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ABSTRACT

Three panels of 3D woven carbon fiber/RTM6 epoxy composites with a ply-to-ply
weave with 12x12 (warp/weft) picks per inch (ppi), 10x12 ppi, and 10x8 ppi were
fabricated by resin transfer molding. Realistic finite element models of each weave
architecture were constructed using Dynamic Fabric Mechanics Analyzer. The resin
properties were isotropic and linear elastic and dependent on temperature. The resin-
infiltrated fiber tow properties were estimated using homogenization based on Hashin
and Shapery formulas. The model was considered to be at zero stress at the 165°C
curing temperature. The stresses resulting from cooling the composite to 25°C were
estimated using the resin temperature-dependent properties and the temperature
independent properties of the tows. The displacement fields resulting from holes
drilled through the middle of the top warp or weft yarn were estimated by virtually
drilling a hole in the finite element model and were measured on the specimens using
electronic speckle pattern interferometry. In general, the measured displacements
transverse to the yarn were lower than the predicted displacements. This suggests the
resin in the infiltrated yarns relieves some of the stress by permanently deforming
during cooling. The measured displacements along the yarn were approximately the
same for the 12x12 ppi,, lower for the 10x12 ppi, and significantly higher for the 10x8

pp1.
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INTRODUCTION

The coefficient of thermal expansion mismatch between epoxy resins and carbon
fibers leads to a spatially varying internal residual stress field that increases in
magnitude as the composite cools from the curing temperature. This intrinsic residual
stress field has periodicity corresponding to the repeating unit cell of the composite.
The fibers in resin-impregnated fiber tows will generally experience compressive
residual stress and the resin in the fiber tows and between the fiber tows will
experience a tensile residual stress. The magnitude of these stresses in a given
architecture will necessarily depend on the volume fraction of fiber tows and is
sometimes sufficient to cause microcracking in the composite.

We have developed techniques to create realistic finite element models of 3D
woven architectures and subject those models to the temperature change resulting
from cooling from the curing temperature to room temperature to estimate the intrinsic
residual stress field. These models are used to evaluate the impact of changing weave
architecture and yarn volume fraction on the intrinsic residual stress. One way to
evaluate the accuracy of the model predictions is to experimentally measure the
displacement fields resulting from drilling holes at selected locations in the composite
and compare those measurements to predictions of the displacement field from
virtually drilling a hole in the model.

The goal of this work is to compare the prediction of surface displacement fields to
experimentally measured surface displacement fields in three ply-to-ply architectures
with differing volume fractions of warp and weft fibers.

METHODS
Experimental Methods

Three panels of 4.1 mm thickness were fabricated by Albany Engineered
Composites using Hexcel RTM6 resin and Hexcel 12K IM7 PAN-based carbon fibers.
All panels had the ply-to-ply architecture (shown in Figure 1) and had in-plane unit
cell dimensions of 10.16 mm by 10.16 mm. Each panel had different overall volume
fraction of fiber and different number of warp and weft picks-per-inch (ppi). The
details of each panel are summarized in Table 1.

Sections that contained at least nine unit cells were cut out from the panels and
painted first with white, high heat spray paint and then covered with a clear matte
spray paint to protect the surface from drilling debris. The sample was glued on a
block mounted on a Thor Labs kinematic mount to allow precise repositioning
between the before drilling and after drilling. The apparent placement repeatability
was on the order of 5 um or less
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Figure 1. Ply-to-ply weave architecture.

Drilling the 1 mm diameter holes was accomplished with UKAM diamond coring
tool. The depth of 0.3 mm was selected to just cut through the top yarn on the surface
and not into the yarn below. The depth was measured with a dial indicator attached to
the drilling head. A continuous flow of deionized water was manually applied during
drilling using a squeeze bottle. The water was used to minimize the heat generated
during drilling and to carry away the drilling debris. The sample was rinsed with more
water after drilling and dried with a flow of warm air.

