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ABSTRACT
A sore loser attack in cross-blockchain commerce rises when one

party decides to halt participation partway through, leaving other

parties’ assets locked up for a long duration. Although vulnerability

to sore loser attacks cannot be entirely eliminated, it can be reduced

to an arbitrarily low level. This paper proposes new distributed

protocols for hedging a range of cross-chain transactions in a syn-

chronous communication model, such as two-party swaps, 𝑛-party

swaps, brokered transactions, and auctions.
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1 INTRODUCTION
Alice is heavily invested in “apricot tokens”, an electronic asset

managed on the “apricot blockchain”, a tamper-proof replicated

ledger. Token prices are volatile, so she decides to diversify. She

locates Bob, who owns "banana tokens", managed on a distinct

“banana blockchain”, and Alice and Bob agree to swap some of her

tokens for some of his.

Alice and Bob do not trust one another, nor do they both trust

any third party, so they need a way to exchange their tokens in a

safe and decentralized way. Fortunately, they can call upon well-

known cross-chain atomic swap protocols [1, 2, 6, 7, 11, 19, 20] that

ensure that neither party can steal the other’s assets.

The notion of escrow is central to most protocols for cross-chain

exchanges. An escrow is like a lock in a concurrent data structure:

escrowing an asset ensures that it can take part in only one ex-

change at a time. Typically an asset is escrowed by temporarily

transferring ownership to an automaton (called a “smart contract”)
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programmed to award that asset to the counterparty when certain

conditions are met. If those conditions are not met within a reason-

able duration, the escrow contract times out and refunds the asset

to its original owner.

In a typical atomic swap protocol, Alice might put her tokens in

escrow for, say, 48 hours, then Bob would put his tokens in escrow

for, say, 24 hours. Alice would then claim Bob’s tokens (details

vary), and Bob would claim Alice’s. Atomic swap protocols ensure

liveness: if both parties conform to the protocol, the swap takes

place, and even if parties deviate from the protocol, timeouts ensure

that no assets are locked up forever. These protocols also ensure

safety: a conforming party’s assets cannot be stolen.

Nevertheless, most prior protocols have a critical flaw: the parties

are vulnerable, at different times, to sore loser attacks (sometimes

called lockup griefing [6]). Informally, this problem arises when

mutually-untrusting parties agree to a sequence of asset transfers

in a volatile market where asset values may fluctuate. While the

transfers are in progress, incentives may change: a sudden decrease

in an asset’s value may motivate a party to abandon a swap midway,

or an unsuccessful bidder may drop out early from an auction. A

sore loser attack is roughly analogous to having a thread (deliber-

ately) halt while holding a lock.

In the atomic swap example, once Alice has escrowed her tokens,

Bob has the following option1
: if he observes that Alice’s tokens

have diminished in value, then he stands to lose from the swap,

so he simply abandons the protocol, leaving Alice unable to trade

her tokens for 48 hours. If, instead, Bob does respond by escrowing

his own tokens, then the balance of power reverses. If Alice now

observes that Bob’s tokens have diminished in value, then she might

abandon the protocol, leaving Bob unable to trade his tokens for 24

hours. The sore loser attack thus introduces perverse incentives: if

either asset diminishes significantly in relative value to the other,

then one party has an incentive to quit at the other’s expense. If

asset values are volatile, parties may even have an incentive to run

the protocol as slowly as possible to keep their options open for as

long as possible.

The contribution of this paper is to describe novel ways to trans-

form various cross-chain protocols to mitigate or eliminate sore

loser attacks. We consider two-party atomic swaps, multi-party

atomic swaps, brokered commerce, and simple auctions. Since the

cross-chain protocols that we transform already assume synchro-

nous communication, our mitigation mechanisms are also based

on a synchronous communication model.

In classical finance, sore loser attacks are prevented by having

the option buyer (the party who might renege) pay a fee, called a

premium, to compensate the option seller (the party whose assets

will be locked up) if the buyer abandons the protocol.
2
Our goal

1
In finance, this choice is called an "American call option".

2
In some variations, the buyer pays the premium no matter what.
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here is to do the same for cross-chain commerce, ensuring that an

honest party is compensated if its assets are locked up through no

fault of its own.
3

Setting up a cross-blockchain premium structure presents chal-

lenges that do not arise in classical finance. Indeed, completely

eliminating sore loser attacks seems impossible in a distributed

context, because as soon as one party escrows an asset for the first

time, the counterparties might all renege, leaving that party with

no possibility of compensation. If we cannot completely eliminate

risk, we can still make it arbitrarily small. We will add a premium

distribution phase to protect high-value escrows from sore loser

attacks. This new phase is itself vulnerable to sore loser attacks,

but the values at risk are considerably smaller than the values at

risk in the main protocol. For example, Alice may be unwilling to

accept a risk that 100 of her tokens could be locked up for 48 hours,

but she may be willing to accept that risk for 1 token.

