Machine Learning-based Prediction for Dynamic,
Runtime Architectural Optimizations of Embedded

Systems

Ruben Vazquez Ann Gordon-Ross Greg Stitt
Electrical and Computer Engineering Electrical and Computer Engineering Electrical and Computer Engineering
University of Florida University of Florida University of Florida
Gainesville, United States Gainesville, United States Gainesville, United States
ruben.vazquez(@ufl.edu anngordonross@ufl.edu gstitt@ece.ufl.edu
Abstract—Embedded systems have been becoming greater constraints that need to be considered for embedded

increasingly complex over recent years, with performance
becoming comparable to desktop computing systems. However,
embedded systems need to adhere to greater design constraints
(e.g., area and energy constraints) compared to desktop
computing systems. Architectural specialization is a technique
that can aid in meeting the stringent design constraints by
introducing configurable hardware that can be tuned at
runtime to optimize a goal (e.g., minimum energy, minimum
execution time) for am application. However, traditional
approaches (i.e., exhaustive, heuristic searches) often take
considerable time to search a large design composed of
different configurable parameters (e.g., cache size,
associativity, etc.) and parameter values (e.g., 4 kB, 2-way,
etc.). In addition, the presence of application phases (i.e.,
repeating execution behavior) allow for finer-grained tuning at
the cost of even greater exploration overhead.

In this paper, we apply machine learning to
reduce/eliminate the design space exploration overhead
associated with finding the best set of configurable parameters
for configurable L1 instruction and data caches. Our
prediction methodology consists of artificial neural networks
(ANNs) which take the execution statistics of an application
phase as input and outputs a besf cache configuration (i.e.,
combination of configurable parameter values) for the
instruction and data caches). Our results show that we can
achieve an average energy degradation of less than 5% for the
instruction and data caches with an average of 20% phase
misclassification percentage and 20%o less cache switches than
the case where the best cache configuration is chosen for every
application phase.

Keywords—Embedded systems, constraints, architectural
specialization, tuning, energy, machine learning, exploration,
caches, artificial neural networks, phases

I INTRODUCTION

Embedded systems have been becoming increasingly
complex over recent years. With the advent of smart devices,
embedded systems, such as mobile devices, are being
designed to handle general workloads at a performance level
that is becoming comparable to desktop computing systems.
However, the design constraints for embedded systems
remain much stringent compared to desktop systems,
especially with respect to area and energy consumption. As a
result, techniques are required to continue improving the
performance of embedded devices while adhering to the

978-1-7281-2769-9/19/$31.00 ©2019 IEEE

system design.

Architectural specialization is one such technique that
can be leveraged to meet the design constraints of embedded
devices [2][10][16][19]. During architectural specialization,
different hardware components (e.g., processors, caches,
etc.) can be designed to be configurable, where parameters
(e.g.. frequency, associativity, replacement policy) can be
changed to different parameter values (e.g.. 1.3 GHz, 2-way,
least recently used, etc.) in response to the changing
workloads and requirements of the system. The process of
changing the parameter values of different parameters is
known as tuning. Through tuning the different configurable
parameters, application workloads can see increased benefits,
such as reduced energy consumption or reduced execution
time. In addition, different tuning goals can be specified. For
example, if reduced execution time is desired, cores can be
tuned to a higher frequency to complete application
workloads. A similar idea can be applied if reduced energy
consumption is desired. Tuning is great for meeting the
design constraints of a system, but designers need to
determine what components of a system should be
configurable to maximize the benefits that can be obtained
through tuning.

A great option for configurability is the cache hierarchy.
Based on prior work [2][8]. the cache hierarchy is
responsible for 50% of the energy consumed by a system,
thus making the cache hierarchy an excellent choice for
architectural specialization. Through tuning, the configurable
parameters of the cache can be adjusted to obtain a cache
configuration that yields the most benefits (e.g., minimal
energy consumption, etc.) for a given application workload.
In this paper, we define a cache configuration as set of
parameter values that is defined for each configurable
parameter. For example, a cache with configurable total size,
associativity, and line size can have a wvalid cache
configuration of (2 kB, 2-way, 32 B). For a given workload,
an optimal cache configuration can be determined by running
the workload with each available cache configuration and
choosing the configuration that yields the most benefits.
However, exploration quickly becomes infeasible for either
exhaustive or heuristic searches as the configuration space
increases (i.e., number of parameters increase and/or number
of available parameter values increase).

