9BR

=0 for p>¥

Combined with the Sobolev inequality, we have

= 2 _ )
</ G Q) = CL/ o P e ™ — 11" Q@ A Q2
M 4p—1) Ju

for any p > 2”)/—_2 By Holder’s inequality, we have (below é + % =1

2 2
np np
||<sz| Pt SCW\H@:I” ipglle™ 7 -1, T“‘/””mp blle™ 7 -1,
4.2)
picking ¢ such that g = # > 1, we get
P L W T
n —_— et — p
% it = A(p — 1) % Lt
CCsnp? -1
< ———lell;
4p—-1
a standard Moser iteration argument gives the result. O
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Proposition 4.3 For any p > 27”, we have a uniform LP estimate of the form
lgillLr <C
for C depending on n, p and ||e~f — l||L%.

Proof In Eq. (4.2), if we pick ¢ = -2+ -2, then ¢’ = —"2— and we get

p—1n—-1° n+p+1
2
np p
. < C———|e /' =1 np
el pony = A — 1)|| ”Lﬁh
relabelling p to be -2 gives us our result. i

Corollary 4.4 The potentials ¢; are bounded in LP uniformly int forany p € (%, o],

lg:lir = Cp
In particular, the potentials ¢; are uniformly bounded in C°.

Proof This follows by combining Propositions 4.2 and 4.3. Note that since | f;| <
Cr~v~2 outside a fixed compact set, we have an estimate ||e~ /" — 1 IIL% <Cfora

2n—2
=5

constant C independent of p, ¢ for any p > O

4.2 Convergence of the metric away from the degeneracy locus

In this section, we prove an estimate for dd¢, away from V, the subvariety coming
from Assumption 1. Recall that by Assumption 1, there exist € PSH (X, og) which
is smooth outside of V and goes to —oo near V, the idea is to use this function as a
barrier function in the C? estimate, and this is first used by Tsuji in in [60] to study
Kéahler—Ricci flow. We remark that this is the only part of the Theorem that uses the
current in Assumption 1.

Before we prove the estimate, we first construct a slightly more better behaved
barrier function ¥, € PSH (X, &) which is compactly supported. Recall that from
the construction of &g, @q is equal to «g on a large compact set. (which from the
construction can be as large as one want)

Lemma 4.5 There exist . € PSH (X, @) which is compactly supported and satisfy
wo + 100V, > cw, and is smooth outside V and goes to —oo near V.

Proof Recall by [15, Lemma 2.15], we know that r fork € (0, 1) is strictly plurisub-
harmonic for r sufficiently large, and satisfies

Vi = 0> 1i00r™ | = 0> 7?)
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Pick ¥ : R™ — R* smooth satisfy ¥/, ¥” > 0 and

T+2 forx < T +1

W(x) =
X forx > T +3

then asin [15, Lemma 2.15], for T > 1, \I!(rz" ) is plurisubharmonic and equal to P2
for r sufficiently large.
We set

Ye = (1= )Y + C(1 = LR (™)
where S, C, R are chosen as follows. First we pick § > 1 large enough such that
oy = o on {r < 8} 'flnd iai)\IJ(rZ") > O on {S < r < 2§}, which implies that
wo +i00Ye = ag +i00¥ > gow on {r < S}. Then pick C > 1 large enough so that

CidoW(r*) > i9d((1 — ¢s)¥) on {S < r < 25}. Finally, we pick R >> S such that
@ + 109y, > 0on {R < r < 2R}, which is possible since for R large, we have

189(1 = L)W ()| < [V2RIP | + VW) = gr| + VeIV | < CRHD <1

Then &g + 100y, > 0 and &g + iddVY, > gow on the compact set K containing V,
hence there exist an ¢ > 0 such that @y + 30V, > ew holds. O

Now we prove the main estimate of this section.

Proposition 4.6 There are uniform constants B, C > 0, independent of t such that the
following estimate holds:

83¢:| < Ce™ PV,
Proof By the well-known computation of Aubin and Yau, we have
Ay, log Trywy, > —ATry,w

where A is a lower bound for the bisectional curvatures of w. Then if we pick N > B
sufficiently large, we have

Ay, (log Trywy, + BYe — Ng;) = (Be — A)Trg,0 — BTy, &0 + NTry,&; — Nn

o =1
>C(———=Tro — Bn
- (ni”ZQ/\Q ¢ w’)

since v, goes to —oo near V and the function log Try,wy, + B, — N¢; goes to 0 at
infinity, either log Try,wy, + By, — N¢; is always non-positive, in which case we are
done, or maximum is achieved in the interior, and applying the maximum principle
gives
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Tra)a)(p, < C€B<sup Ye—Ve)

from which the estimate follows. |

Remark 7 This argument is the only place where we used the Kihler current in
Assumption 1. In the situation where [ag] = 7*ci(L) where 7 : X — X is a
crepant resolution of a singular Calabi-Yau variety with compactly supported sin-
gularities and L — X is an ample line bundle on X, the above C? estimate can
be replaced by the argument in Lemma 5.1, and the convergence holds away from

(X (s)ing ). In that case we do not need the Kéhler current in Assumption 1 to prove
Theorem 1.1.

The higher order estimates follow from the standard methods of Yau [45,50,63].

Proposition 4.7 (Higher order estimates) We have a uniform estimate
gl ch ) = C(K ky )

forany K CC X \ V and C independent of t.
Proof This follows from the local estimates in [50]. O

Corollary 4.8 The metrics wy, converge after passing to a subsequence in Cp, (X \ V)

to a possibly incomplete metric wy, on X \ 'V, which is uniformly equivalent to wc at
infinity.

So far, we’ve shown the first two parts of Proposition 2.6, in the next section we
prove decay estimates for ¢;.

4.3 Decay estimates

In this section, we prove uniform decay estimates for ¢;. We use the method of Moser
iteration with a weight, similar to the technique used in [32, Chap 8]. However, as
in Sect. 4.1, we use the Ricci flat metrics wy,, exploiting the uniform control of the
Sobolev constants.

Recall that r : X — R is a radius function such that |Vr|+r|iddr| < C, andit’s
not hard to see that we can also assume that » = const on a compact set K containing
the singular set V.

Definition 4.1 We define the following weighted L? norms,

1
§\p..—2n.n? =5\’
el g 2oy = ( fx jur? P2 szAsz)

Remark 8 Notice if we let p — o0, then the Lg norms converge to the Lgo norm
given by |lull = supy |ur?|
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Proposition 4.9 For any § < y, we have a uniform bound of the form
lelLpiy,) < €
forany p € (0, %T”], and constant depending on p, §.

Proof 1If p = %T”, then this is simply the L3 norm, which is bounded if § < y by
Proposition 4.3. If p < 22, then

1 =1
_ q § 2 q
/ |(pr6|Pr 2nwgt < </ |¢I|Pq> </ ra- L (6p— n)w%>
X X X

the first term is bounded if g > 2—" by Proposition 4.3, and the second term is finite

ifg < gp, so we just need to plck q € (yp 817) with ¢ > 1, which is possible since
2n

P <. O

Proposition 4.10 Forany § <y, p > 1, we have

Ccp?
p
”(plr ” j(r_z”w”) = p— 1 <“§0t ”Lp l(r72nwn + ||(pfr ”Lp(ernwn ))

for C depending on the Sobolev constant of wy,, § and the dimension n.

Proof We use the same method as in [32, Proposition 8.6.7], but using the Calabi-Yau
metrics wy, as the background metrics. The reason is because the metrics w,, are
Ricci-flat and hence have a uniform Sobolev inequality. First we set

An—1— k
Zw%/\

If g — py < —2n + 2, then Stoke’s theorem gives the following two identities

0= [ 10 (110”2030 A1)
X
=(p- 1)/qu|¢’t|p_2i3<ﬂt Ador ATy +fI/X"q_l|§01|p_2(0zi3rA5<ﬂt AT

+/ 919 P2 @i 009 A Ty
X
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and
0= _/ lé (rq_l|§0t|pi3r A\ TT)
X
= p/ el P gior Ao AT+ (q — 1)/ r72 g Pidr AOr AT
X X
+/ P17 gy P AT,
X
using these identities, we can obtain through integration by parts
/IV(lezﬂ)I% Wy,
. L2 g a A n—1
=n la(l%lzﬂ)/\3(|<pz|2r2)Aw¢,
X
<n [ ioGefrh) Aot AT,
X

= —D/wrl%lp 219999 A T,

4(p
+4(p /|¢,|Prq 2(p+qg—2)idr Adr —(p —2)riddrl A T,
= —4(p ) / ol P 2r (e — Dol

4(1)—1)/ || Prd™ 2[(p—l—c] 2)18r/\8r—(p 2)r188r]/\T,

where in the last equality, we used the equation i9d¢, A Ty = (e/i — l)wgl. Now we
claim there also exist a uniform constant C independent of ¢ and r such that

(p+qg—2)idr Ndr — (p —2)riddr] A T,
i”QAQ

<C(p+lqD

recall that we chose r so that r = const on a compact set K containing V, so the left
hand side of the expression is 0 on K. By Corollary 4.8 we know that |7T;| < C on
X \ K, and because r is a radius function we also have |Vr| +r|ddr| < C, hence the
expression also holds on X \ K. Putting it together, we see that the expression holds
on all of X.