2 RELATED WORK
In finance, optionality [9] is the notion that there is value in ac-

quiring the right, without any obligation, to invest in something

later. Atomic swap based on hashed timelock contracts [11] exposes

such optionality to both parties. However, multiple researchers [5,

6, 10, 21] have observed that both parties are exposed to sore loser

attacks where the counterparty reneges at critical points in the

protocol. Robinson [14] proposes to reduce vulnerability to sore

loser attacks by splitting each swap into a sequence of very small

swaps, an approach that works only for fungible, divisible tokens.

There are prior two-party swap protocols that are asymmetric,
meaning that one party pays a premium to the other, but not vice

versa, protecting only one side of the swap from a sore loser attack.

These protocols include Han et al. [5], Eizinger et al. [4], Liu [10],

the Komodo platform [12], and the Arwen protocols [6]. Eizinger

et al. [4] address the optionality problem by a premium mechanism,

however they address only Alice’s optionality and neglect Bob’s,

allowing Bob to renege after Alice escrows her assets. Han et al.
[5] quantified optionality unfairness, and have Alice pay premiums

to Bob if she deviates from the protocol, but not vice-versa. In

the Arwen protocols [6], one party to each swap is a centralized

exchange, which is assumed to be trustworthy because it wants

to protect its reputation. Komodo [12] mitigates sore loser attacks

by incentives. For example, Alice pays a small fee if she is caught

deviating, but that fee is not used to compensate Bob.

Xu et al. [17] use game-theoretic techniques to analyze the suc-

cess rate of cross-chain swaps using hashed timelock contracts,

showing that both parties can rationally choose not to follow the

protocol. To the best of our knowledge, Liu [10] was the first to

propose an atomic swap protocol that protects both parties from

sore loser attacks. This protocol is still asymmetric in the sense that

Alice explicitly purchases an option from Bob, and her premium is

not refunded. There is no obvious way to extend this protocol to

more than two parties, or to applications such as brokered sales or

auctions. Tefagh et al. [15] propose a similar protocol based on an

options model.

3
The aim is to compensate honest parties, not primarily to deter or punish dishonest

parties.

3 MODEL
Although we will propose protocols based on today’s blockchains

and smart contracts, none of our principal results depends on spe-

cific blockchain technology, or even blockchains as such. Instead,

we focus on computational abstractions central to any systematic

approach to commerce among untrusting parties, no matter what

technology underlies the shared data stores.

3.1 Ledgers and Contracts
A blockchain is a tamper-proof distributed ledger (or database) that

tracks ownership of assets by parties. A party can be a person, an

organization, or even a contract (see below). An asset can be a

cryptocurrency, a token, an electronic deed to property, and so on.

There are multiple blockchains managing different kinds of assets.

We focus here on applications where mutually-untrusting parties

trade assets among themselves, possibly in complicated ways, an

activity sometimes called adversarial commerce [8]. Examples of

adversarial commerce include swaps, loans, auctions, markets, and

so on.

A smart contract (or “contract”) is a blockchain-resident program
initialized and called by the parties. A party can publish a new

contract on a blockchain, or call a function exported by an existing

contract. Contract code and contract state are public, so a party

calling a contract knows what code will be executed. Contract code

must be deterministic because contracts are typically re-executed

multiple times by mutually-suspicious parties.

A contract can read or write ledger entries on the blockchain

where it resides, but it cannot directly access data from the outside

world, and cannot call contracts on other blockchains. A contract

on blockchain 𝐴 can learn of a change to a blockchain 𝐵 only if

some party explicitly informs 𝐴 of 𝐵’s change, along with some

kind of “proof” that the information about 𝐵’s state is correct. In

short, contract code is passive, public, deterministic, and trusted,

while parties are active, autonomous, and potentially dishonest.