Further exacerbating the issue of increasing exploration
overhead, applications also exhibit patterns of repeating
execution behavior, known as phases [17][22][24]. Based on

prior work [17][22][24]. any unique phase is likely to repeat
during the lifetime of an application’s execution. Also, since
each phase’s execution behavior differs from another phase’s
execution behavior, the cache configuration yielding the best
benefits (i.e., the optimal cache configuration) also differs
between different phases, thus requiring a new exploration
for each unique phase that occurs during an application’s
lifetime, which is clearly infeasible for exhaustive and
heuristic searches and makes the exploration overhead even
worse. So, an efficient method is required to find the optimal
cache configuration for each phase of an application.

We can use machine learning techniques [3][6][12][26]
to develop an efficient method that alleviates the exploration
overhead of determining the optimal cache configuration for
each phase of an application. Machine learning techniques
use mathematics and statistics to learn the relationship
between a set of input data and a set of output data. In
addition, feature reduction techniques [15][25] aid machine
learning by selecting appropriate features from a feature set
(i.e.., CPIL instruction profile, etc.) that maximize the
performance of a given machine learning technique. Instead
of performing exploration exhaustively or heuristically,
which can become costly as the cache configuration design
space increases, we propose to use machine learning as a
substitute for exploration by predicting a best cache
configuration using a set of runtime statistics (i.e., CPI,
instruction profile, etc.) gathered from a single profiling run
of an application instead evaluating multiple cache
configurations per application.

Much prior work has been done in performing prediction
of a best configuration for some hardware component in a
computing system. Khakhaeng et al. [12] used machine
learning to predict the data cache line size for several data
mining applications, Baldini et al. [3] used neural network
works to predict the GPU performance of applications from
CPU runs and to predict which GPU would yield the most
benefits for a given application, Dutta et al. [6] used machine
learning to predict the power of GPUs using different DVFS
states, and Wu et al. [26] use machine learning models to
predict the power of GPGPUs over different number of
compute units, core frequencies, and memory bandwidths.
However, the above prior work is quite limited. In [16], only
data cache line size is predicted for data mining applications,
which does not take into account any optimizations for the
instruction cache, increasing configuration design space
considerations, or a diverse benchmark set. In [3][6][26].
only GPUs and GPGPUs were considered, but embedded
systems do not use GPUs, thus limiting the effectiveness of
their approach to certain computing domains.

In this paper, we propose a runtime method to predict a
best cache configuration for each phase of an application.
Our method has no restriction on the type of computing
system, being widely applicable to desktop, embedded, and
other computing systems with configurable hardware
components. Feature reduction techniques are used to
determine the best features to use for the machine learning
model to make accurate predictions. We start with predicting
the line sizes for the instruction and data caches and show
that our model generalizes to predicting total size,
associativity, and line size for the instruction and data
caches.

This work was supported by the National Science Foundation (CNS-
0953447 and CNS-1718033). Any opinions, findings, and conclusions or
recommendations expressed in this materal are those of the authors and do
not necessarily reflect the views of the National Science Foundation.

In addition, we observe the mispredictions for different
phases and analyze the effect of phase length on the
mispredictions. Lastly, we measure the number of cache
configuration switches and cache flushes incurred by the
applications as a result of our prediction methodology. We
show that our prediction methodology incurs an average
energy degradation of less than 5%. average phase
misprediction of 20%, and about an average 20% less cache
switches and cache flushes compared to an approach that
predicts the optimal cache configuration for each application
phase.

II. RELATED WORK

In this section, we discuss several prior works that are
relevant to our methodology. Namely, we discuss works that
have used machine learning to perform architectural
specialization on different hardware components of a
computing system, such as caches, GPUs, and GPGPUs, to
show the relevance of using machine learning as a substitute
to design space exploration of the cache configuration space.
Further, we discuss works related to feature reduction and
phases, which we incorporate into our methodology.

A. Predicton for architectural specialization

Architectural specialization is very useful technique for
meeting the design constraints of embedded systems by
configuring the hardware for each specific application.
Khakhaeng et al. [12]. designed a neural network to predict
the data cache line size for several data mining applications.
However, the results yield a classification accuracy of 100%
for the neural network, which is unrealistic. Further, the
work is limited to a configurable data cache which misses
opportunities for a configurable instruction cache, the
application pool is very limited, and no generalization can be
supported, either to a general application workload or to a
larger configuration space (i.e., including instruction cache,
as well as other configurable parameters, such the total cache
size and the associativity). In our paper, we greatly expand
on [12] by performing predictions for both the instruction
and data caches, using the concept of phases to perform
finer-grained optimizations, using a larger application set,
and performing an analysis of predicting line size while also
generalizing the neural network’s predicton capability to a
larger cache configuration space (i.e.. predicting total cache
size, associativity, and line size).