This then combined with the Sobolev inequality, we conclude that

—1

n gn K Cnp2
PaTyda=1 g < —/ el —1 p=lpqyn
(fx ol q,,) < o | llgilP =Pt

c<+)
e q/mv’“
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for any 6 < y we cansetq = 2(1 —n) + pd and use the fact that lefi —1| < Cr—v—2
to obtain,

n—1

([ v
cor Zn ([ [ o)
_ P §\p—1..6—y .—2n_n p,.—2n "
_C—4(p—1) (/x lor® [P r er+f lgr®|Pr Wy,

and since § < y, which means for any p > 1, we have

sz
”(p r ” 2 l(r—Z'lw" ) S ||§0tr ”Lp 1(r72nwn + ”‘Ptr ”Lp(r—ann )
bt

Corollary 4.11 For any § < y, we have a uniform bound of the form
loi] < Cr?

for C depending on é.
Proof By Proposition 4.9, we have a weighed L” bound for any p < %T”, combined

with the previous proposition, we can use the standard Moser iteration argument

starting from p = 2—” > 5> L O

Proposition 4.12 For any 6 < y, the derivative of the solutions ¢, satisfy uniform
decay estimates on X \ K,

\Vkg,| < cr3k

where C = C(n, 8, k) which doesn’t depend on t.

Proof This follows from the methods of [32, Theorem 8.6.11] verbatim. The point
to note here is that the metrics w,, are uniformly equivalent to wc on the region
X \ K, with bounded derivatives as well, hence the Schauder constants are uniformly
controlled on far away balls. O
Proposition 4.13 If y € (0, 2n — 2), then in fact we have

V| < Cr7rt

on X \ K, and C = C(n, k) independent of t.

Proof This follows from the same argument as in [32, Chap 8.7, Theorem AZ2]. O
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We can now prove Proposition 2.6, thereby completing the proof of Theorem 1.1.

Proof of Proposition 2.6 Combine Corollary 4.4, Proposition 4.7, Proposition 4.11 and
Proposition 4.13. O

We now prove the local diameter bound, which will play an important role through-
out the remainder of the paper.

Lemma 4.14 In the setting of Theorem 1.1, let K C X be a compact subset containing
V. Then the diameter of K with respect to the Calabi-Yau metrics w; cy is uniformly
bounded from above as t — 0.

Diam,, o K<C

Proof It suffices to show that the sets Kz = {r(x) < R} have bounded diameters for
R sufficiently large. Recall that the metrics w,, are uniformly asymptotic to wcone for
r large and ¢ close to O by Proposition 4.12. Fix any two points x, y € Kg, and joint
them by a length minimizing geodesic y : [0, L] — X. We claim that y must lie inside
K g2 for R sufficiently large. Note for R large, on the region {r(x) > R} the metric
g, is C™ close to a cone metric uniformly in #, and hence for R sufficiently large,
the boundary of K has diameter bounded by 27 R. However, the distance between
the boundary of K and K g2 on the order of R?, so it’s clear that any minimizing
geodesic between two points in K g cannot leave K p2. Now consider x; = y (2i + 1)
and disjoint balls Bj (x;). Note that these balls have a fixed lower bound on the volume,
since by Bishop-Gromov volume comparison and the asymptotically conical geometry
we have

Vol(Bs(x)

Vol(B;(x;)) > Sl m = Volg (L) =:¢c >0

i
—00 §2n

where L is the link of the cone at infinity, identified with {rc = 1} and gc¢ is the
conical Calabi-Yau metric. Thus, we have

ZV _ L]
ol(B1(x;)) > €

where c is the non-collapsing constant. On the other hand, these balls must all lie in
K> R, and since the volume form of the Calabi-Yau metrics are fixed, we must have
that

L -
L / i"QAQ
2 K
which gives us a bound for L, which is d,, o (x, y). O
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4.4 Uniqueness

In this section, we discuss the uniqueness of the Calabi-Yau currents constructed in
the previous sections.

Theorem 4.15 The current that we constructed wy, above is unique in the sense that if
w is another positive current with locally bounded potentials in the same cohomology
class as wy, which is smooth on X \ 'V, asymptotically conical at infinity with any rate
8 > 0 and satisfies the complex Monge—Ampére equation

in the Bedford—Taylor sense, then o = wy,.

The proof is modelled after the idea introduced in [ 15], which relies on the following
crucial Lemma proved in [15].

Lemma 4.16 [15, Corollary 3.9] Suppose (X, w) is an asymptotically conical Kdihler
manifold with Ric > 0, then for any ¢ > 0, any harmonic function u € C5° (X) is
pluriharmonic.

The idea is to write @ = wy, +i0 3y and use this lemma to improve the asymptotics
of the potential function ¥ by subtracting off pluriharmonic functions from it, until we
are left in the case where the potential function is decaying in which case uniqueness
follows from a standard integration by parts argument.

Proposition 4.17 Suppose ¢ € PSH (X, wyy) N L®(X) N CX(X \ V) is a function
such that the current wy, + i 90¢ satisfies

(0 +i009)" = ot =i QA Q

in the Bedford Taylor sense, then ¢ = 0.
Proof

n—1
0= f/BR P2 p((wgy +1009)" — wlh,) = 7-/1.31? lol?~2piddp A (Z wfy A (g +iaé<p)"—1—’<)
k=0

4p—1 o= - = pie
= )f 190015 A 3015 A | 32 ok, A gy + 1080y 1 K
P Br =0

n—1
- faB lo1P2pidg A (Z Wl A (g + iai_)go)"lk)
R

k=0
picking p > 222 and letting R — oo, we get
n—1
| £ 3 B . " —_ —
[ 00015 A 01 A (Zw’éo A @ +i039)"™! k) ~0
k=0
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which shows that ¢ = 0. O

Lemma 4.18 Suppose (X, J, g) is an asymptotically conical Calabi—Yau manifold
with rate v > 0, and n = n; jisa asymptotically conical hermitian metric with rate

v > 0andletu € Cg‘iﬁ such thatn”u e Cx

a t ., then there exist il € Ci’iﬁ_v such
that i90u = idou.

Proof We have

g”u (g” - 77”)“ H 77”” i € C—mm(K B+v)

hence we can solve the equation g”u = g”u - with it € C$° and by

2—min(k,B+v)
Lemma 4.16 we have i39ii = i9du. O

Proof of Theorem 4.15 By the 33-Lemma (Proposition 2.1), we can write @ = Wgy +
i3dy, fory € PSH(X, wgy) N LTS (X) N C (X \ V), then choose a cutoff x such
that x has compact support and x = 1 on a compact set K containing V, then since
30y = w — Wgy € C=.(X \ V) for some ¢ > 0, hence by Proposition 2.2, we can
solve idd f = idd[(1 — y)y]for f € C)°,y =2—¢.Settingp = xy + f, we have
that g € L) (X) N CP(X \ V) and

loc

(g +i999)" = &l =i QAQ
If y < 0O, then we are done by Proposition 4.17. If y > 0, then we proceed by the

following: note that the equation above can be rewritten as

(1099) =2 A @k

- "\ (n N
Ay = —(i999)* A (; (k> e ) €Coy_4(X\ V)

(44

if x is the cutoff function as before, then we have Aw%[(l — x)¢] € C%‘j%(X) if
we letn = xwy, + (1 — x)wy,, then n is an asymptotically conical hermitian metric
which is equal to wy, outside of a compact set, hence n’ I - X)go] € C2y 24X,

hence we can apply Lemma 4.18 with k = 2(2 — y) and B = 2 — y, so we can
solve i99v = idd[(1 — x)¢] with v € Cy ~ min(2—y,v) NOW We can set O=v+xp €
COo 2 min—y.v) (X \ C) and we can keep repeating this process with ¢ in place of ¢ and
y min(2 — y, v) in place of y until are in the case where y < 0, then we are done
by Proposition 4.17. O

5 Metric geometry of the singular Calabi-Yau

The goal of this section is to prove Theorem 1.2. Let us first begin with some definitions
and the general setup.

Definition 5.1 We say that a complex analytic space X is a singular Calabi—Yau
variety with compactly supported, crepant singularities, if
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e Xy is normal singularities, Gorenstein and log-terminal,

e there is a compact set K so that X¢\ K is smooth,

o there exists aresolution v : X — X such that X also has trivial canonical bundle
and 7*Q extends as a non-vanishing global holomorphic (z, 0)-form on X. (By
abuse of notation, we will also denote this holomorphic (r, 0)-form by €2)

Let X be a singular Calabi—Yau variety with compactly supported, crepant singu-
larities. Suppose that the resolution (X, J, €2) is Kihler and it has a Kéhler metric w
such that (X, J, w, 2) is asymptotic to a Calabi-Yau cone (C, Jc, wc, Q2¢) at rate v.

Definition 5.2 A line bundle L on X is ample if for some k > 0, there exist sections
50, ..., sy € HO%Xyp, LX) such that [sg, ..., sy] gives an embedding of X into a
finite dimensional projective space CPY, and denote this embedding map by ¢, then
we have %[t*a)ps] =c(L).

Remark 9 Certainly if X is quasi-projective, then it has an ample line bundle in the
above sense. In general, having an ample line bundle in the above sense does not
imply X is quasi-projective, however in almost all examples we’re interested in, X
is a quasi-projective variety.

Let us now fix L an ample line bundle on Xg. If set [etg] = 7*c1 (L), then suppose
(X, J, w, ) and [og] satisfy the hypothesis of Theorem 1.2. Then from the previous
sections, we have on X, a sequence of Calabi-Yau metrics @, = @ + i 39¢; with
[wy,] = (1 — 1)[ag] + t[a1], which satisfy the equation

(@r + i) = el (=i QA Q)

2 -
and f; = log % € Cioy_z(X), and ¢; € CZ,(X).

If we fix a point p € 7 ~1(X;’®), then by Gromov compactness, after passing to a
subsequence, the pointed spaces (X, W, » p) for t; — 0 pointed Gromov-Hausdorff
converge to a limiting pointed metric space (X oo, do, Poo) as i — 00. By the defini-
tion of pointed Gromov-Hausdorff convergence, the convergence can be interpreted
in the following sense: If we set Z = (X0, doos Poo) U U,j (X, W, s p), then there
exist a metric dz on Z such that

(D) dzlx; = dg,,

(2) dz( p , psc) > 0
——
eX;

(3) Bg, (p,r) C Xi = Bg, (P, 7) C Xoo in the Hausdorff sense with respect to
dz.