We assume a synchronous execution model where there is a

known upper bound Δ on the propagation time for one party’s

change to the blockchain state to be noticed by the other parties.

Specifically, blockchains generate new blocks at a steady rate, and

valid transactions sent to the blockchain will be included in a block

and visible to participants within a known, bounded time Δ. In
practice, contracts measure Δ in terms of block height.

3.2 Threat Model
We do not consider attackers who compromise the blockchain

itself, through, for example, denial-of-service attacks. Although

parties may display Byzantine behavior, smart contacts can enforce

ordering
4
, timing, and well-formedness restrictions on transactions

that significantly limit the ways in which Byzantine parties can

misbehave.

We make standard cryptographic assumptions. Each party has a

public key and a private key, and any party’s public key is known to

all. Messages are signed so they cannot be forged, and they include

single-use labels (“nonces”) so they cannot be replayed.

4
Smart contracts can record the order in which messages are received.



4 OVERVIEW
Cross-chain commerce is founded on the notion of escrow. An
asset’s owner does not directly transfer that asset to a counterparty.

Instead, the owner temporarily transfers that asset to an escrow
contract. If certain conditions are met within a certain time, that

contract redeems the asset, transferring it to the counterparty, and
otherwise it refunds that asset to the original owner. The party and

counterparty both trust the contract, even if they do not trust one

another.

Multiple parties agree on a common protocol to execute a series

of transfers, an agreement that can be monitored, but not enforced.

Instead of distinguishing between faulty and non-faulty parties, as

in classical distributed computing, we distinguish only between

compliant parties who follow the agreed-upon protocol, and deviat-
ing parties who do not. We make no assumptions about the number

of deviating parties.

Each section in this paper starts with a base protocol, adapted
from the literature, that performs some form of adversarial com-

merce: two-party swap, multi-party swaps, brokered sales, and sim-

ple auctions. By hypothesis, each such protocol guarantees that if

all parties comply, all transfers take place, that no asset is escrowed

forever, and that no compliant party ends up with a negative payoff

(e.g., has its assets stolen).

Nevertheless, these protocols are vulnerable to sore loser attacks:

at one or more points, one party can walk away leaving the other

parties’ assets locked up in escrow for a long time. Suppose Alice

escrows an asset with value 𝑣 in a situation where her counterparty

Bob can walk away. A premium is a value 𝑝 ≪ 𝑣 such that (1) Alice

considers 𝑝 large enough to be acceptable compensation for locking

up her asset for the duration of the protocol, and (2) Bob considers 𝑝

small enough that he accepts the risk his premium could be locked

up for the duration of the protocol.

We extend each base protocol to protect parties against sore loser

attacks by associating a premiumwith each escrow.Wemodify each

escrow contract to refund the premium if the asset is redeemed,

and to pay the premium to the counterparty if the asset is refunded.

The base protocol is prefaced by one or more premium distribution
phases, where premiums are deposited in escrow contracts.

These extended protocols have a semi-modular structure : the

premium protocol vulnerable to (minor) sore loser attack is superim-

posed on a base protocol to protect it from (major) sore loser attack.

The premium protocol observes the base layer’s state, and as long as

premium distribution completes successfully, it does not otherwise

affect the base protocol’s control flow or timeouts. If the premium

protocol fails, then so does the base protocol, although parties may

need to execute truncated versions of the base protocol to recover

their premiums. The advantage of factoring protocols this way

is that in the normal case, when the premium protocol succeeds,

safety and liveness of the base protocol layer are independent of

the premium protocol layer.

We assume each blockchain has a native currency that can be

used to pay premiums on that chain. For simplicity, we treat all

premiums as if they were denominated in the same currency. For

example, if Alice is pays a premium 𝑝 on one chain, but receives a

premium 𝑝 on another chain, we say she breaks even. For clarity

when describing protocols, we talk of depositing premiums, and

escrowing assets, even though these are essentially the same mech-

anism.

The premiums can be estimated using formula such as the Cox-

Ross-Rubinstein option pricing model [3]. If the value of Alice’s

escrowed asset is high enough, her minimal acceptable lock-up

compensation may exceed Bob’s maximum acceptable lock-up risk,

and no premium exists. As described in Section 6, this mismatch can

be resolved by bootstrapping premiums: using smaller premiums to

protect distribution of larger premiums.