In addition to [12]. other prior works have supported the
use of machine learning to aid in architectural specialization
of a computing system. Baldini et al. [3] created a neural
network to predict the best GPU to run an application to
achieve the best speedup. The network was able to perform
these predictions with accuracies above 90%. Dutta et al. [6]
use machine learning techniques fo perform power
predictions of GPUs at different dynamic voltage and
frequency scaling (DVFS) states, which can be used to
achieve good energy savings. The power predictions were
able to be made with a mean absolute error of 3.5.%,
showing that machine learning techniques can accurately
model nonlinear metrics, such as power. Wu et al. [26]
created a model that can predict the performance and power
of an application using different GPU configurations (i.e.
number of compute units (CU), core frequency, and memory
bandwidth) within 15% of real hardware. The author’s show
that a model can be created to estimate the performance and
power of an application running on a GPU with a specific
configuration, without having to evaluate all GPU

App.
Queue

Core 1

L1 cache

F Y
v

Inst. | Data

L1 cache

Y

Core 2 -t

Inst, | Data

Cache configuration prediction module

Meural network f[—————m» Table |

Fig. 1. Block diagram of phase-based cache configuration
prediction system

configurations, thus showing the capability of a learned
model as a substitute to design space exploration and
evaluation. We build on the previous idea by training a
machine learning model to predict the best cache
configuration for an application without having to explore
and evaluated all cache configurations.

B. Feature reduiction

Feature reduction techniques aim at reducing the size of
the input to a model to improve the performance (i.e.
accuracy) of the model as well reducing the computational
complexity of the model. Song et al. [25] used a technique
known as principal component analysis (PCA) to reduce the
number of features for a facial recognition application. Using
PCA. the authors were able to reduce the number of features
from 2000 to 1000, resulting in a 50% decrease of the feature
space. Lu et al. [15] improved upon PCA by proposing a new
method that reduces the computational burden of the PCA
while still reducing the feature set for given applications.
When comparing the authors’ new method with PCA and
other existing feature reduction methods for content-based
image retrieval, the new method exhibits either better or
comparable performance to PCA. In our paper, we use PCA
to perform feature reduction on the features that are collected
during a run of an application. Details on PCA and the
collected features will be discussed in section I1I.

C. Phases
An application typically exhibits repeating patterns of
program behavior. These repeating patterns of program

TABLE 2:
Collected features and features description

Features Features description

Count of mstructions in a certain
class (i1e, loads, unconditional
branches, etc.)

Instruction class profile

Instruction profile Count of assembly level

instructions (e, j, Iw, add, efc.)

Count of different classes of branch
instructions (ie., unconditional
direct, conditional mdirect, etc.)

Branch instruction profile

Addressing model profile Count of instructions using
different addressing modes
load/store address segment Count of areas where memory was
profile accessed (Le., heap, stack, etc.)
Text and data address profiles Count of accesses to specific text

(instruction) and data addresses

TABLE I:
Available cache configurations (size_associativity linesize)

2K 1W 16 2K 1W 32 2K 1W 64
4K 1W 16 4K 1W 32 4K 1W 64
4K 2W 16 4K 2W 32 4K 2W 64
SK 1W 16 8K 1W 32 8K 1W 64
SK 2W 16 8K 2W 32 8K 2W 64
SK 4W 16 8K 4W 32 8K 4W 64

behavior, known as phases, are very important in the analysis
of program behavior as well as for performing finer-grained
optimizations throughout an application’s execution. For
these reasons, much prior work has focused on determining
the phases of an application. Sherwood et al. [24] design
hardware that detects phase changes at runtime and predicts
the next phase that will occur in an application. The authors’
results show that 80% of application phases can be
determined using less than 500 bytes of on-chip memory and
predictions of phases can be made with an error of less than
15%. Nagpurkar et al. [17] develop a framework for online
phase detection and perform an analysis of different online
phase detectors. Sembrant et al. [22] develop ScarPhase, an
online phase detection library that can make use of hardware
counters to determine the phase of an application at runtime
with less than 2% runtime overhead. In our paper, we use the
idea of phases to provide finer-grained optimizations by
reconfiguring a configurable cache during execution of an
application and analyze the number of cache switches/flushes
that are exhibited by the application.