The asymptotically conical property of w,, implies that the tangent cone at oo is
independent of ¢, and by Bishop-Gromov, we have a uniform lower bound on volume
of geodesic balls, Vol,, B(p,r) > cr?" where c is the volume ratio of the asymptotic
cone C. Hence the regularity theory of Cheeger, Colding and also Tian [6—10] applies,
and the limiting space admits the following structure

(1) All tangent cones of X are metric cones.
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(2) X = RUS, where R consists of all the points where all tangent cones are isometric
to R?".

(3) R isan open dense setin X, with a smooth metric g, and complex structure Jo,
which makes it Ricci-flat Kéhler manifold and (X0, doo) = (R, dg,). Moreover,
the convergence of (X, J, wy,, p) = (Xoo, Joo, &oo» P) 18 smooth on R in the
sense that for every K CC R, there exist smooth maps n; : K — X such that
(7 gy n;J) converges to (gc0, Joo) smoothly on K. (In fact, we can arrange 7;
such that dz(n; (z), z) — 0 uniformly in K)

(4) S isaclosed subset of X, with real Hausdorff codimension greater or equal to 4.

5.1 Properties of the Gromov-Hausdorff limit

In this section, we prove several preliminary propositions about the relationship
between X, and the Kéhler current constructed from Theorem 1.1. In particular,
we show the following:

(1) w4, is in fact well-defined and smooth on 77~ (X*)

(2) There exist a locally isometric embedding of tog : (7 ~1(X(®), wyy) = (R, goo)-
(3) X is isometric to the metric completion (7~ (X,*®), wg,)

(4) 1 is a bijective local isometry between X, and R.

One of the key ingredients is the local diameter bound Lemma 4.14, which we
apply with V = rr‘l(X‘smg).
Proposition 5.1 The family of metrics wy, has a uniform lower bound

L,
Wy, > Ewo 5.1

Proof By the standard Schwartz lemma calculation, we have
Ag,, log Trw%n*a)Fg > —4Tr%tjr*a)p5
and for any other Kihler metric @, one also has
Ap,, log Try, & > —CTry, &
with C depending only on the upper bound for the holomorphic bisectional curvature

of &. Recall from the construction of @ in Propositions 3.1 and 3.2 that @( can be

taken to be equal to %ﬂ*wFs on a compact set K containing 7 ~!(X; %), and is a
genuine non-degenerate, asymptotically conical Kdhler metric outside of K, so we
can apply the first inequality inside K and the second outside K to get a uniform
estimate

A, 10g Try,, @o > —CTry,, @o. 5.2)
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Since vy, = & +i03¢;, taking trace gives
n = Try, O + A, @1,

and we also know that for ¢ reasonably small @, > c@g holds for some small constant

¢ uniformly in ¢ as t — 0, which means we have
n > cTry, &0 + Ay, ¢

Combining this with (5.2), we have
. Ac .
Ay, (log Trww wy — A(pt) > (7 — C)Trww wo — An

since log Try,,, @o — Ag; converges to the constant logn at spacial infinity, if the
maximum is attained at infinity, then we automatically have a uniform bound that we
wanted. So we can assume the maximum is achieved in the interior, and applying the
maximum principle to the equation above, and we obtain

Tro,, @0 < C AW —(@)min)
which gives a uniform upper bound for Tr,,,, @. O
Corollary 5.2 On X \ =~ (X}"8), we have

C o < Wy, < Cel0éy

QNG . —1,vSing . .
where efo = 1 o s bounded uniformly away from &= (X "%). In particular, this

implies that wy, is smooth on a1 (Xgeg), and on Xy it is a Kdhler current since it
dominates .

Proof The lower bound on wy, is the content of the previous lemma, and from that
2 S A . .
and the fact that wy, =i" QA Q = efoa)g, the corollary follows immediately. O

Corollary 5.3 The maps m; : (X, Wg,, s p) = (Xo, @o, p) are has bounded derivative,
hence it is uniformly lipschitz and we can pass to a continuous surjective map from
the Gromov-Hausdorff limit oo : (Xoo, dx,ys Poo) — Xo. Furthermore, for any
q € X(r)eg , the preimage no’ol (q) consists of a single point.

Proof The fact that the maps have bounded derivative follows from the estimate (5.1),
and from this it follows from an Arzela-Ascoli type argument that after passing to
a subsequence, the projection maps m; limit to a continuous surjective map 7y :
Xoo — Xo. The map m can be characterized in the following way: if we fix h; :
(X, w«pz,-) — Xoo an g;-isometry for ¢; — 0, then for any sequence of points g; € X
with w(g;) — q € Xo, and 1;(gi) = goo € Xoo, We have To0(q) = goo-
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To see that the preimage of 7 ~!(¢) for g € X,*® consists of a single point, suppose
for contradiction that it consisted of two points g1, g2 € X With dx_(q1,q2) =
d > 0and oo (q1) = Toe(q2) = q € X(,°®, then from the construction of 7, there
exist a sequences of points ¢!, g5 € X such that 7;(¢}) — ¢ and 7;(¢5) — ¢ and
h,-(qi) = g1 and hi(qé) = ¢7. Then from the fact that 7; (qi) — ¢ and 7; (qé) —q
and g € X(r)eg, we know that q{ — 77 !(g) and qé — 77 !(g) in X since 7 is a
resolution of singularities of X, and g, — goo smoothly in a neighborhood of ¢, it
follows that d!s’r,- (q{, qé) — 0 asi — oo. But we also have

dx. (hi(q}), hi(gh) — i < dg, (4}, q5)

since h; is an g;-isometry. This is a contradiction, because dx  (h; (q{ ), hi (qé)) —& —>
d > 0 by our assumption. O

Proposition 5.4 There is an embedding i~ : (X(r)eg, wgy, P) = (R, goo, p), which is
a locally isometric embedding, and oo 0 loo = id.

Proof We can simply take (o, = rro_ol |X(r)eg, which is well-defined by the previous

proposition. It’s clear that the image of i, is contained in the regular set R C X
and that it is continuous, so it suffices to show that this map is a local isometry. To see
this, we note that if ¢ € X, then there exist an & > 0 such that Bg, (q,€) C X,
for all i > 1. It follows from the diameter estimate (c.f. Lemma 4.14) that the points
hi (1 (g)) are uniformly bounded in X ,, hence after passing to a subsequence, it
converge to some point goo € Xoo, it’s clear that goo = to0(g) since m;(q) = q.
Since the points 7~!(¢) € X; have a uniform harmonic radius lower bound, hence

(Bgzi (n_l(q), ), g@i) C—) (Bgo. (@0, €), goo) and by the smooth convergence of
_ c® .

8¢, —> 8p» We also have (Bg, ( @), e), 8p,) — (Bg, (4, &), wy), it is then

clear from the construction of 7, that it maps (B (goo, €), o) isometrically onto

(Bg,, (4, €), wg). O

The following Proposition follows from the same arguments as in [48]. We include
a proof here for the convenience of the reader.

Proposition 5.5 The subset E = R \ LOO(X(r)eg) C R is an analytic subset, hence of

real codimension bigger than or equal to 2, and moreover (X, g00) = Xoo.

Proof Tt suffices to show that the holomorphic maps 7w : (X, w,,, p) — Xo C
(CPV, wrg, p) limits to a holomorphic map oo |R : (R, Joos &oo) — Xo C cPN.
Assuming for now that this is the case, then R \ LOO(X(r)eg) = 7roo|7_z1 (X(S)mg). Since
X" C Xo is an analytic set, if o0 | is holomorphic, then 74 |7_z1 Xy")=ECR
is an analytic subset, and since analytic subsets have real codimension 2, it follows
that Xoo \ X geg C X0 has Hausdorff codimension at least 2, and by [8, Theorem 3.7],
we have (X, go0) = Xoo-

Now we show that m | is holomorphic. Consider the holomorphic maps 7 :
(X, wy,, p) = Xo C ((CPN, wrs, p),since (X, wy,, p) Gromov-Hausdorff converge
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to X 0, by Cheeger-Colding theory [7], forany K CC R containing p, there exist maps
u 2 K = (X, 0g,) such that i g, — goc and (;J — Joo in the smooth topology,
and we also get a sequence of holomorphic maps 7; = 7 o ¢, : (K, (j g, (7 J) —
Xo € CPY . Furthermore, if we regard these maps as harmonic maps, then we have

2 _ *
|d7[’|wwz,wp5 = Trwq,,”,' wrs < C

hence by the regularity theory of harmonic maps ( [49]), we have uniform C*° estimates
on the maps ||7Tl.l lcke (K) < Ck, for some constant Cg independent of i, which allows
us to extract a limit of the maps 7; : K — CPY to amap 7o : K — CPY and
since the convergence of the maps are smooth, and the convergence of the metrics
15,84 —> 8oo and the complex structures ¢ J — Joo are all smooth, it follows that
the holomorphicity of the maps m; passes to the limit, and hence the map 7o is
holomorphic. O

Proposition 5.6 In fact we have R = LOO(X(r)eg).
Proof The proof is the same as in [48, Lemma 2.2]. O
5.2 Identification of X with the geometry of singular Calabi-Yau

In this section, we identify the geometry of the singular Calabi—Yau current X, =

(X(r)eg , 800) With the variety X itself. This result is the analogue of the result in [51],
where the similar thing was shown in the compact case, our proof follows the approach
in [51], adapted to the non-compact case. The idea is based on ideas developed in [23]
together with a new gradient estimate for the potential ¢, with respect to the Calabi- Yau
metrics wy, .

5.2.1 A gradient bound for @

The goal of this section is to prove the following estimate

Proposition 5.7 The following bound hold

sup |wa0 vl =C

7 1(Xy%®)
Proposition 5.8 If we set let v; = @; — t¢;, then we have a uniform estimate

suplv| < C
X

Proof Recall from the construction of @, (Proposition 3.2) that

C?)t = w; + 18514;

= —0wy+ tw) +iddu,
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where wg = m*wx, and wy, is a Kdhler metric on X¢. So we have

A%(/)f =n-— Tr(pt é)t
=n— (1 —)Try,wy — tTry, w1 — Ay, u;.