5 TWO-PARTY SWAP
We now consider an atomic swap protocol where Alice and Bob

exchange assets. Like most atomic swap protocols in the literature,

ours is based on hashed timelock contracts (HTLCs) [11]. Alice

generates a secret 𝑠 , its cryptographic hash ℎ = 𝐻 (𝑠), and a timelock
𝑡 after which the contract expires. Alice publishes on the blockchain

an HTLC initialized with ℎ, 𝑡 , then escrows (transfers ownership

of) her asset to that contract. If the contract receives the matching

secret 𝑠 , ℎ = 𝐻 (𝑠), before time 𝑡 has elapsed 5
, then the contract

irrevocably transfers ownership of the asset to Bob. If the contract

does not receive the matching secret before time 𝑡 has elapsed, then

the asset is refunded to Alice. We refer to the asset being swapped

as the principal.

Alice BobApricot Blockchain Banana Blockchain

Escrow apricot tokens

ℎ, 𝑡! Escrow banana tokens

ℎ, 𝑡"Send x: H(x)=h

Send x: H(x)=h

Deposit 𝑝# + 𝑝$

Deposit 𝑝$

Figure 1: A Hedged Two-Party Atomic Swap Protocol

5.1 The Base Two-Party Swap Protocol
Here is a well-known atomic swap protocol that does not protect

against sore losers. Suppose Alice wants to trade 𝐴 apricot tokens

for one of Bob’s 𝐵 banana tokens. (1) Alice generates secret 𝑠 , pub-

lishes an escrow contract on the apricot blockchain with hashlock

ℎ = 𝐻 (𝑠) and timelock 𝑡𝐴 = 3Δ, and escrows her apricot tokens at

that contract. (2) Within time Δ, Bob sees Alice’s escrow contract

on the apricot blockchain. He publishes an escrow contract on the

banana blockchain with the same hashlock ℎ, but with timelock

𝑡𝐵 = 2Δ, and escrows his banana tokens at that contract. (3) Within

time 2Δ after the start of the protocol, i.e. the time 0, Alice sees

Bob’s contract on the banana blockchain. She sends 𝑠 to his contract,

acquiring Bob’s principal and revealing 𝑠 to Bob. (4) Within time

3Δ, Bob learns 𝑠 . He forwards 𝑠 to Alice’s contract, acquiring Alice’s
principal.

5
Since most blockchains cannot tell time directly, 𝑡 is usually expressed in terms of

changes to block height.



This protocol guarantees that if both parties are compliant, the

swap takes place, that no principal is locked up forever, and that

no deviating party can steal from a compliant party.

This protocol does not protect against sore loser attacks. Re-

call that Δ is enough time for one compliant party to modify the

blockchain state (by publishing or calling a contract) and for the

other compliant party to detect that change. To be safe, Δ should

be long, say on the order of 12 hours. If Bob walks away at Step 2,

Alice’s asset is locked up for 3Δ, and if Alice walks away at Step

3, Bob’s asset is locked up for Δ. Bob pays no penalty for walking

away. Alice’s assets remain locked up if she walks away, but Bob

gains no benefit from Alice’s penalty.

5.2 A Hedged Two-party Atomic Swap
An atomic swap protocol should satisfy the following properties:

• Liveness. If each party is conforming, the assets are swapped

and the premiums are refunded. No assets are escrowed

forever.

• Safety. If a compliant party transfers its asset to the counter-

party, then it receives the counterparty’s asset, and if it fails

to receive the counterparty’s asset, it does not transfer its

own.

Definition 1. An atomic swap protocol is hedged if, whenever
a compliant party escrows assets that are not redeemed, that party
receives what it considers sufficient compensation for its inability to
use its escrowed assets.

Informally, by the above definition, that party’s risk is limited

to locking up acceptably small premiums over some bounded time,

without compensation.

Suppose that Bob deposits a premium with Alice’s swap contract.

What should happen to Bob’s premium if he does not unlock Alice’s

principal in time? From outside, it is easy to assign blame. After

Alice escrows her principal, if Bob abandoned the swap without

escrowing his principal, then Alice is blameless, and should be

awarded the premium. If, instead, Alice abandoned the swap with-

out revealing her secret, then Bob is blameless, and his premium

should be refunded. Unfortunately, the contract managing Bob’s

premium cannot tell the difference. That contract resides on the

apricot blockchain, and so cannot inspect the state of Bob’s escrow

contract on the banana blockchain.

