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Boundary theories of static bulk topological phases of matter are obstructed in the sense that they cannot be re-
alized on their own as isolated systems. The obstruction can be quantified/characterized by quantum anomalies,

in particular when there is a global symmetry. Similarly, topological Floquet evolutions can realize obstructed
unitary operators at their boundaries. In this paper, we discuss the characterization of such obstructions by using
quantum anomalies. As a particular example, we discuss time-reversal symmetric boundary unitary operators in
one and two spatial dimensions, where the anomaly emerges as we gauge the so-called Kubo-Martin-Schwinger

(KMS) symmetry. We also discuss mixed anomalies between particle number conserving U(1) symmetry and
discrete symmetries, such as C and CP, for unitary operators in odd spatial dimensions that can be realized at the
boundaries of topological Floquet systems in even spatial dimensions.
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I. INTRODUCTION

As the ground states of static, gapped Hamiltonians, uni-
tary time-evolution operators of quantum many-body systems
can be topologically distinct from each other or may exhibit
topological properties. For example, time-evolution operators
of periodically driven systems (Floquet systems) can give rise
to Floquet Hamiltonians that are topological much the same
way as static topological systems. Novel out-of-equilibrium
phases of matter that do not have static counterparts can also
be realized in such systems [ 1-7]. Floquet topological systems
have been experimentally realized in synthetic systems, such
as ultracold atoms, photonic, and phononic systems—see, for
example, Refs. [8-11].

Similar to static topological phases, some Floquet unitaries
are topological even in the absence of any symmetry, while
others are topological in the presence of some symmetry,
i.e., their topological properties (topological distinction) are
protected by a symmetry. The examples of the former include
those that support unidirectional quantum information flow at
their boundaries, and are characterized by the chiral unitary
index (GNVW index) [12-15]. On the other hand, bosonic
Floquet systems in d spatial dimensions with a symmetry
group G are classified by group cohomology H/+!'(G, U(1))
where G =G xZ or GxZ [16-19]. For noninteracting
fermion systems, nontrivial topological Floquet unitaries in
the ten Altland-Zirnbauer symmetry classes have been classi-
fied [20,21].

In static topological phases, it is known that a bulk-
boundary correspondence holds. The boundary theory of a
bulk topological phase is anomalous, in that it cannot be
realized on its own as a local consistent theory. For example,
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on the boundary of a bulk symmetry-protected topological
(SPT) phase protected by a global on-site symmetry, the sym-
metry cannot act purely locally (i.e., the symmetry action is
neither on-site nor splittable); the boundary theory suffers
from a ’t Hooft anomaly. In general, quantum anomalies at
the boundary go hand in hand with nontrivial bulk topology,
and can be used as a diagnosis of the corresponding bulk. Such
anomalies can often be detected by gauging, i.e., by subjecting
the boundary theory to a background gauge field associated
with the symmetry group [22-31]. One natural question is
whether a similar formalism is applicable to Floquet topolog-
ical phases.

In this paper, we discuss the anomalous (or topological)
properties of unitary time-evolution operators that may appear
on the boundary of topological Floquet unitary operators. In
one-spatial dimension for bosonic systems, these unitaries
(locality-preserving quantum cellular automata) can be ex-
pressed in terms of matrix-product unitaries [32-38]. We
consider these unitaries in the presence of a global symmetry,
including discrete symmetries, such as time-reversal, parity
(reflection), charge-conjugation, and combinations thereof. In
particular, we will develop gauging procedures, i.e., to intro-
duce background gauge fields, to detect anomalous properties
of these unitaries. As we will show, the boundary unitaries
of topological Floquet systems suffer from quantum anoma-
lies of discrete symmetries, similar to the boundary states
appearing in static topological phases. The gauging procedure
leads to explicit forms (formulas) of (many-body) topological
invariants that can be used for arbitrary unitary operators with
symmetries.

One convenient way to formulate our gauging procedure
is to use the operator-state map (reviewed in Sec. II), and
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regard unitary operators as short-range entangled states in the
doubled Hilbert space, which may be viewed as unique ground
states of some gapped Hamiltonians. We can then use tools
from the physics of symmetry-protected topological phases to
study the mapped states; we can follow the gauging procedure
for static topological phases of matter. Section III is devoted
to developing this idea. In particular, we will also establish
the connection between the gauging procedure with tempo-
ral background gauge fields and the approach in Ref. [16]
that deals with anomalous operator algebras appearing on
boundaries of 1d topological Floquet systems. We will then
generalize to incorporate spatial components of background
gauge fields.

Also in Sec. III, we will discuss how we can gauge time-
reversal symmetry. Specifically, as we will review in Sec. II,
in the Schwinger-Keldysh formalism or in thermofield dy-
namics, time-reversal symmetry can be implemented as a
unitary on-site Z, symmetry—the so-called KMS (Kubo-
Martin-Schwinger) symmetry [39—41]. This symmetry can be
gauged in much the same way as unitary on-site symmetries
in static topological phases of matter, in order to diagnose
topological/anomalous properties of unitary operators.

We will apply the gauging procedure to diagnose anoma-
lous (topological) properties of matrix product unitaries
(Sec. 1V), and boundary unitaries of Floquet Majorana
fermion systems (Sec. V). For the case of 1d Majorana uni-
taries (realized at the boundaries of 2d Floquet topological
unitaries), the model of our interest can be constructed by
combining two copies of the Majorana fermion model with
opposite chiralities discussed in Ref. [14]. We will also dis-
cuss 2d time-reversal symmetric Majorana unitaries that can
be realized on the boundary of 3d bulk topological Floquet
unitaries. Gauging the KMS symmetry reveals the Zg classifi-
cation of these unitaries.

In Sec. VI, we will consider the boundary unitatires of
Floquet topological systems of charged fermions. Namely,
there is a U(1) charge QO which commutes with these uni-
taries, ¢CUe™2 = U (0 € [0, 27r]). The examples include
the 1d boundary unitary of 2d Floquet topological Anderson
insulators [12,42-46]. As shown in [46] the 1d boundary
unitaries suffer from a mixed anomaly between U(1) and
particle-hole symmetry. In this paper, we extend this anal-
ysis to higher-dimensional examples, and show that the
anomalies are characterized by the Chern-Simons forms. The
situation is analogous to the dimensional hierarchy of topo-
logical response theories of topological insulators discussed
in Refs. [22,47]. However, the difference from the case of
static topological phases is that the Chern-Simons forms for
the anomalous boundary unitaries are written solely in terms
of spatial components of the U(1) gauge field. We note that
spatial Chern-Simons terms also appear in the topological
quantum field theory description of non-Hermtian topological
systems [48]. Finally, we also construct many-body topologi-
cal invariants that can extract the Chern-Simons forms.

II. THE OPERATOR-STATE MAP
AND THE KMS CONDITION

In this section, we will go through the ingredients of the
operator-state map and the KMS condition that are necessary
for our analysis of unitary operators [49,50].

A. The operator-state map

a. The reference state. We begin by reviewing some es-
sential points of the operator-state map, which maps operators
acting on a Hilbert space ‘H to the corresponding states in
the doubled Hilbert space H ® H—see below. In broader
contexts, one can apply the channel-state map (the Choi-
Jamiotkowski isomorphism) to arbitrary quantum channels
(trace-preserving completely positive map), and associate
them with quantum states (density matrices) in the doubled
Hilbert space.

We start from the identity operator I = ), |i){i|, and nor-
malize it as Q =), 1i)(i]/~/N so that Tr [QTQ] = 1. Here,
N =dimH = Tr/ is the dimension of the Hilbert space. By
“flipping” the bras in €2, we define a “reference state,” a max-
imally entangled state in the doubled Hilbert space H ® H*:

Q) = (1/VN) D iy & 1), (1

Here, |i)* = K|i) transforms as a conjugate representation
where K is complex conjugation. Under a unitary transfor-
mation V acting on H, |i) and |i)* transform complementarily
as

li) = Vi) = (Zu ]|>V|l Z|j>V,-i,
Zu @

e., |i) and [|i)* transform as the fundamental and antifun-
damental representations of U (N'), respectively. We refer to
these two Hilbert spaces as “out” and “in” Hilbert spaces. Like
the operator 2, which is invariant under a unitary transfor-

mation on H, @ — VQV' = VN S, VIV = Q, the
reference state |$2)) enjoys the invariance under (2). The point
here is that we consider the product of two representations that
are conjugate to each other. The resulting product representa-
tion always includes a singlet representation. (While we use
complex conjugation K here to pair up two Hilbert spaces,
in later examples, we will consider a physical antiunitary
symmetry operation, such as time reversal or time reversal
combined with a unitary symmetry, such as CT, to define
conjugate kets.)

b. The operator-state map. We can now introduce the
operator-state map using the reference state |2)). Let us con-
sider a unitary operator U acting on H. We introduce a state
|U)) corresponding to U as

U) = U QDIKQ). 3

It is customary to represent the state-operator map diagramat-
ically as

i) — KVK~'K|i) = KV]i) =

out out in

u] — [Ul

Here, the reference state |$2)) appears as a “cup.”
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Note that the overlap of two states corresponding to uni-
taries U and U’ can be written as

(U = (1/N)HTr[UTU'] = Tr[U poU ], §))

where the trace is taken over the original (single) Hilbert space
‘H, and py = I /N is the infinite temperature state. This over-
lap can be interpreted (represented) as a Schwinger-Keldysh
path-integral with the infinite temperature thermal state as the
initial state.

c. The shift property. Using the invariance of the reference
state under U, |2) = (UT ® KUTK~1)|Q)), the state |U)) can
also be written as