Recall that by the construction of @;, Proposition 3.1, we have

(& +iddg)"
g he S

log
for some 0 < y < 2n — 2. Differentiating the equation, we have
. . J . J . 0
Ay, b1 = fi — Tr(pt&wt +Tr(;,[§a)t € CZ),_,(X) (5.3)
so we have ¢ € C (X) fort > 0.
If we dlfferentlate the equation (®; + i85<p,)” = i"”Q A Q with respect to £, we
obtain another expression for Ay, ¢;
Ag, ¢y = — Ay iy + Try, (wo — w1) 54
The equations (5.3) and (5.4) imply that v, satisfy the two equations
A‘/’t Vs =n — Tr%a)o - A‘pt (Mt — tut) (55)

and

0
A(p, Vr =n— Tr(pta), — t(f; Tr(pt ar CL); + Try t) (56)

w,a

From the first equation and Proposition 5.1, we see that |Ay, ¢;| < C uniformly in ¢.
From the second equation we see that [Ayv,| < C r~¥~2 away from a compact set

K, so we have a uniform bound | A, v/| eC Soy, we
can do integrate by parts to get
—/ v [P 720,i000, Al = Tim (p—1) | |v]P 720w A dv Al
X R— 0 Br

— lim |ve [P~ v,lav,/\w” !
R—o00 9Bg

4 1
M/ 18|v,|2 /\8|vt|2 /\a) -1

@ Springer



T.C. Collins et al.

the boundary term goes away when p > since |Vkv,| = O(r~7 k). Hence we

get

2n—2
Y

L2 on np2 p—2 n
X|3|Ut|2| Wy, =_4(p——1) X|Uz| v (Ag, )y,

combined with the Sobolev inequality, one gets

n=l 2
n — n n -
(/ |v,|1’n—1i"2sz/\sz> <c® /|vt|”_1|A¢[vt|i"2§2/\Q
X p—1Jx

applying Holder, we get

np?
e e L
hence for p > 27”, we have
lvellr < Cp 5.7
where C), depends on [|Ay, v, ”Ln’jrpp . and also for p > #

2
np -1
p p
[l ”pL < CF”UI l7r 1A vellLr
we can then apply Moser iteration to this to get the estimate

||vt||L°° = Bp”vt”L” = BpCp

where C), is the constant from (5.7) and B, depends only on the L? normof || Ay, v/ || 7.
O

Corollary 5.9 For any compact set K CC = (X(®), we have an estimate
|Ut|ck,a(1() <C(K,k,a)

uniformly int ast — 0.

Proof This follows from the equation (5.5) and the fact that @y, and the right hand
side of the equation is uniformly bounded in C7° (7~ (X;%)). ]

Proposition 5.10 We also have the following local uniform gradient estimate for v;.

sup Vv | < Ck
K

forany K CC X.
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Proof By the Bochner formula, we have

Ay IVuilg,
= |VVuly, +109v ]y, —2Re(Vv, - VTr,wp) — 2Re(Vy, - VA, (4 — 1iiy))

2 2 NV
“2/Vu 2, — VTt @02, — VA, u — 1) 2,

v

we also have from (5.2),
Aw,, Tro, 00 = —C + ¢o|VTry,, wol®
If we set H; = |V, |§w + ATrg,, wo, then H; > 0 and satisfies
Ay H, > —H —C

We can apply Moser iteration to this, since wy, has uniform Ricci bounds and volume
lower bound, this then gives the estimate

I Hell L% By v (p)) < CIHtI 2B, 2p(p) (5.8)

for R sufficiently large. Note that for R sufficiently large w,, converge uniformly in
C™ to goo On the region B,y 2r(p) \ Bg..r(p), hence we can also choose cutoff
functions with uniformly controlled gradients and standard Moser iteration gives the
inequality. Now it suffices to show that || Hy || 2 Byoo2R) is bounded.

/ |H,|2s||H,||Loo<BZR>/ |H, |
Byr Byr

< CllH p2Byp) 1 Hi ll L1 By g)
< CUH N 2By + 1Hi L2840 Bo) I Hi 21 (B

if R is sufficiently large, then Bag \ Bar doesn’t contain any of n_l(X(S)ing ), hence
|| Hy ||L2(B4R\BZR) is uniformly bounded in t on B4g \ Bar by the Corollary above. So
we have

25, < CUH:N 20300 + ON L1 5y
hence either || H;||;2(,,) is bounded by 1 and we are done, or we get the bound
IHill22(Byg) < CIHlIL1(Byg) (5.9)
so it suffices to prove an L! bound for H; on compact sets.
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Choose cutoff function 7 such that n = 1 on B for all #, then

H, 5/ 772Ht
Bor X

< [ vufal, +c

X

<= [ Pugu+2 [ avasival+c
X X

and so we have

H, < c/ (% + [Val? < €
X

Bag
which gives us the L! bound, combined with (5.9) and (5.8), we get
| HillLo(Bg) < C
as desired. O

Proposition 5.11 For any x € LOO(X(r)eg), we have a bound
lgr(x)| = C
for some constant C potentially depending on the point x.

Proof Fix x € Loo(Xgeg), then fix a ball B, o(x) C Loo(Xgeg) on which the metrics

gy, converge smoothly to goo, also fix a set K CC X containing all of 73} (Xgi”g )
and also B, . (x). Then by the Green’s formula representation formula, we have

$r(x) = — /;( Ap 91 ()G (x, y)a);,()’)

= —/ A (NG (x, y)wy, () —f A (NG (x, Yy, (v)
Bgoo e (X) K\Bgno.e(x)

- / D G (MG (x, y)wly (v)
X\K

where G, (x, y) is the positive decaying Green’s function on (X, wy, ). By the estimates
for Green’s function [44, p.190], [36,37], the Green’s functions G, (x, y) satisfy the
uniform estimates

C7ld,(x, )" < Gy(x, y) < Cdy(x, y)*~"

where d; is the distance function induced by g,,. And since Ay, ¢y = —Ay s +
Try, (wo — wy), this implies |Ay, @] < |Ay,tis] + Try, (wo + @1) < C + Try, @i and

@ Springer



On the degeneration of asymptotically conical Calabi-Yau metrics

we have
1600l < /B 11004, e e, )
200,68 (X
+ / |8, @1 (0)ds (x, )* " a2l ()
K\Bgoo,s(x)
+ /X . | A, @1l ()ds (x, )* 2 a0l () (5.10)

and we analyze the three terms in the above formula seperately. For the first term, we
note that Ay, ¢, is uniformly bounded on B, . (x), so

J

For the second term, observe thaton K \ By - (x), d; (x, y)2_2" is bounded by Ce2= 2,
SO

|Ag, @1 |(¥)dy, (x, y)z’z”a)f},t ) < C/ di(x, y)> " < C

g00.6 (X Bgoo.e(x)

/ | A, @1l () dy, (x, y)* 20l () < C [ 1+ f Try, w1
K\Bgog e (x) K\Bgng e (x)

hence it suffices to bound the integral of Try, w1, to do this, we integrate by parts

/ w1 /\a)ZTI :/ w1 A (@ +i35(pt)n71 2/ w1 /\c?);hl
K K K

n—2
+/ dgr A wi A
oK

n—1\ . .5 o
Z( l )wh(zaawt)“’)
<C

=0

because ¢; and its derivatives are all bounded on the boundary of K.
The last term in (5.10) is bounded because |Ay, ¢/ | < Cd; (x, y)_z_ﬂ on X\ K, so
we have

f lAW:¢t|(y)d(p,(x, y)2_2"w$t(y) < C/ d; (x, y)—2n—/3 <C
X\K X\K

and we get our result. O

proof of Proposition 5.7 Note that we already know |V, ¢l is bounded and decaying
at infinity, so it suffices to prove that it’s bounded near 73! (Xy"®). Fix a compact

set K containing rro_ol (X‘Sing), then by Proposition 5.10, |Vv,| < C, but on X(r)eg, vy
converges to ¢y smoothly on compact sets, hence we get our result. O

The main goal of this gradient bound is to show the following.
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Proposition 5.12 For any holomorphic section s € H°(X¢, L¥) satisfies

<
szp Islpe, < C

and

sup | Vs <C
Kpl |hlé0skww0 =

Proof Locally we can write hoo = %0} where —i90 log ho = &o, since &y =
m*wps on K, we have simply hoo = ¢ h g, and by the €Y bound for @0, it follows
that |s| k= Cls| i < C. To see the bound for the gradient, we note

2
| hk S|hk ,k(DO | hk N k(8¢0)5|hA k | hkss|hk5*k 0 k| (p0|kw(p0|s|hk

and by the gradient estimate (5.7) |V ke o = C, so the second term is bounded, and
by the estimate (5.1), we have |Vhlj,-sslh’;;s,kw¢0 < th’;SS'h’;S,kas < C and we get

the bound that we wanted. O

We will need the boundedness of |s| nk, and |Vs| ke ke, to make the Moser iteration
’ 0
argument work with cutoff functions in the next section.

5.2.2 L2 estimates on Xp

The argument of this section follows in the same way as in [51], with minor modifi-
cations.

We first quote a proposition stating the existence of good cutoff functions on X
from [23].

Lemma 5.13 [23, Proposition 3.5] There exist cutoff functions p, on Xoo satisfying
the following

(1) 0=<pe =1

(2) supp(ps) CC R = X,*

(3) For any compact set K CC R, there exist ex > 0 such that for all ¢ < ek, we
have p. = 1 on K.

@) [yIVpel> > 0ase — 0.

We recall the following version of Hormander’s L? estimates for the 8 equation.

