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Abstract
We study the degenerations of asymptotically conical Ricci-flat Kähler metrics as
the Kähler class degenerates to a semi-positive class. We show that under appro-
priate assumptions, the Ricci-flat Kähler metrics converge to a incomplete smooth
Ricci-flat Kähler metric away from a compact subvariety. As a consequence, we con-
struct singular Calabi–Yau metrics with asymptotically conical behaviour at infinity
on certain quasi-projective varieties and we show that the metric geometry of these
singular metrics are homeomorphic to the topology of the singular variety. Finally,
we will apply our results to study several classes of examples of geometric transitions
between Calabi–Yau manifolds.
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1 Introduction

Following Yau’s resolution of the Calabi Conjecture [63] the study of Ricci-flat Kähler
metrics has played a central role in geometric analysis. Subsequently, motivated by
questions in differential geometry,mathematical physics, and algebraic geometry there
has been a great deal of interest in extensions of Yau’s theorem to the complete,
non-compact setting [2,3,5,11,15–18,25,28,31,32,35,53,54,61,62], the degeneration
of Calabi-Yau metrics (see, for example, the surveys [56–58] and the references there
in), and the existence of Calabi–Yau metrics on singular spaces (see for example [24,
51]). In this paper we initiate the study of degenerations of non-compact Calabi–Yau
manifolds, and the existence of Calabi–Yau metrics on certain non-compact singular
varieties.

In the compact setting, a special class of Calabi–Yau degenerations are obtained by
degenerating the Kähler class. More precisely, fix a compact Calabi–Yau manifold X ,
and let K ⊂ H1,1(X ,R) denote the Kähler cone, consisting of all (1, 1) cohomology
classes admitting a Kähler representative; K is an open convex cone in H1,1(X ,R).
For each class [ω] ∈ K, Yau’s theorem [63] yields the existence of a unique Ricci-flat
Kähler metricωCY ∈ [ω]. Choose a family of Kähler classes [ωt ] ∈ K, t ∈ (0, 1] such
that [ωt ] → [α] ∈ ∂K as t → 0. We are interested in understanding the geometry of
(X , ωt,CY ) as t → 0. Roughly speaking this question can be divided into two cases;
the collapsing case, when

∫
X αn = 0, and the non-collapsing case, when

∫
X αn > 0.

The non-collapsing case, is reasonably well understood, thanks to work of Tosatti [59],
Rong and Zhang [47], and the first author and Tosatti [13].

One way to construct a non-collapsed family of Calabi–Yau manifolds is as fol-
lows; suppose X0 is a normal, Gorenstein, projective variety with K X0 trivial. Suppose
that π : X → X0 is a crepant resolution of singularities, and let [α] = π∗[ω0]
for some Kähler class [ω0] on X0. A family of Kähler classes on X converging
to [α] gives rise to non-collapsed family of Calabi–Yau metrics. In this case, the
results of [13] say that the Calabi–Yau metrics ωt,CY converge in C∞

loc(X\Exc(π)),
to an incomplete metric ω0,CY and (X , ωt,CY ) Gromov–Hausdorff converge to the
completion (X\Exc(π), ω0,CY ). ω0,CY descends to a Ricci-flat metric on Xreg

0 , and
one can ask whether the metric geometry of ω0,CY is related to the geometry of
the X0. In this case, assuming that [α] ∈ H1,1(X ,Q), Song [51], proved that

(X\Exc(π), ω0,CY ) = (Xreg
0 , ω0,CY ) is homeomorphic to X0. In particular, this yields

the existence of a natural Calabi–Yau metric on the singular variety X0.
In this paper we study degenerations of Calabi–Yau metrics on complete non-

compact Calabi–Yau manifolds asymptotic to a cone. Complete, non-compact
Calabi–Yau manifolds were first constructed by Tian–Yau in [53,54], and a plethora
of examples are now known to exist. A particular subset of these are Calabi–Yau
manifolds which are asymptotic to a cone at infinity, these are sometimes called
asymptotically conical Calabi–Yau manifolds. Conical Calabi–Yau manifolds are of
fundamental importance, since they arise as blow-up limits at the singular points in
the limit of a non-collapsing family of Kähler–Einstein manifolds (or more gener-
ally Kähler manifolds with bounded Ricci curvature). The conical asymptotics should
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be regarded here as akin to the non-collapsing condition in the setting of compact
Calabi–Yau manifolds discussed above.

The first analytic construction of asymptotically conical Calabi–Yau manifolds
was given in [2,3,54], and the construction has been further refined by the work of
many authors, see [15–17,25,28,32,35,61,62] and the references therein. One nice
improvement given by these refinements is that, in analogy with Yau’s theorem in the
compact case [63], one is able to produce an asymptotically conical Ricci-flat Kähler
metric in every suitable Kähler class on an asymptotically conical Kähler manifold
X . In particular, this yields families of degenerating asymptotically conical Ricci-flat
Käher metrics, and one can then ask what properties limits of these spaces possess.

The motivation for studying these limits is twofold. First, there is a broad class of
non-compact examples which are expected to model the local behavior of Calabi–Yau
metrics on compact Calabi–Yau manifolds near certain singular limits. Understand-
ing the behavior of these “local" models through singular transitions will help to
sharpen our understanding of the degeneration of Ricci-flat metrics in the compact
setting. Secondly, understanding these metric limits allows us to prove the existence
of asymptotically conical Calabi–Yau metrics on singular spaces. These metrics can
be viewed as interpolating between affine varieties with conical Calabi–Yau metrics
(or equivalently, Sasaki–Einstein manifolds).

Let us describe the set-up under consideration and state our main theorems. The ter-
minologies used in this section will be explained in the next section. Let (X , J , ω,�)

be an open Kähler manifold with trivial canonical bundle, with only one end which is
asymptotic to a Calabi-Yau cone (C, JC , ωC ,�C ) with rate ν > 0. Consider a linear
family of ν-almost compactly supported Kähler classes [αt ] = (1− t)[α0] + t[α1] ∈
H1,1

ν (X) for t ∈ (0, 1]. Suppose [α0] satisfies the following assumption.

Assumption 1 [α0] contains a semi-positive form α0, and there exists ε0 > 0 and
a ψ ∈ P SH(X , α0) such that α0 + i∂∂̄ψ ≥ ε0ω for some Kähler form ω on X .
Furthermore, assume that ψ is smooth away from a compact analytic subvariety V ⊂
X , and V = {ψ = −∞}.
Remark 1 We expect that Assumption 1 essentially always applies, possibly after
weakening the semi-positivity assumption. In fact, in analogy with the main result
of [13], we expect that

V =
⋃

Y⊂X :∫Y αdim Y
0 =0

Y

where the union is taken over compact, irreducible analytic subvarieties.Wewill prove
this in a large class of examples; see the discussion in Sect. 3.1.

In [15], it is proved that for t ∈ (0, 1] there exists a unique asymptotically con-
ical Ricci-flat Kähler metric ωt,CY ∈ [αt ] satisfying the complex Monge–Ampère
equation

ωn
t,CY = in2� ∧ �̄
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Our first theorem is the following,

Theorem 1.1 Let 0 < ν < 2n and consider a linear family of ν-almost compactly
supported Kähler classes [ωt ] = (1 − t)[α0] + t[ω] ∈ H1,1

ν (X ,R) for t ∈ (0, 1].
Suppose [α0] satisfies Assumption 1. Let ωt,CY be the asymptotically conical Calabi-
Yau metrics in [ωt ]. Then, as t → 0, the Ricci-flat Kähler metrics ωt,CY converge in
C∞

loc(X \ V ) to an incomplete Ricci-flat Kähler metric ω0,CY on X \ V satisfying

ωn
0,CY = in2� ∧ �̄. (1.1)

Moreover, we have

(1) ω0,CY extends across V as a positive current with locally bounded potentials
and (1.1) holds globally in the sense of Bedford-Taylor [4].

(2) ω0,CY is asymptotically conical at infinity and, outside of a compact set K ⊂ X,
ω0,CY satisfies |∇k(ω0,CY − ωC )|ωC = O(r−ν−k), where r(x) = dist(x0, x) is
the distance to a fixed point with respect to the conical Kähler metric ωC .

(3) ω0,CY is unique in the sense that, if ω is any closed positive current in the class
[ω0,CY ] with locally bounded potentials, which is smooth on X\V , asymptotically
conical at any rate δ > 0, and satisfying (1.1) on X in the sense of Bedford-Taylor,
then ω = ω0,CY .

The reader maywish to compare this result with the analogous result in the compact
case [13,Theorem1.6].Asdiscussedbefore, a naturalway to construct exampleswhere
Theorem 1.1 applies is to consider resolutions of singular varieties.

Theorem 1.2 Let (X0,�) be a normal, log-terminal, Gorenstein variety with K X0

trivial, and suppose that X0 has compactly supported singularities and admits a
crepant resolution of singularities π : (X ,�) → (X0,�). Suppose that L → X0
is an ample line bundle on X0 (see Sect. 5 for the definition of ampleness in this
context). Let [α0] = π∗c1(L) ∈ H2(X ,R) and suppose that (X , J , ω,�) and
[ωt ] = (1 − t)[α0] + t[ω] ∈ H1,1

ν (X ,R) is a family of Kähler classes satisfying
the same hypothesis as in Theorem 1.1. (In particular [α0] satisfies Assumption 1)
In the situation above the singular Ricci-flat current ω0,CY descends to a Ricci-flat
Kähler current on X0 and satisfies

(1) ω0,CY is a smooth Ricci-flat Kähler metric on π−1(Xreg
0 ).

(2) ω0,CY descends to a Kähler current on X0, (i.e. ω0,CY ≥ ω for some smooth
Kähler form ω on X0)

(3) (Xreg
0 , ω0,CY ) is homeomorphic to X0.

(4) (X , ωt,CY , p) pointed Gromov-Hausdorff converges to X0 with the distance func-
tion induced by ω0,CY .

A couple of remarks are in order concerning the assumptions of Theorem 1.2

Remark 2 (1) Theorem 1.2 requires that Assumption 1 to hold for the class [α0]. As
pointed out in Remark 1, we expect that in this situation that we can always take
V = π−1(Xsing

0 ), and we will prove this is a large number of cases in Lemma 3.3.
Although we don’t actually need to assume this for the proof of Theorem 1.2.
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(2) The assumption on the existence of an ample line bundle L may seem at odds
with our discussion earlier in the introduction. In many cases where Theorem 1.2
applies, we will take L = OX0 . This can be done, for example, when X0 is
affine which is a natural setting for studying Calabi-Yau varieties with isolated
singularities.

We apply these results to study several classes of examples. Let us briefly describe
one particular class. Consider the quasi-homogeneous affine variety

Yp,q := {xy + z p − wq = 0} ⊂ C
4,

where without loss of generality we can assume p ≤ q. Yp,q is normal, Gorenstein
and log-terminal, and by [12] Yp,q admits a conical Calabi-Yau metric if and only if
q < 2p. A result of Katz [33] says that the Yp,p admits p inequivalent small (and
hence crepant) resolutions resolutions μi : Y i → Yp,p (and if p �= q then no small
resolution exists). We therefore have the following picture

Y 1 Y 2 · · · Y p−1 Y p

Yp,p

μ1 μ2 μp−1 μp

with each pair Y i , Y j related by a flop. When p = 2, this is the well-known example
of the Atiyah flop [1]. In Sect. 6 we apply our results to this setting.

Corollary 1.3 Let Y i be a small resolution of the Yp,p singularity, and let ω0 denote
the Calabi-Yau metric on Yp,p. Let [ωt ] := (1− t)[α0] + t[ω] be any linear family of
Kähler classes on Y i , where [α0] ∈ H1,1(Y i ,Q) is not Kähler. Then for all t > 0 there
is an asymptotically conical Calabi–Yau metric ωt,CY ∈ [ωt ]. Furthermore, there is
a partial resolution μ̄i : Y → Yp,p and a map ν : Y i → Y such that the following
diagram commutes

Y i Y

Yp,p

ν

μi
μ̄i

As t → 0, ωt,CY converge in C∞
loc(Y

i\Exc(ν)) to an incomplete, asymptotically
conical Calabi-Yau metric ω on Y reg and (Y i , ωt ) Gromov-Hausdorff converges to

(Y reg, ω) which is homeomorphic to Y . Furthermore, if [α0] = 0 then Y = Yp,p, μ̄i is
the identity, and ω̄ = ω0 the Calabi-Yau metric on Yp,p. In particular, when [α0] = 0,
for any i, j the flop from Y i to Y j is continuous in the Gromov-Hausdorff topology in
the sense that

(Y i , ·ωt,CY ) (Yp,p, ω0) (Y j , ·ωt,CY )
G H G H
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A second general class of examples we consider gives rise to the following specific
example. Let X be a del Pezzo surface of degree d ≥ 2, and let X̃ = Blp X be the
blow-up at a point p ∈ X . Assume that X̃ is Fano (and if d = 8 assume that X̃ is
toric). Then the canonical cone

C := Spec
⊕

m≥0

H0(X̃ ,−K ⊗m
X̃

)

admits a conical Calabi–Yau metric [12,26,40,52,55]. Then we prove

Corollary 1.4 In the above setting, there is an asymptotically conical Calabi–Yau met-
ric on the relative spectrum Z := Spec (K X ⊗ mp) which is asymptotic at infinity to
the conical Calabi–Yau metric on C.

The metric on Z is constructed as a limit of asymptotically conical Calabi–Yau
metrics on a small resolution, and we again obtain a Gromov–Hausdorff covergence
statement; see Sect. 6 for a complete discussion.

We will explain a speculative picture in which that space Z can be viewed as a
cobordism between Sasakian manifolds; in this case, the link of the A1 singularity
(topologically S2 × S3) and the link of the cone C (topologically #(9 − d + 1)S2 ×
S3). The Calabi–Yau metric on Z upgrades this to a cobordism of Sasaki–Einstein
manifolds. In this picture the volume of the geodesic spheres can be viewed as a sort
of Morse function.

The examples above all come from (partial-)resolutions of Calabi–Yau cones. Our
theorem can also yield examples where the complex structure at ∞ is not biholomor-
phic to the asymptotic cone.

Let X be an asymptotically conical Calabi–Yau manifold, then by [29], there exist
a normal Stein space Y with finitely many isolated singularities and there is a holo-
morphic map π : X → Y with connected fibers, is an biholomorphim outside the
singularities of Y and π�OY = OX . The map π contracts the maximal compact ana-
lytic subset of X and Y is called the Remmert reduction of X . Since Y is a Stein space,
it properly embeds into C

N for some N sufficiently large. The singularities of Y are
rational [15, Theorem A.2], and hence Cohen-Macaulay, and since K X is trivial and
Y is normal, it follows that KY is trivial and Y is Gorenstein. Hence π is a crepant
resolution of Y .

Corollary 1.5 Assuming Assumption 1 holds for [α0] = 0, applying our theorem with
[α0] = 0 ∈ H2(X ,R), ω0,CY descends to a singular CY current on Y and the AC
Calabi–Yau metrics ωt,CY in the classes t[ω] ∈ H2(X ,R) Gromov-Hausdorff coverge
to the Remmert reduction Y .

The outline of this paper is as follows. In Sect. 2 we discuss some basic properties
of asymptotically conical Kähler manifolds, and state twomain propositions (Proposi-
tions 2.5, and 2.6).We give the proof of Theorem 1.1 assuming these two propositions.
In Sect. 3 we discuss the construction of good background metrics, and prove Propo-
sition 2.5. In Section 4 we prove some a priori estimates and deduce Proposition 2.6,
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completing the proof of Theorem 1.1. In Sect. 5 we use L2 estimates to prove The-
orem 1.2. Finally, in Sect. 6 we explain examples where Theorems 1.1 and 1.2 are
applicable, and discuss a speculative Morse theoretic picture.

2 Preliminaries

2.1 Asymptotically conical Kähler manifolds

We quote here some basic definitions and an existence theorem for asymptotically
conical Calabi Yau metrics from [15].

Definition 2.1 (A) An open Kähler cone (C, JC , ωC , gC ) is a Riemannian cone
(C, gC )with smooth link L that is additionally equipped with a complex structure
JC such that the Kähler form is ωC = i∂∂̄r2C where rC is the distance function
from the tip of the cone.