We used a custom-built electronic speckle pattern interferometry system similar to
the one described by Diaz et al [1] to determine the in-plane displacements outside the
high displacement gradient region near the hole. A diagram of the system is shown in
Figure 2. We used a 50 mW Melles Griot HeNe laser that had linear polarization. The
angle between the normal to the specimen and the illumination beams was 45° which
results in a 448 nm displacement for a phase difference corresponding to 2n. Our
system exhibited phase noise of <m/25 which corresponds to a displacement of 9 nm.
A picture frame region around the edge of the image was used to correct for any
displacements from repositioning the sample on the holder or from small amounts of
thermal expansion (which would result in a linearly changing displacement across the
image).
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Figure 2. Electronic speckle pattern interferometry setup.



Computational methods

A realistic geometric model of the weave architectures was constructed using
Dynamic Fabric Mechanical Analyzer (DFMA) (see [2], [3]). This software models
digital fibers as digital rod elements connected with flexible links and contact
elements. The digital fibers are combined into yarns where all fibers have the same
length. The volume occupied by one digital fiber would be filled by multiple actual
fibers. One can then specify the number of digital fibers per yarn and whether the
fibers in the yarn are straight or twisted. The yarns are assembled into an expanded
representation of the unit cell topology and the final unit cell is determined from a
dynamic relaxation approach. The surface of each yarn in the final structure is
exported as a point cloud used to create the finite element mesh of the unit cell using a
custom Matlab script. All model preparation steps are performed automatically within
the MSC Mentat software using a custom Python script.

TABLE I. VOLUME FRACTION CALCULATED FROM DFMA
(AS-FABRICATED VALUES).

Picks-per-inch Viwarp Vet Vi
(warp x weft)
12x 12 0.35(0.37) 0.39(0.41) 0.74
10x 12 0.23 (0.33) 0.46 (0.33) 0.69
10x 8 0.35(0.30) 0.28 (0.26) 0.62

The volumetric mesh for the tows is generated using Marc Mentat based on the
surface mesh for the yarns in the unit cell. The volumetric mesh for the resin is also
generated in Marc Mentat by changing the sign of the normal vector to the surface
mesh of the yarn. Custom scripts are used to improve the surface mesh at the lateral
boundaries of the unit cell so that the mesh of the unit cell is rigorously/exactly
congruent (nodal pattern is the same). More details of this process can be found in [4].
There are areas of penetration between adjacent tows that are corrected manually and
using custom scripts. This results in differences between the model and the tow
volume fraction used to fabricate the specimens. This difference is greatest for the 10
x 12 architecture.

The properties of the RTM6 epoxy matrix are assumed to be homogeneous and
isotropic. The Young’s modulus, E, and coefficient of thermal expansion, a, depend
on temperature as:

0°C
En =B =Pl (0.1)
a,=a’“+yT
MPa

) 2

where E!€ =350 MPa,, =5.9 alc =507 % and y, :1_05.107% and

Tisin °C.

The yarns are modeled as a transversely isotropic material that represents the resin
impregnated 12K carbon fibers assuming an 80% volume fraction of fibers within the
yarns. The effective properties are estimated using micromechanical models of
Hashin and Shapery [5], [6] for continuous unidirectional composites. as. E;, = 221.38
GPa, E5=13.18 GPa, Gl =7.17 GPa, v;5= 0.35, vo3, = 0.35, a;, = —2.29-10— 7 K™,
o =2.23-10" K. In these expressions, direction 1 is parallel to the axis of the yarn
and directions 2 and 3 are transverse to the yarn axis. Note that even though the



properties of the matrix in the tows change with temperature as given by (1.1), these
changes will result in insignificant variations of the homogenized properties of the
tows (see comparison in [7]), so in the numerical simulations the properties of the
tows are assumed to be temperature independent.