Theorem 5.14 [20, Cor 5.3] Let (M, w) be a Kiihler manifold. Assume M is weakly
pseudoconvex. Let (L, h) be a Hermitian line bundle with curvature with (possibly)
singular Hermitian metric h, and suppose

—iddlogh + Ric(w) > y (x)w
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then for any B € /\0’1 ®L, with 3 = 0, there exist a section s € L satisfying ds = f

with
2 n l 2 n
Islpe” < 1Bl 0@
M MY

provided the integral on the RHS is finite.

Now we will prove a version of the above theorem on X equipped with a singular
metric wy, that we constructed. First we fix a Hermitian metric 4o on L such that
—idd log hg = &, which is possibly by the 33-Lemma.

Theorem 5.15 Let hoo = ¢ “0hg, so —id9 loghe = wy,, and K CC X a compact
subset with pseudoconvex boundary. Then for any B € /\0’1 QLK, with compact
support and supp(B) C X(r)eg N K and 3 = 0, there exist a section u € HO(L)

satisfying dou = 8 with
2 n 2 n
ot < w
/K|u|h§0 v = /K |’3|h’§o,kw¢0

Proof By Assumption 1, we know thata)o—i—zaawg > ew, whichimplies wo+naa¢5 >

(1 — t)@g + tew. By the discussion in the previous sections, we can solve

~ S~ 0\ 2
:((1—t)a)0+t8a)+i88g0,) =i"QAQ

with ¢, is bounded on any compact set K CC X, uniformly as ¢+ — 0 and ¢; — %0
in L (X) and in C['()‘i:(X(r)eg) We pick a metric Ao on L such that —i9d log ho = @,

then 1f we set h, = e Ve ‘ﬂ’ho, it satisfies
—idd log h¥ = k(o + 1iddye +i90¢,) > ko,

By the previous lemma, we can always solve du, = f8, satisfying the estimate

2 n 2 n —tkyre—k@; n
= < < =
/K lut|h]rcw(p’ - /K |'B|h];vkwwxw¢’ /1( |ﬂ|h kaog, 0

Since 8 is compactly supported on X, (r)eg , Wy

1
lin L,;, ., so we have

, — Wy, on the supportof B, and e~ thve

_ —kgo 2 n
tim [ 10, = /K OB o,

and since e ~"¥¢ k% is bounded from below on any compact set K, it follows that
/|u,|hk1 Q/\Q<C/ —tkye— k‘/”|u|2 i"QAQ = c/|u, 2ol <C
K h (23
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hence there exist a weakly convergent subsequence u;—u in L>(K h’é) and the equa-
tion du; = B carries through the limit in the weak convergence, so we have du = f.
Since the sections u#; — u are holomorphic and weakly converge to 0, it follows that
the convergence is smooth it happens strongly, hence we have

2 — 2 —
/ e KO QAQ < / kB2, ITQAQ
K hg K I, g,

O

reg

Proposition 5.16 The following Sobolev inequality hold for f € L°NH! (Xp °, woo)

n—1

n
2 qn 2
—1 <
(/;(reg |f| " wOO) — C/;(reg IVf'é'ooa)oo
0

0

Proof Without loss of generality, we can assume f > 0. If f is supported in X,°®,
this follows from [19]. For f € L°°, we can define f; = f p, fe is supported in Xoeg,
then we clearly have || fz|;2 — || f| 12, and we also have

/|st|2=/ p§|Vf|2+/ fZIVpslerZ/ Fpe(Vf. Vpe)
X X X X

the second and third term goes to 0 as ¢ — 0 because f x [V pe|? — 0, and this gives

what we wanted. |

Lemma 5.17 Suppose u > 0 is a bounded function on X(r)eg that satisfy

Ap it > —Au

sing

then for R > 1 sufficiently large (so that X, ° C Bgr(p)), we have the estimate

lull Lo Br(pyy < C(A+ CR™Zull 2By ()

Proof Using the Sobolev inequality above and the cutoff function, we can do Moser
iteration on (X(r)eg, g00)

A f N osul ol > f 0 pguP (— Auwl,
X X

_ 4
(p+D?
4

(p+1)

4p prl
> s [ oAva S et w2 [ pEncvn vt

+1
fnzp§|VupT|2w&+2/ P2 (V- ViyuP oy
X X

p+tl
> n
Woo

+

2 p+l
N pe(Vpe - Vu' 2 )u
X
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1 1
4 2 b
- (/ P02V P ) (/Xnﬂwgﬁu"“w’;o)

when u is bounded, we can take a limit as & goes to 0 and the last term will disappear,
so we have

p+l1

4
A/nzu”+1w” >—pfﬂ |Vu - |2w" —{—?/n(Vn Vu'r )u T Wl
X

T (p+1)?
3
> —p2f P2 Vit — —/ IV Pul* !
(p+ 1= Jx P Jx

which implies

1?2 17
/ Vnu'E Par, < %/ (A7 + VP
X

then by the Sobolev inquality from Proposition 5.16, we have for any p > 0,

n—1
n e 1)? 17
X p X p

by carefully choosing cutoff functions 0 < n; < 1 such that supp(nx) C B 42-4yr>
Mk = 1 on By yi-1yp and [Vi| < CR™'2%, and set py = 2(:25)F, then for
k=0,1,2,... we have

< C(Apx + CR_24k)||u||ka(B

||u||L!’k+1(B o — l)R) =

1+ 2*k)R)

iterating gives

supu < Cwa(2A +CR™?) Nl 22(Byg)
Bg

We now prove L? estimates for holomorphic sections of L*.

Proposition 5.18 If s is a holomorphic section of (L¥, h¥ o), then the following esti-

stng

mates hold on (Xreg kgoo) for R large enough so that Bg(p) contains all of X,

sup Islyg, < Clislz s
Br(p) K. ke (B2r(p))

sup |Vs| « < Clsll2 B
Br(p) hoo kgoo h]éoykgoo( 2R(P))
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Proof For a holomorphic section s, we have V s = 0, so gi j v ; Vs = —ns. It follows
then from standard calculations that

Als| = —nls|
and
AlVs| = —(n +2)|Vs|
so now we can apply Lemma 5.17 with u = |s| and u = |Vs] to get
IsllLooBr) < Cllsliz2(B,p)
and
IVsliLesr) < CIIVsliL2a,, (5.11)

and it suffices to show that ||VS||L2(32R) < C||S||L2(B3R)~ We use integration by parts
/772,062|Vs|2=/ fpfhgééVmV;Ewﬁo
X X
- /X np2hgslV;Vissall, — 2 /X Vi p2)hgL Vissel,
sn/ n2p§|s|2+2/ noe (pe| V| + |V g |s]| V|
X X
sc/<n2+|vm2>p3|s|2+e/ n2p§|Vs|2+C/ IV e sl
X X X

taking ¢ to O gives

/ P2|VsP? < c/ 0* + 1V P)s 2
X X

by choosing 0 < n < 1 so that supp(n) C Bsr and n = 1 on Bjg, this gives
||Vs||Lz(32R) < ||s||L2(B4R) Combined with estimate (5.11), this gives the desired
estimates. O

Corollary 5.19 For any holomorphic sections so, sy € H°(L¥|x) on K, the function
K hk, extends as a lipshitz function on K and this function vanishes precisely on the

set no_ol({s,- = 0}). Also, ;—? extends as a locally Lipshitz function defined on the set
{Is1l,x > 0}

Proof This follows immediately from Kato’s inequality

< . <
|V|S|h’&>|go@ = |Vs|héo,kgoc <C

S0
S1

v - |sl|hléc|VS0|h’éo,kgoo + |S0|h’éo|vsl|h’éo,kgoo - C

2 — 2
. |Sl|h1éo |51|hl;0
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and the fact that K = (K N X, g00). o

In this section we prove that the map 7w, : Xoo — Xp is injective, hence it is an
isomorphism.

Proposition 5.20 For any p, q € Xoo With p # q there existank = k(p, q) > 0 and
Sp,Sq € HO(L*) such that

|Sp(P)|hlgo, |sq(Q)|hléc =

and

Isp(@) k- 18¢ (P i, =<

Proof This follows from the same argument as Proposition 3.9 in [51]. O
Proposition 5.21 The map n : Xoo — Xo is an homeomorphism.

Proof 1t’s clear that the map is surjective and restricts to a homeomorphism on X (r)eg C

X 0, it suffices to show that is seperates points near X‘E)mg. Given p, g € K, suppose
for a contradiction that 7o (p) = 7o (gq), then for any k > 0, and any two sections
s0, 51 € HO(K N Xy, L*), by the normality of X, we know that these two sections
extend over the singular set to two sections of s(’), si € HOmoo(K), LX), hence we

so(p) _ s0(q)
s1(p) s1(q)” re
exist k > 0 and we can construct sections s,,s, € H(K N X, L*) such that

I5plit, (P): 15l (@) = 3 > 5 = 15l (@), 15yl (p) which contradicts (0% =
Sp(q)

Sq (q)°
Observe that the singular set S C X is closed and of finite diameter, from which

we can see that T : Xoo — X is a proper map, hence closed, and this implies 73!
is also continuous. Thus 7 is a homeomorphism. O

must have

But if dx_ (p,g) > 0, then by the previous lemma, there

proof of Theorem 1.2 This is just a combination of Proposition 5.1, Proposition 5.5
and Proposition 5.21. O

6 Examples and applications

In this section we apply Theorems 1.1 and 1.2 to study certain explicit examples of
crepant resolutions.