(B) A Calabi-Yau cone (C, JC , ωC , gC ,�C ) is a Kähler cone with an additional holo-
morphic volume form �C such that ωn

C = in2�C ∧ �̄C .

Definition 2.2 (A) A Kähler manifold (X , J , g, ω) is called asymptotically conical if
there exist a Kähler cone (C, JC , gC , ωC ) and a diffeomorphism� : C \ BR(o) →
X \ K for some K ⊂⊂ X and o is the vertex of the cone C , and ν > 0 such that
the following hold

|∇k(�∗ J − JC )|gC + |∇k(�∗ω − ωC )|gC = O(r−ν−k
C ), ∀k ∈ N

where the covariant derivatives are taken with respect to gC . We say that X asymp-
totic to C with rate ν.

(B) We say that an openCalabi-Yaumanifold (X , J , ω,�) is asymptotic to the Calabi-
Yau cone (C, JC , ωC ,�C ) with rate ν if (X , J , g, ω) is asymptotic to the Kähler
cone (C, JC , gC , ωC ) with rate ν, and, in addition

|∇k(�∗� − �C )|gC = O(r−ν−k
C )

Remark 3 (1) On any asymptotically conical Kähler manifold, we can always find a
smooth function r : X → R≥0 satisfying r = rC ·�−1 away from some compact
set K where rC is the radial distance on the cone C , and furthermore, r satisfies:
|∇r | + r |∇2r | ≤ C . We will call such an r a radius function.

(2) In fact, it is shown in [15, Lemma 2.14] that �∗ J − JC always decays at the same
rate as �∗�−�C , so it suffices just to assume |∇k(�∗�−�C )|gC = O(r−ν−k).

(3) We will often say (X , J , g, ω) is an asymptotically conical Kähler manifold if it
is asymptotic to some Kähler cone (C, JC , gC , ωC ) at some rate ν > 0 by some
map �. We will therefore often suppress the map �, with the understanding that
all asymptotics are measured with respect to the diffeomorphism�. Furthermore,
when � is implicit, we will often abuse notation and write ωC , JC ,�C in place
of �−1)∗ωC , (�−1)∗ JC , (�−1)∗�C .
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(4) On an asymptotically conical Kähler manifold with rate ν we will often refer to
a (1, 1) form α being asymptotically conical. By this we mean that there is a
compact set K such that, on X\K the form α defines an asymptotically conical
Kähler metric with rate ν.

We now quote a versions of the ∂∂̄-lemma which hold on asymptotically conical
Calabi-Yau manifolds, see [15] for a proof.

Proposition 2.1 (∂∂̄-lemma, [15], Corollary A.3) Suppose X is an asymptotically con-
ical Kähler manifold with trivial canonical bundle, then

(1) If α is an exact real (1, 1)-form on X, then α = i∂∂̄u for some smooth function u.
(2) If dimC X > 2, then if α is an exact real (1, 1)-form on X \ K for some compact

subset K , then there exist a compact set K ′ containing K such that α = i∂∂̄u on
X \ K ′.

2.2 Kähler classes on AC Kähler manifolds

We recall the definition of a ν-almost compactly supported class, this is defined in
[15], but our definition is slightly different.

Definition 2.3 Let X be an asymptotically conical Kähler manifold, then for any class
[α] ∈ H2(X ,R), we say that

(1) [α] is a Kähler class if it contains a positive real (1, 1)-form α > 0
(2) [α] is a ν-almost compactly supported class if it contains a real (1, 1)-form ξ

satisfying |∇kξ | = O(r−ν−k)

and we will denote the set of all ν-almost compactly supported classes by H1,1
ν (X).

Remark 4 Definition 2.3 is slightly more restrictive than the definition given in [15]
where it is only required that the form ξ be defined away from a compact set. But by
the second part of Proposition 2.1, the condition in [15] implies our condition in the
case when X has trivial canonical bundle and dimC X > 2.

In [15], it is shown that if [α] is a ν-almost compactly supported and Kähler,
then one can always construct an asymptotically conical Kähler form ω ∈ [α] with
|∇k(ω − ωC )| = O(r−ν−k). We will recall this construction below in Section 3.

2.3 Weighted Hölder spaces and solvability of Poisson’s equation

Let us recall some useful Holder spaces defined on asymptotically conical manifolds
and some basic theorems regarding the solvability of Poisson equations, which will
be useful for us later on. For a detailed treatment of these material, see [38,39].

Definition 2.4 Let X be a AC Kähler manifold as above.

(1) We define the Ck,α
−γ (X) norm of a function as follows

‖u‖Ck,α
−γ

=
k∑

j=0

sup
X

|rγ+ j∇ j u| + [∇ku]Cα−γ−k−α
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where r is a radius function and

[∇ku]Cα−γ−k−α
= sup

x �=y,d(x,y)≤δ

[

min(r(x), r(y))γ+k+α |∇ku(x) − ∇ku(y)|
|d(x, y)|α

]

where δ > 0 is the convexity radius of X (i.e. balls of radius less than δ are
convex), and |∇ku(x)−∇ku(y)| is defined by parallel transporting∇ku(x) along
the minimal geodesic from x to y.

(2) We define C∞−γ (X) to be the intersection of Ck,α
−γ (X) over all k ≥ 0.

(3) We will also often use the following space C∞−γ (X \ V ), which we define to be
the space of functions u ∈ C∞

loc(X \ V ) such that (1 − χ)u ∈ C∞−γ (X), where χ

is a cutoff function with compact support that is equal to 1 in a neighborhood of
V . Where V is the compact analytic subset coming from Assumption 1.

With these definitions, we now recall a quantitative version of the ∂∂-Lemma for
asymptotically conical Kähler manifolds with non-negative Ricci curvature, which is
proved in [15].

Proposition 2.2 (Quantitative ∂∂̄-lemma, [15], Theorem 3.11) Suppose X is an
asymptotically conical Kähler manifold with Ric ≥ 0, then there exist ε0 > 0, such
that for any η an exact (1, 1)-form with η ∈ C∞−ε(X) for 0 < ε < ε0, then η = i∂∂̄u
for u ∈ C∞

2−ε.

Now we wish to recall some Fredholm theory in the spaces Ck,α
−γ (X), which is

a Banach space with the norm ‖ · ‖Ck,α
−γ

defined above. In this setting, the Laplace

operator � : Ck+2,α
−γ+2 (X) → Ck,α

−γ (X) is a bounded map of Banach spaces, and there
is a well-developed Fredholm theory for these spaces on an asymptotically conical
manifold (see, e.g. [39]), which we summarize below.

Definition 2.5 Let (C, gC ) be a Riemannian cone of real dimension n over a smooth
compact manifold Ln−1, then we denote the set of exceptional weights of the cone C ,

P =
⎧
⎨

⎩
−n − 2

2
±
√

(n − 2)2

4
+ λ : λ is an eigenvalue of �Ln−1

⎫
⎬

⎭
.

These correspond to the growth rates of homogenous harmonic functions on the cone
(C, gC ).

The following theorem summarizes Fredholm theory on an asymptotically conical
manifold

Theorem 2.3 ([39], Theorem 6.10) Suppose (X , g) is an asymptotically conical Käh-
ler manifold of dimension 2n. Consider the mapping

� : Ck+2,α
−γ (X) → Ck,α

−γ−2(X) (2.1)

and let P be the set of exceptional weights of the asymptotic cone
(C, gC ). Then:
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(1) The operator (2.1) Fredholm if −γ /∈ P.
(2) The operator (2.1) is surjective if −γ ∈ (2 − 2n,∞) \ P
(3) The operator (2.1) is injective if −γ ∈ (−∞, 0) \ P

Remark 5 We note that P ∩ (2 − 2n, 0) = ∅, hence (2.1) is an isomorphism for all
−γ ∈ (2 − 2n, 0).

Now we state a general theorem regarding the solvability of the complex Monge-
Ampère equation on an asymptotically conical Kähler manifold, which is proved in
[15].

Theorem 2.4 ([15, Theorem 2.4]) Let (X , J , ω) be a open Kähler manifold asymptotic
to a Kähler cone (C, JC , ωC ) with rate ν > 0, and suppose f ∈ C∞−γ−2(X), then
following Complex Monge–Ampere equation then admits a solution

(ω + i∂∂̄ϕ)n = e f ωn

with ωϕ = ω + i∂∂̄ϕ > 0 and

(1) If γ +2 > 2n, then we can take ϕ ∈ C∞
2−2n and ϕ is the unique solution in C∞

2−2n.
(2) If γ +2 ∈ (2, 2n) then we can take ϕ ∈ C∞−γ and ϕ is the unique solution in C∞−γ .
(3) If γ + 2 ∈ (0, 2) and −γ is not an exceptional weight, we can take ϕ ∈ C∞−γ .

2.4 Proof of Theorem 1.1

Webreakdown the proof of Theorem 1.1 in the following two propositions, andwewill
give the proof of Theorem 1.1 assuming these results. We will prove Proposition 2.5
in Sect. 3 and Proposition 2.6 in Sect. 4. Theorem 1.2 will be proved in Sect. 5.

Proposition 2.5 (Constructingbackgroundmetrics)Supposeν > 0, and let (X , J , ω,�)

be an asymptotic to a Calabi-Yau cone (C, JC , ωC ,�C ) with rate ν. Suppose
that −ν ∈ (−2n, 0) and −ν + 2 is not an exceptional weight. Suppose [αt ] =
(1 − t)[α0] + t[α1] ∈ H1,1

ν (X) is a linear family of Kähler classes in H1,1
ν for

t ∈ (0, 1], and suppose that [α0] ∈ H1,1
ν has a semi-positive representative α0. Then

there exists ε > 0, a compact set K ⊂ X and a smooth family of real (1, 1)-forms
ω̂t ∈ [αt ] for t ∈ [0, ε] satisfying the following:

(1) ω̂t > 0 for all t ∈ (0, ε].
(2) ω̂0 ≥ 0 and ω̂0 = α0 on a compact set K ⊂⊂ X. (In fact, we can choose this

compact set K to be as large as we like)
(3) On X\K there holds |∇k(ω̂t −ωC )|gC ≤ Cr−ν−k for all t ∈ [0, ε] for a constant

C independent of t .

(4) There exist γ > 0 such that, on X\K the Ricci potentials ft = log in2�∧�̄
ω̂n

t
satisfy

the asymptotics |∇k ft | ≤ Cr−γ−2−k uniformly in t .

Proposition 2.6 (A priori estimates) Let (X , J , ω,�) be asymptotic to a Calabi-Yau
cone (C, JC , ωC ,�C ) with rate ν > 0, and H1,1

ν (X) � [αt ] = (1 − t)[α0] + t[α1]
is a linear family of Kähler classes for t ∈ (0, 1] satisfying Assumption 1, and let
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ω̂t ∈ [αt ] be the forms constructed in Proposition 2.5. Let ϕt be the solution of the
complex Monge-Ampère equations

(ω̂t + i∂∂̄ϕt )
n = e ft ω̂n

t (= in2� ∧ �̄) (2.2)

obtained from Theorem 2.4. Then the following estimates hold uniformly in t

(1) |ϕt | ≤ C.
(2) ϕt is uniformly bounded in C∞

loc(X \ V ).
(3) There exist a compact subset K ⊂ X containing V such that the following estimate

hold outside of K

|∇kϕt | ≤ Cr−γ−k

for C independent of t .

Now we prove Theorem 1.1 given the above two propositions

Proof of Theorem 1.1 Let [αt ] = (1 − t)[α] + t[εω], then by Proposition 2.5, we can
construct a sequence of background metrics ω̂t ∈ [αt ] satisfying the properties stated
in the Proposition. Then using these as background metrics, we can write down a
family of complex Monge-Ampere equations

(ω̂t + i∂∂̄ϕt )
n = e ft ω̂n

t (= in2� ∧ �̄)

then by the Theorem 2.4, the equations are solvable for t > 0, and Proposition 2.6
applies to the family of solutions ϕt . Once we have the a priori estimate, it’s then clear
that by taking a subsequence, we can take a limit ϕti → ϕ0 in C∞

loc(X \ V ), which
satisfies the equation

(ω̂0 + i∂∂̄ϕ0)
n = in2� ∧ �̄ (2.3)

smoothly away from the analytic set V . Moreover, ϕ0 is a bounded by the uniform
C0 estimate of ϕt , hence ω̂0 + i∂∂̄ϕ0 extends as a non-negative current on X by
[30], and it does not charge any analytic subsets, so the equation (2.3) holds globally.
From Proposition 2.5 (2), and Proposition 2.6 (3), we see that ωϕ0 is asymptotically
conical. It only remains to establish the incompleteness and uniqueness statements of
ωϕ0 in Theorem 1.1. The incompleteness of ωϕ0 follows from the diameter bound in
Lemma 4.14, while the uniqueness is established in Theorem 4.15 ��

3 Backgroundmetrics

The goal of this section is to prove Proposition 2.5, which constructs a family of “good"
background metrics ω̂t ∈ [αt ] whose Ricci potentials decay faster than quadratically.
Indeed, it is easy to construct ωt ∈ [αt ] satisfying only the first two conditions of
Proposition 2.5. However, the proof of the a priori estimates of Proposition 2.6 depends
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crucially on the additional decay of the Ricci potentials. This idea is used in [15] (see
also [14, Prop. 4.2.6]).

From now on we fix an open Calabi-Yau manifold (X , J ,�) asymptotic to some
Calabi-Yau cone (C, JC ,�C , ωC , gC ) at rate ν > 0. In the following proposition, we
summarize a construction of asymptotically conical Kähler (semipositive) forms in
almost compactly support classes, which is based on [15].

Proposition 3.1 Suppose [α] ∈ H1,1
ν (X) contains a (semi-)positive form α, then there

exist a (semi-)positive form ω ∈ [α] which agrees with α in a compact set K and
satisfies the asymptotics |∇k(ω − ωC )| = O(r−ν−k) for r � 1.

Proof This follows from construction in [15, Theorem 2.4]. ��
Proposition 3.2 Suppose that (X , J ,�, ωt , gt )t∈[0,1] are a smooth family of data
which is asymptotic to the cone (C, JC ,�C , ωC , gC ) at the rate −ν ∈ (−2, 0).
Suppose that for t ∈ (0, 1], ωt are asymptotically conical Kähler metrics and ω0
is asymptotically conical and semi-positive (1, 1) form. Let ft , t ∈ [0, 1] be the Ricci

potentials of ωt , defined by e ft = in2�∧�̄
ωn

t
, and suppose there is a compact set K ⊂ X

so that on X\K , ft satisfy the following asymptotics:

(1) | ft | ≤ Cr−β

(2) |∇k ft |gC ≤ Cr−β−k

where C is independent of t and ν ≤ β < 2n − 2 and −β + 2 is not an exceptional
weight.

Then there exist ε > 0 and a family of functions ut for t ∈ [0, ε] such that the
following are satisfied

(1) There exist a compact subset K ⊂ X such that supp(ut ) ⊂ X \ K
(2) ωt + i∂∂̄ut > 0 on supp(ut )

(3) |∇kut |gC ≤ Cr−β+2−k

(4) |∇k ∂ut
∂t |gC ≤ Cr−β+2−k

(5) Away from a compact set K , we have

(ωt + i∂∂̄ut )
n = e ft− f

′
t ωn

t = e− f
′
t i n2� ∧ �̄

where |∇k f
′
t | ≤ Cr−2β−k outside a compact set K .

where the constant C is independent of t . In particular, this means if we set ω′
t =

ωt + i∂∂̄ut , then ω′
t converges to ωC at the same rate as ωt , but the Ricci potentials

f ′
t of ω′

t decays a rate of −2β.

Proof We can essentially follow the same procedure as in [15, Lemma 2.12]. First we
want to solve the equation

�ωt ût = 2 ft

for t ≥ 0, away from a compact set while controlling of the growth of the solutions.
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We now fix a standard cutoff function χ : R → R with

χ(x) =
{
0 for x ≤ 1

1 for x ≥ 2

and satisfy 0 ≤ χ ≤ 1, |χ ′| ≤ 2, |χ ′′| ≤ 5. Then we define ζR : X → R by setting
ζR(x) = χ(

r(x)
R ), and let ĝ be any metric on X . Then set

ḡt = (1 − ζR)ĝ + gt

Sinceω0 is semi-positive and asymptotically conicalwe can choose R sufficiently large
so that ḡ0 is an asymptotically conical Riemannian metric. Then for all t ∈ [0, 1], gt

defines a background metric and for t ∈ (0, 1], this metric is equal to the ωt away
from a compact set.

