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Abstract—Local differential privacy is a widely studied re-
striction on distributed algorithms that collect aggregates about
sensitive user data, and is now deployed in several large systems.
We initiate a systematic study of a fundamental limitation of
locally differentially private protocols: they are highly vulner-
able to adversarial manipulation. While any algorithm can be
manipulated by adversaries who lie about their inputs, we show
that any noninteractive locally differentially private protocol can
be manipulated to a much greater extent—when the privacy
level is high, or the domain size is large, a small fraction of
users in the protocol can completely obscure the distribution of
the honest users’ input. We also construct protocols that are
optimally robust to manipulation for a variety of common tasks
in local differential privacy. Finally, we give simple experiments
validating our theoretical results, and demonstrating that proto-
cols that are optimal without manipulation can have dramatically
different levels of robustness to manipulation. Our results suggest
caution when deploying local differential privacy and reinforce
the importance of efficient cryptographic techniques for the dis-
tributed emulation of centrally differentially private mechanisms.

I. INTRODUCTION

Many companies rely on aggregates and models computed
on sensitive user data. The past few years have seen a wave of
deployments of systems for collecting sensitive user data via
local differential privacy [1], notably Google’s RAPPOR [2]
and Apple’s deployment in iOS [3]. These protocols satisfy
differential privacy [4], a widely studied restriction that limits
the information leaked due to any one user’s presence in the
data. Furthermore, the privacy guarantee is enforced locally,
by a user’s device, without reliance on the correctness of other
parts of the system. See Figure 1 for a diagram.

Local differential privacy is attractive for deployments for
several reasons. The trust assumptions are relatively weak and
easily explainable to novice users. In contrast to centralized
differential privacy, the data collector never collects raw data,
reducing the legal, ethical, and technical burden of safeguarding
the data. Moreover, local protocols are typically simple and
highly efficient in terms of communication and computation.

Despite these benefits, local protocols have significant
limitations when compared to private algorithms in the central
model, in which data are collected and processed by a trusted
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Fig. 1: The structure of a (noninteractive) local protocol.

curator. The most discussed limitation is larger error for the
same level of privacy (e.g., [4, 5, 6]). In this paper, we initiate
a systematic study of a different limitation that we show to be
equally fundamental:

Locally differentially private protocols
are highly vulnerable to manipulation.

While any algorithm can be manipulated by users who lie
about their data, we demonstrate that local algorithms can be
manipulated to a far greater extent. As the level of privacy or
the size of the input domain increase, an adversary who corrupts
a vanishing fraction of the users can effectively prevent the
protocol from collecting any useful information about the data
of the honest users. This result can be interpreted as showing
that local differential privacy opens up new, more powerful
avenues for poisoning attacks—poisoning the private messages
can be far more destructive than poisoning the data itself.

Various attackers might be able to exploit this vulnerability to
manipulation for nefarious purposes. In particular, if a company
is using locally differentially private protocols to collect user
data that it then uses to improve its product, then its rivals
would have an incentive to exploit these vulnerabilities to
gain a competitive edge. If the goal is distribution estimation,
our work implies that the rival only needs to corrupt a small
fraction of users to highly skew the estimate in statistical
distance. Furthermore, we find a setting where estimates can
be vulnerable to a small number of corruptions.

Prior work had already noted that a specific protocol—
Warner’s randomized response [7]—is vulnerable to manipu-
lation [8, 9]. A concurrent and independent work [10] gives
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an empirical study the effectiveness of natural manipulation
attacks against common protocols. In contrast, we show
that manipulation is unavoidable for any noninteractive local
protocol that solves any one of a few basic problems to
sufficiently high accuracy, and systematically identify the
optimal degree of manipulation for each problem. These
problems capture computing means and histograms, identifying
heavy-hitters, and estimating the distribution of users’ data. In
particular, our work is the first to identify the domain size as a
key factor in determining how vulnerable local protocols must
be to manipulation. We also give simple experiments validating
our theoretical findings. In addition, these experiments show
that two protocols that have exactly identical error absent
manipulation can nonetheless have dramatically different
performance in the presence of manipulation.

Our results suggest caution when deploying locally differen-
tially private protocols: the architecture is inherently vulnerable
to manipulation. One way to remedy this is to introduce some
mechanism that enforces the correctness of users’ randomiza-
tion, such as physical constraints or an interactivity requirement
[9, 8]. Our work also reinforces the importance of efficient
cryptographic techniques that emulate central-model algorithms
in a distributed setting, such as multiparty computation [11]
or shuffling [12, 13]. Such protocols already have significant
accuracy benefits, and our results highlight their much greater
resilience to manipulation.

A. Why are Local Protocols Vulnerable to Manipulation?

Intuitively, because local differential privacy requires that
each user’s message is almost independent of their data, large
changes in the users’ data induce only small changes in the
distribution of the messages. As a result, the aggregator must
be highly sensitive to small changes in the distribution of
messages. That is, an adversary who can cause small changes
in the distribution of messages can make the messages appear
as if they came from users with very different data, forcing
the aggregator to change its output dramatically.

We can see how this occurs using the classic randomized
response protocol. Here, each user’s has data xi ∈ {±1} and
the objective is to estimate the mean 1

n

∑n
i=1 xi. For roughly

2ε-local differential privacy, each user outputs

yi =

{
xi with probability 1+ε

2

−xi with probability 1−ε
2

so that E[yi] = εxi. The aggregator computes an unbiased
estimate of the mean by returning 1

n

∑n
i=1

yi
ε .

In order to extract the relatively weak signal and make the
estimate unbiased, the aggregator scales up each message yi by
a factor of 1

ε , which increases the influence of each message.
This means that an adversary who can flip m of the messages
yi from −1 to +1 will increase the aggregator’s output by 2m

εn .
A simple consequence of our work is that any noninteractive
LDP protocol for computing the average of bits is similarly
vulnerable to manipulation.

B. Frequency Estimation: A Representative Example

We can more fully illustrate our work results through the
example of frequency estimation. Consider a protocol whose
goal is to collect the frequency of words typed by users on
their keyboard. We assume that there are n users, and each
user contributes only a single word to the dataset, so each
user’s word is an element of [d] = {1, . . . , d} where d is the
size of the dictionary. The goal of the protocol to estimate the
vector consisting of the frequency of each word as accurately
as possible. In this example, we measure accuracy in the `1
norm (or, equivalently, in statistical distance or total variation
distance): if v ∈ Rd is the frequency vector whose entries
vj are the fraction of users whose data takes the value j,
and v̂ is the estimated frequency vector, then the error is
‖v − v̂‖1 =

∑d
j=1 |vj − v̂j |.

Baseline Attacks. In order for the attack to be a concern, the
adversary has to be able to introduce more error than what
would otherwise exist in the protocol, and the attack should
be specific to local differential privacy. In particular, we say
the attack is nontrivial if it introduces more error than the
following trivial baselines:

No Manipulation. The adversary could choose not to
manipulate the messages at all, in which case the protocol
will still incur some error due to the fact that it must ensure
local differential privacy. For example, it is known that an
optimal ε-differentially private local protocol for frequency
estimation introduces error ≈

√
d2/ε2n [14].

Input Manipulation. The adversary could have the corrupted
users change only their inputs. That is, the corrupted users
could honestly carry out the protocol as if their data were some
arbitrary x′i instead of xi (see Figure 2). Since the corrupted
users control an m/n fraction of the data, they can skew the
overall distribution by m/n. This attack applies to any protocol,
private or not.

R(x'1)User 1 y1

R(x'2)User 2 y2

xn R(xn)User n yn

...

Adversary

M

x'1

x'2

Fig. 2: An input-manipulation attack.

These baselines make sense in the context of any task, and
we will use the bounds for these baselines to calibrate the
effectiveness of attacks for other problems (not just frequency
estimation) in the next section.

Our Work: Manipulation Attacks. We consider a general attack
model where the adversary is able to corrupt a set of m
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out of the n users’ devices, and can instruct these users to
send arbitrary messages, possibly in a coordinated fashion; we
visualize this model in Figure 3. The corruptions are unknown
to the aggregator running the protocol to prevent the aggregator
from ignoring the messages of the corrupted users. In this, and
all of our examples, the adversary’s goal is to make the error
as large as possible—exactly opposite to goal of the protocol.

In Section IV, we describe and analyze an attack that skews
the overall distribution by ≈ m

√
d

εn , for any noninteractive ε-
differentially private local protocol. This attack introduces much
larger error—by about a

√
d
ε factor—than input manipulation,

and thus shows specifically that locally private protocols are
highly vulnerable to manipulation. We also show our attack is
near-optimal by giving a protocol that achieves optimal error
in the absence of manipulation and cannot be manipulated by
more than ≈ m

√
d

εn .
For comparison, an adversary of a centrally private algorithm

is limited to input manipulation. This is because each user
communicates their data noiselessly: in the mean estimation
example, the aggregator has no need to increase the influence
of each user. Additionally, techniques that simulate centrally
private algorithms in a distributed setting such as multiparty
computation and shuffling can inherit this resilience.

x1User 1 y1

x2User 2 y2

xn R(xn)User n yn

...

Adversary

M

Fig. 3: A general manipulation attack.

Measuring the Effectiveness of Attacks. In this work we
establish tight upper and lower bounds on the error introduced
by manipulation in terms of the parameters n,m, ε, and d.
To reduce the number of parameters, and facilitate easier
comparisons to the baseline attacks, we have identified two
key thresholds that we can use to understand the effectiveness
of manipulation attacks for a given task.

The first is what we call the breakdown point, which is
the minimum fraction of users at which the protocol can no
longer guarantee non-trivial accuracy. For all problems we
consider, the accuracy is non-trivial if it is smaller than some
fixed constant (where the choice of constant will not affect the
asymptotic bounds). Our attack demonstrates that, for frequency
estimation, the breakdown point is roughly ε√

d
. That is, that

this number of corrupted users can skew the distribution by
Ω(1) in `1 norm, while any two frequency vectors have `1
distance at most 2. Thus, when ε is small or d is large, an
attacker controlling a vanishing fraction of the users can prevent
the protocol from achieving any nontrivial accuracy guarantee.

The second threshold is what we call the significance point,
which is the minimum fraction of users that can increase the
error significantly beyond the error necessary to solve the
problem absent manipulation. That is, the corrupted users can
introduce error on the same order as the error of an optimal
protocol with no manipulation. For the frequency estimation
problem, the optimal error absent manipulation is

√
d2/ε2n,

and thus the significance point is
√
d/n.