U) = U DU KUTK™")|Q)
=T ®KUK™H|Q), (6)

i.e., one can “shift” U from the left (out) to right (in), by
conjugating with K. This reflects the fact that acting an ar-
bitrary operator O on €2 from the right and left give the

identical resul, 0=0-Q=9Q-0= VN >, 0liyi| =

VN_I > 1)(ilO. The shift property of |Q2)) can be repre-
sented pictorially as

vl | = | lkutE]

(N

In other words, by the reference state, one can establish a
correspondence or an isomorphism between the spaces of
operators acting on the output and input Hilbert spaces. Intu-
itively, the reference state acts as a perfect mirror (“reflector’)
that “reflects” all information from the output to input Hilbert
space, and vice versa.

d. The modular conjugation. In the language of Tomita-
Takesaki theory, the state operator map naturally comes with
an antiunitary operator acting on the doubled Hilbert space,
called the modular conjugation operator, which we denote
by J. For the setting we are working with, it is simply an
operation that exchanges the in and out Hilbert spaces; J can
be introduced as

J(ID1)*) = 1010, ®)

ie., J =K -SWAP, where K is complex conjugation acting
on Houe ® Hin, and SWAP exchanges the in and out Hilbert
spaces. Note that the reference state |$2)) is invariant under J.
The modular conjugation J acts on |U)) as

JIU) =JU @DJ -J1Q) = I @ KUK )|Q)
= U ®DIQ) = U"). ©)

Here, we used the shift property of |2)). Diagramatically,

I | [Kuk— _ [U]
(10)

Formally, Eq. (9) is nothing but the KMS condition for the
infinite temperature state. In Appendix A, we review the KMS

condition for finite temperature states, using the framework of
the thermofield dynamics. There, the KMS condition can once
again be stated by using J. Intuitively, J can be understood
as an operation that exchanges the system of our interest and
“heat bath.’

In the next section, we will see the KMS condition, in the
presence of time-reversal symmetry, is used to form the KMS
symmetry.

III. GAUGING SYMMETRIES
A. Review: gauging static (topological) phases

Gauging a global symmetry is a useful framework to detect
nontrivial (symmetry-protected) topological phases of mat-
ter (see, for example, Refs. [22-26,31]). Here, by gauging,
we mean introducing a nondynamical, background gauge
field associated with the symmetry group. In the follow-
ing, our goal is to extend this paradigm to unitary operators
with symmetries; we will discuss the gauging procedure for
topological/anomalous unitary operators.

Let us first recall a few essential points of the gaug-
ing procedure for the case of static topological phases. To
be concrete, suppose we have a static gapped (topological)
phase described by the Euclidean path integral which is given
schematically by Z[X] = [ D¢ e 51¢X] where ¢ symboli-
cally represents the “matter” degrees of freedom, and S[¢, X ]
is the Euclidean action on a closed (d + 1)-dimensional
space-time manifold X . In the presence of a background gauge
field, we consider

Z[X, Al = f D¢ e 519 XA1 (11)

(Here, for simplicity, we mainly focus on on-site unitary sym-
metry. It is also possible to gauge space-time symmetry, such
as time-reversal, reflection, and other space group symmetry,
by considering, e.g., unoriented space-time [24-26,51].) For
gapped phases (with the unique ground state), the effective
action — In Z[X, A] is expected to be a local functional of A. It
may also have a pure imaginary, topological part, signaling a
nontrivial topological response of the ground state, Z[X, A] ~
exp iSwp[X, A]. The topological term Sy, [X, A] can be thought
of as a topological invariant characterizing the topological
phase.

As an example, let us consider gapped phases in (1+1)
space-time dimensions, protected by on-site unitary symme-
try. We consider the Euclidean path integral on the space-time
torus 72. The nontrivial background gauge field configura-
tions are then characterized by holonomies (Wilson loops)
along the two noncontractible loops on 7. The effect of
the background can be thought of as twisting boundary
conditions of the matter field ¢ along the two noncon-
tractible loops, ¢(t +T,x) = g- ¢(r,x) and ¢(r,x+ L) =
h-¢(t,x), where T € [0, T] and x € [0, L] coordinatize the
temporal and spatial directions, respectively, and g and /4 are
elements of the symmetry group. We thus consider

ZIT* )= |,y w7 (12)

¢(t,x+L)=h-¢(z,x)
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The topological term, i.e., the phase of the partition func-
tion, is known to be classified by H?*(G,U(1)) [23,52,53].
More generally, (especially in the case of orientation reversing
symmetries), Sip[X, A] can be thought of as a topological
quantum field theory which depends only on the cobordism
class of [X, A] [24] (including spin structures in the case
of fermions [26]), and is denoted by Qi}il(BG). Here, str
refers to the corresponding spin (or pin) structure for fermions
and BG is the classifying space of G. When there is no
symmetry, we simply put a single point as BG, BG = pt. In
this language, the topological term may be viewed as a ho-
momorphism e : Q¥ (BG) — U(1). Hence, the torsion
part of the cobordism group Tor Q5% ,(BG) can be used to
provide a classification of topological phases protected by
a symmetry group G [24,26,54]. For instance, time-reversal
symmetric fermionic systems in (1+1) space-time dimensions
with 72 = 1 have a ng’ (BG) = Zjg classification and the
partition function on RP? can be used as the corresponding
Z3 topological invariant.

Quite often it is also possible to extract the topological term
using the canonical (operator) formalism, in particular, solely
from the ground state. The partition function (12) can be writ-
ten in the operator formalism as Z[T?, (g, h)] = Tr [V, e 7 H].
Here, H), is the system’s Hamiltonian with twisted spatial
boundary condition by 4, and the trace is taken in the Hilbert
space with the twisted boundary condition; V, implements the
symmetry operation g in the (h-twisted) Hilbert space. In the
zero-temperature limit 7 — oo, the ground state dominates
the partition sum,

ZIT?, (& M)] = 1{GS| V¢ |GS), 13)

where |GS);, is the ground state in the h-twisted sector. Ob-
serve that the twisting boundary condition in the temporal
direction is implemented as the operator insertion V, within
the trace.

Our strategy to study the anomalous properties of uni-
tary operators is to map them to corresponding states in the
doubled Hilbert space (the operator-state map). In particular,
when the mapped states are short-range entangled, which
may be viewed as unique ground states of some gapped
Hamiltonians, we can use tools from the physics of symmetry-
protected topological phases to study the mapped states; we
can follow the gauging procedure outlined above for static
topological phases of matter." For the rest of this section, we
will develop the gauging procedure for unitary and antiunitary
symmetries, by focusing first on the “temporal” component of
background gauge fields. In particular, we will observe that,
while time-reversal symmetry is antiunitary in the original
(single) Hilbert space, it can be implemented as a unitary
on-site symmetry (the KMS symmetry), and can be gauged
following the standard procedure. We will also establish the
connection between the temporal gauging procedure and the

Tt is not entirely obvious for which Hamiltonian they are
considered to be ground states. While not unique, such “par-
ent” Hamiltonian can be constructed formally as H = (Uyy ®
Iin)lHO(U:u[ ® Ii,) where Hy is the gapped parent Hamiltonian for
1€2).

approach in Ref. [16] that deals with anomalous operator
algebras appearing on boundaries of 1d topological Floquet
systems. In Sec. IITE, we will also discuss spatial gauging
(turning on spatial components of background gauge fields) —
the idea will be further developed in the following sections by
taking examples of various kinds. (While we use the language
of the operator-state map, and the doubled Hilbert space, this
may not be entirely necessary to develop the gauging proce-
dure, although we find it is quite convenient in many cases. We
will mention the perspective without using the operator-state
map when possible.)

B. Gauging unitary symmetries
Let us consider a unitary time-evolution operator U with
symmetries. We denote a symmetry group by ¢. For a given
element g € ¢, there is a unitary or an anti unitary operator V,
acting on the (physical) Hilbert space H. We say a unitary U
is symmetric under ¢ when

VgUVg’1 =Wy, Ve : unitary, (14)

VUV, =e%UT, V,: antiunitary.  (15)
Here, note that we allow a projective phase in these op-
erator algebras. Such projective phases may appear when
unitary operators are realized on the boundary of topologi-
cally nontrivial bulk (Floquet) unitaries: While symmetry can
be realized in the bulk without projective phases, boundary
unitaries can be anomalous and may pick up projective phases
when acted by symmetries [16]. As we will see momentarily,
the projected phases can be detected by introducing a temporal
component of the background gauge field.

Let us start with the case of unitary symmetry. To discuss
the gauging procedure, we begin by noting that while sym-
metry g acts on U by conjugation, U — V,U Vg‘l, it acts on
[U) as |U)) — [V, ®KVgK’1]|U)). Now, if we view |U)) as
a ground state (of a gapped parent Hamiltonian), we consider,
following the static case (13),

Zy = (U|V, @ KV,K~' |U}). (16)

This quantity can be interpreted as a partition function in the
space-time manifold §' x M (where M is the spatial part)
in the presence of twisted boundary condition by g in the
temporal direction. Here, “time” is a fictitious one, and the
time-evolution is generated by the putative parent Hamilto-
nian; V, ® KV, K ~! should be the symmetry of the parent
Hamiltonian. The phase of this partition function may detect
an anomaly (topological information) of |U)). Using the shift
property of |U)),

V, @ KV,K~'|U) = VU @ KV,K~'|2)
= VUV, ' ®DIQ)
= [VUV, ")), (17)

so the “partition function” (16) is nothing but the overlap
(UV,U Vg’1 ). It can be further rewritten as

Z,=N""Te[UVUV, '] (18)
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When U is symmetric in the sense that V,U Vg_1 = Uy,
VUV, ') = ey, (19)

and the partition function is a pure phase quantity, Z, =
¢'#<U)_The nonzero phase signals the anomalous nature of the
unitary operator. Note also that by construction, |I)) = [€2)) is
invariant under V, ® KV,K .

As mentioned around (5), we can also interpret Z, in terms
of the Schwinger-Keldysh path-integral (trace) with a tempo-
ral background gauge field.