If −β + 2 is not an exceptional weight, then �ḡt : C∞−β+2 → C∞−β is surjective by
Theorem 2.3, so we can always solve the equation

�ḡt ût = 2ζR ft

for ût ∈ C∞−β+2. In fact, by the Implicit Function Theorem [22, Proposition 4.2.19], we
can find a family of smoothly varying solutions for t ∈ [0, ε), and such that following
bounds hold uniformly for small t .

(1) |∇k ût | ≤ Cr−β+2−k

(2) |∇k ∂ ût
∂t | ≤ Cr−β+2−k

If we set ut = ζSût then ut is supported on supp(ζS), and then we have

|i∂∂̄ut | ≤ |ζS||∂∂̄ ût | + |ût ||∂∂̄ζS| + 2|∂ζS||∂ut |
≤ CζSr−β + Cr−β+2|∂∂̄ζS| + Cr−β+1|∇ζS|
≤ Cr−β(ζS + r |∇ζS| + r2|i∂∂̄ζS|)
≤ Cr−β(ζS + S|∇ζS| + S2|i∂∂̄ζS|)

but since ζS(x) = χ(
r(x)

S ), we see that

|∇ζS| = S−1|χ ′∇r | ≤ C S−1

and

|i∂∂̄ζS| ≤ S−2|χ ′′||∇r |2 + |χ ′|S−1|i∂∂̄r | ≤ C S−2

where we used that r |i∂∂̄r | ≤ C . So we have

|i∂∂̄ut | ≤ Cr−β(ζS + C)
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and i∂∂̄ut is supported on the support of ζS . Hence for S sufficiently large, we can
ensure that ωt + i∂∂̄ut > 0 on the supp(ut ).

Away from the compact set K , we have

(ωt + i∂∂̄ut )
n

ωn
t

= 1 + ft + O(|i∂∂̄ut |2)
= 1 + ft + O(r−2β)

so setting f ′
t = ft − log (ωt+i∂∂̄ut )

n

ωn
t

, we have

(ωt + i∂∂̄ut )
n = e ft− f ′

t ωn
t

and f ′
t = ft − log(1 + ft + O(r−2β)) has the desired asymptotics. ��

Remark 6 If−β +2 is an exceptional weight, we can apply the proposition with β +ε

in place of β for ε arbitrarily small (since the exceptional weights are discrete). We
can then repeatedly apply Proposition 3.2 to improve the decay of Ricci potential for
a family of metrics until we obtain the decays we need.

The two previous propositions combined proves Proposition 2.5.

Proof of Proposition 2.5 By Proposition 3.1, we can find a semi-positive form ω0 ∈
[α0] satisfying the asymptotics |∇k(ωC − ω0)| = O(r−ν−k) and a metric ω1 ∈ [α1]
satisfying the same asymptotics, then if we write ωt by linearly interpolating between
ω0 and ω1, then clearly ωt are positive for t > 0 and satisfy the desired asymptotics,
and the Ricci potentials ft satisfy |∇k ft | ≤ C(1+ r)−ν−k . If ν > 2, then we can take
γ = ν andwe are done, otherwise, we can apply Proposition 3.2 repeatedly to improve
the asymptotics of the Ricci potentials until they decay faster than quadratically. ��

3.1 Kähler currents and Null loci in the asymptotically conical case

Before proceeding wewould like to briefly discuss Assumption 1. Recall that if (X , ω)

is compact Kähler and let K be the Kähler cone of X . Let [α] ∈ K is a nef class with∫
X αn > 0, then, by results of Demailly-Păun [21] there is a function ψ : X →

R ∪ {−∞} such that

α + √−1∂∂̄ψ ≥ εω

for some ε > 0, ψ is smooth on the complement of an analytic subset Z , and {ψ =
−∞} = Z . Furthermore, by results of the first author and Tosatti [13]ψ can be chosen
so that the analytic subvariety Z is given by

Null(α) :=
⋃

∫
V αdim V =0

V
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where the union is taken over irreducible analyitic subvarieties V ⊂ X . We expect
that a similar result holds in the asymptotically conical setting.Wemake the following
conjecture

Conjecture 1 Suppose [α] ∈ H1,1
ν (X ,R) is a limit of ν-almost compactly support

Kähler classes. Then there is a function ψ : X → R∪{−∞} such that α+√−1∂∂̄ψ ≥
εω for some asymptotically conical Kähler form ω. Define

Null(α) :=
⋃

∫
V αdim V =0

V (3.1)

where the union is taken over all compact, irreducible, analytic subvarieties V ⊂ X.
Then Null(α) is an analytic subvariety, and ψ can be chosen so that ψ is smooth on
X\Null(α) and

{ψ = −∞} = Null(α).

At a purely moral level, the reason that non-compact analytic subvarieties should
not enter into the definition of Null(α) in the asymptotically conical setting is that,
at least when [α] admits a semi-positive representative, Proposition 3.1 yields the
existence of a form α̂ ∈ [α] which is asymptotically conical. Thus, if V is a non-
compact subvariety, then

∫
V α̂dim V = +∞. Of course, this is purely moral reasoning,

since the integral
∫

V α̂dim V is not independent of the representative of [α].
Lemma 3.3 Conjecture 1 holds when, [α] is semi-positive and the cone at infinity is
quasi-regular.

Recall that the cone (C, JC ,�C , ωC , gC ) is quasi-regular if the holomorphic vector

field rC
∂

∂rC
− √−1JC

(
rC

∂
∂rC

)
integrates to define a C∗ action.

Proof By a result of Conlon–Hein [17], building on work of Li [35], if (X , J ,�, ω, g)

is asymptotically conical Calabi–Yau with quasi-regular Calabi–Yau cone at infinity,
then there is a complex, projective orbifold M without codimension 1 singularities,
and a orbidivisor D with positive normal orbibundle such that M = X ∪ D, and
−KM = q[D] for some q ≥ 1. Furthermore, everyKähler formon X is cohomologous
to the restriction of aKähler form on M , and the restrictionmap H1,1(M) → H2(X) is
surjective. Let [ωt ] = (1−t)[α0]+t[ω0] ∈ H1,1(X)be a family of ν-almost compactly
supportedKähler classes for t ∈ (0, 1] such that [α0] is semi-positive. In fact, according
to [15, Proposition 2.5] all Kähler classes on X are 2-almost compactly supported, so
the assumption of almost compact support can be dropped. Let [ω̂], [α̂0] ∈ H1,1(M)

be such that [ω̂] is Kähler, and [ω̂]∣∣X = [ω0], [α̂0]
∣
∣

X = [α0]. Since α0 is semi-positive,
and D has positive normal bundle, the argument in the proof of [17, TheoremA] shows
that we can find a constant C > 0 so that [α̂0] + C[D] is semi-positive, and positive
in a neighborhood of D. Furthermore, since D|D is positive, after possibly increasing
C we can assume that

∫

M
([α̂0] + C[D])n > 0
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Let π : M → M be a resolution of singularities, obtained by blowing up smooth
centers. Since X is smooth, and M has only codimension 2 singularities, we can
assume that π |X is an isomorphism, and that π is an isomorphism at the generic point
of D. Let E denote the exceptional divisor of π , and let D̄ = π−1(D) be the total
transform of D. Now we have

π∗[α̂0] + C[D̄]

is nef, and big by Demailly-Păun [21]. By the results of [21] and the first author
and Tosatti [13] there is a Kähler current in π∗[α̂0] + C[D̄] which is smooth on the
complement ofNull(π∗[α̂0]+C[D̄]). LetY ⊂ M̄ be an irreducible analytic subvariety
of dimension p > 0. If Y ∩ π−1(D) = ∅, then

∫

Y
(π∗[α̂0] + C[D̄])p =

∫

π(Y )

α
p
0

and so Y ⊂ Null(π∗[α̂0]+C[D̄]) if and only if π(Y ) ⊂ Null([α0]). Now suppose that
Y ∩ π−1(D) ∩ π−1(X) �= ∅. Let α̂0 + CβD + √−1∂∂̄u be the smooth semi-positive
representative of [α̂0] + C[D] which is positive in a neighborhood of D. Then, since
π is an isomorphism at the generic point of Y we have

∫

Y
(π∗[α̂0] + C[D̄])p =

∫

Y\(E∩Y )

[π∗(α̂0 + CβD + √−1∂∂̄u)]p +
∫

π(Y )

(α̂0

47, CβD + √−1∂∂̄u)p > 0,

where the last inequality follows from the fact that α̂0 + CβD + √−1∂∂̄u ≥ 0 and
there is a neighborhood of π(Y ) ∩ D where α̂0 + CβD + √−1∂∂̄u > 0. Thus we
have

Null(π∗[α̂0] + C[D̄]) ∩ (π−1(D))c = π−1 (Null([α0])) .

Since π : M̄\π−1(D) → X is an isomorphism, the result follows. ��

4 A priori estimates

In this section, we prove Proposition 2.6. Let us first recall the general setup of the
proposition. Let (X , J , ω,�)be an asymptotically conicalCalabi-Yaumanifoldwhich
is asymptotic to the Calabi-Yau cone (C, JC , ωC ,�C ) with rate ν > 0, and [αt ] =
(1− t)[α0] + t[α1] ∈ H1,1

ν for t ∈ [0, 1] is a family of ν-almost compactly supported
classes such that [αt ] is Kähler for t > 0. Suppose [α0] satisfies Assumption 1. Then
let ω̂t ∈ [αt ] for t ∈ (0, 1] be a family of asymptotically conical Kähler metrics
satisfying the conclusion of Proposition 2.5. Then by Theorem 2.4, we can solve the
equation

(ω̂t + i∂∂̄ϕt )
n = in2� ∧ �̄(= e ft ω̂n

t )
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for ϕt ∈ C∞−γ (X), the our goal in this section is to prove a priori estimates on the
potentials ϕt that are uniform in t as t → 0.

4.1 Uniform estimates

In this section, we prove a uniform bound for ϕt that is independent of t . In the compact
case, such an estimate can be proved using pluripotential theory following the seminal
work ofKolodziej [34], see [24]. Pluripotentialmethods allowone to obtain an estimate
with a sharper dependence on the data of the right hand side. However, such methods
are hard to adapt to the non-compact setting and no proper analogue of such estimates
are known. Itwould be of interest to try to find extensions of the pluripotential estimates
to the non-compact setting, as it would give a sharper estimates which would apply
more generally to singular Calabi–Yau manifolds not admitting crepant resolutions.

Instead, we will use an idea based on the original argument of Yau [63] using the
Moser iteration. However, following an idea of Tosatti [59] we perform the Moser
iteration using the Calabi–Yau metrics ωϕt := ω̂t + i∂∂̄ϕt as background metrics. The
advantage of this trick is that since the metrics ωϕt are Ricci flat and asymptotically
conical, they have a uniform Sobolev inequality by results of Croke [19] and Yau [64].

Proposition 4.1 The metrics ωϕt satisfy a uniform Sobolev inequality of the form

(∫

X
|u| 2n

n−1 in2� ∧ �̄

) n−1
n ≤ C

∫

X
|du|2ωϕt

i n2� ∧ �̄ (4.1)

Proof It suffices to prove the result for compact supported smooth functions. Results
of Croke [19] and Yau [64] show that for a compactly supported function u, with
supp(u) ⊂ � for an arbitrary relatively compact set � ⊂ X , (4.1) holds for a constant
C , depending on an upper bound for the diameter of �, a lower bound for the volume
of �, and a lower bound for the Ricci curvature. We only need to exploit the scale
invariance of these quantities for asymptotically conical Calabi-Yau metrics. Fix a
point x0 ∈ X . Since ωϕt are asymptotically conical, for R sufficiently large we have

Volωϕt
(BR(x0)) ∼ R2nVolωC (L)

where L is the link of the cone, identified with {rC = 1} ⊂ C , and the volume is
computed using the conical Calabi-Yau metric ωC . Therefore, if ωR = R−2ωϕt , then
with respect to the rescaled metric the diameter is 1, and the volume is VolωC (L).
Since (4.1) is scale invariant, the result follows. ��

Proposition 4.2 Given solutions ϕt to (2.2), with |∇kϕ| = O(r−γ−k) we have the
following uniform estimate for the potential

|ϕt | ≤ C‖ϕt‖L p(in2�∧�̄)
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for any p > 2n−2
γ

≥ 1 and C depending on n, p, and a uniform bound on ‖e− ft −1‖Lq

for q ∈ [p,∞].
Proof If we set Tt =∑n−1

k=0 ωk
ϕt

∧ ω̂n−1−k
t , then we can rewrite the equation as

−i∂∂̄ϕt ∧ Tt = (e− ft − 1)in2� ∧ �̄

multiplying both sides by |ϕt |p−2ϕt and integrating, we get

−
∫

M
|ϕt |p−2ϕt i∂∂̄ϕt ∧ Tt =

∫

M
|ϕt |p−2ϕt (e

− ft − 1)in2� ∧ �̄

we will integrate by parts on the first term

−
∫

M
|ϕt |p−2ϕt i∂∂̄ϕt ∧ Tt

= lim
R→∞

(

−
∫

BR

|ϕt |p−2ϕt i∂∂̄ϕt ∧ Tt

)

= lim
R→∞

(

(p − 1)
∫

Br

|ϕt |p−2i∂ϕt ∧ ∂̄ϕt ∧ Tt −
∫

∂ BR

|ϕt |p−2ϕt i ∂̄ϕt ∧ Tt

)

= 4(p − 1)

p2

∫

M
i∂|ϕt | p

2 ∧ ∂̄|ϕt | p
2 ∧ Tt − lim

R→∞

∫

∂ BR

|ϕt |p−2ϕt i ∂̄ϕt ∧ Tt

︸ ︷︷ ︸
=0 for p> 2n−2

γ

Combined with the Sobolev inequality, we have

(∫

M
|ϕt |p n

n−1 in2� ∧ �̄

) n−1
n ≤ C

np2

4(p − 1)

∫

M
|ϕt |p−1|e− ft − 1|in2� ∧ �̄

for any p > 2n−2
γ

. By Hölder’s inequality, we have (below 1
q + 1

q ′ = 1)

‖ϕt‖p

L
p n

n−1
≤ C

np2

4(p − 1)
‖|ϕt |p−1‖Lq ‖e− ft − 1‖

Lq′ = C
np2

4(p − 1)
‖ϕt‖p−1

Lq(p−1)‖e− ft − 1‖
Lq′

(4.2)

picking q such that q = p
p−1 > 1, we get

‖ϕt‖p

L
p n

n−1
≤ CSnp2

4(p − 1)
‖ϕt‖p−1

L p ‖e− ft − 1‖L p

≤ CCSnp2

4(p − 1)
‖ϕt‖p−1

L p

a standard Moser iteration argument gives the result. ��
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Proposition 4.3 For any p > 2n
γ

, we have a uniform L p estimate of the form

‖ϕt‖L p ≤ C

for C depending on n, p and ‖e− ft − 1‖
L

np
n+p

.

Proof In Eq. (4.2), if we pick q = p
p−1

n
n−1 , then q ′ = np

n+p+1 and we get

‖ϕt‖
L

p n
n−1

≤ C
np2

4(p − 1)
‖e− ft − 1‖

L
np

n+p−1

relabelling p to be np
n−1 gives us our result. ��

Corollary 4.4 The potentials ϕt are bounded in L p uniformly in t for any p ∈ ( 2n
γ

,∞],

‖ϕt‖L p ≤ C p

In particular, the potentials ϕt are uniformly bounded in C0.

Proof This follows by combining Propositions 4.2 and 4.3. Note that since | ft | ≤
Cr−γ−2 outside a fixed compact set, we have an estimate ‖e− ft − 1‖

L
np

n+p
≤ C for a

constant C independent of p, t for any p > 2n−2
γ

. ��

4.2 Convergence of themetric away from the degeneracy locus

In this section, we prove an estimate for ∂∂̄ϕt away from V , the subvariety coming
fromAssumption 1. Recall that by Assumption 1, there existψ ∈ P SH(X , α0)which
is smooth outside of V and goes to −∞ near V , the idea is to use this function as a
barrier function in the C2 estimate, and this is first used by Tsuji in in [60] to study
Kähler–Ricci flow. We remark that this is the only part of the Theorem that uses the
current in Assumption 1.