C. Summary of Results: Lower Bounds

In this work, we construct two manipulation attacks on
locally differentially private protocols, and use these attacks to
derive lower bounds on the degree of manipulation allowed by
local protocols for a variety of tasks (including the frequency
estimation example above). We also study the resilience of
specific protocols to manipulation. For each problem, we give
a protocol that is asymptotically optimal with respect to both
ordinary accuracy (i.e., without manipulation) and resilience
to manipulation. We also show that popular protocols for most
tasks are much less resistant to manipulation than optimal ones.

Below, we first discuss the attacks informally, and then
discuss the set of problems to which they apply. We defer
details of the attack model to Section II-B. Our results are
summarized in Table I.

An Attack for Binary Data. Our first attack concerns the simplest
problem in local differential privacy—computing a mean of
bits. Each user has data xi ∈ {0, 1}, and we assume that
each xi is drawn independently from the Bernoulli distribution
Ber(p), meaning xi = 1 with probability p and xi = 0 with
probability 1 − p. Our goal is to estimate the mean p as
accurately as possible. More generally, we could allow the
users to have arbitrary data x1, . . . , xn ∈ {0, 1} and try to
estimate 1

n

∑n
i=1 xi. For the purposes of attacks, considering

the distributional version only makes our results stronger.
Without manipulation, this problem is solved by the classical

randomized response protocol [7], which achieves optimal error
Θ( 1

ε
√
n

). As we discussed in the introduction, one can show
that the error of randomized response increases to Θ( 1

ε
√
n

+ m
εn )

when an adversary corrupts m of the users. We show that no
protocol can improve this bound.

Theorem I.1 (Informal). For every ε-differentially private local
protocol Π for n users with input domain {0, 1}, there is an
attack M corrupting m users such that Π cannot distinguish
between the following cases:

1) The data is drawn from Ber(p0) for p0 = 1
2 and Π has

been manipulated by M .
2) The data is drawn from Ber(p1), p1 and Π has not been

manipulated where

p1 − p0 = eε+1
eε−1 ·

m
2n = Θ

(
m
εn

)
This theorem—combined with existing lower bounds for

locally differentially private estimation—shows that, when the
data is drawn from Ber(p) for unknown p, no protocol Π can
estimate p and guarantee accuracy better than Θ( 1

ε
√
n

+ m
εn ).
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As an immediate consequence, when the data x1, . . . , xn ∈
{0, 1} may be arbitrary, no protocol Π can estimate the mean
1
n

∑
i xi with significantly better accuracy. Concretely, the

eε+1
eε−1 ·

m
2n error due to manipulation is within a factor of 4 of

the upper bound that can be proved for randomized response.
We have not attempted to optimize this constant factor, and we
would conjecture that randomized response has exactly optimal
robustness to manipulation.

Attacks for Large Domains. Since estimating the mean of
bits is a special case of most problem studied in the local
model, this attack already shows that manipulation can cause
additional error of Ω(mεn ) for many problems. In some cases,
this bound is already near-optimal, and some protocol achieves
a similar upper bound. However, for many cases of interest
(such as the frequency estimation example), protocols become
more vulnerable to manipulation when the size of the input
domain increases. Our second result is an attack on any protocol
accepting inputs from the domain [d] = {1, . . . , d} for large
d, showing that manipulation can skew the distribution by
Ω̃(m

√
d

εn ) without being detected.

Theorem I.2 (Informal). For every ε-differentially private local
protocol Π for n users with input domain [d], there is an attack
M corrupting m users such that Π cannot distinguish between
the following cases:

1) The data is drawn from the uniform distribution U over
[d] and M manipulates Π.

2) The data is drawn from some distribution P over [d] with
‖U−P‖1 = Θ( 1

ε

√
d

logn ( 1√
n

+ m
n )) and Π has not been

manipulated.
For a large class of natural protocols, the bound on ‖U−P‖1
can be sharpened to Θ(

√
d
ε ( 1√

n
+ m

n )).

A consequence of this attack for the example of frequency
estimation above is that any local protocol can have the
distribution skewed by Ω̃(m

√
d

εn ). As we show in Section V,
this bound is actually matched by a simple protocol. In order
to simplify the proof and obtain a statement that applies to
arbitrary protocols, we do not optimize the constant factors
hidden by the Θ(·) notation. However, we do give proof-of-
concept experiments in Section VI showing the concrete effect
of our attack on a widely studied frequency estimation protocol.

D. Summary of Results: Optimal Protocols

We consider a variety of tasks of interest in local differential
privacy. For each, we show that one of the attacks above gives
an optimal bound on the vulnerability of protocols for that
task. The results are summarized in Table I.

Most tasks we consider can be formulated as instances of
the following `p/`q-mean estimation problem for vectors in
Rd. Each user’s data xi is a vector in Rd such that the `p-norm
of each data point is bounded, ‖xi‖p ≤ 1. The protocol’s goal
is to output an estimate of the mean µ̂ with low error in the
`q-norm, ‖µ̂ − 1

n

∑n
i=1 xi‖q. Recall that ‖v‖p = (

∑
i v
p
i )1/p

and ‖v‖∞ = maxi |vi|. This setup captures a number of widely
studied problems:

• The frequency estimation example above is a special case
of `1/`1 estimation, where each user represents their word
xi ∈ [d] by the standard basis vector exi ∈ Rd with a 1
in the xi-th coordinate and 0 elsewhere.

• Computing a histogram of data in [d] is a special case of
`1/`∞-mean estimation. The heavy-hitters (HH) problem,
which asks one only to identify the heaviest bins of a
histogram and their frequencies, suffices to solve `1/`∞-
mean estimation, so manipulation attacks on the latter thus
imply attacks on the former. Computing heavy-hitters has
been a focus of the past few years [18, 16, 19, 20], and it
is central to systems deployed by Google and Apple [2, 3].

• Computing the answers to d statistical queries [21, 22, 5] is
a special case of `∞/`∞-mean estimation. Users have data
in some arbitrary domain X , there are d query functions
f1, . . . , fd : X → [−1, 1], and we would like an accurate
estimate of

∑n
i=1 fj(xi) for every j. In the corresponding

mean estimation instance, xi = (f1(xi), . . . , fd(xi)).
• When minimizing a sum of convex functions f(θ) =∑n

i=1 fxi
(θ) defined by the users’ data (e.g. to train a

machine learning model), one often computes the average
gradient

∑n
i=1∇fxi

(θt) at a sequence of points θt. Typi-
cally one assumes that the gradients are bounded in `2, and
convergence requires an accurate estimate in `2, making
this an instance of `2/`2-mean estimation. (More generally,
optimization requires this sort of estimation [23]).

• We study one further problem, `1/`1-uniformity testing,
for which Acharya et al. [15] gave optimal LDP protocols.
Assuming the data is drawn from some distribution over
[d], we want to determine if this distribution is either
uniform or is far from uniform in `1 distance.

Since every `p/`q mean estimation problem generalizes
binary mean estimation (the special case where d = 1), our
first attack gives a lower bound on all of these problems.
Our second attack is precisely an attack on the `1/`1-testing
problem, and thus implies a lower bound of Ω̃(m

√
d

εn ) for that
problem. Finally, since `1/`1-mean estimation problem strictly
generalizes `1/`1-testing problem—once we estimate the mean,
we can determine if it is close to uniform or far from uniform—
we obtain the same lower bound for that problem.

For all of these problems we also identify and analyze
protocols whose error nearly matches the lower bounds
established by our attacks. These protocols generally use the
public-coin model to compress each player’s report to a single
bit, thus reducing their influence.

E. Overview of Techniques

Attack for Binary Data. Our argument boils down to proving the
following claim: for every ε-differentially private local protocol,
there is some attacker who corrupts each user independently
with probability m

n in such a way that data drawn from Rad(0)
appears as if it were drawn from ≈ Rad(mεn ). To show this, we
rely on a lemma from Kairouz et al. [24], which implies that for
any ε-differentially private local randomizer R, the distribution
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Problem No Manipulation Manipulation UB Manipulation LB Breakdown Point Significance Point

`1/`1 Estimation Θ(
√

d2

ε2n
) Õ(m

n
·
√
d
ε

) Ω(m
n

·
√
d

ε
√
logn

) [
O

(
ε
√

logn
d

)
[ O

(√
d logn
n

)
[

(Frequency Estimation) [14] Thm V.7 Thm IV.9

`1/`1 Testing Θ(
√

d
ε2n

) O(m
n

·
√
d
ε

) Ω(m
n

·
√
d

ε
√
logn

) [
O

(
ε
√

logn
d

)
[ O

(√
logn
n

)
[

(Uniformity Testing) [15] Thm V.9 Thm IV.8

`1/`∞ Estimation Θ(
√

log d
ε2n

) O(m
n

· log d
ε

) Ω(m
n

· 1
ε

)
O(ε) O

(√
log d
n

)
(Histograms / HH) [16] Thm B.1 Thm III.4

`∞/`∞ Estimation Θ(
√
d log d
ε2n

) O(m
n

· 1
ε

) ] Ω(m
n

· 1
ε

)
O(ε) O

(√
d log d
n

)
(d Statistical Queries) [Folklore] Thm V.2 Thm III.4

`2/`2 Estimation Θ(
√

d
ε2n

) Õ(m
n

· 1
ε
) Ω(m

n
· 1
ε

)
O(ε) O

(√
d
n

)
(Gradients) [17] Thm V.8 Thm III.4

TABLE I: Summary of Results. In each case, [No Manipulation] is the optimal error achievable under local differential privacy
without manipulation. For each problem, we identify some protocol that has optimal error without manipulation such that
manipulation can increase the error by [Manipulation UB] and show that manipulation can make the error of any local protocol
as large as [Manipulation LB]. In each case, no protocol can guarantee nontrivial accuracy in the presence of [Breakdown
Point] corrupted users, and the error can be asymptotically increased in the presence of [Significance Point] corrupted users. ]
indicates that the upper bound limited to public-string-oblivious attacks. [ indicates that the

√
log n factor can be removed for a

natural class of protocols. In all cases, input-manipulation influences the output by m
n , and we present the upper and lower

bounds as multiples of that baseline.

R(Rad(µ)) is exactly a mixture R(µ) of two distributions R+

and R−, and

R(µ) ≈ 1+εµ
2 ·R+ + 1−εµ

2 ·R−.

Since the data and messages are independent and identically
distributed (iid), the messages consist of n iid samples from
R(µ). If µ = 0, but an attacker corrupts each user independently
with probability m

n , and has the corrupted users send a message
sampled from R+, then the messages remain independent and
consist of n messages sampled from R(µ) for µ = m

εn , exactly
the same if there were no corruptions but µ = m

εn . Since the
aggregator cannot distinguish these two identical distributions,
it must have error at least ≈ m

2εn on one of them. Some
technicalities arise in the proof because (1) the attacker has a
fixed budget of m corruptions that might be exceeded when
corrupting each user independently, and (2) the local randomizer
might only satisfy (ε, δ)-differential privacy, and thus might
have a slightly more complex structure.