C. Gauging the KMS symmetry

Let us now turn to the case of antiunitary symmetry. To
be concrete, we will work with a time-reversal symmetric
unitary,

TUT ' =9 Vy7. (20)

We note that in general T can be written as 7 =W x
(complex conjugation) where W is a unitary matrix. In the
basis {|i)}, T is defined by its action on {|i)} as

Tli) =Y Wil j).
J

with W;; = (jIW|i). We note that the fact that time reversal
squares to the identity, T2 = I, possibly up to the fermion
number parity operator for fermionic systems, 72 = (—1)F,
imposes a restriction on the projective phase (20). To see
this, we first find the Hermitian conjugate of (20), TU T~ =
ey and then apply T, which gives T?U'T~? =
EOrOITUT ! = 291y T. Assuming U is fermion num-

ber parity even (odd), the projective phase is quantized as
eHor) — 1,

TiT~' = —i, (1)

To gauge time-reversal symmetry, we first need to discuss
how time reversal acts in the doubled Hilbert space, as we
did for the case of unitary symmetry. We should note that
antiunitary symmetry does not allow tensor factorization in
the doubled Hilbert space, in contrast with unitary symmetry
g which acts on the doubled Hilbert space as V, ® KV,K -
Nevertheless, the time reversal 7' can be naturally extended to
the doubled Hilbert space as

Ti)lj)* Z

s WD)l ZW W) 1) 15)

(22)

Here we recall that {|i)*} is the conjugate representation of
{|i)}. T is an antiunitary operator on Hoyr ® Hip-

One can check easily 7'|Q2)) = |Q2)). The symmetry
condition TUT ™! = ¢7WyUT is translated into T|U) =
[TUT ") = 97@|U ™) [cf. Eq. (19)]. Then, analogously to
(18), we can consider the overlap

(uhTIU) = UTITUT™")
=N '"Tr[UTUT "1 =Y. (23)

As in (16) this overlap can be interpreted as the partition
function on S' x M with twisted temporal boundary condition
by some symmetry. As explained below, the relevant sym-
metry is 7J — the composition of time-reversal and modular

conjugation—which we will call the KMS symmetry. This
symmetry is unitary, while both J and T are antiunitary.

To see this, we can first verify that the combined operation
TJ is a symmetry of |U)) by using the KMS condition (9),

TJIU) =TWUTQDIQY) = (TUT' @ NT|Q))
=e DU enQ) ="y, @4

where we recall that JA|Q)) = AT|Q). N amely, neither J nor
T are a symmetry in the doubled Hilbert space (they do
not leave |U)) invariant), but JT is (JT leaves |U)) invariant
up to possibly a phase factor e=*7()). In other words, the
KMS condition, once combined with time reversal, can be
“promoted” to a unitary symmetry in the doubled Hilbert
space. The KMS symmetry, here identified by using the
operator-state map, also has its counterpart in the Schwinger-
Keldysh path integral language. In the path-integral language,
Ref. [39] (see also [55]) proposed a symmetry of the
Schwinger-Keldysh path integral under ¥, (¢, r) — ¥ (—1 +
icB/2,r), i, r) = Y,(—t +iocp/2,r), as the KMS con-
dition. Here, ¥, (¢, r) schematically represents quantum fields
in the Schwinger-Keldysh path integral where o = = repre-
sents the forward and backward branches. Note that the KMS
symmetry can be defined (and gauged) at finite temperature,
although in this paper we set temperature to be infinite.

Now, the KMS symmetry, being unitary on-site symmetry
in the doubled Hilbert space, can be gauged in a straight
forward way. Following the static case (13), we consider the
partition function with twisted temporal boundary condition
by the KMS symmetry,

Zgms = (UI(THIU). (25)

Using (24) Zxwms is nothing but (the complex conjugate of)
(23),

Zims = (UITUTT ') = e 070, (26)

D. Unitarity condition and chiral symmetry in the doubled
Hilbert space

In the forthcoming sections, we will study the anomalous
properties of unitary operators using the gauging procedure
outlined above. It should be noted however that it is not
entirely obvious if all anomalous (topological) properties of
unitaries can be detected this way. For example, we should
note that the state-operator map can be applied to any operator
acting on the original Hilbert space, not just unitaries. Hence,
we need to narrow our focus down to the set of states in the
doubled Hilbert space that correspond to unitary operators in
the original Hilbert space.”

>To illustrate this point, let us consider the Berry phase of
mapped states in the doubled Hilbert space, when we have unitaries
|U(R))) parameterized by adiabatic parameters R = (R, Rz, ... ).
Noting that the Berry connection is given explicitly by A’ =
i(U(8/dR)|UY = iTr [UT(dU/9R;)], the Berry phase associated to
any closed loop in the parameter space is quantized to an integer
multiple of 27, § A'dR; = 27 x integer. Clearly, this is not the case
for generic states in How @ Hiy. This is one of the consequences of
the unitarity condition.
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For matrix product unitaries, the unitarity condition (re-
quirement) can be taken into account by using the standard
form of matrix product unitaries [32,33]. Moreover, the chi-
ral unitary index (GNVW index), a rational number that
characterizes asymmetric quantum information flow, can be
introduced to classify unitaries. [14,15,32,33]. For the case of
noninteracting fermionic systems (Gaussian unitaries), we can
impose an additional symmetry, the so-called chiral symme-
try, in the doubled Hilbert space, to limit our focus to states
corresponding to unitary operators (and enforce the quanti-
zation of the Berry phase) [20,21,46]. (In the context of free
fermion systems (Gaussian unitaries), the operator-state map
is called the Hermitian map.)

In the following, we will deal with 1d examples with
time-reversal symmetry, for which the chiral unitary index
vanishes. Following the case of on-site unitary symmetries for
(bosonic) 1d unitaries [32,35], we expect that the anomalies
(group cohomology class) associated with the KMS symmetry
(together with other symmetries) are enough to classify these
unitaries.

E. Spatial gauging

The spatial component of the background gauge field can
also implemented in the unitary operator. For example, the
spatial component of the background KMS gauge field can
be introduced by twisting the spatial boundary condition. To
do this, we need to have a closer look at the local (spatial)
structure of unitaries. As we will discuss in the next section,
once a unitary is given as a matrix product unitary, the spatial
component of the background gauge field can be introduced,
following the gauging procedure of matrix product states [53].
[See below around (33)]. Another way to introduce spatial
gauging is to make use of a parent Hamiltonian that has |U)) as
its ground state. If it exists, we can introduce the background
gauge field by minimally coupling it to matter degrees of
freedom in the parent Hamiltonian. We will discuss this in
the forthcoming sections by using examples, see Secs. V and
VI. Finally, we also note that it is known that torus partition
functions with twisted boundary conditions (topological in-
variants) can be computed solely by using ground state wave
functions (without using Hamiltonians) by using the partial
swap operator [53,56].

In the presence of a spatial component of a gauge field, the
operator algebra (14) can be generalized as

VU @AV = AU (4,9, 27)

where s(g) =1 or s(g) = —1 =7 when V, is a unitary or
antiunitary symmetry, respectively, and Ay, is the background £
gauge field. (Here, we are assuming g is a nonspatial symme-
try. When g is a spatial symmetry, e.g., parity, the gauge field
A}, also has to be transformed—see (70).) Correspondingly,
we can consider the overlap

Zo(An) = (U(AR)*| Vy ® KV,K~" U (Ap)))
= NT"Te [((UT@AD) VU AV, '], (28)

which can be interpreted as a partition function on S' x M
with twisted temporal boundary condition by g, and spatial
background gauge field A;, on M.

IV. MATRIX PRODUCT UNITARIES

All locality-preserving 1d unitaries (in bosonic systems)
can be represented in the form of a matrix product unitary
[32,33]. In this section, we discuss how we can gauge the
KMS symmetry in matrix product unitaries. A matrix product
unitary U is expressed as

U= ZTI(Ai‘j‘ AT iy i) (e el (29)
{i.j)

where {|i; - - -ir)} is the basis of the total Hilbert space of the
1d chain consisting of L sites, given as a tensor product of
basis states {|i)} of the local Hilbert space at each site; A is a
X X x dimensional matrix where y is the “bond dimension”
of the auxiliary space. By the operator-state map, the corre-
sponding state in the doubled Hilbert space is

\U) = ZTr(A“j‘ S A iy ) e o). (30)
{i.j)

Once written in this form, we can apply results from matrix
product states, in particular their classification. However, this
does not fully capture the full classification of unitaries. The
reason is that we have not included the unitarity requirement,
and the chiral unitary index. (See Sec. IIID.) References
[32,33] introduced the standard form of matrix product uni-
taries that takes into account the unitarity requirement, and
defined the chiral unitary index. Using the standard form,
symmetry protected indices can also be introduced for on-site
unitary symmetry [35]. The gauging procedure we introduced
is agnostic about the unitarity condition.

We however note that the double Hilbert space structure
allows us to define the operator entanglement, the correlation
measure between (suitable sub regions of) the input and output
spaces, that can capture the chiral unitary index [57]. We also
note that for unitaries of our interest, namely, those that are
invariant under time reversal, the chiral unitary index always
vanishes.

While the gauging procedure may not capture all
topological /anomalous aspects of unitary operators, topo-
logical invariants (quantum anomalies) derived from gaug-
ing provides a bona fide diagnostic of anomalous unitary
operators.

