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Abstract—In this paper, we present our cache configuration
prediction methodology offloaded to an FPGA for improved
performance and hardware overhead reduction, while
maintaining cache configuration predictions within 5% of the
optimal energy cache configuration for application phases for the
instruction and data caches.
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L INTRODUCTION

Architectural specialization helps meet the design
constraints of embedded systems. Modern embedded systems
are expected to have a performance comparable to desktop
systems, but with much more stringent design constraints, such
as area and energy consumption. Configurable hardware can
help to meet those design constraints by specializing the
hardware (i.e., processor, cache, etc.) to each specific
application. ~ However, exploring different hardware
configurations for each application can be costly [6]. The
exploration cost is further increased when considering
application phases as well. Therefore, an efficient exploration
method is required to yield maximum benefits without
incurring a large configuration evaluation overhead.

Machine learning techniques can be leveraged to predict a
best cache configuration. We define a cache configuration as a
set of values defining each configurable parameter of the
cache. For example, for configurable total size, associativity,
and line size, a valid cache configuration can be (2 kB, 2-way,
64B). Machine learning techniques eliminate the configuration
evaluation overhead by predicting the cache configuration
rather than exploring the design space using a set of runtime
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statistics (i.e., CPI, instruction profile, etc.) collected once
during a profiling execution. These statistics serve as input to a
machine learning model. Machine learning techniques for
architectural specialization have been used in prior works
[3][8]. However, these models can prove to be too costly to
implement on embedded devices. To alleviate the issue of
costly implementation, prior works have also focused on
making machine learning models efficient for running on
embedded devices, mobile devices, and FPGAs [5][7].
However, writing hardware description language (HDL) code
for machine learning models can be costly in terms of designer
time and effort. Thus, our goal is to be able to offload our
prediction methodology from embedded devices without
expending much designer time or effort.

We implement a cache configuration prediction artificial
neural network (ANN) on an FPGA to exploit parallelism
inherent in neural networks. To reduce designer time and
effort, we use LeFlow [2], a framework that creates
synthesizable Verilog code from TensorFlow code. LeFlow
allows designers to create TensorFlow models very quickly
without having to write low-level HDL code. We show that we
can create neural networks that predict the cache configuration
for different application phases with low energy degradations
(within 5% of the optimal cache configuration) with low
resource usage based on a Cyclone IV DE2-115 FPGA kit.

II. CACHE CONFIGURATION PREDICTION AND ANN
IMPLEMENTATION

Different applications running on a system can benefit from
using different cache configurations. Cache parameter
specialization can lead to various benefits, such reduced
execution time and reduced energy consumption. However, as
the cache configuration space grows, it quickly becomes
infeasible to search the space using either exhaustive or
heuristic approaches [6]. The cache configuration space can
grow by either increasing the number of configurable
parameters (e.g., total cache size, associativity, etc.) or by
increasing the number of available parameter values (e.g., 2 kB
total size, 128 B line size, etc.). To alleviate the overhead of
exploration, we propose our cache configuration prediction
methodology, where an ANN is created to predict a best cache
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Fig. 1. Energy consumption normalized to the energy consumption of the
optimal cache configuration
configuration for each distinct (i.e., unique) application phase
based on the runtime statistics gathered for each distinct phase
through one profiling run of the phase.

For our methodology, we choose an ANN for predicting the
cache configurations over other models for several reasons.
The outputs of the ANN are one-hot encoded, meaning each
cache configuration is identified by one of the output neurons
of the network. Further, decision trees cannot model
complexities beyond simple comparisons of the inputs using
pre-determined threshold values. Additionally, we can exploit
the parallelism of neural networks using FPGAs, which is
where we want to deploy our ANN model. However, writing
HDL for a neural network can become quite complex and time-
consuming, thereby necessitating a quick way to synthesize
ANNs on FPGAs.

To reduce the designer time and effort, we use LeFlow [2],
a framework that can synthesize Verilog code from a
TensorFlow specification [1]. Using LeFlow, we synthesized
two ANNSs with an input layer of 91 and 175 elements (feature
inputs required for the instruction and data caches), a hidden
layer of 10 processing elements, and an output layer of 18
processing elements (representing each of the available cache
configurations). The network is trained using TensorFlow for
1000 epochs, with early stopping enabled with respect to the
validation accuracy. Once training is done, the circuit is
synthesized by LeFlow from the TensorFlow file.

I1I. EXPERIMENTAL RESULTS AND DISCUSSION

The TensorFlow code, hardware testing, and synthesis was
executed using a virtual machine provided by the LeFlow
GitHub repo [2]. The data collection, training, and software
testing of the network was done on an Intel® Xeon® CPU
E5520 running at 2.27 GHz. We use the EEMBC [4] and
MiBench [7] benchmark suites with small and large inputs to
represent common embedded system kernels. In this section,
we present the performance of the neural networks as well as
the number of cycles required to perform the prediction of the
cache configurations for all of the benchmarks and discuss
various FPGA metrics associated with implementing our
ANNSs on a Cyclone IV DE2-115 FPGA kit.

TABLE I
FPGA metrics for implemented ANN

Instruction cache Data cache
Cycles 33256 56776
Fmax (MHz) 61.11 66.37
Wall-clock time (ms) 5 9
Logic Elements 13094 13109
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Fig. 1 shows the energy consumption of the applications
using the predicted cache configurations normalized to the
energy consumption of the optimal cache configurations. For
almost all of the benchmarks, the energy degradation stays
within 10% of the minimum energy consumption for both the
instruction and data caches. Exceptions include the
stringsearch and gsort benchmarks, which had unusually higher
misprediction rates due to unpredictable control flow (i.e.,
quicksort and variable string search).

TABLE 1 shows some FPGA metrics concerning the
implementations of the two ANNs, where Fmax is the
maximum frequency of the implemented circuit. For
comparison, we measured the number of software and
hardware cycles during the testing phase of our neural network
The software cycles, measured using the Linux perf [10] tool,
was over 13 billion cycles at 2.40 GHz compared to 33256 and
56776 cycles at about 60 MHz, leading to a significant speedup
of 800X and 400X for the instruction and data caches,
respectively, using only 13000 LEs (10%) of the Cyclone IV
DE2-115 hardware resources.
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