6.1 Small resolutions of Brieskorn—-Pham cones
Consider the quasi-homogeneous affine varieties
Ypq = {xy+2° —w? =0} c C*,
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where we assume that p < g. These singularities, which are compound du Val of
type cA, are Gorenstein and log-terminal and by the main result of [12], Y, , admits
a conical Calabi-Yau metric if and only if ¢ < 2p. Let r denote the radial function
of the Calabi-Yau cone metric. The Euler vector field r% associated with the cone
structure is given by the real part of the holomorphic vector Reeb field £ acting on the
coordinates (x, y, z, w) with weights

5 (P4, pq.2q,2p);

2(p+4q)

in particular, the Y), , are quasi-regular Calabi—Yau cones. A result of Katz [33] says
that the Y, ;, admits a small (and hence crepant) resolution . : ¥ — Y, , if and only
if p =q.Infact, Y, , admits p inequivalent small resolutions

Yl Y2 .. ypr—1 yr

with each pair Y?, Y/ related by a flop; the p(pT_l) flops are in correspondence with

the reflections in the Weyl group of the A,_; Dynkin diagram [42]. When p = 2,
this recovers the Atiyah flop [1]. The exceptional locus of each contraction w; is a

chain of p — 1 rational curves with normal bundle (—1, —1) intersecting transversally.
2m/—1

Explicitly, let { = e 7 , and write

p—1
P —wf = H(z—{jw).

Jj=0
Fix 1 < ¢ < p — 1 and consider the rational map vg : ¥ , — P! defined by
e .
ve(x, y, 2, w) = (Ix : [ [e = ¢/w))) e PL. ©.1)
j=0

Then a small resolution . : ¥ — Y, , (say Y! for concreteness) is obtained by taking
the closure of the graph of

VXXV 1Y —>Pé1) X .- xIP’%p_l).

There are also corresponding partial resolutions Y by projecting out some collection of
the v;. Fix 1 <i < p, and let Y be any partial resolution whose contraction 7 : ¥ —
Y, » factors through v;. Clearly these resolutions are obtained by repeatedly blowing-
up along the lines x = z — ¢/w = 0. There is a divisor E; defined by —E; = vfl (p)
for a generic point p € P!, and these divisors satisfy Oy(=E)) |EXC(W) = Opi(1), and
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Oy (E;) is trivial on any other component of Exc (7). Furthermore, if Y is obtained
from v;; x --- x v;, then ®1;:1 Oy(—E,-_i)@Ef is ample for any £; € Zq. These
statements follows straightforwardly from the corresponding statements for the blow-
ups of the ambient C*.

Let us fix a small resolution i : ¥ — Y, ,. By Hartog’s theorem the holomorphic
Reeb vector field extends over Exc(u) and generates a holomorphic retraction onto
Exc(u). Thus we have

p—1 p—1
HY'(Y,R) =P H"' (P}, R) = PR [E]
i=1

i=1

By the above discussion, the classes le ;1] (—t;)[E;] are Kdhler on Y, provided #; > 0
for all i, and semi-positive for #; > 0. Each of these cohomology classes is 2-almost
compactly supported. Fix a class [og] = Zf’;ll (—t;)[E;] wheret; > 0, and at least one
tj =0andlet[w] € Hl’l(Y, R) be any Kihler class. Let [w;] = (1 —1)[ag]+t[w] be a
linear family of Kéhler classes. Then by [28] (see also [15]) there is an asymptotically
conical Calabi-Yau metric w; cy in [w;] for all ¢ > 0.

Since the cone at infinity is quasi-regular we can apply Lemma 3.3 to conclude that
there is a Kihler current in [¢g] which is smooth on the complement of

V= ]P’}CY:/ o =0
P,

Let Y be the partial resolution obtained by contracting V, and let # : ¥ — Y be
the contraction map. If [eg] € H Ly, Q) then, by the preceding discussion, after
rescaling we can assume that [ag] = 7*c;(L) for some ample line bundle L — Y.
Applying Theorem 1.1 and Theorem 1.2 we obtain

Proposition 6.1 In the above situation we have
) Yreg admits a smooth Ricci-flat metric @, asymptotic to the Calabi-Yau metric on
Y, » at infinity, and with (7reg, ®) homeomorphic to Y.

(2) Ast — 0 (Y, wr,cy) converges in the Gromov-Hausdorff sense to (7reg, ).
(3) In particular, if we take [ag] = 0, the flops of the Y, , are continuous in the
Gromov-Hausdorff sense.

Proof The only point which is not an immediate consequence of Theorems 1.1 and 1.2
is the third point. However, by the uniqueness part of Theorem 1.1, the limiting limiting
Calabi—Yau metric w on Y, j, is isometric to the conical Calabi—Yau metric from [12].
Alternatively, this can be seen as follows. Let w,. denote the Calabi—Yau metric on
Yy p. Clearly tw cy is a Calabi—Yau metric in ¢[w] asymptotic to fe.. Let é denote
the extension of the holomorphic Reeb vector fieldon Y, and, forA € Cletg, : ¥ — Y

denote the A-flow of &. Then
*
<¢1> twi,cy
Vi
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is Calabi—Yau, asymptotic to w,, and lies in the cohomology class ¢[w] and hence
is equal to w; cy by the uniqueness results of [15]. From this description, and the
convergence result of Theorem 1.1 it follows that w;, cy converges to M;‘a)c on compact
sets of Y\Exc(u;). O

It’s not hard to check that if a partial resolution Y is obtained by blowingup 0 < k <
p — 1lines x = z — ¢/w = 0, then Y has an isolated singularity biholomorphic to a
neighborhood of the singular pointin Y, ,—x. More precisely, suppose for simplicity
that Y is obtained by blowing-up the lines x =z — {/w =0for0 < j <k < p — 1.
Then Y has an isolated singularity biholomorphic to

p—1
Ypipk=1lxy=[[c—¢/w)cc
j=k

which is deformation equivalent to Y, ¢ ,— and admits a conical Calabi—Yau metric
by argument of [12]. The link of this singularity is topologically (p —k — 1)#(S% x $3)
and it comes equipped with a Sasaki-Finstein metric. It was shown in [12] that the
volume of these Sasaki—Einstein metrics is given by

22(p—k)* 16
21(p—ky* — 27(p — k)

Thus Y yields a cobordism between (p — k —_1)#(S2 x §3) and #(p— D(S% x $3).
It is natural to expect that that the metric @ on Y, close to the singular point, is close
to the conical Calabi—Yau metric on Y,k ,—. At the very least, we expect

Conjecture 2 Ler (Y,d) denote the metric space obtained as the completion of
(Yyeg, ®). Then the tangent coneto (Y , d) at the singular point is isometricto Y p . p—k
equipped with its conical Calabi—Yau metric.

Let y € Y denote the singular point, and consider the function

Vol (Bg (y, r
Rog>r = v(r) = —w( (g(y )
P
Since (Y, w) is Calabi—Yau, v(r) is monotone decreasing by the Bishop—Gromov
comparison theorem. Furthermore, assuming Conjecture 2, since @ is asymptotic to
the conical Calabi—Yau metric on Y, , we have

16 . . 16
——— =limv(r) > lim v()=—.
27(p — k) r—0 r—+00 27p

Note that the equality case of Bishop—Gromov already shows that if k = 0, then the
metric is conical.

While deducing k£ > 0 in this way is not particularly interesting, this discussion
holds for any asymptotically conical Calabi—Yau variety with or without singularities
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(indeed, a smooth, asymptotically conical Calabi—Yau variety is naturally a cobordism
between the standard Sasaki—Einstein structure on the sphere and the link of the
cone at infinity). Suppose (Y, ) is a asymptotically conical Calabi—Yau variety with
asymptotic cone C,, and with a singular point y. Assume that a neighborhood of
y is biholomorphic to a neighborhood of an isolated singular point in some quasi-
homogeneous affine variety Co admitting a conical Calabi—Yau metric. Assuming that
@ is close to the Calabi—Yau metric on Cg near the singularity at y, the volume ratio
of geodesic balls centered at y will decrease (by Bishop-Gromov) from the volume
ratio of the cone v(Cp) to the volume of ratio of the cone at infinity, v(C). Since
these volume ratios are algebraic invariants of the singularities Cp, Co, this situation
is obstructed in general; for example one cannot take Co = Y, p and Coo = Yy, p—k-

It is tempting to speculate that the volume function on Sasaki-Einstein structures
could give rise to a sort of Morse function on the space of Sasaki—Einstein manifolds.
For two Sasaki-Einstein manifolds Sy, So, with corresponding cones Cy, Co a Calabi—
Yau space (Y, @) with an isolated singularity Cy and cone Co, at infinity could be
regarded as a kind of flow line of the Morse function between Sy and S.. We will
give further examples of this discussion below.

6.2 Examples from Fano manifolds

Let us next indicate how to construct examples starting from Fano manifolds with a
different singular structure than the previous examples. Suppose X is a Fano manifold
of dimension n. Let X = Bl, X be the blow up of X at a point and let E C X be the
exceptional divisor. Assume in addition that that X is Fano and —K ¢ 18 base-point
free. Assume that X has a Kihler-Einstein metric, or more generally that the affine
cone over X , Spec @m>0 H 0(5( ,—K ?m), admits a conical Calabi-Yau metric. This

holds, for example, whenever X is toric, by [26]. It is not difficult to generate examples
satisfying these assumptions. For example

e Let X = P", with p a torus invariant point. Then X = BlpIP’“ is Fano and —K5 is
base point free. These manifolds do not admit Kdhler—Einstein metrics, as can be
seen from Matsushima’s obstruction. However, they are toric, and so the theorem
of Futaki—-Ono—Wang implies the existence of a Calabi—Yau cone metric on the
affine cone C := Spec @,,-o H*(X, —K f:?’"). Note that the conical Calabi—Yau
structure on C need not be quasi-regular, as happens for example when n = 2
[26,27,40].

e Let X be a del Pezzo surface with K )2( > 3, and p chosen sufficiently generic so
that X = BI pX is Fano. The global generation of —K 3 follows from Reider’s
Theorem [46]. Furthermore, a theorems of Tian-Yau [55] and Tian [52] say that X
admits a Kdhler—Einstein metric if K }2( < 8. If, however, K § = 8,9 then X does
not admit a Kéhler-Einstein metric by Matsushima’s obstruction [43]. On the other
hand, in these latter examples, if p is chosen so that Xis toric, then the affine cone
Spec @,,-0 H*(X, —K2™) admits a conical Calabi—Yau metric thanks to results
of Futaki-Ono—Wang [26)3 (See also [12]). In these examples the Calabi—Yau cone
structure is not quasi-regular [26,40].
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LetY = K5 be the total space of the canonical bundle, and let p : ¥ — X be
the projection. The pull-back p* identifies H LIy, R) = H(X,R), and Y admits
an asymptotically conical Calabi—Yau metric in any Kihler class in H! (Y, R) [15].
Suppose [a] € HV!(X,R) is a Kihler class, so that p*[7*a] € HVI(Y,R) is a
nef class on Y admitting a semi-positive representative. By regarding the exceptional
divisor of the blow-up 7 : X — X as a subvariety of the zero section in ¥, we get a
natural codimension 2 subvariety, E C Y (explicitly E = p! (E) N { zero section }).
Our goal is to show that if [&,] = (1 — t)[p*n*a] + tlw] € H"'(Y,R) and o, cy
are conical Calabi—Yau metrics in [w;] then, ast — 0, (Y, @, cy) Gromov—Hausdorff
converges to a variety Z with an isolated, Gorenstein, log-terminal singularity which
is obtained from Y by contracting E to a point. As a first step, we need to verify that
Assumption 1 holds, since the failure of the cone at infinity to be quasi-regular means
that Lemma 3.3 does not apply in general.