III. PHASE-BASED CACHE CONFIGURATION PREDICTION

Fig. 1 shows our phase-based cache configuration
prediction system. We note that our methodology is entirely
performed at runtime, except for the feature reduction
(Section III.B), where the kept features are first determined
offline and subsequently those kept features are the only
features that are collected and normalized at runtime. First, if
the profiling of the application has not been done, the
application arrives and is sent to a profiling core to collect
execution statistics for each phase of the application at
runtime. For each new phase of an application, the execution
statistics are collected (Section III.A) and sent to the cache
configuration prediction module, where a trained artificial
neural network (ANN) makes a prediction about the best
cache configuration for the application’s phase based on the
execution statistics (Section III.C). TABLE 1 shows the
cache configurations available in our system, where size and
linesize are given in Bytes. The application ID, phase ID, and
best cache configuration are stored for later occurrences of
the profiled phase. If a profiled phase is executed again. the
best configuration is retrieved from a stored table in memory.

A. Profiling and feature selection

When an application first arrives and has not been
profiled, the application is sent to a dedicated core to collect
the execution statistics for each unique phase. From now on,
execution statistics will be referred to as features to match
the terminology of later sections. While the application is
executing, when a new phase is detected and that phase has
not been profiled, the features for that phase are collected.
Based on prior work [17][22][24]. we assume that these
phases are detected at runtime. The collected features are
then used to make a prediction about the best cache

configuration for the phase, which can then be stored and
retrieved for subsequent executions of the same phase.

TABLE 2 describes the features that are collected during
the runtime profiling of the application. All the features are
collected using sim-profile, which is part of SimpleScalar
[4]. Section III.B describes the process of feature reduction
that was used in order to reduce the described feature set
significantly while retaining only the most useful features for
prediction.

B. Feature reduction and normalization

Feature reduction is a technique for determining what
features from the total feature set should be kept to be given
as input to the neural network. In this paper., the total feature
set is the execution statistics that are collected for each phase
of an application at runtime. For our experiments, feature
reduction is performed offline to determine what features
should be kept. Once those features are determined, only
those features are collected during runtime.

When collecting many features, some of the features may
contain little new information or redundant information. For
example, if the number of load instructions between two
different phases is the same (or differ by a small amount),
then we learn no new information that can help to
differentiate between the phases (i.e., little or no variance). In
addition, some features may contribute redundant
information. For example, the number of conditional
branches and the number of unconditional branches may
differ by a factor of approximately two for all profiled
phases. So, after choosing to keep either the number of
conditional branches or the number of unconditional
branches, there is no need to choose the other feature since
the kept feature provides redundant information (i.e., the
features are correlated).

In this paper, we use a technique called Principal
Component Analysis (PCA) to reduce our total feature set.
PCA is a linear technique that aims at reducing the number
of features present in the total feature set by keeping only
those features with the most information (i.e., high variance).
Features exhibiting low variance (i.e.. little or no new
information) can be safely removed without significantly
affecting the quality of the feature set. We refer the reader to
[15][25] and Section I'V.A for more details about PCA and
how it is applied in our experiments.

Once the features are collected, normalization 1is
performed on the feature set. Many of the features that are
collected have values within different ranges. For example,
the number of instructions for an application may range in
the millions and billions whereas memory address accesses
can range from very few (i.e., tens or hundreds) to very many
(i.e., several hundred thousand). With different scaling for
each feature, some features with very high values may end
up unfairly biasing the machine learning model compared to
low-valued features. To alleviate these issues, normalization
is performed to appropriately scale each feature with respect
to each other feature so that no single feature biases the
machine learning model excessively. The details of how the
normalization is performed is discussed further in Section
IV.A.

C. Neural network model

After the features have been collected and normalized,
the features are then given as input to the machine learning
model. In our experiment, we chose to use the artificial
neural network (ANN) for our machine learning model.

ANNs have many different advantages compared to other
machine learning models. Linear regression models map
inputs to outputs with a linear relation. While useful, the
relationship between best cache configuration, which is
based on the application’s energy consumption, and the input
features cannot be modeled well by linear methods. Decision
trees are also very useful, in terms of simplicity and
interpretation. However, decision trees may bias certain
outcomes unfairly (i.e., greater depth for different cache
configurations). ANNs, on the other hand, can model
nonlinearities, have been proven to exhibit the property of
universal approximation, and can be easily parallelized,
which is a focus of future work.

ANNSs are typically structured with the following layers:
an input layer, one or more hidden layers, and an output
layer. Each layer contains a number of processing elements,
which takes in the input and calculates the output through a
non-linear function. Each layer is also fully-connected (i.e.,
the outputs of all processing elements in a layer are
connected to the inputs of all processing elements in the next
layer). In our experiments, we create two ANNSs to predict
the best cache configurations for the instruction and data
cache for different application phases.