Let us now assume the unitary U is time-reversal symmet-
ric in the sense that TUT ' = U™ (up to a projective phase),
where T is time reversal, which, as in (21), can be written
as T = WK with some unitary W. The time reversal T can
be naturally extended to the doubled Hilbert space as in (22).
Together with the antiunitary modular conjugation operator,
JUD ) = [/, J|UY = |UTY), we can construct the KMS
symmetry JT', which is a unitary, on-site, Z, symmetry. For
the matrix product unitary, JT acts on |U)) as

JT|U) = Z Tr (Ajl"l .. .AjLiL)
{i,j.i",j'}
* * e ok
XWii, (leji) o 'WiLi’L(WJ'Lji) [y =) Ly ) -
(31)
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The invariance under JT implies that each matrix A trans-
forms as [58-60]

D ALWa Wiyt =" (MDA, My, (32)

ij ab

with some matrix M and phase ¢ . In one spatial dimension, a
unitary on-site Z, symmetry alone does not lead to nontrivial
SPT phases, as H>(Z», U(1)) = 0. (This is consistent with
[32].)° However, in the presence of other symmetries, we can
discuss the discrete torsion phase with KMS symmetry.

We can gauge the state |U)) by the KMS symmetry; the
state under the twisted boundary condition by the KMS sym-
metry is given by [61]

|Ulxms = ) Tr(A"' - AWM iy i) 1o+ ju)™
{i.j}
(33)
Let us now imagine that U is symmetric under an addi-
tional unitary symmetry X, XUX~! = U (up to possibly a
phase factor). The torus partition function (13) can be com-
puted, in the presence of another symmetry generator X,
kwms (U1 X|U )kms, which extract a topological invariant (co-
cycle). Note that once the matrix product operator form is
given, it is not necessary to use the parent Hamiltonian to
gauge symmetries.
Using the operator-state map, we can map |U ))xms back to
an operator Ukys,

Ukms = ZTr(A”" s AMEM) iy i) (e gl (34
{i.j}

This can be thought of as the gauged unitary operator, in
the presence of background KMS gauge field. When U is
symmetric under an additional unitary on-site symmetry X, X
induces an action on the auxiliary space by a unitary matrix
My, as in (32). Then, the operator algebra between X and
Uxws is given by

X Ums X' = €00 Uyygs, (35)

where we note that

XUgms X' =

{iJ
X iy - ig) (reo - il (36)
and e¥xxvs is the group cohomology phase, MyM =
e'®xxvs MMy . Thus (the phase of) the torus partition function
and the anomalous phase that appears in the operator algebra

between the gauged unitary operator and symmetry generator
is equivalent.

Tr(A"' - AWM MMS)
}

3Note that in Ref. [32] unitaries satisfying U = U' are called
“time-reversal symmetric.” Here, we stick with time reversal which
is realized as a antiunitary operation in the physical Hilbert space,
as Wigner’s symmetry representation theorem. Reference [32] also
studied unitaries satisfying U = U”, which corresponds (up to pos-
sibly a unitary operation) to our definition of time-reversal symmetry.
For the latter case, Ref. [32] showed that there is no nontrivial
unitary, consistent with H%(Z,, U(1)) = 0.

a. Example: the CZX model. As a simple example, let
us consider the CZX model [32,62]. It is defined on a one-
dimensional lattice with two-dimensional local Hilbert space
at each site, {|0),|1)}. The explicit matrix product unitary
form is given as

A =10) (+], AV =|1)(—|], A®=A'"=0, (37

with two-dimensional internal (auxiliary) Hilbert space, and
|£) = |0) £ |1). The chiral unitary index is trivial for the
CZX model. The CZX unitary U is invariant under time re-
versal KUK~ = U". Hence, under JT, A’s are transformed
as A/, = e (W‘*‘)aa/A;J,be«‘b.JIt is easy to check that we can
take W = o,, AY = —0,A''0].

Now, let us consider an additional Z, symmetry. We can
consider, for example, X = ]_[,."dd s¥, which commutes with
time reversal. (Here, s7 is the x component of a physical spin
1/2 operator at site i.) It is convenient to “block,” i.e., take
two adjacent spins as a single degrees of freedom; at each site,
we now have a four-dimensional local Hilbert space spanned
by {|00),]01),|10), |11)}. Under blocking, we consider the
matrix product unitary with

A()l()l =A01A01 — |0) (+| ,
AlOOl :AIOAOI — |1) (+| ,

AOIIO :AOIAIO — |O> <_| ,
AlOlO :AIOAIO —- _ |1> <_| )
(38)

Under symmetry X, AY¥ — AU¥ (where 0 = 1 and 1 = 0).
One can check that the invariance under X can be imple-
mented by AVK — AUK = 5 AliM 6T Now, while the JT and
X commute when acting on the physical Hilbert space, in
the two-dimensional auxiliary space, 0,0, = —0,0,, implying
that the CZX model is protected by time reversal and X .

V. MAJORANA FERMION MODELS

In this section, we consider unitary time-evolution oper-
ators in Majorana fermion systems in one spatial dimension
without/with time-reversal symmetry. As a specific model,
we consider the boundary unitaries which are realized at
the boundary of topological Floquet drives without/with
time-reversal symmetry. We first consider the model without
time-reversal symmetry (“the single copy theory”) on the
boundary of the 2d topological chiral Floquet drive considered
in Ref. [14]. The time-reversal symmetric model (“the two
copy theory”) can then be constructed from two copies of the
above model with opposite chiralities. We will then discuss
nontrivial 2d time-reversal symmetric unitaries that can be
realized at the boundary of 3d topological Floquet systems.

A. The single copy theory

Let us first have a closer look at the single copy theory. At
the boundary of 2d topological chiral Floquet drive [14], dis-
crete time-evolution is given by a boundary unitary S, which
is a lattice translation operator (or shift operator):

SaeST = Aeir. (39)

Here {A,} is the set Majorana fermion operators defined on
sites x located at the boundary of the 2d system, {\,, Ay} =
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268, . Throughout this section, we impose the periodic bound-
ary condition. The translation operator S can be written down
explicitly as [63]

1+)\1)\.2 1+)"L—l)¥L

The phase can be chosen such that the translation operator S
satisfies S = 1 where L is the total number of sites. The phase
factor satisfies ¢ = 1 when L/2 = 4, 5, 8, 9 while ¢ = 7L
when L/2 = 2,3,6,7 (mod 8).

This shift operator is characterized by nonzero chiral uni-
tary index (GNVW index) [14,15]. The chiral unitary index
can be defined without referencing to any symmetry, and
hence the topological Floquet drive does not require any
symmetry for its stability/existence. As mentioned briefly in
Sec. III D, for Gaussian unitaries, the unitarity condition can
be implemented by imposing a chiral symmetry. Imposing
both fermion number parity conservation and chiral symme-
try leads to the Z topological classification of single-particle
topological Floquet unitaries [20]. On the other hand, for
many-body unitaries, there appears no such simple symmetry
that can be used to implement the unitarity condition.

Beside the chiral unitary index, we can also discuss an
anomaly associated with the fermion number parity z%,

(—DFf = ]‘[ﬁfl (iA2n—1A2,). We can verify that the shift op-
erator is odd under the fermion number parity [64],
(=DFS(=1)f = -s, 41)

and hence, the partition function twisted by the fermion num-
ber parity is

S =% (40)

NI [(-DFS(—=DF ST = (—-1). (42)

The Z, phase (minus sign) on the RHS is indicative of a Z,
quantum anomaly, occurring at the boundary of the bulk 2d
Floquet system. The Z, anomaly is independent of the chiral
unitary index, and provides an additional characterization.

Let us now have a closer look at how the operator-state map
works in this problem. We will be slightly generic and con-
sider an arbitrary Gaussian unitary operator U. It transforms
Majorana fermion operators {A,} (satisfying {1, Ap} = 284p)
as

UrU" = Quphs (43)

where Q is a real orthogonal matrix. To deploy the state
operator map, we introduce the doubled Hilbert space by
considering the two sets of Majorana fermion operators {A; ,}
and {A,,} acting on the in and out Hilbert spaces, respectively.
The construction of the reference state proceeds in a way
slightly different than the bosonic case reviewed in Sec. II.
As the reference state (1), we need to look for a maximally
entangled state in the (Z,-graded) fermionic Hilbert space,
which satisfies the shift property, and is invariant under a
properly defined modular conjugation operator. We choose as
the reference state the state consisting of maximal number of
“Majorana dimers” connecting the in and out Hilbert spaces.
Conveniently, the reference state can be taken as a ground
state of the parent Hamiltonian

0=1Y ixkox. (44)

We identify the modular conjugation operator as*

Jhicd V= oy Thoxd T = Aie (45)

One can check easily that JHyJ ' = Hy and hence J|Q)) =
|2)). Furthermore, one can also check A, |Q)) = —il;|R2)).
This means that by using |Q2)), we can map any bosonic
operator Oy acting on the output Hilbert space to the cor-
responding operator Oy, acting on the input Hilbert space;
The reference state acts as a “’perfect reflector” that reflects
all operators from the output to input Hilbert space [recall
Egs. (4) and (7)]. For fermionic operators, applying two suc-
cessive reflections is equivalent to a 27 rotation, under which
they must pick up —1; this follows from the simplest case
mentioned above, A, |2)) = —id;|2)).

We now consider the state |U)) = (U, ® I;)|2)), which can
be thought of as a ground state of

H=1iY XixQohoy- (46)
xy

The shift property of |€2)) can be read off from H as
= IZ)WX(QX» o)) = IZ

where we noted Q,, = Q;yl. Hence, |U)) = (U, ® I,)|2))
U ® U;)IQ)}. We observe that H is not invariant under J,
while Hy is, as expected.

Let us now consider the unitary in (39). Then, the parent
Hamiltonian is

Qi hi) Moy (47)

H=1iY Aickoxs- (48)

This is essentially the Hamiltonian of the Kitaev chain in
its topologically nontrivial phase. The ground state is char-
acterized by the Z, topological invariant associated with Zg
symmetry in one spatial dimension, consistent with the Z,
anomaly (41).