Before we prove the estimate, we first construct a slightly more better behaved
barrier function ψε ∈ P SH(X , ω̂0) which is compactly supported. Recall that from
the construction of ω̂0, ω̂0 is equal to α0 on a large compact set. (which from the
construction can be as large as one want)

Lemma 4.5 There exist ψε ∈ P SH(X , ω̂0) which is compactly supported and satisfy
ω̂0 + i∂∂̄ψε ≥ εω, and is smooth outside V and goes to −∞ near V .

Proof Recall by [15, Lemma 2.15], we know that r2κ for κ ∈ (0, 1) is strictly plurisub-
harmonic for r sufficiently large, and satisfies

|∇r2κ | = O(r2κ−1) |i∂∂̄r2κ | = O(r2κ−2)
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Pick � : R+ → R
+ smooth satisfy � ′, � ′′ ≥ 0 and

�(x) =
{

T + 2 for x < T + 1

x for x > T + 3

then as in [15, Lemma 2.15], for T � 1, �(r2κ) is plurisubharmonic and equal to r2κ

for r sufficiently large.
We set

ψε = (1 − ζS)ψ + C(1 − ζR)�(r2κ)

where S, C, R are chosen as follows. First we pick S � 1 large enough such that
ω̂0 = α0 on {r ≤ S} and i∂∂̄�(r2κ) > 0 on {S ≤ r ≤ 2S}, which implies that
ω̂0 + i∂∂̄ψε = α0 + i∂∂̄ψ ≥ ε0ω on {r ≤ S}. Then pick C � 1 large enough so that
Ci∂∂̄�(r2κ) > i∂∂̄((1 − ζS)ψ) on {S ≤ r ≤ 2S}. Finally, we pick R � S such that
ω̂0 + i∂∂̄ψε > 0 on {R ≤ r ≤ 2R}, which is possible since for R large, we have

|i∂∂̄(1 − ζR)�(r2κ )| ≤ |∇2ζR ||r2κ | + |∇2�(r2κ )||1 − ζR | + |∇ζR ||∇r2κ | ≤ C R2(κ−1) � 1

Then ω̂0 + i∂∂̄ψε > 0 and ω̂0 + i∂∂̄ψε > ε0ω on the compact set K containing V ,
hence there exist an ε > 0 such that ω̂0 + i∂∂̄ψε > εω holds. ��

Now we prove the main estimate of this section.

Proposition 4.6 There are uniform constants B, C > 0, independent of t such that the
following estimate holds:

|∂∂̄ϕt | ≤ Ce−Bψε .

Proof By the well-known computation of Aubin and Yau, we have

�ϕt log Trωωϕt ≥ −ATrϕt ω

where A is a lower bound for the bisectional curvatures of ω. Then if we pick N � B
sufficiently large, we have

�ϕt

(
log Trωωϕt + Bψε − Nϕt

) ≥ (Bε − A)Trϕt ω − BTrϕt ω̂0 + NTrϕt ω̂t − Nn

≥ C

(
ωn

nin2� ∧ �̄
Trωωϕt

) 1
n−1 − Bn

since ψε goes to −∞ near V and the function log Trωωϕt + Bψε − Nϕt goes to 0 at
infinity, either log Trωωϕt + Bψε − Nϕt is always non-positive, in which case we are
done, or maximum is achieved in the interior, and applying the maximum principle
gives
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Trωωϕt ≤ CeB(supψε−ψε)

from which the estimate follows. ��
Remark 7 This argument is the only place where we used the Kähler current in
Assumption 1. In the situation where [α0] = π∗c1(L) where π : X → X0 is a
crepant resolution of a singular Calabi-Yau variety with compactly supported sin-
gularities and L → X0 is an ample line bundle on X0, the above C2 estimate can
be replaced by the argument in Lemma 5.1, and the convergence holds away from
π−1(Xsing

0 ). In that case we do not need the Kähler current in Assumption 1 to prove
Theorem 1.1.

The higher order estimates follow from the standard methods of Yau [45,50,63].

Proposition 4.7 (Higher order estimates) We have a uniform estimate

‖ϕt‖Ck,α
loc (K )

≤ C(K , k, α)

for any K ⊂⊂ X \ V and C independent of t .

Proof This follows from the local estimates in [50]. ��
Corollary 4.8 The metrics ωϕt converge after passing to a subsequence in C∞

loc(X \ V )

to a possibly incomplete metric ωϕ0 on X \ V , which is uniformly equivalent to ωC at
infinity.

So far, we’ve shown the first two parts of Proposition 2.6, in the next section we
prove decay estimates for ϕt .

4.3 Decay estimates

In this section, we prove uniform decay estimates for ϕt . We use the method of Moser
iteration with a weight, similar to the technique used in [32, Chap 8]. However, as
in Sect. 4.1, we use the Ricci flat metrics ωϕt , exploiting the uniform control of the
Sobolev constants.

Recall that r : X → R>0 is a radius function such that |∇r |+r |i∂∂̄r | ≤ C , and it’s
not hard to see that we can also assume that r = const on a compact set K containing
the singular set V .

Definition 4.1 We define the following weighted L p norms,

‖u‖
L p

δ (in2�∧�̄)
=
(∫

X
|ur δ|pr−2nin2� ∧ �̄

) 1
p

Remark 8 Notice if we let p → ∞, then the L p
δ norms converge to the L∞

δ norm
given by ‖u‖L∞

δ
= supX |ur δ|
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Proposition 4.9 For any δ < γ , we have a uniform bound of the form

‖ϕt‖L p
δ (ωn

ϕt )
≤ C

for any p ∈ (0, 2n
δ
], and constant depending on p, δ.

Proof If p = 2n
δ
, then this is simply the L

2n
δ norm, which is bounded if δ < γ by

Proposition 4.3. If p < 2n
δ
, then

∫

X
|ϕr δ|pr−2nωn

ϕt
≤
(∫

X
|ϕt |pq

) 1
q
(∫

X
r

q
q−1 (δ p−2n)

ωn
ϕt

) q−1
q

the first term is bounded if q > 2n
γ p by Proposition 4.3, and the second term is finite

if q < 2n
δ p , so we just need to pick q ∈ ( 2n

γ p , 2n
δ p ) with q > 1, which is possible since

p < 2n
δ
. ��

Proposition 4.10 For any δ < γ , p > 1, we have

‖ϕt r
δ‖p

L
p n

n−1 (r−2nωn
ϕt )

≤ Cp2

p − 1

(

‖ϕt r
δ‖p−1

L p−1(r−2nωn
ϕt )

+ ‖ϕt r
δ‖p

L p(r−2nωn
ϕt )

)

for C depending on the Sobolev constant of ωϕt , δ and the dimension n.

Proof We use the same method as in [32, Proposition 8.6.7], but using the Calabi-Yau
metrics ωϕt as the background metrics. The reason is because the metrics ωϕt are
Ricci-flat and hence have a uniform Sobolev inequality. First we set

Tt =
n−1∑

k=0

ωk
ϕt

∧ ω̂n−1−k
t .

If q − pγ < −2n + 2, then Stoke’s theorem gives the following two identities

0 =
∫

X
i∂
(

rq |ϕt |p−2ϕt ∂̄ϕt ∧ Tt

)

= (p − 1)
∫

X
rq |ϕt |p−2i∂ϕt ∧ ∂̄ϕt ∧ Tt + q

∫

X
rq−1|ϕt |p−2ϕt i∂r ∧ ∂̄ϕt ∧ Tt

+
∫

X
rq |ϕt |p−2ϕt i∂∂̄ϕt ∧ Tt

123



On the degeneration of asymptotically conical Calabi–Yau metrics

and

0 = −
∫

X
i ∂̄
(

rq−1|ϕt |pi∂r ∧ Tt

)

= p
∫

X
rq−1|ϕt |p−2ϕt i∂r ∧ ∂̄ϕt ∧ Tt + (q − 1)

∫

X
rq−2|ϕt |pi∂r ∧ ∂̄r ∧ Tt

+
∫

X
rq−1|ϕt |pi∂∂̄r ∧ Tt

using these identities, we can obtain through integration by parts

∫

X
|∇(|ϕt | p

2 r
q
2 )|2ωϕt

ωn
ϕt

= n
∫

X
i∂(|ϕt | p

2 r
q
2 ) ∧ ∂̄(|ϕt | p

2 r
q
2 ) ∧ ωn−1

ϕt

≤ n
∫

X
i∂(|ϕt | p

2 r
q
2 ) ∧ ∂̄(|ϕt | p

2 r
q
2 ) ∧ Tt

= − np2

4(p − 1)

∫

X
ϕt |ϕt |p−2rqi∂∂̄ϕt ∧ Tt

+ mq

4(p − 1)

∫

X
|ϕt |prq−2[(p + q − 2)i∂r ∧ ∂̄r − (p − 2)ri∂∂̄r ] ∧ Tt

= − np2

4(p − 1)

∫

X
ϕt |ϕt |p−2rq(e ft − 1)ωn

ϕt

+ mq

4(p − 1)

∫

X
|ϕt |prq−2[(p + q − 2)i∂r ∧ ∂̄r − (p − 2)ri∂∂̄r ] ∧ Tt

where in the last equality, we used the equation i∂∂̄ϕt ∧ Tt = (e ft − 1)ωn
ϕt
. Now we

claim there also exist a uniform constant C independent of t and r such that

∣
∣
∣
∣
[(p + q − 2)i∂r ∧ ∂̄r − (p − 2)ri∂∂̄r ] ∧ Tt

in2� ∧ �̄

∣
∣
∣
∣ ≤ C(p + |q|)

recall that we chose r so that r = const on a compact set K containing V , so the left
hand side of the expression is 0 on K . By Corollary 4.8 we know that |Tt | ≤ C on
X \ K , and because r is a radius function we also have |∇r | + r |∂∂̄r | ≤ C , hence the
expression also holds on X \ K . Putting it together, we see that the expression holds
on all of X .

This then combined with the Sobolev inequality, we conclude that

(∫

X
|ϕt |p n

n−1 rq n
n−1 ωn

ϕt

) n−1
n ≤ Cnp2

4(p − 1)

∫

X
|e− ft − 1||ϕt |p−1rqωn

ϕt

+Cq(p + q)

4(p − 1)

∫

X
|ϕt |prq−2ωn

ϕt
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for any δ < γ we can set q = 2(1− n)+ pδ and use the fact that |e ft − 1| ≤ Cr−γ−2

to obtain,

(∫

X
|ϕt r

δ|p n
n−1 r−2nωn

ϕt

) n−1
n

≤ C
p2

4(p − 1)

(∫

X
|ϕt |p−1r pδ−γ r−2nωn

ϕt
+
∫

X
|ϕt r

δ|pr−2nωn
ϕt

)

= C
p2

4(p − 1)

(∫

X
|ϕt r

δ|p−1r δ−γ r−2nωn
ϕt

+
∫

X
|ϕt r

δ|pr−2nωn
ϕt

)

and since δ < γ , which means for any p > 1, we have

‖ϕt r
δ‖p

L
p n

n−1 (r−2nωn
ϕt )

≤ Cp2

p − 1

(

‖ϕt r
δ‖p−1

L p−1(r−2nωn
ϕt )

+ ‖ϕt r
δ‖p

L p(r−2nωn
ϕt )

)

��
Corollary 4.11 For any δ < γ , we have a uniform bound of the form

|ϕt | ≤ Cr−δ

for C depending on δ.

Proof By Proposition 4.9, we have a weighed L p bound for any p ≤ 2n
δ
, combined

with the previous proposition, we can use the standard Moser iteration argument
starting from p = 2n

δ
≥ n

n−1 > 1. ��
Proposition 4.12 For any δ < γ , the derivative of the solutions ϕt satisfy uniform
decay estimates on X \ K ,

|∇kϕt | ≤ Cr−δ−k

where C = C(n, δ, k) which doesn’t depend on t.

Proof This follows from the methods of [32, Theorem 8.6.11] verbatim. The point
to note here is that the metrics ωϕt are uniformly equivalent to ωC on the region
X \ K , with bounded derivatives as well, hence the Schauder constants are uniformly
controlled on far away balls. ��
Proposition 4.13 If γ ∈ (0, 2n − 2), then in fact we have

|∇kϕt | ≤ Cr−γ−k

on X \ K , and C = C(n, k) independent of t .

Proof This follows from the same argument as in [32, Chap 8.7, Theorem A2]. ��
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We can now prove Proposition 2.6, thereby completing the proof of Theorem 1.1.

Proof of Proposition 2.6 Combine Corollary 4.4, Proposition 4.7, Proposition 4.11 and
Proposition 4.13. ��

We now prove the local diameter bound, which will play an important role through-
out the remainder of the paper.

Lemma 4.14 In the setting of Theorem 1.1, let K ⊂ X be a compact subset containing
V . Then the diameter of K with respect to the Calabi-Yau metrics ωt,CY is uniformly
bounded from above as t → 0.

Diamωϕt
K ≤ C

Proof It suffices to show that the sets K R = {r(x) ≤ R} have bounded diameters for
R sufficiently large. Recall that the metrics ωϕt are uniformly asymptotic to ωcone for
r large and t close to 0 by Proposition 4.12. Fix any two points x, y ∈ K R , and joint
them by a lengthminimizing geodesic γ : [0, L] → X .We claim that γ must lie inside
K R2 for R sufficiently large. Note for R large, on the region {r(x) ≥ R} the metric
ωϕt is C∞ close to a cone metric uniformly in t , and hence for R sufficiently large,
the boundary of K R has diameter bounded by 2π R. However, the distance between
the boundary of K R and K R2 on the order of R2, so it’s clear that any minimizing
geodesic between two points in K R cannot leave K R2 . Now consider xi = γ (2i + 1)
and disjoint balls B1(xi ). Note that these balls have a fixed lower bound on the volume,
since byBishop-Gromov volume comparison and the asymptotically conical geometry
we have

Vol(B1(xi )) ≥ lim
S→∞

Vol(BS(xi ))

S2n
= VolgC (L) =: c > 0

where L is the link of the cone at infinity, identified with {rC = 1} and gC is the
conical Calabi-Yau metric. Thus, we have

∑

i

Vol(B1(xi )) ≥ c
�L�
2

where c is the non-collapsing constant. On the other hand, these balls must all lie in
K2R , and since the volume form of the Calabi-Yau metrics are fixed, we must have
that

c
�L�
2

≤
∫

K R2

in2� ∧ �̄

which gives us a bound for L , which is dωϕt
(x, y). ��
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4.4 Uniqueness

In this section, we discuss the uniqueness of the Calabi-Yau currents constructed in
the previous sections.

Theorem 4.15 The current that we constructed ωϕ0 above is unique in the sense that if
ω is another positive current with locally bounded potentials in the same cohomology
class as ωϕ0 which is smooth on X \ V , asymptotically conical at infinity with any rate
δ > 0 and satisfies the complex Monge–Ampère equation

ωn = ωn
ϕ0

= in2� ∧ �̄

in the Bedford–Taylor sense, then ω = ωϕ0 .

The proof ismodelled after the idea introduced in [15], which relies on the following
crucial Lemma proved in [15].

Lemma 4.16 [15, Corollary 3.9] Suppose (X , ω) is an asymptotically conical Kähler
manifold with Ric ≥ 0, then for any ε > 0, any harmonic function u ∈ C∞

2−ε(X) is
pluriharmonic.

The idea is to writeω = ωϕ0 +i∂∂̄ψ and use this lemma to improve the asymptotics
of the potential functionψ by subtracting off pluriharmonic functions from it, until we
are left in the case where the potential function is decaying in which case uniqueness
follows from a standard integration by parts argument.

Proposition 4.17 Suppose ϕ ∈ P SH(X , ωϕ0) ∩ L∞(X) ∩ C∞−ε(X \ V ) is a function
such that the current ωϕ0 + i∂∂̄ϕ satisfies

(ωϕ0 + i∂∂̄ϕ)n = ωn
ϕ0

= in2� ∧ �̄

in the Bedford Taylor sense, then ϕ = 0.