The features collected during profiling are given as inputs
to the ANNs. In our experiments, after varying the number of
layers and the number of processing elements per layer, we
set each network with one hidden layer containing 10
processing elements and an output layer containing 18
processing elements, corresponding to the 18 available cache
configurations. The outputs of the ANNs are given as 1-hot
outputs, where for each given input, exactly one of the
outputs is close to one while the others are =zero,
corresponding to the predicted cache configuration. The
details of the setup and training of the ANNs are given in
Section TV_A.

When considering machine learning models, such as
artificial neural networks, we need to also consider the
impact of the network in terms of area and energy
consumption. We cannot assume that our design has
negligible area and energy overheads, especially for mobile
devices, which have strict design constraints with respect to
both area and energy. Fortunately, much prior work has been
done [9][13][14][20] for porting ANNs to mobile phones and
FPGAs that are very area and energy efficient. We leave the
hardware overhead analysis of our design as future work but
note that machine learning models, such as convolutional
newral networks and deep newral networks, which are
complex compared to our design, have been successfully
ported to mobile devices with acceptable area and energy
overheads [9][13][14][20]. thus demonstrating the feasibility
of using neural networks on mobile devices and other area
and energy-constrained devices.

IV. EXPERIMENTAL RESULTS

A. Setup

All of our experiments are executed on an Intel® Xeon®
E5520 CPU running at 2.25GHz. Fig. 1 shows the block
diagram of our system with the phase-based cache
configuration prediction module. When an application
arrives, the system determines whether the application has
been profiled. If the application has been profiled, the best
configurations have already been predicted and are stored in
the table. Then, for each phase of the application, the best
configuration is retrieved, and the caches are tuned to the

energyftotal] = energy(fill] + energy(dynamic) + energy(CPU_stall) + energy(static)

energy(fill] = cache_misses*(line_size/8)*energyoffchip_occess_perword)

energy i) = fcache_accesses*energy(d) ic_per_access)|/1000000000
energy{CPU_stall) = (miss_cycles*energy({CPU_stall_per_cyde])/1000000000
miss_cycles = cache_misses*penalty

penalty = 40 if line_size = 16

penalty = 60 if line_size = 32

penalty = 90 if line_size = 64

energy(static) = ({{coche_misses*penalty) + cache_occesses)*{15% dy - /1000000000
Fig. 2. Energy model for the L1 instruction and data cache

retrieved configuration. Otherwise, the application phases are
profiled by collecting the execution statistics and sending the
collected execution statistics to the two ANNs to predict the
best instruction and data cache configuration for each phase
of the application. The predicted cache configurations, along
with the application ID and phase ID are stored in the table
for subsequent retrieval when the phase is executed again.

Our configurable cache design is based on the design by
Zhang et al. [27]. The three configurable parameters
available are cache size, associativity, and line size. Way
shutdown is used to tune the cache size and way
concatenation is used to tune the associativity. The physical
line size of the cache is 16B, however the logical line size
can be tuned be fetching different numbers of blocks from
memory into the cache. We also note that other configurable
designs are available, such as the design by Navarro et al.
[18]. However, the design by Navarro et al. focuses on a
configurable associativity only so we focus on the design by
Zhang et al.

In our experiments, we used benchmarks from the
EEMBC AutoBench [7] and MiBench [11] benchmark suites
as our application set. The AutoBench suite contains
benchmarks that are representative of kernels executed on
embedded devices in the automotive, industrial, and Fig.
lgeneral-purpose applications. The MiBench suite also
contains kernels that are representative of workloads on
embedded devices, containing benchmarks from a diverse
range of domains, including automotive, network, and
security domains. We use all the benchmarks from EEMBC
and most of the benchmarks from MiBench. Some of the
MiBench benchmarks could not be cross compiled to run on
the SimpleScalar [4] simulator. The benchmarks that could
not be compiled were the only ones that we omit. In addition,
we run the MiBench benchmarks with both the small and
large inputs to completion to capture varying execution
behavior based on input sizes. These benchmarks constitute a
wide variety of diverse application domains with varying
input sizes to represent an embedded systems workload.

The profiling of the application phases is done using sim-
profile, which is part of the SimpleScalar [4] suite of
simulators, with the -all option. We also modified sim-profile
to collect the data address profile in addition to the text
address profile. SimPoint [23] is used to determine the
phases for the applications. We use SimPoint with a phase
interval length of 100000 instructions to determine the
phases of an application. We note that many different phase
interval lengths can be chosen; however, prior work shows
that the ftrends for different phase interval lengths are
consistent [5]: therefore, we use a length of 100000 to
determine a diverse amount of phases for our benchmark
workload, which execute fewer instructions compared to
other standard benchmark suites targeted for desktop
computing systems.