B. The two copy theory with time-reversal symmetry

The shift operator S is odd under time-reversal symmetry.
In order to construct a time-reversal symmetric model of our
interest, we introduce two copies of the 2d chiral topological
Floquet model with opposite chiralities. We use 1 / | to label
these two copies. At the boundary, this time-reversal symmet-
ric model realizes the boundary unitary U = S; SI, where S/,
is the shift operator that acts exclusively on the first/second
copy. The boundary unitary U acts on the boundary Majorana
fermion operators as

Urp U = hgepr, U U™ = 2. (49)

“Generically, the modular conjugation operator should satisfy
[JAiJ, Ain] = 0, while for the J operator defined here, JA;J and A;
anticommute. The J operator here is actually the tilde conjugation
in the thermofield dynamics [49]. While for bosonic systems the
modular conjugation and the tilde conjugation are equivalent, for
fermionic systems, they differ by a Klein factor (Jordan-Wigner
string) [50].
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The model is symmetric under the following time reversal,

TanT ' '=a,, TriT '=ery,, T? =€ (50)
where (—1)F = [ 1, GGA4xA ) is the total fermion number par-
ity operator; € = %1 distinguishes two possible cases. The
unitary is time-reversal symmetric in the sense that TU T-! =
TS T~ TS|T~' =€S,S] =e(S,8])" =eUT. In particu-
lar, when € = —1, the operator algebra between U and T is
nontrivial, while it is trivial when € = +1.

Below, we will try to detect the nontriviality (quantum
anomaly) of the above time-reversal symmetric unitary when
€ = —1. At the noninteracting level, Floquet unitaries in sym-
metry class DIII (corresponding to € = —1) are classified
by Z, [20]. When we enforce time-reversal symmetry with
€ = —1, by the operator-state map, we consider a short-range
entangled state in the doubled Hilbert space. The relevant
symmetry group is ¥ = Zg x Z, where Zg represents the
fermion number parity conservation, and Z, is the KMS sym-
metry (J7 symmetry). Such short-range entangled states in
(14+1)-dimensions are classified by Q;pm(Blz) =75 [26]. In
the following, we will show explicitly that the above unitary is
a nontrivial element of this group. Additionally, we also study
the operator entanglement spectrum of U. We then find two
zero modes which form a doublet under the KMS symmetry.

Let us start by applying the operator-state map to the uni-
tary (49). We denote the Majorana fermion operators acting
on the in and out Hilbert spaces by {A;/, 1,,.x}. In the doubled
Hilbert space, we introduce time reversal 7 acting on the
fermion operators as

TAT'=[1,® (ion) ® 1] A, (€29)

where A = (Aipx, Aigx, Aotxs Kow)T is a 4L component vector
with x taking values from 1 to L. 1,, iop, 1, act on in/out,
spin and position degree of freedoms, respectively.

We choose, as the reference state |€2)), the ground state of
the quadratic Hamiltonian:

[HO = lZ ()‘iTx}\aTx - )"iix)\0¢x)
x

_l.r 0 (o3® 1)
B 2A <—(03 ® 1) 0 )A. 2)

One can check easily THoT ' = Hy. We next construct the
state |U)). Let U be a generic Gaussian unitary operator that
acts on the fermion operators as

M\t = o *

o(i)er=e(}7). 53
where Q is a 2L x 2L real orthogonal matrix, acting on “in”
and “out” space in the same way. When U is time-reversal
symmetric, Q satisfies (—ioy)Q(ion) = Q7. The state |U))
can then be thought of as the ground state of the parent
Hamiltonian
H=3ATKA, K= (

0 (03®1.)Q
-9 (03 ® 1) 0 ’

(54

For the case of our interest, this reduces to

H= iZ Mt xhopoxt1 — A xho §x—1)- (55)
X

The parent Hamiltonian is invariant under the following uni-
tary operation:

(JT)A(JT)_1=[<£] ‘Z})mL}A (56)

as one can check easily:

€ 2ol [0 Beror o

by using the time-reversal symmetry of Q. This operation can
be understood as the composition of the modular conjugation

JAJ ' = [( 0
—o

and time reversal. We can check that J leaves Hy invariant,
JHoJ ™! = Ho. (Also, while H is not invariant under T nor J,
as we checked, JT is a symmetry of H.) Finally, the single-
particle Hamiltonian /C is chiral symmetric,

(5 S)en] e [(5 S)en]=—x

(59)

‘(‘)’3) ® nL}A, (58)

a. Gauging the KMS symmetry. Let us now gauge the KMS
(JT) symmetry. Specifically, we can introduce the background
KMS gauge field, such that we twist the temporal and/or
spatial boundary conditions. As for the temporal twisting, we
note, TUT~'U = (—1) and hence

(UIUDIU) = (=1). (60)

This quantity can be interpreted as a partition function on 72
with the twisted temporal direction by the KMS symmetry,
and periodic spatial boundary condition. This confirms that
the unitary is a nontrivial element of the QEP'“(BZZ) =73
classification.

Similarly, the spatial boundary condition can also be
twisted by the KMS symmetry. To this end, it is convenient
to go to the basis that diagonalizes JT'; we introduce

Ne =Aip £hoy, &x =24 £iny (61)

The action of JT on these rotated Majorana operators are
diagonal:

UTmeUT) ' =4ns, (TELUT) ' =2EL.  (62)

In terms of these operators, the parent Hamiltonian is written
as

Hoci Yy —n-xrié ). (63)

Then, twisting spatial boundary condition by JT affects only
the minus sector. In other words, combined with the fermion
number parity (—1)", we can give different boundary con-
ditions to each sector independently. The state |U)) can be
factorized as |U))p, = |Uy)p|U-)),, where p,q denote the
spatial boundary condition for each sector, and can be either
periodic boundary condition (“Ramond” boundary condition,
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r), or antiperiodic boundary condition (“Neveu-Schwarz”
boundary condition, ns). The state in the sector twisted by the
KMS symmetry is |U ) ;7 = |U+),|U-)ns- Then, we see, for
example,

s UIEDT 0N
= (Ul (=D U - s QU-1(= 1) U g
=Z[T?, (r,r)] - Z[T?, (r,ns)] = —1,
sy (UIEDIU Y
= s (U | (=D (U s - H(U- (=D [U),
= Z[T?, (r,ns)] - Z[T?, (r, )] = —1, (64)

where Z[T?, (a, b)] is the torus partition function of (141)d
topological superconductors (the Kitaev chain in its nontriv-
ial phase) in the presence of temporal and spatial boundary
conditions (a, b); Z[T?, (a, b)] = —1 for (a, b) = (r, r), and
Z[T?, (a, b)] = 1 otherwise [65]. We once again confirm that
the state |U)) is nontrivial in the presence of time reversal. The
above example represents the nontrivial element (—1, —1) €
QP"(BZ,) = 75 [26].

b. Boundary analysis. The anomalous properties of U can
also be detected by studying the boundary excitations or
entanglement spectrum of |U)). Here, we follow Ref. [66]
to analyze symmetry actions on the boundary excitations.
When the system (parent Hamiltonian) is cut, excitations at
the boundary are built out of unpaired Majorana fermion
operators: A; |, A, +. We can then study the algebra of symme-
try operators within the boundary Hilbert space. JT and the
fermion number parity, can be constructed explicitly as (see
Refs. [67,68] for similar analysis)

o
JT = ﬁ(kw + Xot),

where the phase ¢ can be chosen such that (JT)? = 1, ¢*? =
1. Now, the commutator between JT and the fermion number
parity is

(=DF = @riyror),  (65)

(=DFUT)H =D =(=DHUT). (66)

The projective phase factor (—1) indicates a Z, anomaly.

C. Two spatial dimensions

One can analyze unitary operators of higher-dimensional
Majorana fermion systems with time reversal. As an example,
let us consider two spatial dimensions, and impose time-
reversal symmetry which squares to (—1)F. Let us once again
assume the unitary condition does not play any role. Then,
with the operator-state map, the relevant symmetry group is
7! x Z,, where 7, is the KMS symmetry (JT). Nontrivial
fermionic SPT phases with this symmetry are classified by
Qgpm (BZ,) = Zg [28,65,69]. The generating manifold is RP3.
The corresponding topological invariant can be constructed
by using partial symmetry transformation acting on a finite
subregion of the space [65]. Specifically, we can consider the
partial KMS symmetry, combined with 7 spatial rotation R,
that acts only on a sub region of the total system, which we

take as a disk D. Therefore the following expectation value

2mvi

(UIUT - Ry )plU) ~ e 5,

vel, 67)

detects the Zg classification. Diagramatically it can be repre-
sented as

U‘r

(68)

In terms of the original unitary operator, this quantity may be
obtained by taking the partial transpose of the unitary with
respect to the disk D,

Tr[U" - (R )pU™(R,') ] (69)

where A™ represents the partial transpose of an operator A
with respect to D. (Here, we need to use partial transpose for
fermionic systems, as explained in Refs. [30,70,71].)

We close this section with one remark. There is an iso-
morphism (Smith isomorphism) between QZT; (BZ,) and

QZi“’ (pt). This means the classification of boundary unitary

protected by time reversal with € = —1 in d + 1 space-time
dimension (= classification of topological Floquet unitary
protected by time reversal with ¢ = —1 in d + 2) is equiva-

lent to the classification of static SPT phases with € =1 in
d space-time dimension. This is consistent since the “Bott
clock” differs by two (... Al, BDI, D, DIII ... .).

VI. ANOMALOUS UNITARY OPERATORS WITH U(1)
AND DISCRETE SYMMETRIES

A. Generalities

In this section, we consider topological /anomalous unitary
time-evolution operators of charged fermion systems. This
means that we have particle number conserving symmetry
U(1) symmetry, e?CUe 2 = U, where Q is the U(1) charge.
In addition, we also discuss various discrete symmetries; they
act on unitaries as in (14) and (15).