Attack for High-Dimensional Data. For high-dimensional data,
we can show the existence of a distribution R+ that has an even
more extreme effect on the overall distribution of messages
than in the binary case. For any distribution S on the domain
{1, . . . , d}, let R(S) be the distribution on messages R(S). Let
U be the uniform distribution on the domain. We show (roughly)
that for every ε-differentially private local rnadomizer R, there
is some distribution S supported on d/2 domain elements, such
that R(U) and R(S) are only ε/

√
d apart, and there exists an

extreme distribution R+ ≈ R(U) + 1
ε (R(S) −R(U)). Thus, if

we corrupt only about an ε/
√
d fraction of users, we can make

messages from R(U) look like messages from R(S). Since S
and U have distnace at least 1/2, corrupting about an ε/

√
d

fraction of users is enough to make the error at least 1/2. With
some rescaling we can prove the bound that we claim for an
arbitrary number of corruptions. For technical reasons, our

formal proof works by a reduction to the binary attack, in
which we argue that any ε-differentially private protocol for
frequency estimation can be used to get a protocol for binary
estimation that is approx (ε/

√
d)-differentially private.

Optimally Robust Protocols. All of the optimally robust
protocols we present have already appeared in the literature,
but had not been analyzed with respect to manipulation attacks.
However, not all protocols with optimal accuracy without
manipulation have optimal robustness to manipulation. In
particular, the protocols that we show are optimally robust use
the public-coin model to reduce the amount of communication
per user down to a single bit (see e.g. [5, 16]), and thereby
dramatically decreases the space of possible manipulation.

F. Related Work
Manipulation Attacks. Prior work had already observed that
the specific randomized response protocol was vulnerable to
manipulation [8, 9]. In contrast to ours, these works constructed
efficient cryptographic protocols for sampling from the correct
distribution, which resist our attacks. Our work shows that some
degree of cryptography is necessary to avoid manipulation. A
concurrent and independent work [10] performed an empirical
study of simple manipulation attacks on common protocols for
tasks like frequency estimation and heavy-hitters. In contrast
to ours, their work does not prove any inherent limitations on
the robustness of local protocols to manipulation, nor does it
establish the crucial role that the domain size plays.

Our work is loosely related to data poisoning attacks in
adversarial machine learning. In data poisoning, the adversary
is inserts additional data to somehow degrade the quality of the
output. Our attacks can be viewed as data poisoning attacks
where the “data” being poisoned is actually the messages to
the protocol. Thus, our results can be viewed as showing
that adding local randomization to achieve privacy makes the
protocol much more vulnerable to data poisoning.
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Cryptographic Approaches. Our work reinforces the im-
portance of efficient cryptographic techniques that emulate
central-model algorithms in a distributed setting. Multiparty
computation (MPC) allows a network of parties to jointly
execute a randomized algorithm on encrypted or secret-shared
data while exposing only the final result of the computation.
The value of simulating a differentially private computation
was first highlighted in [11, 6]. Briefly, the MPC approach
gets the accuracy of the central model, and limits attackers
to input manipulation, which is unavoidable without some
outside certification of inputs. The downside of this approach
is computational efficiency. Despite recent advances in practical
MPC, applications like collecting information about mobile
data usage place extreme demands on protocols that make
current solutions difficult to use. To our knowledge, known
MPC protocols either scale poorly to large networks, assume
an honest-but-curious server (e.g., [25]), or leak extra, hard-to-
reason-about intermediate results from a computation. Although
the MPC literature is too vast to survey here, we refer the
reader to a recent survey of the issues that arise in federated
learning for a [26] more thorough discussion of these issues.

One recent approach asks whether we can reduce important
differentialy private algorithms to some simple primitive which
is easier to implement in MPC. For example, the shuffled
model [12, 13, 27] assumes the availability of a trusted shuffling
primitive, which anonymizes the origin of the messages by
applying a secret permutation before delivering them to the
aggregator. That model allows accuracy close to that of the
central model for several tasks but leaves open just how well
the shuffler can be implemented by a real protocol. On the
other hand, shuffled protocols for histograms are more resilient
than counterparts in the local model. [13], for example, give a
protocol where the influence of each message is scaled by a
factor close to 1 instead of 1

ε as in the local model.
Finally, cryptographic protocols can be used in a much

narrower and potentially scalable way to ensure that local-
model protocols are carried out without manipulation (see
[8] for a protocol tailored to binary randomized response).
These require some interaction between clients and the server
and retain the accuracy limitations of the local model, but
can constrain the client to simple input manipulation. Specific
physical devices, such as carefully generated scratch cards,
can also provide such a guarantee [9]. Current techniques for
efficient MPC should suffice for wider use of such protocols.

G. Organization

In Section II we introduce the model and key concepts. In
Section III, we demonstrate attacks on protocols for binary
data, and in Section IV, we demonstrate attacks on protocols
for large data domains. In Section V we identify protocols
with near-optimal resistance to manipulation for a variety of
canonical problems in local differential privacy. In Section VI
we present our experiments with our attack on natural protocols
for frequency estimation.

II. THREAT MODEL AND PRELIMINARIES

A. Local Differential Privacy

In this model there are n users, and each user i ∈ [n] holds
some sensitive data xi ∈ X belonging to some data universe
X . There is also a public random string S. Finally there is a
single aggregator who would like to compute some function
of the users’ data x1, . . . , xn. In this work, for simplicity, we
restrict attention to non-interactive local differential privacy,
meaning the users and the aggregator engage in the following
type of protocol:

1) A public random string S is chosen from some distribution
S over support S.

2) Each user computes a message yi ← Ri(xi, b) using a
local randomizer Ri : X × S → Y .

3) The aggregator A : Yn × S → Z computes some output
z ← A(y1, . . . , yn, S).

Thus the protocol Π consists of the tuple Π =
((R1, . . . , Rn), A,S). We will sometimes write ~R to denote the
local randomizers (R1, . . . , Rn). If R1 = · · · = Rn = R then
we say the protocol is symmetric and denote it Π = (R,A,S).

Given user data ~x ∈ Xn we will write Π(~x) to denote the
distribution of the protocol’s output when the users’ data is ~x,
and ~R(~x) denotes the distribution of the protocol’s messages.
Given a distribution P over X , we will write Π(P) and ~R(P)
to denote the resulting distributions when ~x consists of n
independent samples from P.

Informally, we say that the protocol satisfies local differential
privacy [1, 4, 5] if the local randomizers depend only very
weakly on their inputs. Formally,

Definition II.1 (Local DP [1, 4, 5]). A protocol Π =
((R1, . . . , Rn), A,S) satisfies (ε, δ)-local differential privacy
if for every i ∈ [n], every x, x′ ∈ X , every S ∈ S and every
Y ⊆ Y ,

P
Ri

[Ri(x, S) ∈ Y ] ≤ eε · P
Ri

[Ri(x
′, S) ∈ Y ] + δ

where we stress that the randomness is only over the coins of
Ri. If δ = 0, we simply write ε-local differential privacy.

B. Threat Model: Manipulation Attacks

We capture manipulation attacks via a game involving a
protocol Π = (~R,A,S), a vector ~x of n data values, and an
adversary M . We parameterize the game by the number of
users n and the number of corrupted users m ≤ n, written as
Manipm,n; when clear from context, the subscript is omitted.
The crux of the game is that the adversary corrupts a set C of
at most m users, then the users are assigned data ~x, and then
either play honestly by sending the message yi = Ri(xi, b) or
they manipulate by playing some arbitrary message chosen by
the adversary. Figure 3 presents the structure of an attack in
the case where C = {1, 2}.

The game is described in Figure 4, including a possible
restriction on the attacker. We use Manipm,n(Π, ~x,M) to
denote the distribution on outputs of the protocol on data
~x and messages manipulated by M , and Manipm,n(~R, ~x,M)
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to denote the distribution of messages in the protocol. Given a
distribution P over X , we will use Manipm,n(Π,P,M) and
Manipm,n(~R,P,M) to denote the resulting distributions when
~x consists of n independent samples from P.

Parameters: 0 ≤ m ≤ n.
Elements: A protocol Π = (~R,A,S) for n users, a vector
of data ~x, an attacker M .

1) Each user i is given data xi.
2) The public string S ∼ S is sampled.
3) The attacker M chooses a set of corrupted users

C ⊆ [n] of size ≤ m.
If the corruptions are independent of the public
string S then they are public-string-oblivious, and
otherwise they are public-string-adaptive.

4) The attacker M chooses a set of messages {yi}i∈S
for the corrupted users.

5) The non-corrupted users i 6∈ C choose messages
yi ∼ Ri(xi, b) honestly.

6) The aggregator returns z ← A(y1, . . . , yn, b).

Fig. 4: Manipulation Game Manipm,n

C. Notational Conventions

Throughout, boldface roman letters indicate distributions
(e.g. P). Vectors are denoted ~v = (v1, v2, . . . ). We write [n]
to denote the set {1, . . . , n}.

We use Rad(µ) to denote the distribution over {±1} with
mean µ, so that P[Rad(µ) = +1] = 1+µ

2 . Note that Rad(0)
is uniform on {±1}.

III. ATTACKS AGAINST PROTOCOLS FOR BINARY DATA

In this section, we show how to attack any protocol that
estimates the mean of a Rademacher distribution Rad(µ). In
particular, we show that any such protocol has error Ω(mεn ) in
the presence of m corrupt users.

We begin with the result from [24] that decomposes any
differentially private randomizer into a mixture of distributions:

Lemma III.1 (Adapted from [24]). If R : {±1} → Y
satisfies (ε, δ)-differential privacy, then there exist distributions
R(+1), R(−1), R⊥, R> such that, for both x = +1 and
x = −1,

R(x) =


R(x) with probability eε

eε+1 · (1− δ)
R(−x) with probability 1

eε+1 · (1− δ)
R⊥ with probability δ if x = −1

R> with probability δ if x = +1

The analysis of our attack will assume data is drawn from
a distribution, so the following corollary will be useful:

Corollary III.2. If R : {±1} → Y satisfies (ε, δ)-differential
privacy, then there exist distributions R(+1), R(−1) such that,

for all µ ∈ [−1,+1], R(Rad(µ)) is within statistical distance
δ of the mixture ( 1

2 + eε−1
eε+1 ·

µ
2 ) ·R(+1) +( 1

2 −
eε−1
eε+1 ·

µ
2 ) ·R(−1).

Our attack, Algorithm 1 below, takes advantage of this
structure of R by skewing the mixture ratio. Hence, no
aggregator can tell if messages were generated from data with
large mean or by manipulating the protocol.