Count
N
(=]

10
: L1 1
. |]]

[1,1.0001) [L0001, 1.001) [L001,1.01) [101,1.1) >=1.1
Energy consumption normalized to true best configuration

Minst.-lk Minst.-cs_a_ls data-ls data-cs_a_ls

Fig. 3. Energy consumption normalized to the frue best
configuration of benchmarks for different cache configuration
spaces

We use Principal Component Analysis [15][25] to
determine what execution statistics to collect at runtime.
Specifically, Principal Component Analysis is used offline to
perform the feature reduction of the execution statistics by
keeping 95% of the variance (i.e., information) of the
execution statistics. Once the execution statistics that we will
collect have been determined, only those determined
execution statistics will be collected at runtime. By
performing Principal Component Analysis, we are able to
reduce the feature set to about 100 features as compared to
over 10000 features that we are able to collect from the
profile, thereby achieving at least a 100X reduction in the
execution statistics required to make a prediction about the
best instruction and data cache configurations for application
phases.

The training and inference (i.e.. prediction) of the
artificial neural networks was done using TensorFlow [1].
The two models (one for instruction cache configuration
prediction and one for data cache configuration prediction),
each contain an input layer, one hidden layer containing 10
processing elements with rectified linear unit activation, and
an output layer containing 18 processing elements with
softmax activation. The training set, validation set, and
testing set consisted of 60%, 20%, and 20% of the
application phases, respectively. The machine learning
models were trained using the RMSprop optimizer using
categorical crossentropy as the loss function.

Fig. 2 shows the energy model that we use to calculate
the energy consumed by the instruction and data cache. The
cache statistics (e.g.. cache accesses and cache misses)
required by the model are obtained by running the
application phases using sim-cache, which is part of the
SimpleScalar [4] suite of simulators. The cache specific
values, (e.g.. energy(CPU_stall per cycle),
energy(dynamic_per_access), etc.) were obtained using
CACTI [21] for a 0.18 pm technology node for each cache
configuration. We use the energy model to calculate the
energy consumed by the instruction and data caches for each
application phase for every available instruction and data
cache configuration. The energy degradation for each
application phase is then determined by computing the ratio
of the energy consumption of the application phase using the
predicted cache configuration to the energy consumption of
the application phase using the optimal cache configuration.

B. Results

Fig. 3, Fig. 4, and Fig. 5 display our results. In summary,
our approach incurs less than a 5% energy degradation over

Count
N
o

5
a -l _I (T II

[0, 0.05) [0.05, 0.10) [0.10, 0.15) [0.15, 0.20)
Phase misclassification percentage

>=0.20

Minst.-ls Minst.-cs_a_ls data-k data-cs_a_|s

Fig. 4. Phase misclassification percentage of benchmarks for
different cache configuration spaces

all the benchmarks when predicting the instruction and data
cache configurations. In addition, our results show that our
prediction methodology can attain an average phase
misprediction of 20% with 20% less cache switches and
cache flushes compared to perfectly predicting the
instruction and data cache configuration for each benchmark.
The figures show our results when our configuration space
includes only a configurable line size (inst.-ls and data-ls)
and a configurable cache size, associativity, and line size
(inst-cs_a Is and data-cs a Is). All the results are
normalized to the case where the instruction and data cache
configurations are the true best configuration for each
benchmark phase. We analyze the results in the next
paragraphs.

Fig. 3 shows the energy consumption of the benchmarks
when the prediction is performed over different cache
configuration spaces. We can see from the results that most
of the benchmarks exhibit less than 1% energy degradation,
which generalizes to larger design spaces with more
configurable parameters and configurable parameter values.
There are some exceptions, such as gsort and search, which
exhibit higher energy degradations due to less predictable
control flow (e.g., quicksort algorithm for gsort) resulting in
higher phase misprediction. However, the benchmarks, gsort
and search, exhibit about a 20% energy degradation which
does not significantly offset the gains from lower exploration
overhead while maintaining acceptable energy consumption.