The U(1) symmetry can be gauged, and we can consider
unitary operators in the presence of background U(1) gauge
field, U(A). In this paper, we focus on time-independent,
spatial components of the U(1) gauge fields, A;(r) [46]. To
detect topological /anomalous properties of the unitary opera-
tor, we will consider the operator algebra among the unitary
symmetries in the presence of the background gauge field,

VU @AW, = e DU (g-4), (70)

analogous to (14) and (15). Here, s(g) = lors(g) = -1 =1+
when V, is a unitary or antiunitary symmetry, respectively,
and again we allow a possible “projective” phase factor. g- A
represents the background gauge field transformed by sym-
metry g. For example, g- A;(r) = —A;(r) for particle-hole or
time-reversal symmetry. As before (cf. Sec. IIIC), when an
antiunitary symmetry squares to the identity (possibly up to
the fermion number parity (—1)7), the projective phase ¢'%:4)
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obeys a condition, ¢'%(¢4) = ¢=*«D¢iv where y = 7 when
ng = (=1)F, and U(A) is fermion number parity odd, and
y = 0 otherwise.

In addition to the algebraic relation (70), another closely
related object of our interest is the Schwinger-Keldysh trace:

Z(A1,A2) = N7'Tr [U(A2) U (A))] = (U (AU (A))).
(71)

Z(Ay,Ay) is the effective response theory (partition func-
tion) obtained by integrating over matter degrees of free-
dom. The Schwinger-Keldysh trace satisfies a couple of
constants/conditions, such as (1) Schwinger-Keldysh symme-
try:

Z(AA) =1, (72)
(2) reality condition:
Z(A1, A))" = Z(As, Ay). (73)

These conditions follow directly from (71). There are also
other conditions, in particular, in the presence of symmetries
[72]. From (70),

Tr[V,UANU AV, ]
— ei[¢g(A1)—¢g(A2)] Tr[U(g . AI)S(g)U(g . Az)—é‘(g)]’ (74)

we read off
Z(A1, Ay) = eis(g)[¢g(A|)—¢g(A2)] Z(g-Al,g-Ad). (75)

The phase factor e$®#AD=¢:42] j5 an anomaly in the
sense that it represents the violation of the naive relation
Z(A1,Ay) =Z(g- Ay, g Ay) expected from the symmetry.

In what follows, we discuss some examples. We con-
sider a series of unitaries in odd spatial dimensions, which,
roughly speaking, realize chiral (Weyl) fermions in their
single-particle quasienergy spectrum in momentum space. For
example, their single-particle unitaries are given as U (k,) =
e (1d), U(K) ~ ¢*° (3d), etc. These unitaries can be re-
alized as boundary unitaries of bulk topological Floquet
unitaries in one higher dimensions. The Schwinger-Keldysh
trace for these unitaries is given in terms of topological terms,
such as Chern-Simons terms (boundary) and theta terms
(bulk). One of the key questions here is the interplay of these
topological terms and discrete symmetries.

B. Example 1: (14+1)d with C

Let us start with the (141)d anomalous unitary, which
is simply a lattice translation operator. We consider a one-
dimensional lattice. At each site x on the lattice, we consider
complex fermion creation/annihilation operators, which sat-
isfy the canonical anticommutation relation, {v,, w; } = 8y
The unitary operator of our interest is the shift operator:

Uy U™ = Yyt (76)

The unitary respects the particle number conserving
U(1) symmetry, ¢CUe 2 = U (9 € [0, 2r]), where Q =
3", ¥l is the total charge. This unitary arises as a boundary
unitary of a topologically nontrivial 2d Floquet drive [12].5
As noted in Ref. [46], the unitary operator is invariant
under particle-hole symmetry which is a unitary on-site sym-
metry defined by
Cy.C' =y (77)

X

Also noted in Ref. [46], is that the (bulk and boundary) uni-
tary operators are symmetric under particle-hole symmetry C,
CUC~' = U, up to a projective phase for the boundary uni-
tary. In the presence of the background U(1) gauge field, we
expect that CU(A)C~! is equivalent to U(—A), CU(A)C™! =
U(—A). While for the bulk without a boundary there is no
projective phase CUpy(A)C™! = Upui(—A), one can verify
by a direct calculation that a projective phase exists for the
boundary unitary, and it is given by the one-dimensional
Chern-Simons term (Wilson loop),

CUA)C™! =S D y(—A),
CS1(A) = }ﬁdxAx(x) - ?gA. (78)

(Possibly up to a phase that is independent of A—see below.)
We will provide the derivation of the projective phase shortly.
By taking the trace and using the operator-state map, the
anomalous relation (78) leads to

&S = NITr[cU A)C™UT (-A)]
= (U@A)|C|U(-A)). (79)

This can be interpreted as the path integral on two-
dimensional space-time with twisted temporal boundary
condition by C.

The anomalous algebra (78) also leads to, for the ratio of
the Schwinger-Keldysh partition functions,

ZCAL D _ g
Z(A1,A) ‘ 7 w

consistent with the result in Ref. [46]. Furthermore, in
Ref. [46], it was found that the partition function of the
corresponding bulk dynamics, defined on an open spa-
tial manifold with a boundary, also picks up a phase
under particle-hole symmetry but this has opposite sign:
Zouik open(—A1, —A2)/Ziuik open (A1, A2) = ¢!/ 4174 The total
partition function is therefore invariant under C. This is an
“anomaly inflow” for the mixed anomaly between the particle-
hole and U(1) symmetries, in the sense that the anomalous
phases in bulk and boundary cancel each other. This con-
sideration extends to the p, q drives studied in Ref. [46],
in which case (80) becomes Z(—A;, —A2)/Z(A1,Ar) =
¢ ra/2m §A1=4) " where 6 4 is an integer multiple of 7 and
depends only on p/q. Note also that the anomalous relation

3Tt can also be viewed as an example of topologically nontrivial
non-Hermitian Hamiltonian with a point gap.
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(78) leads to TrU(A)/Tr U (—A) = ¢ $4, which was also ver-
ified in Ref. [46].5

The relation (78) can be verified by a direct calculation
for the boundary unitary of the Floquet topological Anderson
insulator, or by using the operator-state map and computing
{(U(A)| C|U(—A)). Below, we will present both calculations.
The following results depend on the total number of lattice
sites (=L) being even or odd. We note that when we con-
sider the 2d topological Floquet system defined on a cylinder,
with two circular boundaries at its two ends, the number of
boundary sites per boundary is always even. The number of
boundary sites can be odd if we consider different geometries,
e.g., a finite 2d square lattice with a single boundary around
it. In the latter case, the boundary unitary is not a simple shift
operator near the corners of the square lattice.

1. Direct calculation

Let us first have a look at the direct calculation. Following
the case of Majorana fermions, we can construct U explicitly:
U= SAS),(—I)F, where ¥, = (A, +iy,)/2 and S and S, are
the shift operators for A, and y,, respectively. Explicitly,

U=yl - (=DF,
Mev =1+ @ Y, — ¥ ¥) — (e —ne)’. (82)

(As before, the phase must be chosen such that UX = 1.) We
can then consider to gauge the U(1) symmetry. This amounts
to Y[ ¥, — eyl . In addition, we also consider

At st tAL VY = G AV (83)
to construct the operator
UA) = P IV, TTip(A) - Ty 1 (A1, (84)

as the gauged version of the translation operator. We can
verify that the gauged version of (76) is given by

UA) Y UA) " = et . (85)

The unitary particle-hole transformation C, which acts on
the Majorana operators as CAC~! = A and CyC~! = —y, can
also be constructed explicitly:

C = (iy1y2)iysya) -+ - (yL—1vL)- (86)
One can readily check that the following identities hold:
cuc—! = (Dt
N 'Tr[cuc™ U™ = (=D (87)

SWe also note that the Schwinger-Keldysh trace itself (not the
ratio) was computed in Ref. [46] both for (2+1)d bulk and (1+1)d
boundary. In long-wave length limit, the bulk trace is given by

0
Zpuk (A1, Ay) ~ exp [E / d’xe;0i(Ar; — A2_/)j|, (81)

with & = 7. There is no such limit for the boundary trace, being the
dynamics on the boundary nonlocal. Clearly the above expression
is consistent with the ratio presented in the main text. While (81) is
valid for long wave lengths, the ratio presented in the main text for
the bulk partition function [as well as (80)] is exact.

The minus sign is indicative of a Z, anomaly. Now, in the
presence of the background gauge field,

CUMA)C™" = (=1)ET T Ay (—A). (88)

2. Calculation via operator-state map

Next, let us use the operator-state map, and calculate
{U(A)| C|U(—A)). As in the case of Majorana fermion sys-
tems discussed in Sec. V, the construction of the reference
state proceeds slightly differently from the bosonic case. Here,
the reference state |Q2)) can be conveniently defined as the
ground state of the parent Hamiltonian

Ho = — > (¥ Vo + ¥, Wie), (89)

where we denote the fermion creation/annihilation operators
acting on the in and out Hilbert spaces as @[/Za /¥;, and
Wia/ V,.q» respectively. Explicitly, the reference state is given
by

1 .
) =1] ﬁ(w:x + .10, (90)

Note that |€2)) is given as a superposition of states of the form
|nin>i|L - nin)o = |nin)i(c|nin>0) with Nin being the occupation
number for “in” fermions. Consequently, |€2)) is invariant un-
der “vectorial” U(1) rotations generated by exp[if (Q; + QO,)],
while it is not under “axial” U(1) rotations exp[i6(Q; — Q,)]-
Here, Qi/o =), l/fiT/O’al/fi Jo.a 18 the total U(1) charge for the
in/out Hilbert space, and 6 € [0, 27 ]. Alternatively, we could
work with a different reference state |$2)), which is invariant
under axial U(1) but not under vectorial U(1). These two
choices are simply related by particle-hole transformation
You < W;.w We can introduce a modular conjugation oper-
ator J as

Jiad = Vel T ==Y,
J10) = |full) = [ J(w) w00y, Jir™' = —i. (91)

One can easily check |€2)) is invariant under J.