The hole drilling was simulated using Marc Mentat’s capability to deactivate
elements. First, the simulation of the cooling after curing was performed assuming that
the temperature of the completely cured composite panel uniformly changes from
185°C to 25°C while lateral surfaces of a unit cell stay periodic but are allowed to
move laterally to accommodate the overall shrinkage of the composite panel. Then
the elements corresponding to the position of the hole were manually selected to
deactivate. Subtracting the displacements obtained after the simulation of curing from
the displacements after removing the elements representing the hole produces the
displacement field from the hole drilling. Figure 3 shows the finite element model and
the region where the nodes were deactivated to simulate drilling of the hole.

yarns

matrix

Figure 3. Finite element model showing region where hole was virtually drilled.



RESULTS AND DISCUSSION

The results follow the convention that the warp are parallel to the horizontal (x, u)
direction and the weft fibers are parallel to the vertical (y, v) direction. All stress
estimates are based on the volume fraction estimated using the DFMA model. We
estimated the average stress in the volume of material occupied by the hole for each
sample. The results are summarized in Figure 4. As can be seen, the stresses are
compressive along the yarn axis and tensile transverse to the yarn axis.

Warp Weft
40 MPa -24 MPa
12x12 ppi
\\I/ZVL::S:S -25 MPa - > 40MPa
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Figure 4. Average stresses integrated over the volume of the material removed by drilling. The shear
stresses were all much smaller.

The stresses along the fiber axis are plotted vs. volume fraction along the axis of
the tow in Figure 5. The magnitude of the stresses in the warp tows decrease with
increasing volume fraction of warp tows which is consistent with the thermal
mismatch strain being distributed in a larger volume of fibers. However, the
magnitude of the stresses in the weft fibers slightly increases with increasing volume
fraction. We have no explanation for the trend of stress for the weft tows at this time.
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Figure 5. Averages stress in the material removed by drilling as a function of
warp or weft volume fraction.

The predicted and experimentally obtained displacement fields will be presented
for holes in the warp and weft tows for each architecture. The displacements are
encoded as shades of blue for negative displacements and shades of red for positive
displacements. The magnitude of the predicted displacements was often greater than
the observed displacements so the color range corresponds to +2500 nm for the
predicted displacements and +500 nm for the observed displacements. Slices through
the center of the hole in the direction of maximum observed displacement are
provided for each hole to compare the magnitude of the displacements.

The results for the holes in the warp tows in the 12x12, 10x12, and 10x8 ppi
structures are shown in Figure 6, Figure 7, and Figure 8. The predicted displacements
along the warp tow axis (u direction) are outward along the tow axis very near to the
hole but toward the hole in the far-field region. These near-field displacements are not
consistent with the predicted state of compressive stress in the tows, but the far-field
displacements are. The observed displacements along the tow axis are toward the hole
for the entire field and have roughly the same shape as the far-field displacement
predictions. The displacement magnitude is approximately the same in the far field
region for the 12x12 and 10x12 ppi structures but begins to deviate in the region
where the predicted displacements change sign near the edge of the hole. The
displacement magnitude observed for the 10x8 structure is ~2x greater than observed
for the 12x12 and 10x12 structure as well as being greater than the prediction.

One possible explanation for why the near-field opposite sign displacement region
is predicted along the tow axis for warp and weft tows but not observed is that the
model has a larger overburden of resin than the specimen. The resin overburden is
under biaxial tensile stress. The spatial resolution of the experimental method is <30
um and the near-field, opposite signed displacements are over a ~500 um region near
the hole. So, it is unlikely that the technique missed these displacements if they were
present. Future work will investigate the impact of differing overburdens of resin on
the displacement field from hole drilling.