Algorithm 1: A manipulation attack M
~R
m,n against any

protocol using n differentially private randomizers ~R

For each i ∈ [n]:
1) Add i to C with probability m/2n.
2) If |C| = m break the loop

For each corrupted user i ∈ C, report yi ∼ R(+1)
i .

Lemma III.3. For any n > m > 18 and any n randomizers
~R that satisfy (ε, δ) differential privacy, the distribution
Manipm,n(~R,Rad(0),M

~R
m,n) cannot be distinguished from

~R(Rad( e
ε+1
eε−1 ·

m
2n )) with arbitrarily low probability of failure.

Specifically, the statistical distance is at most 1/10 + 2nδ.

Proof. In the first part of the proof we will argue that M ~R
m,n

behaves similarly to the alternative attack M̃ ~R
m,n in which we

eliminate step (2) of the for loop and choose whether or not to
corrupt each user independently. Note that this attack will not
always satisfy our budget of m corruptions, so it is not a valid
attack in our model, but it is nonetheless useful for the analysis.
The second part shows that Manipm,n(~R,Rad(0), M̃

~R
m,n) is

approximately the same as having each user i independently
sample from the mixture

Pi := ( 1
2 + m

4n )R
(+1)
i + ( 1

2 −
m
4n )R

(−1)
i .

The final part appeals to Corollary III.2 to prove that ~P is
well-approximated by ~R(Rad( e

ε+1
eε−1 ·

m
2n )).

First, we claim that the statistical distance between

Manipm,n(~R,Rad(0),M
~R
m,n)

and
Manipm,n(~R,Rad(0), M̃

~R
m,n)

is at most 1/10. These distributions only differ in the event that
we hit |C| = m and stop the loop early. This happens with
probability exactly P[Bin(n,m/2n) > m], and by standard
bounds, this probability is at most 1/10 whenever m ≥ 18.

Next, we argue that the statistical distance between
Manipm,n(~R,Rad(0), M̃

~R
m,n) and ~P is at most nδ. This is

achieved by proving that the i-th user’s message is sampled
from a distribution within δ of Pi. Note that

Pi = m
2n ·R

(+1)
i + (1− m

2n )( 1
2 ·R

(+1)
i + 1

2 ·R
(−1)
i ) (1)

Corruption status in M̃ ~R
m,n is determined by a Bernoulli process

with probability m
2n . If corrupted, user i will sample from

R
(+1)
i ; this corresponds to first term of (1). If not, Corollary

III.2 implies that their message distribution Ri(Rad(0)) is
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within δ of 1
2 · R

(+1)
i + 1

2 · R
(−1)
i ; this corresponds to the

second term of (1). Thus, the i-th distribution is within δ of
(1). Since each of the n messages are independent, the overall
difference between the distributions is at most nδ.

Finally, Corollary III.2 implies that ~R(Rad( e
ε+1
eε−1 ·

m
2n )) is

within statistical distance nδ of ~P.

A consequence of Lemma III.3 is that no private protocol
can estimate both Rad(0) and Rad( e

ε+1
eε−1 ·

m
2n ) with high

accuracy under manipulation.

Theorem III.4. For any n > m > 18 and any δ < 1/20n, if
Π = (~R,A) is an (ε, δ) differentially private local protocol for
n users and with probability ≥ 95/100 it estimates Rad( e

ε+1
eε−1 ·

m
2n ) to within eε+1

eε−1 ·
m
4n , then with probability ≥ 3/4 it does

not estimate Rad(0) to within eε+1
eε−1 ·

m
4n under attack M ~R

m,n.

IV. ATTACKS AGAINST PROTOCOLS FOR LARGE DATA
UNIVERSES

In this section, we show that more powerful manipulation
attacks are possible when the data universe is [d] for d > 2. For
binary data, our attack showed that for any protocol there are
two distributions U and P (i.e. Rad(0) and Rad(µ(m,n, ε))
with large statistical distance that are indistinguishable under
manipulation. Specifically, ‖U−P‖1 = Ω( 1

ε
√
n

+ m
εn ) where

‖U−P‖1 denotes the `1 distance between the distributions∑d
j=1 |U(j) − P(j)|. Here, we show that there is an attack

and a distribution P such that ‖U−P‖1 = Ω
(√

d
logn ( 1

ε
√
n

+
m
εn )
)

and U,P are indistinguishable under this attack. This
construction implies lower bounds for uniformity testing (given
samples from P, determine if P = U or if ‖P−U‖1 is large)
and `1 estimation (given samples from P, report P′ such that
‖P−P′‖1 is small).

A. A Family of Data Distributions

In this section, we show a particular way to convert a
Rademacher distribution into a distribution over [d]. For a given
partition of [d] into H,H where |H| = d/2, we map the value
+1 to a uniform element of H and −1 to a uniform element
of H . Thus, when x ∼ Rad(µ), we obtain a corresponding
random variable x̂ over [d] whose distribution is PH,µ (see (2)
below). Notice that estimating P[x̂ ∈ H] implies estimating µ.

PH,µ :=

{
Uniform over H with probability 1

2 + µ
2

Uniform over H otherwise
(2)

The algorithm QH,R (Algorithm 2) performs the encoding of
binary data x ∈ {±1} into x̂ ∈ [d] then executes the randomizer
R. Claim IV.1 is immediate from the construction.

Claim IV.1. For any local randomizer R : [d] → Y , H ⊂
[d] with size d/2, and µ ∈ [−1,+1], the execution of QH,R
(Algorithm 2) on a value drawn from Rad(µ) is equivalent
with the execution of R on a value drawn from PH,µ:

QH,R(Rad(µ)) = R(PH,µ)

Algorithm 2: QH,R a local randomizer for binary data
Parameters: A subset H ⊂ [d] with size d/2; a local

randomizer R : [d]→ Y
Input: x ∈ {±1}

If x = 1 then sample x̂ uniformly from H
Otherwise, sample x̂ uniformly from H .
Return y ∼ R(x̂)

Given a vector of n randomizers ~R = (R1, . . . , Rn), let ~QH
denote the vector (QH,R1 , . . . , QH,Rn). We can immediately
generalize Claim IV.1 to multiple randomizers:

Claim IV.2. For any n randomizers ~R = (R1, . . . , Rn) for
data universe [d], any H ⊂ [d] with size d/2, and µ ∈ [−1,+1],
the execution of ~QH on a sample from Rad(µ) is equivalent
with the execution of R on a sample from PH,µ:

~QH(Rad(µ)) = ~R(PH,µ)

B. The Attack

In this subsection, we describe how to attack any differen-
tially private protocol for d-ary data; to remove ambiguity with
M

~R
m,n (Algorithm 1), the attack will be denoted M ~R

d,m,n. As
specified in Algorithm 3, the first step is to sample a uniformly
random H . We show that if all QH,R1

, . . . , QH,Rn
satisfy (ε, δ)

differential privacy, then this attack inherits guarantees from
the previous section. Then we show that the randomizers have
strong privacy parameters with constant probability.

We begin the analysis of M ~R
d,m,n by considering its behavior

conditioned on a fixed choice of H . This restricted form will
be denoted M

~R,H
d,m,n. Then we analyze how the random choice

of H gives the desired lower bound.

Algorithm 3: An attack M ~R
d,m,n against any protocol using

n differentially private randomizers ~R for d-ary data
Sample H uniformly from all subsets of [d] with size d/2
For i ∈ [n], add i to C with probability m/2n.
If |C| > m, remove uniformly random members until
|C| = m.

For each corrupted user i ∈ C, report yi ∼ Q(+1)
H,Ri

1) Analysis for fixed set H: Here, we show that manipulating
~R with M

~R,H
d,m,n induces the same distribution as if we had

manipulated ~QH with M ~QH
m,n:

Claim IV.3. Fix any n randomizers ~R = (R1, . . . , Rn) for
data universe [d], any m ≤ n, and any H ⊂ [d] with size
d/2. If each QH,Ri is (ε, δ)-differentially private, then for any
value p ∈ [−1,+1], the distribution Manip(~R,PH,µ,M

~R,H
d,m,n)

is identical to Manip
(
~QH ,Rad(µ),M

~QH
m,n

)
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Proof. To simplify the presentation, we assume that the users
are sorted so that C = {1, . . . , |C|}.

Manip
(
~R,PH,µ,M

~R,H
d,m,n

)
= (Q

(+1)
H,Ri

)i≤|C| × (Ri(PH,µ))i>|C| (By construction)

= (Q
(+1)
H,Ri

)i≤|C| × (QH,Ri
(Rad(µ)))i>|C| (Claim IV.1)

= Manip
(
~QH ,Rad(µ),M

~QH
m,n

)
The final equality follows from the fact that |C| in M

~R,H
d,m,n is

distributed identically with its counterpart in M ~QH
m,n.

Claims IV.2 and IV.3 imply that we can use the analysis of
M

~R
m,n for our new attack M

~R,H
d,m,n provided that (ε, δ) privacy

holds for all QH,Ri
:

Lemma IV.4. Fix any n randomizers ~R, any m ≤ n, and any
H ⊂ [d] with size d/2. If each QH,Ri is (ε, δ)-differentially
private, then there exists a value µ ∈ [−1,+1] such that the sta-
tistical distance between ~R(PH,µ) and Manip

(
~R,U,M

~R,H
m,n

)
is at most 1/10 + 2nδ even though

‖U−PH,µ‖1 =
eε + 1

eε − 1
· m

2n
(3)

Proof. By Claim IV.2, ~QH(Rad(0)) = ~R(PH,0). Note that
PH,0 = U. By Claim IV.3, Manip(~R,PH,µ,M

~R,H
d,m,n) is

identical to Manip
(
~QH ,Rad(µ),M

~QH
m,n

)
. So it will suffice

to bound the statistical distance between ~QH(Rad(0)) and
Manip

(
~QH ,Rad(µ),M

~QH
m,n

)
for some choice of µ. But

Lemma III.3 implies that for µ = eε+1
eε−1 ·

m
2n , the distance

is 1/10 + 2nδ.
It remains to prove (3). When sampling x ∼ PH,µ, the

probability that x = h is 1+µ
d for each h ∈ H and 1−µ

d for
each h /∈ H . Hence,

‖U−PH,µ‖1 =
d

2
·
∣∣∣∣1d − 1 + µ

d

∣∣∣∣+
d

2
·
∣∣∣∣1d − 1− µ

d

∣∣∣∣
= µ =

eε + 1

eε − 1
· m

2n

This concludes the proof.

2) Analysis for randomized H: Here, we obtain a lower
bound by analyzing randomness in H . For clarity of exposition,
the analysis in this section is limited to pure differential
privacy. In the full version of this work, we prove more general
statements that encompass approximate differential privacy.