To construct the mapped state |U)) for the shift operator
(76), we note that |U)) is the ground state of the parent Hamil-
tonian

H= =Y " Vour1 + ¥, 41 ¥i). 92)
Explicitly, |U)) is given by
1

wy =[] 72(1/&”1 + ¥ )l0). 93)

Particle-hole transformation (77) can be properly extended
to act on the doubled Hilbert space,

Cy, C' =y, Cy, C'=—yl, ClO)=|ful).

(94)

Note that the parent Hamiltonians are invariant under C,
CHyC~! = Hy, and CHC~' = H, and so are their ground
states. One can check explicitly C|2)) = |2)) and C|U)) =
(—DEHUY, consistent with (87).
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To study the mixed anomaly, we introduce the background
U(1) gauge field via U ¥, U, = ¥, 1€+ and consider
the parent Hamiltonian

HA) = = W Wy €™ + 9] ¥ 7). (95)
The ground state is given by
1 )
w@y =] ﬁw;xﬂeﬂf‘w +yil0). 96

One can then verify (88),

. explicitly
(=DFe AU (—A)).

ClUA) =

C. Example 2: (3+1)d with CP

Let us now discuss the (441)d bulk topological Flo-
quet unitary [61,73] and its (34-1)d boundary. The boundary
unitary has a single Weyl point (or multiple Weyl points
with nonvanishing total chiralities) in its single-particle
quasienergy spectrum. We can discuss CP symmetry, which
leaves the boundary unitary invariant, as seen from CP : k -
o — os(k-0) 0y = —k -0, where P sends r — —r (inver-
sion). The following discussion using CP applies also to CR
symmetry, where R sends x — —x (reflection).

Guided by the 1d case (78), we postulate the anomalous
operator algebra relation with the three-dimensional Chern-
Simons term CS3(A),

(CPYU(A) (CP)™" = WD U (A),

1 1
CS;3(A) = E/d%s,»,kA,»a,Ak = /AdA,
97)

where A = CP - A is given by A;(r) = A;(—r). As before, by
taking the trace and using the operator-state map,

D = NTITr[(CP)U (A)(CP)'U (A)]
= (UA)|(CP)|UA)), (98)

where CP is properly extended so that it acts on the doubled
Hilbert space. In addition, analogously to (80), (97) leads to

Z(z‘}hf}z) — (O (AN=CSs(A)] £ | (99)
Z(A1,Ay)
Here, we note the Chern-Simons term CS3(A) flips
its:  sign under CP, [d’xe;jAi(—1)d;jA(—r) =

— fd3x &ijkA;i(r)d;Ai(r). (This is also the case for CR.)
We note that (97) is consistent with the Schwinger-Keldysh
trace for (4+1)d bulk topological Floquet unitaries (put on a
closed spatial manifold) and their (3+1) boundary unitaries,
which are given, in the long-wave length limit, as [46]

0
Zuik (A1, A2) ~ exp [@ /(dA1dA1 - dAszz)}

i
zwAl,Az)~exp[§/(AldAl —Aszz>]. (100)

While Zbulk(Al , Az)/Zbu“((A] , Az) =1 for the (4+1) bulk Sys-
tems, as inferred from the effective action (100), this naive
relation is violated at the boundary, (99).

Directly confirming (97) along the line of Sec. VIB 1 is
rather difficult, unfortunately. Alternatively, similar to what
we did in Sec. VIB 2, we can use the operator-state map and
compute the overlap (U (A)|(CP)|U (A)Y in (98). In particular,
we numerically check that

(U(@y =27, y)ICPIU (Pyy = 27, 7)) ~ €7 (101)

holds for a lattice implementation of |U)) (see Appendix B
for more details). Here, |U(®,, = 2m, y,))) is the mapped
state in the presence of the unit background magnetic flux
piercing the xy plane ®,, = § F,, = 27 and the Wilson loop
¥. = § A, along z direction. Note that 7, = —y; as a result of
CP transformation. This background gauge field configuration
gives rise to CS3(A) = y;. In the limit y, = &, the quantity
(101) is essentially the same as the Z, many-body topological
invariant for fermionic short-range entangled states protected
by CP (or CR) symmetry in (3+1) dimensions [topological
insulators with symmetry U(1) + CR with (CR)* = 1], intro-
duced in Ref. [71].

D. Comments

Let us close this section with some comments.

First of all, while we focused here on the anomalous
unitaries preserving U(1) in one and three spatial dimen-
sions (with C and CP symmetries, respectively), we expect
that the pattern continues to all higher odd spatial dimen-
sions. The anomalous operator algebras in higher dimensions
signifying a mixed anomaly between U(1l) and a discrete
symmetry involve higher-dimensional Chern-Simons terms,
JAdA---dA. This is analogous to the “primary series” of
topological insulators/superconductors in even (odd) spatial
dimensions that are classified/characterized by an integral
topological invariant and the response Chern-Simons terms (6
terms) [22,47]. For a given spatial dimension, they belong to
one of the ten Altland-Zirnbauer symmetry classes.

There are also topological states that are outside of the pri-
mary series, and are classified by Z, topological invariants—
they are obtained from the topological states in the primary
series by dimensional reduction (called “(first/second) de-
scendants” in Ref. [47]). For anomalous unitaries, we also
expect that there are similar “descendants.” For example, let us
consider unitaries in two spatial dimensions respecting U(1)
and CR symmetries. Following Ref. [71], we can construct the
Z, topological invariant as

(U(Pyy = 27)|CR|U (Pyy = 2)))

= :I:l.
(U (®yy = 0)|CR|U (Py = 0))

(102)

Here, the background gauge field configuration is invariant
under CR. An anomalous unitary for which this topological
invariant is nontrivial should have an even number of Weyl
points in its quasienergy spectrum.

There is a close connection between the -effective
Schwinger-Keldysh functional Z(A1, Ay) = (U(A1)|U (A2))
and the Berry phase 9§ {(UA)|IU(A + dA))). The relations like
(100) can be guessed from (or at least consistent with) the
Berry phase of the short-range entangled state |U(A))). For a
short-range entangled state |U (A))) in the presence of a spatial
background gauge field A, it is known that that the Berry phase
is related to the response effective action [71]. For example,
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for U(k) ~ ¢, the Berry phase is related to the 6 term in the
effective response action,

/ d 19 ULVK
fdAz«U(Anﬂw(A)» = @/dtd%e’ 19,A,0,A;
(103)

with 6 = . specializing to the configuration for which
€ij0;A; (i, j = x,y) is time-independent, but changing A_ adi-
abatically in time, and further discretizing the (adiabatic) time,
A, — A1, — Az, (103) suggests

0
(UADIUAD) ~ 1+ —

472 d’x (A1, — As)eij9iA

(104)

where A, = Ay, = Ay, = (A1, +Ay)/2. This is consistent
with (100). To summarize, we can use the operator-state map
and the Berry phase to “guess” the Schwinger-Keldysh re-
sponse effective action Z(A;, Ay) when A and A, are close
enough.

VII. CONCLUSION

In this paper, we discuss the characterizations of anoma-
lous unitary time-evolution operators, that may be realized
on the boundary of bulk topological Floquet systems. Much
the same way as the boundaries of static topological phases
that can be characterized, detected, and classified by quantum
anomalies, we identified quantum anomalies for boundary
unitaries.

We close by listing a few open questions and interesting
directions to explore. First, while we focused on quantum
anomalies on boundary unitaries, it is interesting to ask if
there is a corresponding bulk topological field theory. This
problem was explored already in Ref. [46] for the case of
background U(1) gauge field. For the case of time-reversal
symmetric boundary unitaries, it is interesting to ask if one
can write down a topological field theory for the KMS gauge
field.

As mentioned in Sec. III B, anomalous boundary unitaries
are characterized by their algebraic relations with symmetry
generators. In the presence of U(1) symmetry, we considered
gauged versions of the anomalous operator algebra in Sec. VI.
Instead of gauging U(1) symmetry, it would be interesting to
consider the Lieb-Schultz-Mattis type twist operator, which
has been useful in various Lieb-Schultz-Mattis type theorems
and can be understood in terms of quantum anomalies.

It is interesting to apply/extend the framework developed
in this paper to other symmetries. For example, in Sec. VI,
we discussed the mixed anomaly between U(1) and discrete
symmetric, C and CP. It would be interesting to discuss mixed
anomalies between U(1) and other discrete symmetries.

It is also interesting to study “exotic” symmetries, such as
OUO~! = U" where O is a unitary operator. The symmetry is
called “many-body spectral reflection symmetry” or “unitary
time-reflection symmetry” [32,74,75]. By combining with
time reversal, we can also consider O'UO'~! = U, where O’
is an antiunitary operator. In the doubled Hilbert space, when
U = OU'07!, the composition of the modular conjugation J
with O is an antiunitary symmetry, OJ|U)) = O|U™)) = |U)).
JO can be gauged, by putting the system on an unoriented

space-time, RPZ. Tt would be interesting to see if the asso-
ciated topological invariant (the partition function on RP?)
is related to the corresponding matrix-product-operator index
discussed in Ref. [32].