Fig. 4 shows the phase misclassification percentage of
the benchmarks when the prediction is performed over
different cache configuration spaces. The phase
misclassification is kept very low, with very few exceptions.
However, even for benchmarks with phase misclassification
percentages over 20%, energy degradation stays below 5%
for most benchmarks, supporting the existence of near-best
cache configurations for phases such that energy
consumption stays close to the optimal (i.e., minimum) for
the phases. In addition, our larger configuration spaces show
similar trends, supporting the generalization of our
methodology to design spaces with more configurable
parameters and/or more configurable parameter values.

Fig. 5 shows the cache switches of the benchmarks when
the prediction is performed over different cache
configuration spaces. Cache switches should be kept low to
reduce the impact of cache flushes. From the figure, we can
see that for most of the benchmarks, the number of cache
switches are about equal compared to the case when the
cache configuration is predicted perfectly. In some cases,
misprediction may reduce the number of cache switches
while also keeping the energy performance at an acceptable

25
.
=
320
(v}
15
10
> al
o m - s on.. B [[}

[0,0.20) [0.20, 0.40) [0.40, 0.60) [0.60, 0.80) [0.80,1) [1,1.20)

Cache switches normalized to true best configuration

>=1.20

Minst-s Minst.cs_a_ls data-s data-cs_a_ls

Fig. 5. Cache switches normalized fo true cache switches of
benchmarks for different cache configuration spaces

level (i.e. energy degradation of about 5%). When
generalizing to larger design spaces, the figure also supports
the same trends.

However, for some benchmarks (i.e., AIFFTR0! and
patricia), low data reuse causes very high data cache
switching. For these cases, we develop a finite-state machine
to stop cache configuration switching when the configuration
is switching too often. In these cases, we can reduce the
cache switching significantly while maintaining near-optimal
energy performance. In addition, short phase interval lengths
(we use 100000 instructions in this paper) can cause the
cache to switch often. In future work, we plan to expand our
FSM to include more options for reducing the cache
switching frequency and will explore dynamically changing
the phase interval length to reduce cache switching
frequency and to create machine learning models that are
independent of the phase interval length with respect to the
collected features.

V. CoNcLUSIONS AND FUTURE WORK

In this paper, we presented a runtime methodology to
predict a best cache configuration for the instruction and data
caches for each application phase. We analyzed the energy
degradation, phase misclassification, and cache
switches/flushes over all of the applications, which showed
that our methodology can achieve an average energy
degradation of less than 5%. a phase misclassification
percentage of 20%, and 20% less cache switches/flushes
compared to a method that can predict the optimal cache
configuration for the instruction and data caches for each
application phase.

Currently, we are working on building our neural
network models on FPGAs to achieve significant speedup
and hardware overhead reduction compared to running the
models in software alongside our applications. For future
work, we plan to explore dynamically changing phase
interval lengths for cache switching reduction, unsupervised
machine learning models for training time reduction, and
methods of determining phase similarity across applications.

REFERENCES
[1] M. Abadi et al. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from
tensorflow.org.

[2] M. H. Alsafrjalani and A. Gordon-Ross, "Quality of service-aware,
scalable cache tuning algorithm in consumer-based embedded
devices," 2016 International Great Lakes Symposium on VLST
(GLSVLSI), Boston, MA, 2016, pp. 357-360.

[3]

4

[5]

[e]

[7
[8]

[9

[10]

[11]

[12]

[13]

[14]

[15]

I Baldim, S. J. Fink and E. Altman, "Predicting GPU Performance
from CPU Runs Using Machine Learming 2014 IEEE 26th
International Symposium on Computer Architecture and High
Performance Computing, Jussieu, 2014, pp. 254-261.

D. Burger, TM. Austin, S. Bennet, "Evaluating future
microprocessors: the Simplescalar tools set". Technical Report CS-
TR-1996-1308, CS. Dept., Univ. of Wisconsin, Madison, Aug. 1996.

A S. Dhodapkar and J. E. South, "Companng program phase
detection techmiques," Proceedings. 36th .Annual IEEE/ACM

International Symposium on Microarchitecture, 2003. MICRO-36.,
San Diego, CA_ USA, 2003, pp. 217-227.

B. Dutta, V. Adhinarayanan, and W. Feng 2018. GPU power
prediction wvia ensemble machine learming for DVFS space
exploration. In Proceedings of the 15th ACM International
Conference on Computing Frontiers (CF '18). ACM, New York, NY,
USA, 240-243.

EEMBC. The Embedded Microprocessor Benchmark Consortium
hitp://www . eembc.org/benchmark/automotive _sl.php, Sept. 2013.

S. Gianelli, E. Richter, D. Jimenez, H. Valdez, T. Adegbija and A.
Akoglu, "Application-Specific Autonomic Cache Tuning for General
Purpose GPUs," 2017 International Conference on Cloud and
Autonomic Computing (ICCAC), Tucson, AZ, 2017, pp. 104-113.