The predicted and observed displacements transverse to the warp tow axis (v
direction) in the 12x12 and 10x12 pp1 panel are both away from the hole although the



observed displacements are 4-5x lower than the predicted displacements. The shape
of the predicted and observed fields is roughly the same. The predicted and observed
displacements transverse to the warp tow in the 10x8 ppi structure also have the same
shape but are nearly the same magnitude as the prediction. This is the only hole out of
six where the observed transverse displacements are nearly the same. The observed
transverse displacements for the remaining are typically 4-5x lower than the
prediction. We propose that the resin in the tow deforms by inelastic (plastic,
viscoelastic, or viscoplastic) deformation during cooling and relieves the stresses.
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Figure 6. Predicted and experimental displacement fields and slice plots for hole drilled in warp tow on
12x12 ppi structure. The u displacements are horizontal and in the warp direction. The v displacements
are in the vertical direction and transverse to the tow. Note that the displacement scale for the FE results
is 5 times that for the experimental results.
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Figure 7. Predicted and experimental displacement fields and slice plots for hole drilled in warp tow on
10x12 ppi structure. The u displacements are horizontal and in the warp direction. The v displacements
are in the vertical direction and transverse to the tow. Note that the displacement scale for the FE results
is 5 times that for the experimental results.
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Figure 8. Predicted and experimental displacement fields and slice plots for hole drilled in warp tow on
10x8 ppi structure. The u displacements are horizontal and in the warp direction. The v displacements
are in the vertical direction and transverse to the tow. Note that the displacement scale for the FE results
is 5 times that for the experimental results.



The predicted and observed displacements for the weft tows are shown in
Figure 9, Figure 10, and Figure 11. As mentioned above, the magnitude of the
displacements transverse to the tow axis (u direction) are 4-5x lower than the
prediction. The shape of the predicted and observed displacement field transverse to
the tow axis are also very similar.

The observed far-field displacement field along the weft tow axis are roughly
the same as the prediction for the 12x12 and 10x12 ppi structure but the opposite
signed near-field displacements are not observed. The observed weft displacement
field along the tow axis for the 10x8 ppi structure has different shape and is opposite
in sign. The magnitude of the displacements along the weft tow is slightly lower than
along the warp tow in the 10x8 structure.
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Figure 9. Predicted and experimental displacement fields and slice plots for hole drilled in weft tow on

12x12 ppi structure. The u displacements are horizontal and in the warp direction. The v displacements

are in the vertical direction and transverse to the tow. Note that the displacement scale for the FE results
is 5 times that for the experimental results.
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Figure 10. Predicted and experimental displacement fields and slice plots for hole drilled in weft tow on

10x12 ppi structure. The u displacements are horizontal and in the warp direction. The v displacements

are in the vertical direction and transverse to the tow. Note that the displacement scale for the FE results
is 5 times that for the experimental results.
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Figure 11. Predicted and experimental displacement fields and slice plots for hole drilled in weft tow on
10x8 ppi structure. The u displacements are horizontal and in the warp direction. The v displacements
are in the vertical direction and transverse to the tow. Note that the displacement scale for the FE results
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SUMMARY AND CONCLUSIONS

We compared the predicted and observed displacement fields for holes drilled
through the top warp and weft yarns in ply-to-ply 3D woven panels prepared with
12x12, 10x12, and 10x8 picks per inch to evaluate the accuracy of the finite element
models and to quantify the intrinsic residual stress field. The intrinsic residual stresses
are caused by mismatch in thermal expansion coefficient between the resin and the
fibers during cooling from the curing temperature. For all holes, the shape of the
displacement fields transverse to the tow axis were very similar. For all but one hole,
the magnitudes were 4-5x lower than the predictions. This strongly suggests that the
stresses in the tow are relieved by inelastic deformation of the matrix during cooling.
The predicted shapes of the displacement fields along the tow axis all had a near-field
region that suggested local tensile stresses instead of the expected compressive
stresses exhibited by the far-field displacements. This is attributed to local relaxation
of the thicker resin overburden in the model than the specimen. The magnitude of the
far-field displacements was roughly the same for three of the six holes. The 10x8 ppi
structure exhibited the most deviation from the predictions.
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