Finally, while our focus in this paper is on unitaries with
symmetries, it is interesting to see if one can understand
the chiral unitary index of 1d unitaries, in terms of quantum
anomalies. A natural candidate is a gravitational anomaly.
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APPENDIX A: THE KMS CONDITION
AT FINITE TEMPERATURE

1. Thermofield double states

To introduce the KMS condition at finite temperature, we
first introduce the thermofield double (TFD) states used in
the thermofield dynamics, where a thermal density operator
is mapped to a state (thermofield double state) in the doubled
Hilbert space. For our purpose of studying (boundary) unitary
operators, there is generically no (local) Hamiltonian, and
hence there is no simple finite temperature thermofield double
state. Nevertheless, thermofield double states still serve as a
useful example to introduce and discuss the KMS condition.
In TFD states, states from the first and second Hilbert spaces
are paired up by using energy eigenvalues:

o) = (INZ) Y e BIE)E)*, (Al)

where |E;) is the eigen state of the Hamiltonian H with energy
E;, and |E;)* is the time-reversal partner of |E;), satisfying
(KHK~")|E;)* = E;|E;)*. They evolve in time according to
+ig|Ei() = HIE(1)) and —ig|Ei(0)" = KHK™'|E)*,
respectively.

The TFD state |p¢)) is a purification of the thermal den-
sity matrix p. = (1/Z)e~ ! at inverse temperature 2¢. While
[pe)) is not maximally entangled between the in and out
Hilbert spaces for € > 0, it can be used as a reference state
to invoke the operator-state map. In the context of quan-
tum many-body physics and quantum field theory, the TFD
state is a convenient reference state, which provides a finite
(but small) regularization (cutoff) € > 0. For example, the
state corresponding to the unitary evolution operator U (t) =
exp(—itH) is given by |U.(¢))) = (U(¢) ® I)|pc)). Note that
the state |U,(?))) enjoys the shift property, |U.(t))) = (U(t) ®
Dipe) =T @ KU@)'K™")|pe).

In the context of TFD, the modular conjugation opera-
tor is conventionally called the tilde conjugation [50]. The
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antiunitary modular conjugation operator J satisfies
J2 =1, Jlpe) = o)), JAinJ = Aoutv

where Ay, /Aoy is the operator algebra acting on Hi,/Hou.
Observing that |U,)) is stationary (invariant) under U () ®
KU(@)K~!, we can introduce the modular Hamiltonian by
exp(—itH) =U(t) @ KU@)K™!,

H=HQI-I®KHK '=HQI—-JHI)J,

(A2)

(A3)

which generates a time-translation in the doubled Hilbert
space. The modular Hamiltonian satisfies

Hlp) =0, JHJ=—H, A"Apoud = Anjou-
(A4)

where A = exp(—BH) is the modular operator.

2. The KMS condition

Let us now review the KMS condition at finite temperature.
It is the statement characterizing states (density matrices), and
it reads

(AB(1))g = (B(t — iB)A)p

for any two operators A and B, where B(t) := ¢"" Be and
(++)p :="Tr(---ePH)/Tr (e P7).” The KMS condition can
be rephrased in the language of thermofield dynamics [50];
the KMS condition is nothing but the statement

JA20lpg) = O'lpga)), O € Aour.

To see the connection, we start from the TFD representation of
the correlator, (AB(1))g = ((pg/2|AB(t)|pg2)) (Where on the
RHS we write A=A ® I, B(t) = B(t) ® I by abusing nota-
tion). Using (A6),

(AB(t))g = (JA2Alpg o)), JA2BT (1) g2 )
= (A'2Alpga)), APBT () pg o))
= (pp2IBOIAY* - AP A pg ),

where we use (%, *) to represent the inner product in the
doubled Hilbert space, and noted that J is antiunitary. Since
log2) = A™'2|pg)n)), we conclude the KMS condition:

(A5)

—itH
5

(A6)

(A7)

(AB(t))5 = (gl ATPAT2B()AAlpg o)

= (pp2| AT'B(t)AA|pg )
— (B(t — iB)A) .

The point is that the modular conjugation operator J ef-
fectively implements the cyclic property of the trace, without
relying on the finite dimensionality of the Hilbert space. In
the main text, what corresponds to (A6) is (9), J|U)) = |UTY),
where the temperature is infinity. At infinite temperature, the

(A8)

7For a finite-dimensional Hilbert space, the KMS condition follows
simply from the cyclic property of the trace, Tr(e ## Ae" Be="H) =
Tr(e PH e!—iHH Be=it=iFH A)  However, the KMS condition holds
beyond the finite Hilbert space setting. Note that the expression using
the trace is meaningful only when operators such as the density
matrix e #¥ belong to the trace class.

Schwinger-Keldysh trace satisfies Tr [UTV] = Tr [VUT] for
two unitary operators U and V, which is just the cyclicity of
the trace. In the state language, this follows from the existence
of modular conjugation operator. Following (A7) with 8 = 0,

Luivy = gutiay, avii))
N b

= @), vien

. . 1 .
= (V'[Q), U'Q)) = NTI[VU']-

The KMS condition also follows from the shift property:
we note that the inner product (U|V)) = N~! Zi,j i) ®
K|i), V|j) ® K|j)) = N~'Tr [UTV] can be computed by first
using the shift property of |Q2)):

(A9)

1
(UIV) = 57 2D @ (UK @ KV'1))
ij
1 +
= 7 2 (KU1 KV i)

N (A10)

1 ) ) 1 +
=57 2V Ul = STV,
Thus the shift property implies/is consistent with the cyclicity
of the trace: Tr [UTV] = Tr [VUT].

APPENDIX B: NUMERICAL VERIFICATION OF
MANY-BODY TOPOLOGICAL INVARIANT IN EQ. (101)

In this Appendix, we consider a lattice Hamiltonian in the
doubled Hilbert space and numerically show that the relation
(101) holds.

Recall that the shift operator as a boundary unitary of (2 +
1)d Floquet topological is given by Eq. (76). The correspond-
ing transformation in momentum space is then Uy U~ =
e* ., where Y, = > e~ Thus the (3 + 1)d generaliza-
tion of this boundary unitary becomes

UpU™" = ™7y, (BI)

where Y is a two-component fermionic field. Our system is
furnished with a CR symmetry which acts as

(CRYY(r)(CR)™" = ¢ (Rr),

where Rr = (x, —y, z) involves a reflection with respect to xz
plane. The corresponding transformation in momentum space
reads as

(B2)

(CRY(CR) ' =y .

where —Rk = (—k,, ky, —k;). It is easy to check that the uni-
tary (B1) is invariant under CR.

To construct the mapped state |U)) we use the reference
state (90) which is the ground state of the Hamiltonian (89).
Hence, the state |U)) can be obtained as the ground state of
the following Hamiltonian:

B 0 e—ik-a
H= _Z\pk<eik"7 0 )xyk,
k

(B3)

(B4)
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where \Ill; = (lplk, wzk). The proper CR transformations in
the doubled Hilbert space are given by

(CRW,, (CRY =y .
(CRY,, (CRY™ = =) 40
(CR)|0) = | full).

In order to calculate the quantity (101), we need to find
the ground state in the presence of magnetic field in xy plane
and twisted boundary condition in z direction. This requires
a real-space implementation of the Hamiltonian. It is more
convenient to consider the following Hamiltonian on a cubic
lattice

(B5)

Ha= 5 3 (W0 %) — )W) + el
s = Ir 2,3
+my WEpYr), (B6)

which shares the same low-energy Hamiltonian as that of
Eq. (B4). Here, the Dirac matrices are given by

0 —io,
U :Ty®Us = <l'0"\- (l)U.)’

0 I
ﬂsz®I=<I 0)7

where 7 acts on in/out degrees of freedom and o acts on the
inner degrees of freedom.

For simplicity, we set + = r = 1. Furthermore, the lattice
Hamiltonian is also invariant under CR symmetry defined in
Eq. (B5). We should note that the ground state of the lattice
Hamiltonian with a mass term in the range 1 < |m| < 3 is
topologically equivalent to the mapped unitary |U)).

To compute the ground state |GS(®,, = 27, y;)), we mod-
ify the hopping terms in the lattice Hamiltonian (B6), which
we call Hiy(®,, = 27, y;), as follows. A simple way to pre-
pare a 2w magnetic flux with uniform magnetic field is to set

(B7)

(B8)

2y

A(x,y) = _IT’
x by

=1...,L,—1)

0 =L B9

0
Ay(x,y) = {h_x
L.’(

(a) : Tom=2 (b) 1 nxm'ryrmnr,ﬂ'ﬁ
—=—m=2.5
—s—m=4
15 0.8
- ~
i 7 o0 0.6
ST ) 5
20 7 n
< / = g 0.4
0.5 / 0
0f % 0 O —
o0 0 1S 2 2 25 3 35 4
7z/7r m

FIG. 1. Manybody topological invariant for CR-symmetric (3 4
1)d boundary unitary (Sec. VIC). The invariant was computed via
(B11) for the ground state of the lattice Hamiltonian (B6) in the dou-
bled Hilbert space. The topological phase of the lattice Hamiltonian
(i.e., when 2 < m < 3) is topologically equivalent to |U)).

where Ly, L, are the number of sites. This gauge configuration
leads to a uniform magnetic flux F'(x,y) = A,(x,y) +A,(x +
Ly)—Ay(x,y +1) — Ay(x,y) = 27 /(LcLy) inserted per unit
cell. The twisted boundary condition in z direction is imple-
mented as usual via multiplying the hopping amplitudes by a
phase factor. It is important to note that the quantity (101) is
well-defined since under CR symmetry we have
(CR) |H1att (d>xyv Vz)(CR)_l = [Hlatt((bxys _Vz)~ (B]O)
Figure 1(a) shows how the argument of the following
quantity

T(yz) = (GS(CDA} =2m, Vz)|CR|GS(Cbxy =2m, _Vz))a
(B11)

varies as a function of y,. We plotted two values for the mass
term in the topological phase and one in the trivial phase.
It is evident that in the former case arg 7 = y, while in the
latter arg7 = 0. We further check that the linear behavior
arg7 = y; is valid within the topological phase (away from
the transition point m = 3 where finite-size effects dominate)
in Fig. 1(b). Given the topological equivalence between the
topological phase of Hy,, and the ground state of H, we deduce
Eq. (101).
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