We begin with a lemma that bounds the privacy parameter
of all QH,Ri

by an ε′ that depends on ~R: we will use |~R|6= to
denote the number of unique randomizers in ~R.

Lemma IV.5. Fix any ~R where each Ri : [d] → Y is ε
differentially private. There is a constant c such that, if d >
c · (eε − 1)2 ln

(
|Y| · |~R| 6=

)
and H is drawn uniformly from

all subsets of [d] with size d/2, then the following holds with

probability > 2/3 over the randomness of H: Every QH,Ri

specified by Algorithm 2 is ε′ differentially private, where

ε′ = (eε − 1)

√
c

d
ln
(
|Y| · |~R|6=

)
We continue with a bound that only depends on n and not

any particular structure in ~R:

Lemma IV.6. Fix any ~R where each Ri : [d] → Y is ε
differentially private. There is a constant c such that, if d >
c ·(eε−1)2 ln(eεn) and H is drawn uniformly from all subsets
of [d] with size d/2, then the following holds with probability
> 2/3 over the randomness of H: Every QH,Ri

specified by
Algorithm 2 is (ε′, 1/180n) differentially private, where

ε′ = (eε − 1)

√
c

d
ln(eεn)

Proofs of these statements can be found in Appendix A. From
Lemmas IV.4, IV.5, and IV.6, the attack M ~R

d,m,n successfully
obscures a uniform distribution with probability 2/3:

Lemma IV.7. Fix any n > m > 18, any ε < 1, and
any ε-locally private protocol Π = (~R,A) that accepts
data from [d]. There are constants c0, c1 and a value
µ ∈ [−1,+1] such that the following holds: if d > c0 ·
(eε − 1)2 ln

(
minn, |Y| · |~R| 6=

)
then, with probability > 2/3,

M
~R
d,m,n chooses H such that the statistical distance between

~R(PH,µ) and Manip
(
~R,U,M

~R,H
d,m,n

)
is at most 1/9 even

though

‖U−PH,µ‖1 ≥
c1 ·m

√
d

εn

√
ln
(

minn, |Y| · |~R|6=
)

C. Applications to Testing and Estimation
From Lemma IV.7, we obtain lower bounds on how well

the manipulation attack fares against protocols for uniformity
testing and estimation.

Theorem IV.8. Fix any n > m > 18, any ε < 1,
and any ε-locally private protocol Π = (~R,A) for test-
ing uniformity over [d]. There are constants c0, c1 such
that for all d > c0 · (eε − 1)2 ln

(
minn, |Y| · |~R|6=

)
if

P[Π(P) = “not uniform”] ≥ 95/100 for all

‖U−P‖1 ≥
c1 ·m

√
d

εn

√
ln
(

minn, |Y| · |~R|6=
) (4)

then P
[
Manip

(
Π,U,M

~R
d,m,n

)
= “not uniform”

]
> 1/2

Theorem IV.9. Fix any n > m > 18, any ε < 1, and
any ε-private protocol for estimating distributions over [d].
There exists constants c0, c1 such that, for all d > c0 ·
(eε − 1)2 ln(minn, |Y||~R|6=) and α = c1·m

√
d

εn
√

ln(minn,|Y|·|~R|6=)
if

P[‖Π(P)−P‖1 < α] > 95/100 for all distributions P, then
P
[∥∥∥Manip

(
Π,U,M

~R
d,m,n

)
−U

∥∥∥
1
≥ α

]
> 1/2.
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V. PROTOCOLS WITH NEARLY OPTIMAL ROBUSTNESS TO
MANIPULATION

In this section, we consider a number of well-studied
problems in local privacy and identify specific protocols
from the literature with optimal robustness to manipulation
(i.e. matching the lower bounds implied by our attacks). As
discussed in the introduction, most of these problems can be
cast as accurately mean estimation of bounded vectors. We
also give an additional protocol for computing heavy hitters in
the Appendix.

A. Warmup: Mean Estimation for Binary Data

As a warmup, we analyze the randomized response protocol
in the presence of manipulation. The protocol is defined by
the local randomizer RRR

ε and aggregator ARR
n,ε as follows:

RRR
ε (x) :=

{
eε+1
eε−1 · x with probability eε

eε+1

− e
ε+1
eε−1 · x with probability 1

eε+1

ARR
n,ε(~y) := 1

n

∑n
i=1 yi

We bound the error of this protocol by O( 1
ε ( 1√

n
+m

n ), which
matches the lower bound of Theorem III.4 up to constants.

Theorem V.1. For any positive integers m ≤ n, any ε > 0,
any ~x ∈ {0, 1}n, any manipulation adversary M , and any
β > 0, with probability ≥ 1− β, we have∣∣Manipm,n(RRε,n, ~x,M)− 1

n

∑n
i=1 xi

∣∣
< eε+1
eε−1 ·

(√
2
n ln 2

β + 2m
n

)
Proof. Consider an execution of Manip(RRε,n, ~x,M). Let C
be the set of corrupted users, let y1, . . . , yn be the messages
sent in the protocol and let ~y be the messages that would have
been sent in an honest execution (so y

i
= yi for every i 6∈ C).

Let z = 1
n

∑n
i=1 yi be the output of the aggregator.

We can break up the error into two components, one
corresponding to the error of the honest execution and one
corresponding to the error introduced by manipulation.∣∣∣ 1n∑i∈[n] yi −

1
n

∑
i∈[n] xi

∣∣∣
=
∣∣∣ 1n∑i∈[n] yi −

1
n

∑
i∈[n] yi + 1

n

∑
i∈[n] yi −

1
n

∑
i∈[n] xi

∣∣∣
≤
∣∣∣ 1n∑i∈[n] yi −

1
n

∑
i∈[n] yi

∣∣∣+
∣∣∣ 1n∑i∈[n] yi −

1
n

∑
i∈[n] xi

∣∣∣
=
∣∣∣ 1n∑i∈C yi − yi

∣∣∣︸ ︷︷ ︸
manipulation

+
∣∣∣ 1n∑i∈[n] yi −

1
n

∑
i∈[n] xi

∣∣∣︸ ︷︷ ︸
honest execution

Since each message in the protocol is either eε+1
eε−1 or − e

ε+1
eε−1 ,

we have |yi − yi| ≤ 2 · e
ε+1
eε−1 . Thus, the manipulation term is

bounded by eε+1
eε−1 ·

2m
n with probability 1.

For the error of the honest execution, note that E[y
i
] = xi

and 1
n

∑
i∈[n] yi is an average of n independent random vari-

ables bounded to a range of width 2· e
ε+1
eε−1 . Thus, by Hoeffding’s

inequality, the second term is bounded by eε+1
eε−1

√
2 ln(2/β)

n with
probability at least 1− β.

Our analysis of richer protocols has the same structure. We
construct the protocol so that each message yi gives an unbiased
estimate of xi, and the aggregation computes the mean of the
messages. We then isolate the effect of the manipulation from
that of an honest execution. Finally, we bound the influence of
m messages on the output of the protocol. For richer protocols
the analysis of the final step will become more involved.

B. Mean Estimation

We consider vector-valued data in Rd. For any p ≥ 1,
‖x‖p := (

∑d
j=1 |xj |p)1/p denotes the standard `p norm

and Bdp denotes the `p unit ball in Rd. As is standard
‖x‖∞ = maxj∈[d] |xj | is the `∞ norm and Bd∞ is the `∞ unit
ball. In this section, we study instances of the general `p/`q
mean estimation problem: given data x1, . . . , xn ∈ Bdp , output
some µ̂ such that

∥∥µ̂− 1
n

∑
i xi
∥∥
q

is as small as possible.

`∞/`∞ estimation (Counting Queries). In this problem, each
user has data xi ∈ Bd∞ and the goal is to obtain a vector µ̂
such that

∥∥µ̂− 1
n

∑
xi
∥∥
∞ is as small as possible. We consider

the following protocol EST∞ = (REST∞, n,AEST∞), which
is known to have optimal error absent manipulation.

1) Using public randomness, we partition users into d groups
each of size n/d. Intuitively, we are assigning each group
to one coordinate.

2) For each group j, each user i in group j reports the
message yi ← RRR(xi,j)

3) For each group j, the aggregator computes the average
of the messages from group j to obtain µ̂j ≈ 1

n

∑
i xi,j .

The aggregator reports µ̂ = (µ̂1, . . . , µ̂d)

If the adversary’s corruptions are oblivious to the public
partition, then we show that there are ≈ m/d corrupt users
in each group of size n/d. By our analysis of randomized
response, the adversary can introduce at most ≈ m/d

εn/d = m
εn

error in any single coordinate.

Theorem V.2. For any ε ∈ (0, 1), any positive integers
m ≤ n, any x1, . . . , xn ∈ Bd∞, and any public-string-
oblivious adversary M , with probability ≥ 99/100, the error∥∥Manipm,n(EST∞ε, ~x,M)− 1

n

∑n
i=1 xi

∥∥
∞ is bounded by

O(
√

d log d
ε2n + m

εn )

Observe that the dependence on m matches that of the lower
bound in Theorem III.4 for Bernoulli estimation. We give the
complete details of the protocol in the full version.

`1/`∞ Estimation (Histograms). In this problem, each user
i has data xi ∈ Bd1 and the objective is a µ̂ such that∥∥µ̂− 1

n

∑n
i=1 xi

∥∥
∞ is as small as possible. To simplify the

discussion, we focus on the special case where user i has
data xi ∈ [d]. Define freq(j, ~x) := 1

n

∑n
i=1 1{xi=j} and

freq(~x) := (freq(1, ~x), . . . , freq(1, ~x)). The objective is a
vector µ̂ such that ‖µ̂− freq(~x)‖∞ is as small as possible.

We consider the following protocol HSTε, which is known
to have optimal error absent manipulation:

1) For each user i, independently sample a uniform public
vector ~si ∈ {±1}d.
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2) Each user i reports the message yi ← RRR
ε (si,xi

).
3) The aggregator receives messages y1, . . . , yn and outputs

µ̂← 1
n

∑n
i=1 yi · ~si.

Theorem V.3. For any ε ∈ (0, 1), any positive integers m ≤ n,
any x1, . . . , xn ∈ [d], and any adversary M , with probability
at least 99/100, we have

∥∥Manipm,n(HSTε, ~x,M)− freq(~x)
∥∥
∞ = O

(√
log d

ε2n
+
m

εn

)
Proof Sketch. Identically to the proof of Theorem V.1, we
partition the error contributed by the honest and corrupt users.
Let ~y be the messages sent in the protocol and let ~y be the
messages that would have been sent in an honest execution.
Below,

∑
i . . . will be short for

∑n
i=1 . . . . We can write∥∥ 1

n

∑
i ~si − freq(~x)

∥∥
∞

= max
j∈[d]

[
1
n

∑
i∈C(yi − yi)si,j

]
︸ ︷︷ ︸

manipulation

+ max
j∈[d]

∣∣∣ 1n∑i yisi,j − 1{xi=j}

∣∣∣︸ ︷︷ ︸
honest execution

To bound the error from the manipulation, note that messages
have magnitude eε+1

eε−1 = Θ(1/ε). Hence, the bias introduced
to any coordinate j is at most O(m/εn) with probability 1.