Proof

0 = −
∫

BR

|ϕ|p−2ϕ((ωϕ0 + i∂∂̄ϕ)n − ωn
ϕ0

) = −
∫

BR

|ϕ|p−2ϕi∂∂̄ϕ ∧
⎛

⎝
n−1∑

k=0

ωk
ϕ0

∧ (ωϕ0 + i∂∂̄ϕ)n−1−k

⎞

⎠

= 4(p − 1)

p2

∫

BR

i∂(|ϕ| p
2 ) ∧ ∂̄(|ϕ| p

2 ) ∧
⎛

⎝
n−1∑

k=0

ωk
ϕ0

∧ (ωϕ0 + i∂∂̄ϕ)n−1−k

⎞

⎠

−
∫

∂ BR

|ϕ|p−2ϕi ∂̄ϕ ∧
⎛

⎝
n−1∑

k=0

ωk
ϕ0

∧ (ωϕ0 + i∂∂̄ϕ)n−1−k

⎞

⎠

picking p > 2n−2
γ

and letting R → ∞, we get

∫

X
i∂(|ϕ| p

2 ) ∧ ∂̄(|ϕ| p
2 ) ∧

(
n−1∑

k=0

ωk
ϕ0

∧ (ωϕ0 + i∂∂̄ϕ)n−1−k

)

= 0
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which shows that ϕ = 0. ��
Lemma 4.18 Suppose (X , J , g) is an asymptotically conical Calabi–Yau manifold
with rate ν > 0, and η = ηi j̄ is a asymptotically conical hermitian metric with rate

ν > 0 and let u ∈ C∞
2−β such that ηi j̄ ui j̄ ∈ C∞−κ , then there exist ũ ∈ C∞

2−β−ν such

that i∂∂̄ ũ = i∂∂̄u.

Proof We have

gi j̄ ui j̄ = (gi j̄ − ηi j̄ )ui j̄ + ηi j̄ ui j̄ ∈ C∞
−min(κ,β+ν)

hence we can solve the equation gi j̄ ũi j̄ = gi j̄ ui j̄ with ũ ∈ C∞
2−min(κ,β+ν) and by

Lemma 4.16 we have i∂∂̄ ũ = i∂∂̄u. ��
Proof of Theorem 4.15 By the ∂∂̄-Lemma (Proposition 2.1), we can write ω = ωϕ0 +
i∂∂̄ψ , for ψ ∈ P SH(X , ωϕ0) ∩ L∞

loc(X) ∩ C∞
loc(X \ V ), then choose a cutoff χ such

that χ has compact support and χ = 1 on a compact set K containing V , then since
i∂∂̄ψ = ω − ωϕ0 ∈ C∞−ε(X \ V ) for some ε > 0, hence by Proposition 2.2, we can
solve i∂∂̄ f = i∂∂̄[(1−χ)ψ] for f ∈ C∞

γ , γ = 2− ε. Setting ϕ = χψ + f , we have
that ϕ ∈ L∞

loc(X) ∩ C∞
γ (X \ V ) and

(ωϕ0 + i∂∂̄ϕ)n = ωn
ϕ0

= in2� ∧ �̄

If γ < 0, then we are done by Proposition 4.17. If γ > 0, then we proceed by the
following: note that the equation above can be rewritten as

�ωϕ0
ϕ = −(i∂∂̄ϕ)2 ∧

(
n∑

k=2

(
n

k

)
(i∂∂̄ϕ)k−2 ∧ ωn−k

ϕ0

ωn
ϕ0

)

∈ C∞
2γ−4(X \ V )

if χ is the cutoff function as before, then we have �ωϕ0
[(1 − χ)ϕ] ∈ C∞

2γ−4(X) if
we let η = χωϕt + (1 − χ)ωϕ0 , then η is an asymptotically conical hermitian metric

which is equal to ωϕ0 outside of a compact set, hence ηi j̄ [(1 − χ)ϕ]i j̄ ∈ C∞
2γ−4(X),

hence we can apply Lemma 4.18 with κ = 2(2 − γ ) and β = 2 − γ , so we can
solve i∂∂̄v = i∂∂̄[(1 − χ)ϕ] with v ∈ C∞

γ−min(2−γ,ν) now we can set ϕ̃ = v + χϕ ∈
C∞

γ−min(2−γ,ν)(X \C) and we can keep repeating this process with ϕ̃ in place of ϕ and
γ − min(2 − γ, ν) in place of γ until are in the case where γ < 0, then we are done
by Proposition 4.17. ��

5 Metric geometry of the singular Calabi–Yau

The goal of this section is to proveTheorem1.2. Let us first beginwith some definitions
and the general setup.

Definition 5.1 We say that a complex analytic space X0 is a singular Calabi–Yau
variety with compactly supported, crepant singularities, if
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• X0 is normal singularities, Gorenstein and log-terminal,
• there is a compact set K so that X0\K is smooth,
• there exists a resolution π : X → X0 such that X also has trivial canonical bundle
and π∗� extends as a non-vanishing global holomorphic (n, 0)-form on X . (By
abuse of notation, we will also denote this holomorphic (n, 0)-form by �)

Let X0 be a singular Calabi–Yau variety with compactly supported, crepant singu-
larities. Suppose that the resolution (X , J ,�) is Kähler and it has a Kähler metric ω

such that (X , J , ω,�) is asymptotic to a Calabi-Yau cone (C, JC , ωC ,�C ) at rate ν.

Definition 5.2 A line bundle L on X0 is ample if for some k > 0, there exist sections
s0, . . . , sN ∈ H0(X0, Lk) such that [s0, . . . , sN ] gives an embedding of X0 into a
finite dimensional projective space CP N , and denote this embedding map by ι, then
we have 1

k [ι�ωF S] = c1(L).

Remark 9 Certainly if X0 is quasi-projective, then it has an ample line bundle in the
above sense. In general, having an ample line bundle in the above sense does not
imply X0 is quasi-projective, however in almost all examples we’re interested in, X0
is a quasi-projective variety.

Let us now fix L an ample line bundle on X0. If set [α0] = π∗c1(L), then suppose
(X , J , ω,�) and [α0] satisfy the hypothesis of Theorem 1.2. Then from the previous
sections, we have on X , a sequence of Calabi-Yau metrics ωϕt = ω̂t + i∂∂̄ϕt with
[ωϕt ] = (1 − t)[α0] + t[α1], which satisfy the equation

(ω̂t + i∂∂̄ϕt )
n = e ft ω̂n

t (= in2� ∧ �̄)

and ft = log in2�∧�̄
ω̂n
0

∈ C∞−γ−2(X), and ϕt ∈ C∞−γ (X).

If we fix a point p ∈ π−1(Xreg
0 ), then by Gromov compactness, after passing to a

subsequence, the pointed spaces (X , ωϕti
, p) for ti → 0 pointed Gromov-Hausdorff

converge to a limiting pointed metric space (X∞, d∞, p∞) as i → ∞. By the defini-
tion of pointed Gromov-Hausdorff convergence, the convergence can be interpreted
in the following sense: If we set Z = (X∞, d∞, p∞) �⊔ti (X , ωϕti

, p), then there
exist a metric dZ on Z such that

(1) dZ |Xi = dgϕti
(2) dZ ( p

︸︷︷︸
∈Xi

, p∞) → 0

(3) Bgϕti
(p, r) ⊂ Xi → Bg∞(p∞, r) ⊂ X∞ in the Hausdorff sense with respect to

dZ .

The asymptotically conical property of ωϕt implies that the tangent cone at ∞ is
independent of t , and by Bishop-Gromov, we have a uniform lower bound on volume
of geodesic balls, Volωϕt

B(p, r) ≥ cr2n where c is the volume ratio of the asymptotic
cone C . Hence the regularity theory of Cheeger, Colding and also Tian [6–10] applies,
and the limiting space admits the following structure

(1) All tangent cones of X are metric cones.
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(2) X = R∪S, whereR consists of all the pointswhere all tangent cones are isometric
to R2n .

(3) R is an open dense set in X∞ with a smooth metric g∞ and complex structure J∞
which makes it Ricci-flat Kähler manifold and (X∞, d∞) = (R, dg∞). Moreover,
the convergence of (X , J , ωϕt , p) → (X∞, J∞, g∞, p) is smooth on R in the
sense that for every K ⊂⊂ R, there exist smooth maps ηi : K → X such that
(η�

i gti , η
�
i J ) converges to (g∞, J∞) smoothly on K . (In fact, we can arrange ηi

such that dZ (ηi (z), z) → 0 uniformly in K )
(4) S is a closed subset of X∞ with real Hausdorff codimension greater or equal to 4.

5.1 Properties of the Gromov–Hausdorff limit

In this section, we prove several preliminary propositions about the relationship
between X∞ and the Kähler current constructed from Theorem 1.1. In particular,
we show the following:

(1) ωϕ0 is in fact well-defined and smooth on π−1(Xreg
0 )

(2) There exist a locally isometric embedding of ι∞ : (π−1(Xreg
0 ), ωϕ0) → (R, g∞).

(3) X∞ is isometric to the metric completion (π−1(Xreg
0 ), ωϕ0)

(4) ι∞ is a bijective local isometry between Xreg
0 and R.

One of the key ingredients is the local diameter bound Lemma 4.14, which we
apply with V = π−1(Xsing

0 ).

Proposition 5.1 The family of metrics ωϕt has a uniform lower bound

ωϕt ≥ 1

C
ω̂0 (5.1)

Proof By the standard Schwartz lemma calculation, we have

�ωϕt
log Trωϕt

π�ωF S ≥ −4Trωϕt
π�ωF S

and for any other Kähler metric ω̂, one also has

�ωϕt
log Trωϕt

ω̂ ≥ −CTrωϕt
ω̂

with C depending only on the upper bound for the holomorphic bisectional curvature
of ω̂. Recall from the construction of ω̂0 in Propositions 3.1 and 3.2 that ω̂0 can be
taken to be equal to 1

k π�ωF S on a compact set K containing π−1(Xsing
0 ), and is a

genuine non-degenerate, asymptotically conical Kähler metric outside of K , so we
can apply the first inequality inside K and the second outside K to get a uniform
estimate

�ωϕt
log Trωϕt

ω̂0 ≥ −CTrωϕt
ω̂0. (5.2)
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Since ωωϕt
= ω̂t + i∂∂̄ϕt , taking trace gives

n = Trωϕt
ω̂t + �ϕt ϕt ,

and we also know that for t reasonably small ω̂t ≥ cω̂0 holds for some small constant
c uniformly in t as t → 0, which means we have

n ≥ cTrϕt ω̂0 + �ϕt ϕt .

Combining this with (5.2), we have

�ωϕt

(
log Trωϕt

ω̂0 − Aϕt
) ≥ (

Ac

2
− C)Trωϕt

ω̂0 − An

since log Trωϕt
ω̂0 − Aϕt converges to the constant log n at spacial infinity, if the

maximum is attained at infinity, then we automatically have a uniform bound that we
wanted. So we can assume the maximum is achieved in the interior, and applying the
maximum principle to the equation above, and we obtain

Trωϕt
ω̂0 ≤ CeA(ϕt−(ϕt )min)

which gives a uniform upper bound for Trωϕt
ω̂0. ��

Corollary 5.2 On X \ π−1(Xsing
0 ), we have

C−1ω̂0 ≤ ωϕt ≤ Ce f0 ω̂0

where e f0 = in2�∧�̄
ω̂n
0

is bounded uniformly away from π−1(Xsing
0 ). In particular, this

implies that ωϕ0 is smooth on π−1(Xreg
0 ), and on X0 it is a Kähler current since it

dominates ω̂0.

Proof The lower bound on ωϕt is the content of the previous lemma, and from that

and the fact that ωn
ϕt

= in2� ∧ �̄ = e f0 ω̂n
0 , the corollary follows immediately. ��

Corollary 5.3 The maps πi : (X , ωϕti
, p) → (X0, ω̂0, p) are has bounded derivative,

hence it is uniformly lipschitz and we can pass to a continuous surjective map from
the Gromov-Hausdorff limit π∞ : (X∞, dX∞ , p∞) → X0. Furthermore, for any
q ∈ Xreg

0 , the preimage π−1∞ (q) consists of a single point.

Proof The fact that the maps have bounded derivative follows from the estimate (5.1),
and from this it follows from an Arzela-Ascoli type argument that after passing to
a subsequence, the projection maps πi limit to a continuous surjective map π∞ :
X∞ → X0. The map π∞ can be characterized in the following way: if we fix hi :
(X , ωϕti

) → X∞ an εi -isometry for εi → 0, then for any sequence of points qi ∈ X
with π(qi ) → q ∈ X0, and hi (qi ) → q∞ ∈ X∞, we have π∞(q) = q∞.
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To see that the preimage of π−1(q) for q ∈ Xreg
0 consists of a single point, suppose

for contradiction that it consisted of two points q1, q2 ∈ X∞ with dX∞(q1, q2) =
d > 0 and π∞(q1) = π∞(q2) = q ∈ Xreg

0 , then from the construction of π∞, there
exist a sequences of points qi

1, qi
2 ∈ X such that πi (qi

1) → q and πi (qi
2) → q and

hi (qi
1) = q1 and hi (qi

2) = q2. Then from the fact that πi (qi
1) → q and πi (qi

2) → q
and q ∈ Xreg

0 , we know that qi
1 → π−1(q) and qi

2 → π−1(q) in X since π is a
resolution of singularities of X0, and gti → g∞ smoothly in a neighborhood of q, it
follows that dgti

(qi
1, qi

2) → 0 as i → ∞. But we also have

dX∞(hi (q
i
1), hi (q

i
2)) − εi ≤ dgti

(qi
1, qi

2)

since hi is an εi -isometry. This is a contradiction, because dX∞(hi (qi
1), hi (qi

2))−εi →
d > 0 by our assumption. ��
Proposition 5.4 There is an embedding i∞ : (Xreg

0 , ωϕ0 , p) ↪→ (R, g∞, p), which is
a locally isometric embedding, and π∞ ◦ ι∞ = id.

Proof We can simply take ι∞ = π−1∞ |Xreg
0

, which is well-defined by the previous
proposition. It’s clear that the image of ι∞ is contained in the regular set R ⊂ X∞
and that it is continuous, so it suffices to show that this map is a local isometry. To see
this, we note that if q ∈ Xreg

0 , then there exist an ε > 0 such that Bgti
(q, ε) ⊂ Xreg

0
for all i � 1. It follows from the diameter estimate (c.f. Lemma 4.14) that the points
hi (π

−1(q)) are uniformly bounded in X∞, hence after passing to a subsequence, it
converge to some point q∞ ∈ X∞, it’s clear that q∞ = ι∞(q) since πi (q) = q.
Since the points π−1(q) ∈ Xi have a uniform harmonic radius lower bound, hence

(Bgti
(π−1(q), ε), gϕti

)
C∞−−→ (Bg∞(q∞, ε), g∞) and by the smooth convergence of

gϕt → gϕ0 , we also have (Bgti
(π−1(q), ε), gϕti

)
C∞−−→ (Bgϕ0

(q, ε), ωϕ0), it is then
clear from the construction of π∞ that it maps (Bg∞(q∞, ε), g∞) isometrically onto
(Bgϕ0

(q, ε), ωϕ0). ��
The following Proposition follows from the same arguments as in [48]. We include

a proof here for the convenience of the reader.

Proposition 5.5 The subset E = R \ ι∞(Xreg
0 ) ⊂ R is an analytic subset, hence of

real codimension bigger than or equal to 2, and moreover (Xreg
0 , g∞) = X∞.

Proof It suffices to show that the holomorphic maps π : (X , ωϕt , p) → X0 ⊂
(CP N , ωF S, p) limits to a holomorphic map π∞|R : (R, J∞, g∞) → X0 ⊂ CP N .
Assuming for now that this is the case, then R \ ι∞(Xreg

0 ) = π∞|−1
R (Xsing

0 ). Since

Xsing
0 ⊂ X0 is an analytic set, if π∞|R is holomorphic, then π∞|−1

R (Xsing
0 ) = E ⊂ R

is an analytic subset, and since analytic subsets have real codimension 2, it follows
that X∞ \ Xreg

0 ⊂ X∞ has Hausdorff codimension at least 2, and by [8, Theorem 3.7],

we have (Xreg
0 , g∞) = X∞.

