
 

Work-in-Progress: Offloading Cache Configuration 
Prediction to an FPGA for Hardware Speedup and 

Overhead Reduction 
 

Ruben Vazquez  
Department of Electrical and Computer 

Engineering 
University of Florida 

Gainesville, United States 
ruben.vazquez@ufl.edu 

 

Ann Gordon-Ross 
Department of Electrical and Computer 

Engineering 
University of Florida 

Gainesville, United States 
anngordonross@ufl.edu 

 

Greg Stitt 
Department of Electrical and Computer 

Engineering 
University of Florida 

Gainesville, United States 
gstitt@ece.ufl.edu

Abstract—In this paper, we present our cache configuration 
prediction methodology offloaded to an FPGA for improved 
performance and hardware overhead reduction, while 
maintaining cache configuration predictions within 5% of the 
optimal energy cache configuration for application phases for the 
instruction and data caches. 
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I. INTRODUCTION 

Architectural specialization helps meet the design 
constraints of embedded systems. Modern embedded systems 
are expected to have a performance comparable to desktop 
systems, but with much more stringent design constraints, such 
as area and energy consumption. Configurable hardware can 
help to meet those design constraints by specializing the 
hardware (i.e., processor, cache, etc.) to each specific 
application. However, exploring different hardware 
configurations for each application can be costly [6]. The 
exploration cost is further increased when considering 
application phases as well. Therefore, an efficient exploration 
method is required to yield maximum benefits without 
incurring a large configuration evaluation overhead. 

Machine learning techniques can be leveraged to predict a 
best cache configuration. We define a cache configuration as a 
set of values defining each configurable parameter of the 
cache. For example, for configurable total size, associativity, 
and line size, a valid cache configuration can be (2 kB, 2-way, 
64B). Machine learning techniques eliminate the configuration 
evaluation overhead by predicting the cache configuration 
rather than exploring the design space using a set of runtime 

statistics (i.e., CPI, instruction profile, etc.) collected once 
during a profiling execution. These statistics serve as input to a 
machine learning model. Machine learning techniques for 
architectural specialization have been used in prior works 
[3][8]. However, these models can prove to be too costly to 
implement on embedded devices. To alleviate the issue of 
costly implementation, prior works have also focused on 
making machine learning models efficient for running on 
embedded devices, mobile devices, and FPGAs [5][7]. 
However, writing hardware description language (HDL) code 
for machine learning models can be costly in terms of designer 
time and effort. Thus, our goal is to be able to offload our 
prediction methodology from embedded devices without 
expending much designer time or effort. 

We implement a cache configuration prediction artificial 
neural network (ANN) on an FPGA to exploit parallelism 
inherent in neural networks. To reduce designer time and 
effort, we use LeFlow [2], a framework that creates 
synthesizable Verilog code from TensorFlow code. LeFlow 
allows designers to create TensorFlow models very quickly 
without having to write low-level HDL code. We show that we 
can create neural networks that predict the cache configuration 
for different application phases with low energy degradations 
(within 5% of the optimal cache configuration) with low 
resource usage based on a Cyclone IV DE2-115 FPGA kit. 

II. CACHE CONFIGURATION PREDICTION AND ANN 

IMPLEMENTATION 

Different applications running on a system can benefit from 
using different cache configurations. Cache parameter 
specialization can lead to various benefits, such reduced 
execution time and reduced energy consumption. However, as 
the cache configuration space grows, it quickly becomes 
infeasible to search the space using either exhaustive or 
heuristic approaches [6]. The cache configuration space can 
grow by either increasing the number of configurable 
parameters (e.g., total cache size, associativity, etc.) or by 
increasing the number of available parameter values (e.g., 2 kB 
total size, 128 B line size, etc.). To alleviate the overhead of 
exploration, we propose our cache configuration prediction 
methodology, where an ANN is created to predict a best cache 
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configuration for each distinct (i.e., unique) application phase 
based on the runtime statistics gathered for each distinct phase 
through one profiling run of the phase. 

For our methodology, we choose an ANN for predicting the 
cache configurations over other models for several reasons. 
The outputs of the ANN are one-hot encoded, meaning each 
cache configuration is identified by one of the output neurons 
of the network. Further, decision trees cannot model 
complexities beyond simple comparisons of the inputs using 
pre-determined threshold values. Additionally, we can exploit 
the parallelism of neural networks using FPGAs, which is 
where we want to deploy our ANN model. However, writing 
HDL for a neural network can become quite complex and time-
consuming, thereby necessitating a quick way to synthesize 
ANNs on FPGAs. 

To reduce the designer time and effort, we use LeFlow [2], 
a framework that can synthesize Verilog code from a 
TensorFlow specification [1]. Using LeFlow, we synthesized 
two ANNs with an input layer of 91 and 175 elements (feature 
inputs required for the instruction and data caches), a hidden 
layer of 10 processing elements, and an output layer of 18 
processing elements (representing each of the available cache 
configurations). The network is trained using TensorFlow for 
1000 epochs, with early stopping enabled with respect to the 
validation accuracy. Once training is done, the circuit is 
synthesized by LeFlow from the TensorFlow file. 

III.  EXPERIMENTAL RESULTS AND DISCUSSION 

The TensorFlow code, hardware testing, and synthesis was 
executed using a virtual machine provided by the LeFlow 
GitHub repo [2]. The data collection, training, and software 
testing of the network was done on an Intel® Xeon® CPU 
E5520 running at 2.27 GHz. We use the EEMBC [4] and 
MiBench [7] benchmark suites with small and large inputs to 
represent common embedded system kernels. In this section, 
we present the performance of the neural networks as well as 
the number of cycles required to perform the prediction of the 
cache configurations for all of the benchmarks and discuss 
various FPGA metrics associated with implementing our 
ANNs on a Cyclone IV DE2-115 FPGA kit. 

Fig. 1 shows the energy consumption of the applications 
using the predicted cache configurations normalized to the 
energy consumption of the optimal cache configurations. For 
almost all of the benchmarks, the energy degradation stays 
within 10% of the minimum energy consumption for both the 
instruction and data caches. Exceptions include the 
stringsearch and qsort benchmarks, which had unusually higher 
misprediction rates due to unpredictable control flow (i.e., 
quicksort and variable string search). 

TABLE I shows some FPGA metrics concerning the 
implementations of the two ANNs, where Fmax is the 
maximum frequency of the implemented circuit. For 
comparison, we measured the number of software and 
hardware cycles during the testing phase of our neural network 
The software cycles, measured using the Linux perf [10] tool, 
was over 13 billion cycles at 2.40 GHz compared to 33256 and 
56776 cycles at about 60 MHz, leading to a significant speedup 
of 800X and 400X for the instruction and data caches, 
respectively, using only 13000 LEs (10%) of the Cyclone IV 
DE2-115 hardware resources. 
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Fig. 1. Energy consumption normalized to the energy consumption of the 

optimal cache configuration 
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TABLE I 
FPGA metrics for implemented ANN 

 Instruction cache Data cache 

Cycles 33256 56776 

Fmax (MHz) 61.11 66.37 

Wall-clock time (ms) 5 9 

Logic Elements 13094 13109 

0

5

10

15

20

25

[1, 1.0001) [1.0001, 1.001) [1.001, 1.01) [1.01, 1.1) >= 1.1

N
um

be
r o

f a
pp

lic
at

io
ns

Energy consumption normalized to optimal cache configuration

inst. data