We now bound the error of the honest execution. If xi = j,
the expectation of y

i
si,j is 1. Otherwise, the expectation is 0

because of pairwise independence. Hence, the honest execution
has 0 expected error. Because messages have magnitude
Θ(1/ε), Hoeffding’s inequality and a union bound imply that
no frequency estimate is more than O(

√
log d/ε2n) from

freq(j, ~x) with probability ≥ 99/100.

A slightly more general protocol can be used to obtain the
same result for `1/`∞ estimation.

Theorem V.4. For any ε ∈ (0, 1), there is an ε-locally private
protocol EST1ε such that for any positive integer n, any
x1, . . . , xn ∈ Bd1 , and any adversary M , with probability ≥
99/100, the error

∥∥Manipm,n(EST1ε, ~x,M)− 1
n

∑n
i=1 xi

∥∥
∞

is bounded by O(
√

log d
ε2n + m

εn ).

We give the complete details of EST1ε in the full version
of the paper. Observe that its manipulation error matches that
of Bernoulli estimation (Theorem III.4).

`1/`1 Estimation (Frequency Estimation). In this problem,
each user i has data xi ∈ Bd1 and the objective is a µ̂ such
that

∥∥µ̂− 1
n

∑n
i=1 xi

∥∥
1

is as small as possible. Because this
problem and the `1/`∞ problem have the same data type, we
consider the same protocols but change the analysis to upper
bound `1 error.

Theorem V.5. For any ε ∈ (0, 1), any positive
integer n, any x1, . . . , xn ∈ [d], and any adver-
sary M , with probability at least 99/100, the er-
ror

∥∥Manipm,n(HSTε, ~x,M)− 1
n

∑n
i=1 xi

∥∥
1

is bounded by

Õ(
√

d2

ε2n + m
√
d

εn ).

Proof Sketch. Identically to the proof of Theorem V.1, we
partition the error contributed by the honest and corrupt users.
Let ~y be the messages sent in the protocol and let ~y be the
messages that would have been sent in an honest execution. Let
S ∈ {±1}d×n be the matrix whose columns are ~s1, . . . , ~sn,
and SC ∈ {±1}d×|C| be the submatrix consisting only columns
corresponding to users i ∈ C. Then we can write∥∥ 1

n

∑n
i=1 yi~si − freq(~x)

∥∥
1

=
∥∥∥ 1
nSC(~yC − ~yC)

∥∥∥
1︸ ︷︷ ︸

manipulation

+
∑
j∈[d]

∣∣∣ 1n∑n
i=1 yisi,j − 1{xi=j}

∣∣∣
︸ ︷︷ ︸

honest execution

To bound the error from the honest execution, observe that
the expectation and variance are O(

√
1/ε2n) and O(1/εn),

respectively, for any term in the outer sum. Hence, error has
magnitude O(

√
d2/ε2n) with probability ≥ 199/200.

To bound the error from the manipulation, we will use
bounds on the singular values of the random matrix SC . As a
shorthand, let cε = eε+1

eε−1 . A calculation then shows∥∥∥ 1
nSC(~yC − ~yC)

∥∥∥
1
≤ cε

√
md

n
max
C⊆[n]
|C|=m

‖SC‖2

where ‖SC‖2 denotes the largest singular value (operator norm)
of SC . Since each matrix SC ∈ {±1}d×m is uniformly random,
we can use bounds on the singular values of random matrices.

Lemma V.6 (see e.g. the textbook [28]). For any k ∈ R+

larger than an absolute constant and a matrix SC ∈ Rd×m
whose entries are sampled independently and identically, the
following holds with probability ≥ 1− exp(−k(d+m)) over
the randomness of SC .

‖SC‖2 = O(
√
kd+

√
km)

The adversary has
(
n
m

)
≤ exp(m lnn) choices of corruptions

C. By a union bound over that set, we have with probability
at least 1− exp(m lnn− k(m+ d))∥∥∥ 1

nSC(~yC − ~yC)
∥∥∥
1
≤ cε

√
md

n
·O(
√
kd+

√
km)

= O

(√
d2k

ε2n
+
m
√
dk

εn

)
For k = O(lnn), the bound holds with probability at least
199/200.

A slightly more general protocol can be used to obtain the
same result for `1/`1 estimation.

Theorem V.7. For any ε ∈ (0, 1), there is an ε-locally private
protocol EST1 such that for any positive integer n, any
x1, . . . , xn ∈ (Bd1 )n, and any adversary M , with probability ≥
99/100, the error

∥∥Manipm,n(EST1ε, ~x,M)− 1
n

∑n
i=1 xi

∥∥
1

is bounded by Õ(
√

d2

ε2n + m
√
d

εn ).

Observe that the manipulation error matches the lower bound
in Theorem IV.9, up to a logarithmic factor.
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`2/`2 Estimation. In this problem, each user i has data xi ∈
Bd2 and the objective is a µ̂ such that

∥∥µ̂− 1
n

∑n
i=1 xi

∥∥
2

is as
small as possible.

Consider the following protocol EST2 adapted from [17]:
1) For each user i, we sample ~si ∈ Rd uniformly at random

from the surface of Bd2 .
2) Each user i computes wi ← sgn(~si · xi) and then reports

yi ← RRR
ε (wi) to the aggregator

3) The aggregator receives the messages y1, . . . , yn and
outputs ~z ← c

√
d

n

∑n
i=1 yi~si for some constant c > 0.

Theorem V.8. For any ε ∈ (0, 1), any positive integer n,
any x1, . . . , xn ∈ Bd2 , and any adversary M , with probability
≥ 99/100, we have∥∥Manipm,n(EST2ε, ~x,M)− 1

n

∑n
i=1 xi

∥∥
2

= Õ(
√

d
ε2n + m

εn )

Observe that the manipulation error matches that of Bernoulli
estimation (Theorem III.4) up to a logarithmic factor. The
proof follows the same arc as before: we partition the error
contributed by honest and corrupt users and use bounds on
the singular values of the random matrix SC to bound the
manipulation error. Due to this repeated structure, we defer
the proof to the Appendix.

C. Uniformity Testing

In this problem, each user has data xi ∈ [d] sampled
from a distribution P. If P = U, then a protocol for this
problem should output “uniform” with probability ≥ 99/100.
If ‖P−U‖1 > α, then it should output “not uniform” with
probability ≥ 99/100. Smaller values of α are desirable.

We consider the RAPTOR protocol, introduced by [15]. It
divides users into G groups each of size n/G (where G is a
parameter). In each group g,

1) Sample public set S ∈ {S ⊂ [d] | |S| = d/2} uniformly
at random.

2) Each user assigns x′i ← +1 if xi ∈ S and otherwise
x′i ← −1

3) Each user i reports yi ← RRR
ε (x′i) to the aggregator

4) The aggregator computes the average of the messages:
µ̂g ← G

n

∑
yi.

If there is some µ̂g '
√

1
ε2n + m

εn , the aggregator reports “not
uniform.” Otherwise, it reports “uniform.”

Theorem V.9. There is a choice of parameter G such that, for
any ε ∈ (0, 1), any positive integers m ≤ n, and any adversary
M , the following holds with probability ≥ 99/100

Manipm,n(RAPTORε,U,M) = “uniform”

and, when ‖P−U‖1 ≥ α for some α = O

(√
d
ε2n + m

√
d

εn

)
,

the following also holds with probability ≥ 99/100

Manipm,n(RAPTORε,P,M) = “not uniform”

Proof Sketch. Consider any g ∈ [G]. When ‖P−U‖1 ≥√
10d · α, a lemma by [15] implies that, with at least

some constant probability over the randomness of S,∣∣∣ P
x∼P

[x ∈ S]− 1
2

∣∣∣ ' α. For α '
√
G/ε2n + mG/εn, RRε

will provide an estimate of P
x∼P

[x ∈ S] that is larger than
1
2 +α/2. But when P = U, the protocol will give an estimate
of P

x∼P
[x ∈ S] that is less than 1

2 + α/2. This means there is
a threshold test that has a constant probability of succeeding.
The G repetitions serve to increase the success probability to
99/100. This completes the proof.

Observe that the bound α = O(m
√
d

εn +
√

d
ε2n ) matches the

lower bound of Theorem IV.8 up to logarithmic factors. We
give the complete details in the full version of the paper.

VI. EXPERIMENTS

In this section we give a basic set of experiments with
our attack against the natural frequency estimation protocol
HST, which we showed to be optimally robust to manipulation
(Theorem IV.9). These experiments validate our theoretical
analysis by showing that—at least for the protocol HST—
the vulnerability to manipulation depends significantly on the
dimension of the input domain. The experiments also indicate
that the concrete error introduced by the attack against the
natural protocol HST is significantly larger than what our worst-
case analysis guarantees against arbitrary protocols.

In our experiments, we generate data from the uniform
distribution over the domain {1, . . . , d} and measure the `1
error of the protocol HST. In our experiments, we fix n =
2×105 and ε = 1.0, and vary the dimension d and the fraction
of corrupted users m/n. In Figure 5, we plot the median `1
error as well as the upper and lower quartiles of the error. Table
II gives the approximate breakdown point for varying choices
of d. For purposes of concreteness, we define the breakdown
point as the fraction of corrupted users at which the error
becomes at least 0.5, although we note that even much smaller
error is likely unacceptable in applications.

We also do the same set of experiments with an alternative
protocol NR-HST (for non-robust HST). This protocol differs
from HST only in that the users samples a uniform vector
~si ∈ {±1}d themselves, and then sends yi ·~si. For comparison,
in HST, the user receives the vector ~si as public randomness,
and only sends the single bit yi. Note that if all users play
honestly, then the distribution of the aggregator’s output is
identical to HST. However, since the corrupted users can now
change how they choose ~si in addition to how they choose
yi, the protocol is much less robust to manipulation, and our
experiments in Table 6 show that the protocol is much less
robust to our attack.