Here is how to solve this puzzle (See Figure 1). Say Alice’s pre-

mium is 𝑝𝑎 and Bob’s 𝑝𝑏 . Alice must escrow a premium of 𝑝𝑎 + 𝑝𝑏 .

If Bob reneges, his premium 𝑝𝑏 goes to Alice. If Alice reneges, her

premium 𝑝𝑎 + 𝑝𝑏 goes to Bob, Bob’s premium 𝑝𝑏 goes to Alice,

so Bob’s net compensation is 𝑝𝑎 . Alice’s lock-up risk is 𝑝𝑎 + 𝑝𝑏
until Bob’s principal should be redeemed, and Bob’s risk is 𝑝𝑏 until

Alice’s principal should be redeemed.

For brevity, we will often use terms like "Bob escrows his princi-

pal on the banana blockchain" to mean "Bob temporarily transfers

ownership of his coin to an agreed-upon escrow contract on the

banana blockchain".

A contract on the apricot blockchain escrows Alice’s coin and

Bob’s premium, and another contract on the banana blockchain that

escrows Bob’s coin and Alice’s premium. The timeout for the first

step is Δ from the start of the protocol, and subsequent timeouts

increase by Δ.

(1) Alice deposits her premium 𝑝𝑎+𝑝𝑏 on the banana blockchain’s
escrow contract with timelock 𝑡𝐴 = 5Δ. The timeout for Alice

to deposit her premium is Δ. The timeout for Bob to escrow

his principal 𝑡𝑏,𝑒 = 4Δ. If Bob’s principal is not escrowed
before 𝑡𝑏,𝑒 , Alice’s premium is refunded. If Bob’s principal

is escrowed before 𝑡𝑏,𝑒 , then 1) if it is redeemed before 𝑡𝐴
elapses, Alice’s premium is refunded 2) if it is not redeemed

before that timeout elapses, Alice’s premium goes to Bob.

(2) Bob deposits his premium 𝑝𝑏 on the apricot blockchain’s

escrow contract with timelock 𝑡𝐵 = 6Δ. The timeout for

Bob to deposit his premium is 2Δ. The timeout for Alice to

escrow her principal 𝑡𝑎,𝑒 = 3Δ. The contract is symmetric to

Bob’s escrow contract. If Alice’s escrowed principal is not

redeemed, the premium is awarded to Alice. Otherwise, it is

refunded.

If this premium distribution phase is successful, the parties then

execute the base swap protocol, with escrow contracts modified to

transfer premiums when assets are redeemed or refunded.

It is easy to check that if Alice and Bob are both conforming, their

principals are swapped and their premiums refunded. If Alice is the

first to omit a step after Bob escrows his principal, she will pay Bob

𝑝𝑎+𝑝𝑏 , and Bob will pay Alice 𝑝𝑏 . If Bob is first to deviate after Alice
escrows her principal, he will pay Alice 𝑝𝑏 . Because the control

flow and timeouts of the swap protocol are unaffected by premium

distribution, the correctness of the swap phase is unaffected.

To circumvent the constraint that smart contracts on different

blockchains cannot observe one another’s states, we make repeated

use of the following premium passthrough pattern. If party 𝑃0 fails

to redeem escrowed asset 𝐴0 on blockchain 𝐶0, then 𝐴0’s escrow

contract transfers premium 𝑝 from 𝑃0 to 𝐴0’s owner. Perhaps this

omission was not 𝑃0’s fault because 𝑃0 was blocked by the failure of

another party, 𝑃1, to redeem asset 𝐴1 on a distinct blockchain𝐶1. If

𝑃1 was the source of 𝑃0’s omission, then the escrow contract for 𝐴1

on 𝐶1 transfers premium 𝑝 from 𝑃1 to 𝑃0, ensuring that 𝑃0 breaks

even. This passthrough pattern can be extended to sequences of

arbitrary length.

6 BOOTSTRAPPING PREMIUMS

Alice BobApricot Blockchain Banana Blockchain

Escrow A apricot tokens

ℎ!
Escrow 𝐵 banana tokens

Send 𝑠! : H(𝑠!)=ℎ!

Escrow 𝐴(#) = 𝑝%

Escrow 𝐵(#)= 𝑝% + 𝑝&
Send 𝑠' : H(𝑠')=ℎ'

ℎ!

Send 𝑠!: H(𝑠!)=ℎ!