Lemma 6.2 The cohomology class p* [ * ] contains a Kiihler current which is smooth
outside of E.

Proof 1t is a standard fact that we can choose a hermitian metric & 5onO )'((E ) such
that

e +ev/—100logh; > wy (6.2)

for some ¢ > 0 and wy a Kéhler form on X. Lets 7 denote the defining section of
E C X. After scaling we may assume that |s Eﬁg‘ < 1. The current T := n*a +

e4/—133 log |sl§|%E~ is a Kihler current on X which is singular along £ C X. Let hy

be a negatively curved metric on K, and let s denote a coordinate on the fibers of
K 3. We claim that

T = p*r*a 4+ v—103(|s|? + 810g(p*|sE|%lE + |s|ﬁ)_()) (6.3)

is a Kéhler current. This can be verified by a straightforward calculation, which we
leave to the reader. O

The next step is to show that there is a space Z, and amap ® : Y — Z which is an
isomorphism outside E and contracts E to a point, which is an isolated, Gorenstein
log-terminal singularity in Z. Let us begin with a local description of this map and the
resulting singularity. Note that the normal bundle of E C Y is given by

Ngyy = Opn-1(=1) @ Opn-1(—(n — 1))
which follows from K3 = 7*Kx + (n — 1)E. There is a contraction map
V:Opn-1(=1) ® Opn-1(—(n — 1)) = C
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contracting the zero section of Ng,y to a point. Explicitly, this map is given by [41,
Page 314]

Ngjy = Spec GB Sym”™ (Opn-1(1) ® Opn-1((n — 1))

m=>0

— Spec D) H° (P"—l, Sym” (Opu-1 (1) & Opu-i (n — 1)))) -

m=>0

Since
H° (]P’"‘l, Sym™ (Opu-1(1) @ Opu-i (n — 1)))) — HO(P(NE)v), Op(g ) (m)

we see that Cy is the affine cone over P(Ng,y) obtained by blowing down the zero
section of Op(y, /Y)(—l). We claim that P(Ng,y) is Fano. In general, the canonical
bundle of a projective bundle 7 : P(V) — X, where V has rank r is given by

Kpwvy = Opyy(—r — 1) ® 7*(det V) @ ¥ Ky.
Applying this formula in the current scenario yields

Ke(Ngy) = OP(Ng,v) (—3).

Since Ny is a direct sum of negative line bundles, Op(y,, ) (3) is ample. It follows
from this that Cy has an isolated Gorenstein, log-terminal singularity and K¢, ~ Oc¢,
is trivial. Finally, since Ng;y — P"~!is a direct sum of line bundles, P(Ng JY) is toric.
Therefore the result of Futaki-Ono—Wang [26] (see also [12]) says that Cy admits a
conical Calabi-Yau metric for some choice of Reeb vector field.

Next we will globalize this construction using the input of an ample line bundle L
on X. First note that a section f € H 0(X,-K ?m ) naturally induces a holomorphic

function f € HO(Y, Oy) vanishing to order m on X = {zerosection} C Y. Let
fi ..., fu be generators of the coordinate ring @, o H (X, -K ?’"). Since —K 3 is
ample and globally generated, the holomorphic functions fj ..., fi separate points
and tangent vectors on Y\X and generate the normal bundle to X inY.Let L be a very
ample line bundle on X, and let {so, ..., sy} be a basis of HO(X, L). Fix coordinates
(z1,--.,2n) on X centered at p. Up to making a linear change of coordinates we can

assume that so(p) # 0, and near p we have

@ _ v o@?) 1<i<n @

= 0(? i <N
0@ wipy ) n=is

By inspection the sections {p*7*s;}o<i<n separate points and tangents in X\E and
generate the normal bundle to E in X. Now consider the map @ : ¥ — PV x PM
defined by
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d(z) = ([p*n*so(@) - : p*r*sn@L [ : fi@) i+ fu@]) € PV x PM
(6.4)

By the preceeding discussion this map is an isomorphism on Y\ E, and ®(E) = [1 :
0:---:0]x[1:0:---:0].Since the differential d ® is an isomorphism on Ny, the
germ of ® agrees with the contraction v on Ng,y. Note also that ¢ | % = 7 (composed
with the imbedding X into projective space by sections of L). Let Z = ®(Y). From
the local description above Z has an isolated Gorenstein, log-terminal singularity, and
Kz = Oz.Themap @ : Y — Z is therefore a small, and hence crepant, resolution of
Z. It follows from the construction that we can describe Z has the relative spectrum

Z = Spec (Kx ®mp) — X

where m,, is the ideal sheaf of p € X. In order to apply Theorems 1.1 and 1.2 it
suffices to show

Lemma 6.3 In the above setting, there is an ample line bundle L' on Z such that
pFci(@w*L) = ®*c (L).

Proof Since Z is normal and & is projective with connected fibers we have ©, Oy =

Oz, and f1, ..., fu extend over the singular point to global sections of Oz. Further-
more, there is a natural projection

p:Z—>X

obtained by projecting from Z onto the PV factor in (6.4) and we have rop = ®op =
p o ®. Thus

[p*nso -+ p*rntsyl=1[p"so:--: P snl.

Combining this observation with the Segre embedding PV x PM < pWN+DM+D—1
it follows that L’ := p*L is ample on Z. Since

prei(m*L) = ®*c1(p*L)
the lemma follows. |

We can now conclude

Corollary 6.4 With notation as above, consider the family of Kdhler classes [w;] =
(A =t)p*ci1(7*L) + tw] € HL(Y,R) fort > 0. Let w; cy be the asymptotically
conical Kdhler metrics in [w;]. Then there is a incomplete, asymptotically conical
Calabi-Yau metric @ on Zyeq such that (Z,eq, ®) = (Z, d) and

Y, wr,cy) »cu (Z,4d).

Proof Combine Lemmas 6.2 6.3 with Theorems 1.1 and 1.2. O
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It is again natural to conjecture

Conjecture 3 Let (Z, d) be the metric space structure on Z induced from Y by Theo-
rem 1.2. Then the tangent cone to (Z, d) at the singular point 7 € Z is isometric to
the blow down of the zero section in Opyy(—1) where

V = Opn-1(—1) & Opn-1(—(n — 1))
equipped with its conical Calabi—Yau metric.

Assuming this conjecture, the space Z can be viewed as a kind of cobordism
between Sasaki—Einstein manifolds, and the speculative discussion from Sect. 6.1 can
be applied in the same way.

Acknowledgements The authors are grateful to D. H. Phong for his interest and encouragement. The
authors are also grateful to R. Conlon and H.-J. Hein for explaining aspects of their papers [15-17].

References

. Atiyah, M.E.: On analytic surfaces with double points. Proc. R. Soc. Lond. Ser. A 247, 237-244 (1958)
. Bando, S., Kobayashi, R.: Ricci-flat Kdhler metrics on affine algebraic manifolds. Geometry and
analysis on manifolds (Katata/Kyoto, 1987), pp. 20-31. In: Lecture Notes in Mathematics, vol. 1339.
Springer, Berlin (1988)
3. Bando, S., Kobayashi, R.: Ricci-flat Kéhler metrics on affine algebraic manifolds II. Math. Ann. 287(1),
175-180 (1990)
4. Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge-Ampere equation. Invent.
Math. 37(1), 1-44 (1976)
5. Calabi, E.: Métriques kidhlériennes et fibrés holomorphes. Ann. Sci. Ecole Norm. Sup. (4) 12(2),
269-294 (1979)
6. Cheeger,J., Colding, T. H.: Lower bounds on Ricci curvature and the almost rigidity of warped products,
Ann. Math. (2) 144(1), 189-237 (1996)
7. Cheeger, J., Colding, T. H. On the structure of spaces with Ricci curvature bounded below. I. J. Differ.
Geom. 46(3), 406480 (1997)
8. Cheeger, J., Colding, T. H.: On the structure of spaces with Ricci curvature bounded below. II, J. Differ.
Geom. 54(1), 13-35 (2000)
9. Cheeger, J., Colding, T. H.: On the structure of spaces with Ricci curvature bounded below. III. J.
Differ. Geom. 54(1), 37-74 (2000)
10. Cheeger, J., Colding, T.H., Tian, G.: On the singularities of spaces with bounded Ricci curvature.
Geom. Funct. Anal. 12(5), 873-914 (2002)
11. Cheng,S.Y., Yau, S.T.: On the existence of a complete Kihler metric on noncompact complex manifolds
and the regularity of Fefferman’s equation. Comm. Pure Appl. Math. 33(4), 507-544 (1980)
12. Collins, T.C., Székelyhidi, G.: Sasaki-Einstein metrics and K-stability. Geom. Topol. 23(3), 1339-1413
(2019)
13. Collins, T.C., Tosatti, V.: Kéhler currents and null loci. Invent. Math. 202(3), 1167-1198 (2015)
14. Conlon, R.: On the construction of asymptotically conical Calabi-Yau manifolds. Ph.D. thesis, Imperial
College London (2011)
15. Conlon, R., Hein, H.: Asymptotically conical Calabi-Yau manifolds, I. Duke Math. J. 162(15), 2855—
2902 (2013)
16. Conlon, R., Hein, H.: Asymptotically conical Calabi-Yau metrics on quasi-projective varieties. Geom.
Funct. Anal. 25(2), 517-552 (2015)
17. Conlon, R., Hein, H.: Asymptotically Conical Calabi—Yau Manifolds III. arXiv.1405.7140
18. Corti, A., Haskins, M., Nordstrom, J., Pacini, T.: Asymptotically cylindrical Calabi-Yau 3-folds from
weak Fano 3-folds. Geom. Topol. 17(4), 1955-2059 (2013)

o —

@ Springer


http://arxiv.org/abs/1405.7140

T.C. Collins et al.