Now we show that π∞|R is holomorphic. Consider the holomorphic maps π :
(X , ωϕt , p) → X0 ⊂ (CP N , ωF S, p), since (X , ωϕt , p)Gromov-Hausdorff converge
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to X∞, byCheeger-Colding theory [7], for any K ⊂⊂ R containing p, there existmaps
ιti : K → (X , ωϕti

) such that ι�ti gti → g∞ and ι�ti J → J∞ in the smooth topology,
and we also get a sequence of holomorphic maps πi = π ◦ ιti : (K , ι�ti gti , ι

�
ti J ) →

X0 ⊂ CP N . Furthermore, if we regard these maps as harmonic maps, then we have

|dπi |2ωϕt ,ωF S
= Trωϕt

π�
i ωF S ≤ C

hence by the regularity theory of harmonicmaps ( [49]),wehave uniformC∞ estimates
on themaps ‖π l

i ‖Ck,α (K ) ≤ CK , for some constantCK independent of i , which allows
us to extract a limit of the maps πi : K → CP N to a map π∞ : K → CP N and
since the convergence of the maps are smooth, and the convergence of the metrics
ι�ti gti → g∞ and the complex structures ι�ti J → J∞ are all smooth, it follows that
the holomorphicity of the maps πi passes to the limit, and hence the map π∞ is
holomorphic. ��
Proposition 5.6 In fact we have R = ι∞(Xreg

0 ).

Proof The proof is the same as in [48, Lemma 2.2]. ��

5.2 Identification of X0 with the geometry of singular Calabi–Yau

In this section, we identify the geometry of the singular Calabi–Yau current X∞ =
(Xreg

0 , g∞) with the variety X0 itself. This result is the analogue of the result in [51],
where the similar thing was shown in the compact case, our proof follows the approach
in [51], adapted to the non-compact case. The idea is based on ideas developed in [23]
togetherwith a newgradient estimate for the potentialϕt with respect to theCalabi-Yau
metrics ωϕt .

5.2.1 A gradient bound for'0

The goal of this section is to prove the following estimate

Proposition 5.7 The following bound hold

sup
π−1(Xreg

0 )

|∇ωϕ0
ϕ0| ≤ C

Proposition 5.8 If we set let vt = ϕt − t ϕ̇t , then we have a uniform estimate

sup
X

|vt | ≤ C

Proof Recall from the construction of ω̂t (Proposition 3.2) that

ω̂t = ωt + i∂∂̄ut

= (1 − t)ω0 + tω1 + i∂∂̄ut
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where ω0 = π�ωX0 and ωX0 is a Kähler metric on X0. So we have

�ϕt ϕt = n − Trϕt ω̂t

= n − (1 − t)Trϕt ω0 − tTrϕt ω1 − �ϕt ut .

Recall that by the construction of ω̂t , Proposition 3.1, we have

log
(ω̂t + i∂∂̄ϕt )

n

ω̂n
t

= ft ∈ C∞−γ−2.

for some 0 < γ < 2n − 2. Differentiating the equation, we have

�ϕt ϕ̇t = ḟt − Trϕt

∂

∂t
ω̂t + Trω̂t

∂

∂t
ω̂t ∈ C∞−γ−2(X) (5.3)

so we have ϕ̇ ∈ C∞−γ (X) for t > 0.

If we differentiate the equation (ω̂t + i∂∂̄ϕt )
n = in2� ∧ �̄ with respect to t , we

obtain another expression for �ϕt ϕ̇t

�ϕt ϕ̇t = −�ϕt u̇t + Trϕt (ω0 − ω1) (5.4)

The equations (5.3) and (5.4) imply that vt satisfy the two equations

�ϕt vt = n − Trϕt ω0 − �ϕt (ut − t u̇t ) (5.5)

and

�ϕt vt = n − Trϕt ω̂t − t( ḟt − Trϕt

∂

∂t
ω̂t + Trω̂t

∂

∂t
ω̂t ) (5.6)

From the first equation and Proposition 5.1, we see that |�ϕt ϕ̇t | ≤ C uniformly in t .
From the second equation we see that |�ϕt vt | ≤ Cr−γ−2 away from a compact set
K , so we have a uniform bound |�ϕt vt |L p ≤ C for p > 2n

γ+2 . Since vt ∈ C∞−γ , we
can do integrate by parts to get

−
∫

X
|vt |p−2vt i∂∂̄vt ∧ ωn−1

ϕt
= lim

R→∞(p − 1)
∫

BR

|vt |p−2i∂vt ∧ ∂̄vt ∧ ωn−1
ϕt

− lim
R→∞

(∫

∂ BR

|vt |p−2vt i ∂̄vt ∧ ωn−1
ϕt

)

= 4(p − 1)

p2

∫

X
i∂|vt | p

2 ∧ ∂̄|vt | p
2 ∧ ωn−1

ϕt
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the boundary term goes away when p > 2n−2
γ

since |∇kvt | = O(r−γ−k). Hence we
get

∫

X
|∂|vt | p

2 |2ωn
ϕt

= − np2

4(p − 1)

∫

X
|vt |p−2vt (�ϕt vt )ω

n
ϕt

combined with the Sobolev inequality, one gets

(∫

X
|vt |p n

n−1 in2� ∧ �̄

) n−1
n ≤ C

np2

p − 1

∫

X
|vt |p−1|�ϕt vt |in2� ∧ �̄

applying Holder, we get

‖vt‖
L

p n
n−1

≤ C
np2

p − 1
‖�ϕt vt‖

L
np

n+p+1

hence for p > 2n
γ
, we have

‖vt‖L p ≤ C p (5.7)

where C p depends on ‖�ϕt vt‖
L

np
n+p

. and also for p > 2n−2
γ

‖vt‖p
p n

n−1
≤ C

np2

p − 1
‖vt‖p−1

L p ‖�ϕt vt‖L p

we can then apply Moser iteration to this to get the estimate

‖vt‖L∞ ≤ Bp‖vt‖L p ≤ BpC p

whereC p is the constant from (5.7) and Bp depends only on the L p normof‖�ϕt vt‖L p .
��

Corollary 5.9 For any compact set K ⊂⊂ π−1(Xreg
0 ), we have an estimate

|vt |Ck,α(K ) ≤ C(K , k, α)

uniformly in t as t → 0.

Proof This follows from the equation (5.5) and the fact that ωϕt and the right hand
side of the equation is uniformly bounded in C∞

loc(π
−1(Xreg

0 )). ��
Proposition 5.10 We also have the following local uniform gradient estimate for vt .

sup
K

|∇tvt | ≤ CK

for any K ⊂⊂ X.
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Proof By the Bochner formula, we have

�ϕt |∇vt |2gϕt

= |∇∇vt |2gϕt
+ |∂∂̄vt |2gϕt

− 2Re(∇vt · ∇Trϕt ω0) − 2Re(∇vt · ∇�ϕt (ut − t u̇t ))

≥ −2|∇vt |2gϕt
− |∇Trωϕt

ω0|2gϕt
− |∇�ϕt (ut − t u̇t )|2gϕt

we also have from (5.2),

�ωϕt
Trωϕt

ω0 ≥ −C + c0|∇Trωϕt
ω0|2

If we set Ht = |∇vt |2gϕt
+ ATrωϕt

ω0, then Ht ≥ 0 and satisfies

�ϕt Ht ≥ −Ht − C

We can apply Moser iteration to this, since ωϕt has uniform Ricci bounds and volume
lower bound, this then gives the estimate

‖Ht‖L∞(Bg∞,R(p)) ≤ C‖Ht‖L2(Bg∞,2R(p)) (5.8)

for R sufficiently large. Note that for R sufficiently large ωϕt converge uniformly in
C∞ to g∞ on the region Bg∞,2R(p) \ Bg∞,R(p), hence we can also choose cutoff
functions with uniformly controlled gradients and standard Moser iteration gives the
inequality. Now it suffices to show that ‖Ht‖L2(Bg∞,2R) is bounded.

∫

B2R

|Ht |2 ≤ ‖Ht‖L∞(B2R)

∫

B2R

|Ht |
≤ C‖Ht‖L2(B4R)‖Ht‖L1(B2R)

≤ C(‖Ht‖L2(B2R) + ‖Ht‖L2(B4R\B2R))‖Ht‖L1(B2R)

if R is sufficiently large, then B4R \ B2R doesn’t contain any of π−1(Xsing
0 ), hence

‖Ht‖L2(B4R\B2R) is uniformly bounded in t on B4R \ B2R by the Corollary above. So
we have

‖Ht‖2L2(B2R)
≤ C(‖Ht‖L2(B2R) + C)‖Ht‖L1(B2R)

hence either ‖Ht‖L2(B2R) is bounded by 1 and we are done, or we get the bound

‖Ht‖L2(B2R) ≤ C‖Ht‖L1(B2R) (5.9)

so it suffices to prove an L1 bound for Ht on compact sets.
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Choose cutoff function η such that η = 1 on B2R for all t , then

∫

B2R

Ht ≤
∫

X
η2Ht

≤
∫

X
η2|∇vt |2ωn

ϕt
+ C

≤ −
∫

X
η2vt (�ϕt vt ) + 2

∫

X
η|∇η||ṽt ||∇ṽt | + C

and so we have
∫

B2R

Ht ≤ C
∫

X
(η2 + |∇η|2)v2t ≤ C

which gives us the L1 bound, combined with (5.9) and (5.8), we get

‖Ht‖L∞(BR) ≤ C

as desired. ��
Proposition 5.11 For any x ∈ ι∞(Xreg

0 ), we have a bound

|ϕ̇t (x)| ≤ C

for some constant C potentially depending on the point x.

Proof Fix x ∈ ι∞(Xreg
0 ), then fix a ball Bg∞,ε(x) ⊂ ι∞(Xreg

0 ) on which the metrics

gϕt converge smoothly to g∞, also fix a set K ⊂⊂ X containing all of π−1∞ (Xsing
0 )

and also Bg∞,ε(x). Then by the Green’s formula representation formula, we have

ϕ̇t (x) = −
∫

X
�ϕt ϕ̇t (y)Gt (x, y)ωn

ϕt
(y)

= −
∫

Bg∞,ε(x)

�ϕt ϕ̇t (y)Gt (x, y)ωn
ϕt

(y) −
∫

K\Bg∞,ε(x)

�ϕt ϕ̇t (y)Gt (x, y)ωn
ϕt

(y)

−
∫

X\K
�ϕt ϕ̇t (y)Gt (x, y)ωn

ϕt
(y)

where Gt (x, y) is the positive decayingGreen’s function on (X , ωϕt ). By the estimates
for Green’s function [44, p.190], [36,37], the Green’s functions Gt (x, y) satisfy the
uniform estimates

C−1dt (x, y)2−2n ≤ Gt (x, y) ≤ Cdt (x, y)2−2n

where dt is the distance function induced by gϕt . And since �ϕt ϕ̇t = −�ϕt u̇t +
Trϕt (ω0 − ω1), this implies |�ϕt ϕ̇t | ≤ |�ϕt u̇t | + Trϕt (ω0 + ω1) ≤ C + Trϕt ω1 and
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we have

|ϕ̇t (x)| ≤
∫

Bg∞,ε(x)

|�ϕt ϕ̇t |(y)dt (x, y)2−2nωn
ϕt

(y)

+
∫

K\Bg∞,ε(x)

|�ϕt ϕ̇t |(y)dt (x, y)2−2nωn
ϕt

(y)

+
∫

X\K
|�ϕt ϕ̇t |(y)dt (x, y)2−2nωn

ϕt
(y) (5.10)

and we analyze the three terms in the above formula seperately. For the first term, we
note that �ϕt ϕ̇t is uniformly bounded on Bg∞,ε(x), so

∫

Bg∞,ε(x)

|�ϕt ϕ̇t |(y)dϕt (x, y)2−2nωn
ϕt

(y) ≤ C
∫

Bg∞,ε(x)

dt (x, y)2−2n ≤ C

For the second term, observe that on K \Bg∞,ε(x), dt (x, y)2−2n is bounded byCε2−2n ,
so

∫

K\Bg∞,ε(x)

|�ϕt ϕ̇t |(y)dϕt (x, y)2−2nωn
ϕt

(y) ≤ C

(

1 +
∫

K\Bg∞,ε(x)

Trϕt ω1

)

hence it suffices to bound the integral of Trϕt ω1, to do this, we integrate by parts

∫

K
ω1 ∧ ωn−1

ϕt
=
∫

K
ω1 ∧ (ω̂t + i∂∂̄ϕt )

n−1 =
∫

K
ω1 ∧ ω̂n−1

t

+
∫

∂K
∂ϕt ∧ ω1 ∧

(
n−2∑

l=0

(
n − 1

l

)

ω̂l
t ∧ (i∂∂̄ϕt )

n−2−l

)

≤ C

because ϕt and its derivatives are all bounded on the boundary of K .
The last term in (5.10) is bounded because |�ϕt ϕ̇t | ≤ Cdt (x, y)−2−β on X \ K , so

we have
∫

X\K
|�ϕt ϕ̇t |(y)dϕt (x, y)2−2nωn

ϕt
(y) ≤ C

∫

X\K
dt (x, y)−2n−β ≤ C

and we get our result. ��
proof of Proposition 5.7 Note that we already know |∇g∞ϕ0| is bounded and decaying
at infinity, so it suffices to prove that it’s bounded near π−1∞ (Xsing

0 ). Fix a compact

set K containing π−1∞ (Xsing
0 ), then by Proposition 5.10, |∇vt | ≤ C , but on Xreg

0 , vt

converges to ϕ0 smoothly on compact sets, hence we get our result. ��
The main goal of this gradient bound is to show the following.
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Proposition 5.12 For any holomorphic section s ∈ H0(X0, Lk) satisfies

sup
K

|s|hk∞ ≤ C

and

sup
K

|∇s|hk∞,kωϕ0
≤ C

Proof Locally we can write h∞ = e−ϕ0 ĥ0 where −i∂∂̄ log ĥ0 = ω̂0, since ω̂0 =
π�ωF S on K , we have simply h∞ = e−ϕ0hF S , and by the C0 bound for ϕ0, it follows
that |s|hk∞ ≤ C |s|hk

F S
≤ C . To see the bound for the gradient, we note

|∇hk∞s|2
hk∞,kωϕ0

= |∇hk
F S

s + k(∂ϕ0)s|hk∞,kωϕ0
≤ |∇hk

F S
s|hk

F S ,kωϕ0
+ k|∇ϕ0|kωϕ0

|s|hk∞

and by the gradient estimate (5.7) |∇ϕ0|kωϕ0
≤ C , so the second term is bounded, and

by the estimate (5.1), we have |∇hk
F S

s|hk
F S ,kωϕ0

≤ C |∇hk
F S

s|hk
F S ,kωF S

≤ C and we get
the bound that we wanted. ��

Wewill need the boundedness of |s|hk∞ and |∇s|hk∞,kωϕ0
to make theMoser iteration

argument work with cutoff functions in the next section.

5.2.2 L2 estimates on X0

The argument of this section follows in the same way as in [51], with minor modifi-
cations.

We first quote a proposition stating the existence of good cutoff functions on X∞
from [23].

Lemma 5.13 [23, Proposition 3.5] There exist cutoff functions ρε on X∞ satisfying
the following

(1) 0 ≤ ρε ≤ 1
(2) supp(ρε) ⊂⊂ R = Xreg

0
(3) For any compact set K ⊂⊂ R, there exist εK > 0 such that for all ε < εK , we

have ρε = 1 on K .
(4)

∫
X |∇ρε|2 → 0 as ε → 0.

We recall the following version of Hormander’s L2 estimates for the ∂̄ equation.

Theorem 5.14 [20, Cor 5.3] Let (M, ω) be a Kähler manifold. Assume M is weakly
pseudoconvex. Let (L, h) be a Hermitian line bundle with curvature with (possibly)
singular Hermitian metric h, and suppose

−i∂∂̄ log h + Ric(ω) ≥ γ (x)ω
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then for any β ∈∧0,1 ⊗L, with ∂̄β = 0, there exist a section s ∈ L satisfying ∂̄s = β

with
∫

M
|s|2hωn ≤

∫

M

1

γ
|β|2h,ωωn,

provided the integral on the RHS is finite.