Our final round of experiments reveal that, under a different
measure of error, NR-HST is vulnerable to just a small
number of corrupt users. The `1 norm scales with the quantity
maxS⊂[d] |

∑
j∈S zj − freq(j, ~x)|, the maximum total error of

any subset. But a data analyst may have little interest in the
maximum and instead have a target subset, like frequencies
of specific words. In Figure 7, we depict the total error of
NR-HST on S = {1, . . . , d/2} for n = 5 · 104 users. When
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Fig. 5: `1-error of the HST protocol for n = 2 × 105

users, ε = 1.0, and various choices of dimension d and
the fraction of corrupted users m/n. Each point represents
the median error across 896 trials. The bars depict the
25% and 75% quantiles. The horizontal line represents
the breakdown point (error 0.5).

Fig. 6: `1 error of the NR-HST protocol for the same
parameters as in Table II.

d = 32, this error is under 0.05 when there are no corrupted
users but it increases by around a factor of 3 when there are
only 250 corrupted users.

VII. CONCLUSION

This paper systematically studies manipulation attacks on
locally differentially private protocols, in which malicious
clients inject improperly generated messages into the protocol
in order to influence its output. We show that vulnerability to
such attacks is inherent to the model—-every noninteractive
local protocol admits such attacks, and the attacks’ effectiveness

Dimension (d)
Breakdown Point

(Error = 0.5)
HST NR-HST

4 ≈ 18% ≈ 7%
8 ≈ 12% ≈ 3%
16 ≈ 8% < 2%
32 ≈ 5% � 1%

TABLE II: Upper bounds on the breakdown point (error 0.5)
of the HST protocol for n = 2 × 105, ε = 1.0, and various
choices of dimension d.

Fig. 7: Error of the NR-HST protocol for n = 5·104 users,
ε = 1.0, and various choices of d and m/n. Here, error
is computed by taking the sum of frequency estimation
errors of {1, . . . d/2}.

increases as the privacy guarantee gets stronger and, for some
tasks, as the dimension of the data grows.

Our work leaves open a number of technical questions.
Can interactive local protocols resist manipulation more effec-
tively than non-interactive protocols? Can we close the few
remaining gaps between upper and lower bounds in Table I?
More fundamentally, it highlights the importance of systems
that collect and analyze sensitive information at scale with
minimal trust requirements and strong privacy guarantees.
Multiparty computation (as in [8] [11] and work on the shuffled
model [12, 13, 27]) offers one set of possible solutions, and
other effective alternatives surely remain to be found.
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APPENDIX A
PROOFS FOR SECTION IV

For any integer d > 2 and algorithm R : [d]→ Y , let R(U)
denote the distribution over Y induced by sampling x̂ from the
uniform distribution over [d] and then sampling a message from
R(x̂). For any set H ⊂ [d], let R(UH) denote the distribution
over Y induced by sampling x̂ from the uniform distribution
over H and then executing R(x̂). In this notation, QH,R is the
algorithm which samples from R(UH) when given +1, but
samples from R(UH) when given −1.

In this section, we provide two bounds on the privacy
parameter ε′ of QH,R when H is uniformly chosen. The first

bound is O(ε
√

(log(|Y| · |~R|6=))/d) (Lemma A.5), where |Y|
is the size of the message universe and |~R| 6= is the number of
unique randomizers. The second is O

(
ε
√

(log n)/d
)

(Lemma

A.8). We note that the second bound has no dependence on
the specification of the randomizers, which may make it looser
than the first bound.

The key to the analysis is to argue that, for most mes-
sages y and a uniformly random H , the log-odds ratio
ln(P[R(UH) = y]/P[R(U) = y]) is roughly ε/

√
d. To this

end, we introduce the following definition:

Definition A.1 (Leaky Messages). For any H ⊂ [d] with size
d/2 and any local randomizer R : [d]→ Y , a message y ∈ Y
is v-leaky with respect to H,R when∣∣∣∣ln P[R(UH) = y]

P[R(U) = y]

∣∣∣∣ > v (5)

Next we show that when y is some fixed message and H is
uniformly random, y is ≈ (ε/

√
d)-leaky with respect to H,R

with low probability.

Claim A.2. Fix any ε > 0, any β ∈ (0, 1), any d > 4(eε −
1)2 ln 2

β , any ε-private R : [d]→ Y . For any message y ∈ Y ,
if H is chosen uniformly from subsets of [d] with size d/2, then

P
[
y is not (eε − 1)

√
4

d
ln

2

β
-leaky w.r.t. H,R

]
≥ 1− β

Proof. By the definition of leaky message, we must show that
the following must hold with probability ≥ 1 − β over the
randomness of H .∣∣∣∣ln P[R(UH) = y]

P[R(U) = y]

∣∣∣∣ ≤ (eε − 1)

√
4

d
ln

2

β
(6)

Observe that

P[R(U) = y] =
d∑
j=1

P[R(j) = y] · P
x∼U

[x = j]

=

d∑
j=1

P[R(j) = y] · 1

d
(Defn. of U)

Also observe that, for any fixed choice of H ,

P[R(UH) = y] =

d/2∑
i=1

P[R(hi) = y] · 2

d
(By construction)

Now we may write

P[R(UH) = y]

P[R(U) = y]
=

2
d

∑d/2
i=1 P[R(hi) = y]

1
d

∑d
j=1 P[R(j) = y]

(7)

For a uniformly random H , observe that each term in the
numerator of (7) is a random variable that lies in the interval
(minj P[R(j) = y], eε minj P[R(j) = y]), due to the ε-privacy
guarantee of R. We use the following version of Hoeffding’s
inequality for samples without replacement.

Lemma A.3 ([29]). Given a set ~p = {p1, . . . , pN} ∈ RN such
that pi ∈ (c, c′), if the subset ~x = {x1, . . . , xn} is constructed
by uniformly sampling without replacement from ~p, then

P

[
1

n

n∑
i=1

xi ≤
1

N

N∑
i=1

pi + (c′ − c) ·
√

1

2n
log

1

β

]
≥ 1− β
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Hence, the following is true with probability 1− β/2:

(7)

≤
1
d

∑d
j=1 P[R(j) = y] + (eε − 1) minj P[R(j) = y]

√
1
d ln 2

β

1
d

∑d
j=1 P[R(j) = y]

= 1 + (eε − 1)

√
ln

2

β
·
√
d ·minj P[R(j) = y]∑d

j=1 P[R(j) = y]

≤ 1 + (eε − 1)

√
ln

2

β
·
√
d ·minj P[R(j) = y]

d ·minj P[R(j) = y]

= 1 + (eε − 1)

√
1

d
ln

2

β

≤ exp

(
(eε − 1)

√
1

d
ln

2

β

)
(8)

By a completely symmetric argument, the following holds
with probability 1− β/2:

(7) ≥ 1− (eε − 1)

√
1

d
ln

2

β

≥ exp

(
−(eε − 1)

√
4

d
ln

2

β

)
(9)

(9) follows from the condition that d > 4(eε − 1)2 ln 2
β .

(6) follows from (8) and (9) (through a union bound). This
concludes the proof.

Now we apply Claim A.2 to the privacy of QH,Ri .

A. A protocol-dependent bound on ε′

Our first bound on the privacy parameters will be dependent
on the structure of the initial randomizers R1, . . . , Rn from
which the new randomizers QH,R1 , . . . , QH,Rn are derived.
We use |Y| to denote the size of the message universe and
|~R|6= to denote the number of unique randomizers.

The following is immediate from Claim A.2 by applying
a union bound over all the unique randomizers in ~R and the
message universe Y:

Corollary A.4. Fix any vector of ε-private randomizers
~R = (R1, . . . , Rn) (where every randomizer has the form
Ri : [d]→ Y) and any d > 4(eε−1)2 ln(12|Y|·|~R| 6=). Sample
H uniformly at random over subsets of [d] with size d/2. The
following is true with probability ≥ 5/6 over the randomness of

H: ∀y ∈ Y ∀i ∈ [n] y is not
(

(eε − 1)
√

4
d ln 12|Y| · |~R| 6=

)
-leaky w.r.t. H,Ri

Lemma A.5. Fix any ε-locally private protocol Π = (~R,A)
(where every randomizer has the form Ri : [d] → Y) and
d > 4(eε−1)2 ln(12|Y|·|~R|6=). Sample H uniformly at random
over subsets of [d] with size d/2. The following is true with
probability ≥ 2/3 over the randomness of H: all randomizers
{QH,Ri}i∈[n] specified by Algorithm 2 satisfy ε′-privacy, where

ε′ = (eε − 1)

√
16

d
ln
(

12|Y| · |~R| 6=
)

Proof. From Corollary A.4, all possible outputs of all random-
izers are not leaky with probability ≥ 5/6. More formally, for
every y ∈ Y and i ∈ [n],∣∣∣∣ln P[Ri(UH) = y]

P[Ri(U) = y]

∣∣∣∣ < ε′/2

By identical reasoning, with probability ≥ 5/6,∣∣∣∣ln P[Ri(UH) = y]

P[Ri(U) = y]

∣∣∣∣ < ε′/2

Recall the definition of QH,Ri : on input +1, it samples from
Ri(UH) and, on input −1, it samples from Ri(UH). From
a union bound, we can conclude that the log-odds ratio is at
most ε′ with probability ≥ 2/3. This concludes the proof.

B. A protocol-independent bound on ε′

In this subsection, we obtain a bound on the amplified
privacy that depends on the number of users in the protocol
but not on the specification of the randomizers ~R. If H is
drawn uniformly and d is sufficiently large, then for most users,
the probability that Ri(U) is a leaky message is small. Let
Leak(v,H,R) = {y ∈ Y | y is v-leaky with respect to H,R}

Claim A.6. Fix any ε > 0, any β ∈ (0, 1), any d > 4(eε −
1)2 ln 2

β , and any n algorithms R1 . . . Rn that are ε-private. If
H is sampled uniformly from subsets of [d] with size d/2, then
the following holds with probability ≥ 5/6 over the randomness
of H: for all i ∈ [n],

P
[
Ri(U) ∈ Leak

(
(eε − 1)

√
4

d
ln

2

β
,H,Ri

)]
< 6βn

Proof. To prove the claim, we show that for every i ∈ [n],
with probability at least 1− 1/6n over the randomness of H ,

P
[
Ri(U) ∈ Leak

(
(eε − 1)

√
4

d
ln

2

β
,H,Ri

)]
< 6βn (10)

Below, we use
(
[d]
d/2

)
as shorthand for the subsets of [d] with

size d/2. We bound the expectation of the random variable:

E
H

[P[Ri(U) ∈ Leak(. . . , H,Ri)]]

=
∑

H∈( [d]
d/2)

(
d

d/2

)−1
· P[Ri(U) ∈ Leak(. . . , H,Ri)]

=
∑

H∈( [d]
d/2)

(
d

d/2

)−1
·
∑
y∈Y

1{y∈Leak(...,H,Ri)}

· P[Ri(U) = y]

=
∑
y∈Y

∑
H∈( [d]

d/2)

(
d

d/2

)−1
· 1{y∈Leak(...,H,Ri)}

· P[Ri(U) = y]

≤
∑
y∈Y

β · P[Ri(U) = y] (Claim A.2)

= β
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Markov’s inequality implies that (10) holds with probability
≥ 1− 1/6n.