V. Gokhale, J. Jin, A. Dundar, B. Martini and E. Culurciello, "A 240
G-ops/s Mobile Coprocessor for Deep Neural Networks," 2014 IEEE
Conference on Computer Vision and Pattern Recognition Workshops,
Columbus, OH, 2014, pp. 696-701.

A Gordon-Ross, F. Vahid, N. Dutt. IEEE/ACM International
Symposium on Low Power Electronics and Design, August 2005.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown. 2001. MiBench: A free, commercially
representative embedded benchmark suite. In Proceedings of the
Workload Characterization, 2001. WWC-4. 2001 IEEE International
Workshop (WWC '01). IEEE Computer Society, Washington, DC,
USA, 3-14.

S. Khakhaeng and C. Chantrapornchai, "On the finding proper cache
prediction model using neural network,)" 2016 8th International
Conference on Knowledge and Smart Technology (KST), Chiangmai,
2016, pp. 146-151.

Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, D. Shin. (2016).
Compression of Deep Convolutional Neural Networks for Fast and
Low Power Mobile Applications.

N. D. Lane et al., "DeepX: A Software Accelerator for Low-Power
Deep Leaming Inference on Mobile Devices," 2016 15th ACM/IEEE
International Conference on Information Processing in Sensor
Networks (IPSN), Vienna, 2016, pp. 1-12.

Y. Lu, I Cohen, XS. Zhou, and Q. Tian, “Feature selection using
principal feature analysis,” in Proceedings of the 15th international
conference on Multimedia. ACM, 2007, pp. 301-304.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

A Martins et al., "Configurable Cache Memory Architecture for
Low-Energy Motion Estimation" 2018 IEEE International
Symposium on Circuits and Systems (ISCAS), Florence, Haly, 2018,
pp- 1-5.

P. Nagpurkar, P. Hind, C. Krintz, P. F. Sweeney and V. T. Rajan,
"Online phase detection algorithms," International Symposium on
Code Generation and Optimization (CGO'06), New York, NY, USA,
2006, pp. 13 pp.-123.

O. Navarro, M. Huebner, (2018) Runtime Adaptive Cache for the
LEON3 Processor. In. Voros N., Huebner M., Keramdas G,
Goehringer D., Antonopoulos C., Dmz P. (eds) Applied
Reconfigurable Computing. Architectures, Tools, and Applications.
ARC 2018. Lecture Notes in Computer Science, vol 10824. Springer,
Cham

O. Navarro, T. Leiding and M. Hiibner, "Configurable cache tuning
with a wvicim cache" 2015 10th International Symposium on
Reconfigurable Communication-centric Systems-on-Chip
(ReCoSoC), Bremen, 2015, pp. 1-6.

B. Reagen et al., "Minerva: Enabling Low-Power, Highly-Accurate
Deep Neural Network Accelerators," 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), Seoul,
2016, pp. 267-278.

G. Remman, and N.P. Jouppi, COMPAQ Western Research Lab:
CACTI2.0: An Integrated Cache Tinung and Power Model, 1999.

A Sembrant, D. Eklov and E. Hagersten, "Efficient software-based
online phase classification," 2011 IEEE International Symposium on
Workload Characterization (IISWC), Austin, TX, 2011, pp. 104-115.
T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
Characterizing Targe Scale Program Behavior, In the proceedings of
the Tenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS 2002),
October 2002. San Jose, Califorma.

T. Sherwood, S. Sair and B. Calder, "Phase tracking and
prediction," 30th Annual International Symposium on Computer
Architecture, 2003. Proceedings., San Diego, CA, USA, 2003, pp.
336-347.

F. Song, Z. Guo and D. Mei, "Feature Selection Using Principal
Component Analysis," 2010 International Conference on System
Science, Engineering Design and Manufacturing Informatization,
Yichang, 2010, pp. 27-30.

G. Wu, I. L. Greathouse, A. Lyashevsky, N. Jayasena and D. Chiou,
"GPGPU performance and power estimation using machine
learming," 2015 IEEE 2Ist International Symposium on High
Performance Computer Architecture (HPCA), Burlingame, CA, 2015,
Pp. 564-576.

C. Zhang, F. Valud and W. Najjar, "A highly configurable cache
architecture for embedded systems," 30th _dnnual International
Symposium on Computer Architecture, 2003. Proceedings., San
Diego, CA, USA, 2003, pp. 136-146.