Now we will prove a version of the above theorem on X equipped with a singular
metric ωϕ0 that we constructed. First we fix a Hermitian metric h0 on L such that
−i∂∂̄ log h0 = ω̂0, which is possibly by the ∂∂̄-Lemma.

Theorem 5.15 Let h∞ = e−ϕ0h0, so −i∂∂̄ log h∞ = ωϕ0 , and K ⊂⊂ X a compact
subset with pseudoconvex boundary. Then for any β ∈ ∧0,1 ⊗Lk, with compact
support and supp(β) ⊂ Xreg

0 ∩ K and ∂̄β = 0, there exist a section u ∈ H0(Lk)

satisfying ∂̄u = β with

∫

K
|u|2

hk∞
ωn

ϕ0
≤
∫

K
|β|2

hk∞,kωϕ0
ωn

ϕ0

Proof ByAssumption1,weknow that ω̂0+i∂∂̄ψε ≥ εω,which implies ω̂0+t i∂∂̄ψε ≥
(1 − t)ω̂0 + tεω. By the discussion in the previous sections, we can solve

ωn
ϕt

= ((1 − t)ω̂0 + tεω + i∂∂̄ϕ̃t
)n = in2� ∧ �̄

with ϕ̃t is bounded on any compact set K ⊂⊂ X , uniformly as t → 0 and ϕ̃t → ϕ0
in L∞

loc(X) and in C∞
loc(Xreg

0 ). We pick a metric h0 on L such that −i∂∂̄ log h0 = ω̂0,
then if we set h̃t = e−tψε−ϕ̃t h0, it satisfies

−i∂∂̄ log h̃k
t = k(ω̂0 + ti∂∂̄ψε + i∂∂̄ϕ̃t ) ≥ kωϕt

By the previous lemma, we can always solve ∂̄ut = β, satisfying the estimate

∫

K
|ut |2h̃k

t
ωn

ϕt
≤
∫

K
|β|2

h̃k
t ,kωϕt

ωn
ϕt

=
∫

K
e−tkψε−kϕ̃t |β|2

hk
0,kωϕt

ωn
ϕt

Sinceβ is compactly supported on Xreg
0 ,ωϕt → ωϕ0 on the support ofβ, and e−tkψε →

1 in L1
loc, so we have

lim
t→0

∫

K
|β|2

h̃k
t ,kωϕt

ωn
ϕt

=
∫

K
e−kϕ0 |β|2

hk
0,kωϕ0

ωn
ϕ0

and since e−tkψε−kϕ̃t is bounded from below on any compact set K , it follows that

∫

K
|ut |2hk

0
in2� ∧ �̄ ≤ C

∫

K
e−tkψε−kϕ̃t |ut |2hk

0
in2� ∧ �̄ = C

∫

K
|ut |2h̃k

t
ωn

ϕt
≤ C
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hence there exist a weakly convergent subsequence ut⇀u in L2(K , hk
0) and the equa-

tion ∂̄ut = β carries through the limit in the weak convergence, so we have ∂̄u = β.
Since the sections ut − u are holomorphic and weakly converge to 0, it follows that
the convergence is smooth it happens strongly, hence we have

∫

K
e−kϕ0 |u|2

hk
0
in2� ∧ �̄ ≤

∫

K
e−kϕ0 |β|2

hk
0,ωϕ0

in2� ∧ �̄

��
Proposition 5.16 The following Sobolev inequality hold for f ∈ L∞∩H1(Xreg

0 , ω∞)

(∫

Xreg
0

| f |2 n
n−1 ωn∞

) n−1
n

≤ C
∫

Xreg
0

|∇ f |2g∞ωn∞

Proof Without loss of generality, we can assume f ≥ 0. If f is supported in Xreg
0 ,

this follows from [19]. For f ∈ L∞, we can define fε = f ρε, fε is supported in Xreg
0 ,

then we clearly have ‖ fε‖L2 → ‖ f ‖L2 , and we also have

∫

X
|∇ fε|2 =

∫

X
ρ2

ε |∇ f |2 +
∫

X
f 2|∇ρε|2 + 2

∫

X
f ρε〈∇ f ,∇ρε〉

the second and third term goes to 0 as ε → 0 because
∫

X |∇ρε|2 → 0, and this gives
what we wanted. ��
Lemma 5.17 Suppose u ≥ 0 is a bounded function on Xreg

0 that satisfy

�ω∞u ≥ −Au

then for R ≥ 1 sufficiently large (so that Xsing
0 ⊂ BR(p)), we have the estimate

‖u‖L∞(BR(p)) ≤ C(A + C R−2)
n
2 ‖u‖L2(B2R(p))

Proof Using the Sobolev inequality above and the cutoff function, we can do Moser
iteration on (Xreg

0 , g∞)

A
∫

X
η2ρ2

ε u p+1ωn∞ ≥
∫

X
η2ρ2

ε u p(−�u)ωn∞

= 4p

(p + 1)2

∫

X
η2ρ2

ε |∇u
p+1
2 |2ωn∞ + 2

∫

X
ρ2

ε η(∇η · ∇u)u pωn∞

+ 4

(p + 1)

∫

X
η2ρε(∇ρε · ∇u

p+1
2 )u

p+1
2 ωn∞

≥ 4p

(p + 1)2

∫

X
η2ρ2

ε |∇u
p+1
2 |2ωn∞ + 2

∫

X
ρ2

ε η(∇η · ∇u)u pωn∞
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− 4

(p + 1)

(∫

X
η2ρ2

ε |∇u
p+1
2 |2ωn∞

) 1
2
(∫

X
η2|∇ρε|2u p+1ωn∞

) 1
2

when u is bounded, we can take a limit as ε goes to 0 and the last term will disappear,
so we have

A
∫

X
η2u p+1ωn∞ ≥ 4p

(p + 1)2

∫

X
η2|∇u

p+1
2 |2ωn∞ + 4

p + 1

∫

X
η(∇η · ∇u

p+1
2 )u

p+1
2 ωn∞

≥ 3p

(p + 1)2

∫

X
η2|∇u

p+1
2 |2ωn∞ − 16

p

∫

X
|∇η|2u p+1ωn∞

which implies

∫

X
|∇ηu

p+1
2 |2ωn∞ ≤ (p + 1)2

p

∫

X
(Aη2 + 17

p
|∇η|2)u p+1ωn∞

then by the Sobolev inquality from Proposition 5.16, we have for any p > 0,

(∫

X
|ηu|(p+1) n

n−1 ωn∞
) n−1

n ≤ C(p + 1)2

p

∫

X
(Aη2 + 17

p
|∇η|2)u p+1ωn∞

by carefully choosing cutoff functions 0 ≤ ηk ≤ 1 such that supp(ηk) ⊂ B(1+2−k )R ,
ηk = 1 on B(1+2−k−1)R and |∇ηk | ≤ C R−12k , and set pk = 2( n

n−1 )
k , then for

k = 0, 1, 2, . . . we have

‖u‖pk
L pk+1 (B

(1+2−k−1)R)
≤ C(Apk + C R−24k)‖u‖pk

L pk (B
(1+2−k )R)

iterating gives

sup
BR

u ≤ C
n
2

sobC(2A + C R−2)
n
2 ‖u‖L2(B2R)

��

We now prove L2 estimates for holomorphic sections of Lk .

Proposition 5.18 If s is a holomorphic section of (Lk, hk∞), then the following esti-

mates hold on (Xreg
0 , kg∞) for R large enough so that BR(p) contains all of Xsing

0 ,

sup
BR(p)

|s|hk∞ ≤ C‖s‖L2
hk∞,kg∞

(B2R(p))

sup
BR(p)

|∇s|hk∞,kg∞ ≤ C‖s‖L2
hk∞,kg∞

(B2R(p))
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Proof For a holomorphic section s, we have∇ j̄ s = 0, so gi j̄∇ j̄∇i s = −ns. It follows
then from standard calculations that

�|s| ≥ −n|s|
and

�|∇s| ≥ −(n + 2)|∇s|
so now we can apply Lemma 5.17 with u = |s| and u = |∇s| to get

‖s‖L∞(BR) ≤ C‖s‖L2(B2R)

and

‖∇s‖L∞(BR) ≤ C‖∇s‖L2(B2R) (5.11)

and it suffices to show that ‖∇s‖L2(B2R) ≤ C‖s‖L2(B3R). We use integration by parts

∫

X
η2ρ2

ε |∇s|2 =
∫

X
η2ρ2

ε hgi j̄∞∇i s∇ j̄ s̄ω
n∞

= −
∫

X
η2ρ2

ε hgi j̄∞∇ j̄∇i ss̄ωn∞ − 2
∫

X
∇ j̄ (η

2ρ2
ε )hgi j̄∞∇i ss̄ωn∞

≤ n
∫

X
η2ρ2

ε |s|2 + 2
∫

X
ηρε(ρε|∇η| + η|∇ρε|)|s||∇s|

≤ C
∫

X
(η2 + |∇η|2)ρ2

ε |s|2 + ε

∫

X
η2ρ2

ε |∇s|2 + C
∫

X
η2|∇ρε|2|s|2

taking ε to 0 gives

∫

X
η2|∇s|2 ≤ C

∫

X
(η2 + |∇η|2)|s|2

by choosing 0 ≤ η ≤ 1 so that supp(η) ⊂ B4R and η = 1 on B2R , this gives
‖∇s‖L2(B2R) ≤ ‖s‖L2(B4R) Combined with estimate (5.11), this gives the desired
estimates. ��
Corollary 5.19 For any holomorphic sections s0, s1 ∈ H0(Lk |K ) on K , the function
|si |hk∞ extends as a lipshitz function on K and this function vanishes precisely on the

set π−1∞ ({si = 0}). Also, s0
s1

extends as a locally Lipshitz function defined on the set
{|s1|hk∞ > 0}.
Proof This follows immediately from Kato’s inequality

|∇|s|hk∞|g∞ ≤ |∇s|hk∞,kg∞ ≤ C
∣
∣
∣
∣∇

s0
s1

∣
∣
∣
∣
g∞

≤ |s1|hk∞|∇s0|hk∞,kg∞ + |s0|hk∞|∇s1|hk∞,kg∞
|s1|2hk∞

≤ C

|s1|2hk∞
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and the fact that K = (K ∩ Xreg
0 , g∞). ��

In this section we prove that the map π∞ : X∞ → X0 is injective, hence it is an
isomorphism.

Proposition 5.20 For any p, q ∈ X∞ with p �= q there exist an k = k(p, q) > 0 and
sp, sq ∈ H0(Lk) such that

|sp(p)|hk∞, |sq(q)|hk∞ ≥ 2

5

and

|sp(q)|hk∞ , |sq(p)|hk∞ ≤ 1

3

Proof This follows from the same argument as Proposition 3.9 in [51]. ��
Proposition 5.21 The map π∞ : X∞ → X0 is an homeomorphism.

Proof It’s clear that the map is surjective and restricts to a homeomorphism on Xreg
0 ⊂

X∞, it suffices to show that is seperates points near Xsing
0 . Given p, q ∈ K , suppose

for a contradiction that π∞(p) = π∞(q), then for any k > 0, and any two sections
s0, s1 ∈ H0(K ∩ Xreg

0 , Lk), by the normality of X0, we know that these two sections
extend over the singular set to two sections of s′

0, s′
1 ∈ H0(π∞(K ), Lk), hence we

must have s0(p)
s1(p)

= s0(q)
s1(q)

. But if dX∞(p, q) > 0, then by the previous lemma, there

exist k > 0 and we can construct sections sp, sq ∈ H0(K ∩ Xreg
0 , Lk) such that

|sp|hk∞(p), |sq |hk∞(q) ≥ 2
5 > 1

3 ≥ |sp|hk∞(q), |sq |hk∞(p) which contradicts sp(p)

sq (p)
=

sp(q)

sq (q)
.

Observe that the singular set S ⊂ X∞ is closed and of finite diameter, from which
we can see that π∞ : X∞ → X0 is a proper map, hence closed, and this implies π−1∞
is also continuous. Thus π∞ is a homeomorphism. ��
proof of Theorem 1.2 This is just a combination of Proposition 5.1, Proposition 5.5
and Proposition 5.21. ��

6 Examples and applications

In this section we apply Theorems 1.1 and 1.2 to study certain explicit examples of
crepant resolutions.

6.1 Small resolutions of Brieskorn–Pham cones

Consider the quasi-homogeneous affine varieties

Yp,q = {xy + z p − wq = 0} ⊂ C
4,
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where we assume that p ≤ q. These singularities, which are compound du Val of
type cAp are Gorenstein and log-terminal and by the main result of [12], Yp,q admits
a conical Calabi-Yau metric if and only if q < 2p. Let r denote the radial function
of the Calabi-Yau cone metric. The Euler vector field r ∂

∂r associated with the cone
structure is given by the real part of the holomorphic vector Reeb field ξ acting on the
coordinates (x, y, z, w) with weights

3

2(p + q)
(pq, pq, 2q, 2p);

in particular, the Yp,q are quasi-regular Calabi–Yau cones. A result of Katz [33] says
that the Yp,q admits a small (and hence crepant) resolution μ : Y → Yp,p if and only
if p = q. In fact, Yp,p admits p inequivalent small resolutions

Y 1 Y 2 · · · Y p−1 Y p

Yp,p

μ1 μ2 μp−1 μp

with each pair Y i , Y j related by a flop; the p(p−1)
2 flops are in correspondence with

the reflections in the Weyl group of the Ap−1 Dynkin diagram [42]. When p = 2,
this recovers the Atiyah flop [1]. The exceptional locus of each contraction μ j is a
chain of p−1 rational curves with normal bundle (−1,−1) intersecting transversally.

Explicitly, let ζ = e
2π

√−1
p , and write

z p − w p =
p−1∏

j=0

(z − ζ jw).

Fix 1 ≤ � ≤ p − 1 and consider the rational map ν� : Yp,p → P
1 defined by

ν�(x, y, z, w) = ([x :
�∏

j=0

(z − ζ jw)]) ∈ P
1. (6.1)

Then a small resolution μ : Y → Yp,p (say Y 1 for concreteness) is obtained by taking
the closure of the graph of

ν1 × · · · × νp−1 : Yp,p → P
1
(1) × · · · × P

1
(p−1).

There are also corresponding partial resolutions Y by projecting out some collection of
the ν j . Fix 1 ≤ i ≤ p, and let Y be any partial resolution whose contraction π̄ : Y →
Yp,p factors through νi . Clearly these resolutions are obtained by repeatedly blowing-
up along the lines x = z − ζ jw = 0. There is a divisor Ei defined by −Ei = ν−1

i (p)

for a generic point p ∈ P
1, and these divisors satisfyOY (−Ei )

∣
∣
Exc(νi )

= OP1(1), and
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OY (Ei ) is trivial on any other component of Exc(π̄). Furthermore, if Y is obtained
from νi1 × · · · × νik then

⊗k
j=1OY (−Ei j )

⊗� j is ample for any � j ∈ Z>0. These
statements follows straightforwardly from the corresponding statements for the blow-
ups of the ambient C4.

Let us fix a small resolution μ : Y → Yp,p . By Hartog’s theorem the holomorphic
Reeb vector field extends over Exc(μ) and generates a holomorphic retraction onto
Exc(μ). Thus we have

H1,1(Y ,R) =
p−1⊕

i=1

H1,1(P1
(i),R) =

p−1⊕

i=1

R · [Ei ]

By the above discussion, the classes
∑p−1

i=1 (−ti )[Ei ] are Kähler on Y , provided ti > 0
for all i , and semi-positive for ti ≥ 0. Each of these cohomology classes is 2-almost
compactly supported. Fix a class [α0] =∑p−1

i=1 (−ti )[Ei ]where ti ≥ 0, and at least one
t j = 0 and let [ω] ∈ H1,1(Y ,R) be anyKähler class. Let [ωt ] = (1−t)[α0]+t[ω] be a
linear family of Kähler classes. Then by [28] (see also [15]) there is an asymptotically
conical Calabi-Yau metric ωt,CY in [ωt ] for all t > 0.