Claim A.6 is a bound on the probability that Ri(U) is leaky.
Because ~R satisfies differential privacy, it implies a bound on
the probability that Ri(UH) is leaky.

Corollary A.7. Fix any ε > 0, any β ∈ (0, 1), any d >
4(eε − 1)2 ln 2

β , and any n algorithms R1 . . . Rn that are ε-
private. If H is sampled uniformly from subsets of [d] with
size d/2, then the following holds with probability ≥ 5/6 over
the randomness of H: for all i ∈ [n],

P
[
Ri(U) ∈ Leak

(
(eε − 1)

√
4

d
ln

2

β
,H,Ri

)]
< 6βn

P
[
Ri(UH) ∈ Leak

(
(eε − 1)

√
4

d
ln

2

β
,H,Ri

)]
< 6eεβn

The algorithm QH,Ri reports either a sample from Ri(UH)
or from Ri(UH). Having bounded the probability that either
sample is leaky, we can now argue that QH,Ri

satisfies
approximate differential privacy.

Lemma A.8. Fix any ε > 0, any δ, β ∈ (0, 1), any d >
4(eε−1)2 ln(12eεn/δ), and any n algorithms that are ε-private.
If H is sampled uniformly from subsets of [d] with size d/2, then
the following holds with probability > 2/3 over the randomness
of H: all randomizers {QH,Ri

}i∈[n] specified by Algorithm 2

satisfy (ε′, δ)-privacy, where ε′ = (eε − 1)
√

16
d ln(24eεn/δ).

Proof. Define β = δ/(12eεn) so that ε′ = (e2ε −
1)
√

16
d ln(2/β). For every Y ⊆ Y , the following holds with

probability > 5/6 by Corollary A.7.

P[Ri(UH) ∈ Y ]

= P[Ri(UH) ∈ Y − Leak(ε′/2, H,Ri)]

+ P[Ri(UH) ∈ Y ∩ Leak(ε′/2, H,Ri)]

≤ P[Ri(UH) ∈ Y − Leak(ε′/2, H,Ri)] + 6βeεn
(Corollary A.7)

= P[Ri(UH) ∈ Y − Leak(ε′/2, H,Ri)] + δ/2
(Value of β)

=
∑

y∈Y−Leak(ε′/2)

P[Ri(UH) = y] + δ/2

≤
∑

y∈Y−Leak(ε′/2)

exp(ε′/2) · P[Ri(U) = y] + δ/2

(Defn. A.1)
≤ exp(ε′/2) · P[Ri(U) ∈ Y ] + δ/2

By symmetric steps,

P[Ri(U) ∈ Y ] ≤ exp(ε′/2) · P[Ri(UH) ∈ Y ] + δ/2

We take identical steps to show that the following holds with
probability > 5/6 as well:

P[Ri(UH) ∈ Y ] ≤ exp(ε′/2) · P[Ri(U) ∈ Y ] + δ/2

P[Ri(U) ∈ Y ] ≤ exp(ε′/2) · P[Ri(UH) ∈ Y ] + δ/2

From basic composition and a union bound, the following
holds with probability > 2/3:

P[Ri(UH) ∈ Y ] ≤ exp(ε′) · P[Ri(UH) ∈ Y ] + δ

P[Ri(UH) ∈ Y ] ≤ exp(ε′) · P[Ri(UH) ∈ Y ] + δ

Recall that QH,Ri samples from Ri(UH) on input +1 and
from Ri(UH) on input −1. Hence, QH,Ri

satisfies ε′, δ privacy.
This concludes the proof.

APPENDIX B
A HEAVY HITTERS PROTOCOL

In this problem, each user has data xi ∈ [d]. The objective
is to find a small subset L of the universe that contains every
element j ∈ [d] such that freqj(~x) > α. Because there are 1/α
heavy hitters, the size of L should be O(1/α).

We consider the protocol HH described in [19].
1) Sample public hash function h : [d] → [k] uniformly

from a universal family (k � d is a protocol parameter).
Also sample π uniformly from partitions of [n] into
groups of size n/ log2 d. Intuitively, users in group g
will communicate the g-th bit of their data value to the
aggregator

2) Each user i in each group g:
a) obtains bit(g, xi), the g-th bit in the binary represen-

tation of xi.
b) computes x′i ← 2 · h(xi)− bit(g, xi).
c) reports yi ← RHST(x′i) to the aggregator.

3) The aggregator iterates through each j′ ∈ [k] and
constructs Lj′ in the following manner:
a) Iterate through g ∈ log2 d. At each step (j′, g), gather

the messages from group g then use AHST to obtain
an approximate histogram over 2k. If the estimated
frequency of 2 · j′ − 1 is larger than that of 2 · j′, then
set zj′,g ← 1 and otherwise zj′,g ← 0.

b) Lj′ ← the number represented in binary by
zj′,1, . . . , zj′,log2 d

4) The aggregator reports L← (L1, . . . , Lk) as heavy hitters
The size of L is at most k and the time spent by the aggre-

gator to construct L is O(nk2 log d) (from k log2 d executions
of AHST). An upper bound on error under manipulation follows
from Theorem V.3, taking care to adjust the number of bins
to 2k and the number of users to n/ log2 d.

Theorem B.1. For any ε ∈ (0, 1), any positive integers m ≤
n, any ~x = (x1, . . . , xn) ∈ [d]n, and any adversary M , if
we execute L← Manipm,n(HHε, ~x,M) with parameter k ←
300n2, then with probability ≥ 99/100, L contains all j such
that freqj(~x) > α where

α = O

(√
(log d) · log(n log d)

ε2n
+
m log d

εn

)
Proof Sketch. For any group g, let ~x(g) denote the data of
users in group g. We first argue that three undesirable events
occur with low probability.
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• For some g, |freq(~x) − freq(~x(g))|∞ '
√

(log d)/n. By
Hoeffding’s inequality and a union bound over all groups,
this happens with probability ≤ 1/300.

• Two data values that appear in ~x collide. Due to the size
of k, this happens with probability ≤ 1/300.

• For some g, the error of the private histogram is too large.

Specifically, there is a value α0 ≈
√

(log d)·log(n log d)
ε2n +

m log d
εn such that

∥∥µ̂(g) − freq(~x(g))
∥∥
∞ > α0. From

Theorem V.3 and a union bound over all groups, this
event happens with probability ≤ 1/300.

The remainder of the proof sketch assumes these events have
not occurred.

We fix any j ∈ [d] and any g ∈ [log2 d]. We will argue that
if j is a heavy hitter, then the aggregator will reconstruct the
g-th bit of j. Let π(g) be the ordered set of users in group g
and let ~x ′ denote the vector (x′i)i∈π(g).

Suppose freq(j, ~x) = τ . Because there are no collisions
between hashes, it must be the case that freq(2h(j) −
bit(g, j), ~x ′) ' τ −

√
(log d)/n and freq(2h(j) − 1 +

bit(g, j), ~x ′) = 0. The aggregator estimates these frequencies
up to simultaneous error α0. So, when τ > α ≈

√
(log d)/n+

2α0, the estimate of freq(2h(j)− bit(g, j), ~x ′) exceeds that
of freq(2h(j)− 1 + bit(g, j), ~x ′). This means the aggregator
will assign zh(j),g ← bit(g, j).

We remark that the above sketch and analysis are for the
simplest version of HH, in which k = O(n2). In [19], the
authors show that k = O(1/α) = Õ(

√
n) suffices, achieving

a smaller list and faster running time. We provide the details
of HH in the full version of the paper.

APPENDIX C
PROOF OF THEOREM V.8

Proof Sketch. Identically to the proof of Theorem V.1, we
partition the error contributed by the honest and corrupt users.
Let S ∈ {±1}d×n be the matrix whose columns are ~s1, . . . , ~sn,
and SC ∈ {±1}d×|C| be the submatrix consisting only columns
corresponding to users i ∈ C. Below,

∑
i stands for

∑n
i=1

Then we can write∥∥∥ c√dn ∑
i yi~si −

1
n

∑
i xi

∥∥∥
2

=
∥∥∥ c√dn SC(~yC − ~yC)

∥∥∥
2︸ ︷︷ ︸

manipulation

+
∥∥∥ c√dn ∑

i yi~si −
1
n

∑n
i=1 xi

∥∥∥
2︸ ︷︷ ︸

honest execution

A lemma from [17] implies that the error introduced by
the honest execution of the protocol is O(

√
d/ε2n) with

probability ≥ 299/300.
To bound the error from the manipulation, we will again

use bounds on the singular values of the random matrix SC .

As a shorthand, let cε = eε+1
eε−1 . Then we have∥∥∥ c√dn SC(~yC − ~yC)

∥∥∥
2

≤ c
√
d

n max
C⊆[n]

∥∥∥SC(~yC − ~yC)
∥∥∥
2

≤ 2c
√
d

n max
C⊆[n]
|C|=m

max
~yC∈{−cε,cε}m

‖SC~yC‖2

= 2c
√
d

n max
C⊆[n]
|C|=m

max
~yC∈Rm

‖~y‖2≤cε
√

m

‖SC~yC‖2

≤ 2ccε
√
md

n max
C⊆[n]
|C|=m

max
~yC∈Rm
‖~y‖2≤1

‖SC~yC‖2 (11)

For any i ∈ C, consider the random variable ~si ′ ∼ N(0, Id×d).
The column vector ~si is identically distributed with ~si

′

‖~si ′‖2
.

By standard concentration arguments, there is a constant c′

such that mini‖~si ′‖22 ≥ d − c′
√
d lnm with probability ≥

299/300. In the case where d < 4(c′)2 lnm, we bound the
error by 2ccεm

√
d/n = O(m

√
log n/εn). Otherwise, when

d > 4(c′)2 lnm, we have mini‖~si ′‖22 > d/2. Hence,

(11) ≤ 2ccε
√
md

n
max
C⊆[n]
|C|=m

max
~yC∈Rm
‖~y‖2≤1

max
i∈C

1

‖~si ′‖2
‖S′C~yC‖2

≤ ccε
√

8m

n
max
C⊆[n]
|C|=m

max
~yC∈Rm
‖~y‖2≤1

‖S′C~yC‖2

=
ccε
√

8m

n
max
C⊆[n]
|C|=m

‖S′C‖2

We apply Lemma V.6 then choose k = O(lnn) to bound
‖S′C‖2 by O(

√
d lnn+

√
m lnn) with probability ≥ 299/300.

A union bound completes the proof.
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