19.

20.

21.

22.

23.

24.

25.
26.

217.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.
42.

43.

44.

45.

46.

47.

48.

Croke, C.: Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. Ecole Norm. Sup. (4)
13(4), 419-435 (1980)

Demailly, J.-P.: Surveys of Modern Mathematics, 1. Analytic methods in algebraic geometry, Higher
Education Press/International Press, Beijing/Somerville (2012)

Demailly, J.-P., Paun, M. Numerical characterization of the Kihler cone of a compact Kihler manifold.
Ann. Math. (2) 159(3) , 1247-1274 (2004)

Donaldson, S. Kronheimer, P. The geometry of four-manifolds. In: Oxford Mathematical Monographs.
(Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1990)
Donaldson, S., Sun, S.: Gromov-Hausdorff limits of Kéhler manifolds and algebraic geometry. Acta
Math. 213(1), 63-106 (2014)

Eyssidieux, P., Guedj, V., Zeriahi, A.: Singular Kihler-Einstein metrics. J. Am. Math. Soc. 22(3),
607-639 (2009)

Faulk, M.: Asymptotically Conical Calabi-Yau Orbifolds, I. arxiv.1809.01556

Futaki, A., Ono, H., Wang, G. Transverse Kdihler geometry of Sasaki manifolds and toric Sasaki-
Einstein manifolds. J. Differ. Geom. 83(3), 585-635 (2009)

Gauntlett, J., Martelli, D., Sparks, J., Waldram, D.: Sasaki-Einstein metrics on $2 x §3. Adv. Theor.
Math. Phys. 8(4), 711-734 (2004)

Goto, R.: Calabi-Yau structures and Einstein-Sasakian structures on crepant resolutions of isolated
singularities. J. Math. Soc. Jpn. 64(3), 1005-1052 (2012)

Grauert, H.: Aber modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146, 331-368
(1962)

Grauert, H., Remmert, R.: Plurisubharmonische Funktionen in komplexen Raumen (German). Math.
Z. 65, 175-194 (1956)

Haskins, M., Hein, H,-J., Nordstrom, J.: Asymptotically cylindrical Calabi—Yau manifolds. J. Differ.
Geom. 101(2), 213-265 (2015)

Joyce, D. Compact manifolds with special holonomy. In: Oxford Mathematical Monographs. Oxford
University Press, Oxford (2000)

Katz, S. Small resolutions of Gorenstein threefold singularities. Algebraic geometry: Sundance 1988.
Contemp. Math. 116, 61-70 (American Mathematics Society, Providence) (1991)

Kolodziej, S.: The complex Monge-Ampere equation. Acta Math. 180(1), 69-117 (1998)

Li, C.: On sharp rates and analytic compactifications of asymptotically conical Kédhler metrics.
arxiv.1405.2433

Li, P,, Tam, L.F.: Green’s functions, harmonic functions, and volume comparison. J. Differ. Geom.
41(2), 277-318 (1995)

Li, P, Yau, S.-T.: On the parabolic kernel of the Schrodinger operator. Acta Math. 156(3—4), 153-201
(1986)

Lockhart, R., McOwen, R.: Elliptic differential operators on noncompact manifolds. Ann. Scuola
Norm. Sup. Pisa Cl. Sci. (4) 12(3), 409-447 (1985)

Marshall, S.: Deformations of special Lagrangian submanifolds. Ph.D. thesis, University of Oxford
(2002)

Martelli, D., Sparks, J., Yau, S.-T.: Sasaki-Einstein manifolds and volume minimization. Commun.
Math. Phys. 280(3), 611-673 (2008)

Matsuki, K.: Universitext. Introduction to the Mori program, Springer, New York (2002)

Matsuki, K.: Weyl groups and birational transformations among minimal models. Mem. Am. Math.
Soc. 116(557) (1995)

Matsushima, Y.: Sur la structure du groupe d’homéomorphismes analytiques d’ube certain varifeté
Kéihlerienne. Nagoya Math. J. 11, 145-150 (1957)

Mok, N., Siu, Y.-T., Yau, S.-T.: The Poincaré-Lelong equation on complete Kihler manifolds. Com-
posit. Math. 44(1-3), 183-218 (1981)

Phong, D.H., Sesum, N., Sturm, J.: Multiplier ideal sheaves and the Kdhler-Ricci flow. Commun. Anal.
Geom. 15(3), 613-632 (2007)

Reider, I.: Vector bundles of rank 2 and linear systems on algebraic surfaces. Ann. Math. (2) 127(2),
309-316 (1988)

Rong, X., Zhang, Y.: Continuity of extremal transitions and flops for Calabi-Yau manifolds. Appendix
B by Mark Gross. J. Differ. Geom. 89(2), 233-269 (2011)

Rong, X., Zhang, Y.: Degenerations of Ricci-flat Calabi-Yau manifolds. Commun. Contemp. Math.
15(4), 1250057 (2013)

@ Springer


http://arxiv.org/abs/1809.01556
http://arxiv.org/abs/1405.2433

On the degeneration of asymptotically conical Calabi-Yau metrics

49.

50.

51.
52.

53.

54.

55.

56.
57.

58.
59.

60.

61.

62.
63.

64.

Schoen, R.: Analytic aspects of the harmonic map problem. Math. Sci. Res. Inst. Publ. 2, 321-358
(1984)

Sherman, M., Weinkove, B.: Local Calabi and curvature estimates for the Chern-Ricci flow. N. Y. J.
Math. 19, 565-582 (2013)

Song, J.: Riemannian geometry of Kéhler-Einstein currents. arXiv.1404.0445

Tian, G.: On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math.
101(1), 101-172 (1990)

Tian, G., Yau, S.-T.: Complete Kdhler manifolds with zero Ricci curvature. J. Am. Math. Soc. 3(3),
579-609 (1990)

Tian, G., Yau, S.-T.: Complete Kihler manifolds with zero Ricci curvature II. Invent. Math. 106(1),
27-60 (1991)

Tian, G., Yau, S.-T.: Kéhler-Einstein metrics on complex surfaces with C1>0. Commun. Math. Phys.
112(1), 175-203 (1987)

Tosatti, V.: Calabi-Yau manifolds and their degenerations, Ann. N.Y. Acad. Sci. 1260, 8-13 (2012)
Tosatti, V.: Degenerations of Calabi- Yau metrics, in geometry and physics in Cracow. Acta Phys. Polon.
B Proc. Suppl. 4(3), 495-505 (2011)

Tosatti, V.: Collapsing Calabi-Yau manifolds. arXiv:2003.00673

Tosatti, V.: Limits of Calabi-Yau metrics when the Kihler class degenerates. J. Eur. Math. Soc. (JEMS)
11(4), 755-776 (2009)

Tsuji, H.: Existence and degeneration of Kéhler-Einstein metrics on minimal algebraic varieties of
general type. Math. Ann. 281(1), 123-133 (1988)

van Coevering, C.: Ricci-flat Kidhler metrics on crepant resolutions of Kahler cones. Math. Ann. 347(3),
581-611 (2010)

van Coevering, C.: A Construction of Complete Ricci-flat Kéhler Manifolds. arXiv:0803.0112

Yau, S.-T. On the Ricci curvature of a compact Kdihler manifold and the complex Monge-Ampere
equation. I. Commun. Pure Appl. Math. 31(3), 339-411 (1978)

Yau, S.-T.: Survey on partial differential equations in differential geometry. Seminar on differential
geometry, pp. 3—71. Annals of Mathematics Studies, Vol. 102. Princeton University Press, Princeton
(1982)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


http://arxiv.org/abs/1404.0445
http://arxiv.org/abs/2003.00673
http://arxiv.org/abs/0803.0112

	On the degeneration of asymptotically conical Calabi–Yau metrics
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Asymptotically conical Kähler manifolds
	2.2 Kähler classes on AC Kähler manifolds
	2.3 Weighted Hölder spaces and solvability of Poisson's equation
	2.4 Proof of Theorem 1.1

	3 Background metrics
	3.1 Kähler currents and Null loci in the asymptotically conical case

	4 A priori estimates
	4.1 Uniform estimates
	4.2 Convergence of the metric away from the degeneracy locus
	4.3 Decay estimates
	4.4 Uniqueness

	5 Metric geometry of the singular Calabi–Yau
	5.1 Properties of the Gromov–Hausdorff limit
	5.2 Identification of X0 with the geometry of singular Calabi–Yau
	5.2.1 A gradient bound for 0
	5.2.2 L2 estimates on X0


	6 Examples and applications
	6.1 Small resolutions of Brieskorn–Pham cones
	6.2 Examples from Fano manifolds

	Acknowledgements
	References