Since the cone at infinity is quasi-regular we can apply Lemma 3.3 to conclude that
there is a Kähler current in [α0] which is smooth on the complement of

V :=
{

P
1
j ⊂ Y :

∫

P
1
( j)

α0 = 0

}

Let Y be the partial resolution obtained by contracting V , and let π̂ : Y → Y be
the contraction map. If [α0] ∈ H1,1(Y ,Q) then, by the preceding discussion, after
rescaling we can assume that [α0] = π∗c1(L) for some ample line bundle L → Y .
Applying Theorem 1.1 and Theorem 1.2 we obtain

Proposition 6.1 In the above situation we have

(1) Y reg admits a smooth Ricci-flat metric ω̄, asymptotic to the Calabi-Yau metric on

Yp,p at infinity, and with (Y reg, ω̄) homeomorphic to Y .

(2) As t → 0 (Y , ωt,CY ) converges in the Gromov-Hausdorff sense to (Y reg, ω̄).
(3) In particular, if we take [α0] = 0, the flops of the Yp,p are continuous in the

Gromov-Hausdorff sense.

Proof The only point which is not an immediate consequence of Theorems 1.1 and 1.2
is the third point. However, by the uniqueness part of Theorem1.1, the limiting limiting
Calabi–Yau metric ω̄ on Yp,p is isometric to the conical Calabi–Yau metric from [12].
Alternatively, this can be seen as follows. Let ωc denote the Calabi–Yau metric on
Yp,p. Clearly tω1,CY is a Calabi–Yau metric in t[ω] asymptotic to tωc. Let ξ̂ denote
the extension of the holomorphicReeb vector field onY , and, forλ ∈ C letϕλ : Y → Y
denote the λ-flow of ξ̂ . Then

(

ϕ 1√
t

)∗
tω1,CY
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is Calabi–Yau, asymptotic to ωc, and lies in the cohomology class t[ω] and hence
is equal to ωt,CY by the uniqueness results of [15]. From this description, and the
convergence result of Theorem 1.1 it follows thatωt,CY converges toμ∗

i ωc on compact
sets of Y\Exc(μi ). ��

It’s not hard to check that if a partial resolution Y is obtained by blowing up 0 < k <

p − 1 lines x = z − ζ jw = 0, then Y has an isolated singularity biholomorphic to a
neighborhood of the singular point inYp−k,p−k .More precisely, suppose for simplicity
that Y is obtained by blowing-up the lines x = z − ζ jw = 0 for 0 ≤ j ≤ k < p − 1.
Then Y has an isolated singularity biholomorphic to

Ỹp−k,p−k := {xy =
p−1∏

j=k

(z − ζ jw)} ⊂ C
4

which is deformation equivalent to Yp−k,p−k and admits a conical Calabi–Yau metric
by argument of [12]. The link of this singularity is topologically (p−k −1)#(S2×S3)

and it comes equipped with a Sasaki-Einstein metric. It was shown in [12] that the
volume of these Sasaki–Einstein metrics is given by

2(2(p − k))3

27(p − k)4
= 16

27(p − k)

Thus Y yields a cobordism between (p − k −1)#(S2 × S3) and #(p −1)(S2 × S3).
It is natural to expect that that the metric ω̄ on Y , close to the singular point, is close
to the conical Calabi–Yau metric on Ỹp−k,p−k . At the very least, we expect

Conjecture 2 Let (Y , d) denote the metric space obtained as the completion of
(Y reg, ω̄). Then the tangent cone to (Y , d) at the singular point is isometric to Ỹp−k,p−k

equipped with its conical Calabi–Yau metric.

Let y ∈ Y denote the singular point, and consider the function

R>0 � r "→ v(r) := Volω̄(Bω̄(y, r))

r6

Since (Y , ω) is Calabi–Yau, v(r) is monotone decreasing by the Bishop–Gromov
comparison theorem. Furthermore, assuming Conjecture 2, since ω̄ is asymptotic to
the conical Calabi–Yau metric on Yp,p we have

16

27(p − k)
= lim

r→0
v(r) ≥ lim

r→+∞ v(r) = 16

27p
.

Note that the equality case of Bishop–Gromov already shows that if k = 0, then the
metric is conical.

While deducing k ≥ 0 in this way is not particularly interesting, this discussion
holds for any asymptotically conical Calabi–Yau variety with or without singularities
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(indeed, a smooth, asymptotically conical Calabi–Yau variety is naturally a cobordism
between the standard Sasaki–Einstein structure on the sphere and the link of the
cone at infinity). Suppose (Y , ω̄) is a asymptotically conical Calabi–Yau variety with
asymptotic cone C∞, and with a singular point y. Assume that a neighborhood of
y is biholomorphic to a neighborhood of an isolated singular point in some quasi-
homogeneous affine variety C0 admitting a conical Calabi–Yau metric. Assuming that
ω̄ is close to the Calabi–Yau metric on C0 near the singularity at y, the volume ratio
of geodesic balls centered at y will decrease (by Bishop-Gromov) from the volume
ratio of the cone v(C0) to the volume of ratio of the cone at infinity, v(C∞). Since
these volume ratios are algebraic invariants of the singularities C0, C∞, this situation
is obstructed in general; for example one cannot takeC0 = Yp,p andC∞ = Yp−k,p−k .

It is tempting to speculate that the volume function on Sasaki-Einstein structures
could give rise to a sort of Morse function on the space of Sasaki–Einstein manifolds.
For twoSasaki-Einsteinmanifolds S0, S∞ with corresponding conesC0, C∞ aCalabi–
Yau space (Y , ω̄) with an isolated singularity C0 and cone C∞ at infinity could be
regarded as a kind of flow line of the Morse function between S0 and S∞. We will
give further examples of this discussion below.

6.2 Examples from Fanomanifolds

Let us next indicate how to construct examples starting from Fano manifolds with a
different singular structure than the previous examples. Suppose X is a Fano manifold
of dimension n. Let X̃ = Blp X be the blow up of X at a point and let Ẽ ⊂ X̃ be the
exceptional divisor. Assume in addition that that X̃ is Fano and −K X̃ is base-point
free. Assume that X̃ has a Kähler-Einstein metric, or more generally that the affine
cone over X̃ , Spec

⊕
m≥0 H0(X̃ ,−K ⊗m

X̃
), admits a conical Calabi-Yau metric. This

holds, for example, whenever X̃ is toric, by [26]. It is not difficult to generate examples
satisfying these assumptions. For example

• Let X = P
n , with p a torus invariant point. Then X̃ = BlpPn is Fano and −K X̃ is

base point free. These manifolds do not admit Kähler–Einstein metrics, as can be
seen from Matsushima’s obstruction. However, they are toric, and so the theorem
of Futaki–Ono–Wang implies the existence of a Calabi–Yau cone metric on the
affine cone C := Spec

⊕
m≥0 H0(X̃ ,−K ⊗m

X̃
). Note that the conical Calabi–Yau

structure on C need not be quasi-regular, as happens for example when n = 2
[26,27,40].

• Let X be a del Pezzo surface with K 2
X ≥ 3, and p chosen sufficiently generic so

that X̃ = Blp X is Fano. The global generation of −K X̃ follows from Reider’s
Theorem [46]. Furthermore, a theorems of Tian-Yau [55] and Tian [52] say that X
admits a Kähler–Einstein metric if K 2

X < 8. If, however, K 2
X = 8, 9 then X does

not admit a Kähler-Einstein metric byMatsushima’s obstruction [43]. On the other
hand, in these latter examples, if p is chosen so that X̃ is toric, then the affine cone
Spec

⊕
m≥0 H0(X̃ ,−K ⊗m

X̃
) admits a conical Calabi–Yau metric thanks to results

of Futaki–Ono–Wang [26] (See also [12]). In these examples the Calabi–Yau cone
structure is not quasi-regular [26,40].
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Let Y = K X̃ be the total space of the canonical bundle, and let p : Y → X̃ be
the projection. The pull-back p∗ identifies H1,1(Y ,R) = H1,1(X̃ ,R), and Y admits
an asymptotically conical Calabi–Yau metric in any Kähler class in H1,1(Y ,R) [15].
Suppose [α] ∈ H1,1(X ,R) is a Kähler class, so that p∗[π∗α] ∈ H1,1(Y ,R) is a
nef class on Y admitting a semi-positive representative. By regarding the exceptional
divisor of the blow-up π : X̃ → X as a subvariety of the zero section in Y , we get a
natural codimension 2 subvariety, E ⊂ Y (explicitly E = p−1(Ẽ)∩ { zero section }).
Our goal is to show that if [ωt ] = (1 − t)[p∗π∗α] + t[ω] ∈ H1,1(Y ,R) and ωt,CY

are conical Calabi–Yau metrics in [ωt ] then, as t → 0, (Y , ωt,CY )Gromov–Hausdorff
converges to a variety Z with an isolated, Gorenstein, log-terminal singularity which
is obtained from Y by contracting E to a point. As a first step, we need to verify that
Assumption 1 holds, since the failure of the cone at infinity to be quasi-regular means
that Lemma 3.3 does not apply in general.

Lemma 6.2 The cohomology class p∗[π∗α] contains a Kähler current which is smooth
outside of E.

Proof It is a standard fact that we can choose a hermitian metric hẼ on OX̃ (Ẽ) such
that

π∗α + ε
√−1∂∂ log hẼ > ωX̃ (6.2)

for some ε > 0 and ωX̃ a Kähler form on X̃ . Let sẼ denote the defining section of
Ẽ ⊂ X̃ . After scaling we may assume that |sẼ |2hẼ

< 1. The current T̃ := π∗α +
ε
√−1∂∂ log |sẼ |2hẼ

is a Kähler current on X̃ which is singular along Ẽ ⊂ X̃ . Let h X̃
be a negatively curved metric on K X̃ , and let s denote a coordinate on the fibers of
K X̃ . We claim that

T = p∗π∗α + √−1∂∂(|s|2h + ε log(p∗|sẼ |2hẼ
+ |s|2h X̃

)) (6.3)

is a Kähler current. This can be verified by a straightforward calculation, which we
leave to the reader. ��

The next step is to show that there is a space Z , and a map � : Y → Z which is an
isomorphism outside E and contracts E to a point, which is an isolated, Gorenstein
log-terminal singularity in Z . Let us begin with a local description of this map and the
resulting singularity. Note that the normal bundle of E ⊂ Y is given by

NE/Y = OPn−1(−1) ⊕ OPn−1(−(n − 1))

which follows from K X̃ = π∗K X + (n − 1)Ẽ . There is a contraction map

ν : OPn−1(−1) ⊕ OPn−1(−(n − 1)) → C

123



On the degeneration of asymptotically conical Calabi–Yau metrics

contracting the zero section of NE/Y to a point. Explicitly, this map is given by [41,
Page 314]

NE/Y = Spec
⊕

m≥0

Symm (OPn−1(1) ⊕ OPn−1((n − 1))
)

→ Spec
⊕

m≥0

H0
(
P

n−1,Symm (OPn−1(1) ⊕ OPn−1((n − 1))
)) = C0

Since

H0
(
P

n−1,Symm (OPn−1(1) ⊕ OPn−1((n − 1))
)) = H0(P(NE/Y ),OP(NE/Y )(m))

we see that C0 is the affine cone over P(NE/Y ) obtained by blowing down the zero
section of OP(NE/Y )(−1). We claim that P(NE/Y ) is Fano. In general, the canonical
bundle of a projective bundle π : P(V ) → X , where V has rank r is given by

KP(V ) = OP(V )(−r − 1) ⊗ π∗(det V ∗) ⊗ π∗K X .

Applying this formula in the current scenario yields

KP(NE/Y ) = OP(NE/Y )(−3).

Since NE/Y is a direct sum of negative line bundles, OP(NE/Y )(3) is ample. It follows
from this that C0 has an isolated Gorenstein, log-terminal singularity and KC0 ∼ OC0

is trivial. Finally, since NE/Y → P
n−1 is a direct sum of line bundles,P(NE/Y ) is toric.

Therefore the result of Futaki–Ono–Wang [26] (see also [12]) says that C0 admits a
conical Calabi-Yau metric for some choice of Reeb vector field.

Next we will globalize this construction using the input of an ample line bundle L
on X . First note that a section f ∈ H0(X̃ ,−K ⊗m

X̃
) naturally induces a holomorphic

function f ∈ H0(Y ,OY ) vanishing to order m on X̃ = { zero section } ⊂ Y . Let
f1 . . . , fM be generators of the coordinate ring

⊕
m>0 H0(X̃ ,−K ⊗m

X̃
). Since−K X̃ is

ample and globally generated, the holomorphic functions f1 . . . , fM separate points
and tangent vectors on Y\X̃ , and generate the normal bundle to X̃ in Y . Let L be a very
ample line bundle on X , and let {s0, . . . , sN } be a basis of H0(X , L). Fix coordinates
(z1, . . . , zn) on X centered at p. Up to making a linear change of coordinates we can
assume that s0(p) �= 0, and near p we have

si (z)

s0(z)
= zi + O(z2) 1 ≤ i ≤ n,

s j (z)

s0(p)
= O(z2) n ≤ j ≤ N

By inspection the sections {p∗π∗si }0≤i≤N separate points and tangents in X̃\Ẽ and
generate the normal bundle to Ẽ in X̃ . Now consider the map � : Y → P

N × P
M

defined by
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�(z) := ([p∗π∗s0(z) : · · · : p∗π∗sN (z)], [1 : f1(z) : · · · : fM (z)]) ∈ P
N × P

M

(6.4)

By the preceeding discussion this map is an isomorphism on Y\E , and �(E) = [1 :
0 : · · · : 0]×[1 : 0 : · · · : 0]. Since the differential d� is an isomorphism on NE/Y , the
germ of� agrees with the contraction ν on NE/Y . Note also that�

∣
∣

X̃ = π (composed
with the imbedding X into projective space by sections of L). Let Z = �(Y ). From
the local description above Z has an isolated Gorenstein, log-terminal singularity, and
K Z = OZ . The map � : Y → Z is therefore a small, and hence crepant, resolution of
Z . It follows from the construction that we can describe Z has the relative spectrum

Z = Spec (K X ⊗ mp) → X

where mp is the ideal sheaf of p ∈ X . In order to apply Theorems 1.1 and 1.2 it
suffices to show

Lemma 6.3 In the above setting, there is an ample line bundle L ′ on Z such that
p∗c1(π∗L) = �∗c1(L ′).

Proof Since Z is normal and � is projective with connected fibers we have �∗OY =
OZ , and f1, . . . , fM extend over the singular point to global sections ofOZ . Further-
more, there is a natural projection

p̂ : Z → X

obtained by projecting from Z onto thePN factor in (6.4) andwe haveπ ◦ p = �◦ p =
p̂ ◦ �. Thus

[p∗π∗s0 : · · · : p∗π∗sN ] = [ p̂∗s0 : · · · : p̂∗sN ].

Combining this observation with the Segre embedding PN × P
M ↪→ P

(N+1)(M+1)−1

it follows that L ′ := p̂∗L is ample on Z . Since

p∗c1(π
∗L) = �∗c1( p̂∗L)

the lemma follows. ��
We can now conclude

Corollary 6.4 With notation as above, consider the family of Kähler classes [ωt ] =
(1 − t)p∗c1(π∗L) + t[ω] ∈ H1,1(Y ,R) for t > 0. Let ωt,CY be the asymptotically
conical Kähler metrics in [ωt ]. Then there is a incomplete, asymptotically conical
Calabi–Yau metric ω on Zreg such that (Zreg, ω̄) = (Z , d) and

(Y , ωt,CY ) →G H (Z , d).

Proof Combine Lemmas 6.2 6.3 with Theorems 1.1 and 1.2. ��
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It is again natural to conjecture

Conjecture 3 Let (Z , d) be the metric space structure on Z induced from Y by Theo-
rem 1.2. Then the tangent cone to (Z , d) at the singular point z ∈ Z is isometric to
the blow down of the zero section in OP(V )(−1) where

V := OPn−1(−1) ⊕ OPn−1(−(n − 1))

equipped with its conical Calabi–Yau metric.

Assuming this conjecture, the space Z can be viewed as a kind of cobordism
between Sasaki–Einstein manifolds, and the speculative discussion from Sect. 6.1 can
be applied in the same way.
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