Send 𝑠' : H(𝑠')=ℎ'

Deposit 𝐴(()= 𝑝%(")

Deposit 𝐵(()= 𝑝%(") + 𝑝&(")

ℎ'

ℎ'

Atomic deposition of premiums

Atomic swap of principals

Figure 2: Hedged Two-Party Atomic Swap with 2-round Pre-
miums



If Alice escrows a high-value asset, there may be no overlap

between the smallest amount she will accept as a premium and the

largest amount Bob will expose to lock-up risk. We can reconcile

this mismatch by bootstrapping Bob’s premium, using multiple

atomic swap rounds where smaller premiums are used to protect

the distribution of larger premiums.

Suppose that to protect against locking up an escrowed asset

of value 𝑣 , Alice and Bob consider a premium of 𝑣/𝑃 for 𝑃 > 1 to

be acceptable. In the atomic swap protocol described above, Alice

deposits a premium of value (𝐴 + 𝐵)/𝑃 to Bob’s escrow contract 𝐵,

and Bob deposits 𝐴/𝑃 to Alice’s escrow contract 𝐴. Alice and Bob

can run a slightly modified atomic swap protocol where instead of

exchanging assets, they deposit their premiums in their next-round

escrow contracts: Bob deposits premium (2𝐴 +𝐵)/𝑃2 to protect the
escrow of (𝐴 + 𝐵)/𝑃 as Alice’s next premium, and Alice deposits

𝐴/𝑃2 to protect Bob’s escrow of𝐴/𝑃 . (Since Alice’s premium should

be deposited first, Bob acts as leader when they deposit premiums,

see Figure 2.) If they precede their swap with 𝑟 rounds of premium

exchanges, then Alice’s and Bob’s initial premium is (𝑟𝐴 + 𝐵)/𝑃𝑟
and 𝐴/𝑃𝑟 and vice-versa, depending on who is the first leader.

Here we show a bootstrapping protocol with 2 rounds of pre-

mium deposits (Figure 2) . We use 𝐴(𝑖) , 𝐵 (𝑖)
to denote premiums

used to escrow 𝐴(𝑖−1) , 𝐵 (𝑖−1)
in the next round, and 𝐴(0) = 𝐴 and

𝐵 (0) = 𝐵. In Figure 2, in the first premium deposition round, Bob

deposits 𝐵 (2)
then Alice deposits 𝐴(2)

. In the second premium de-

position round, Alice and Bob deposit 𝐵 (1)
and 𝐴(1)

respectively.

Bob acts as leader since he wants Alice to deposit 𝐵 (1)
to cover

the next round. Once the next round finishes, the previous round’s

premiums are refunded, except for the follower’s premium in the

current round. In this example, Alice is the follower, since she will

be a leader in the next round. If she reneges, Bob has a lock-up risk

of 𝐴(1)
which exceeds Bob’s acceptable risk. Alice’s 𝐴(2)

should be

refunded after Alice deposits her principal on this escrow contract.

If Alice does not deposit her principal, Bob receives 𝐴(2)
as com-

pensation for locking up 𝐴(1)
. Otherwise, 𝐴(2)

is refunded and the

hedged swap protocol proceeds as in Figure 2.

The duration of the premium lock-up risk is one atomic swap ex-

ecution plus Δ, independent of the number of bootstrapping rounds.

For example, with initial premium 𝑝 , Alice and Bob need approxi-

mately log𝑃 (𝐴+𝐵𝑝 ) bootstrapping rounds. With 1% premiums and

$4 initial lock-up risk, 3 bootstrapping rounds are enough to hedge

a $1,000,000 swap.

7 MULTI-PARTY SWAP
Although two-party atomic swaps are the most common in practice,

there are still situations where multiple parties want to swap assets.

A multi-party swap is represented as a strongly-connected directed
graph (“digraph”) G where each vertex is a party, and each arc is

a proposed asset transfer. Figure 3a shows one such swap config-

uration. Henceforth, we use party and vertex, escrow contract and
arc, interchangeably, depending on whether we emphasize roles or

digraph structure.

Let G denote the swap digraph. We say (𝑢, 𝑣) ∈ G to mean

(𝑢, 𝑣) an arc of G and similarly for vertices 𝑣 ∈ G. A path 𝑞 in G
is a sequence of vertices (𝑢0, . . . , 𝑢𝑘 ) such that each (𝑢𝑖+1, 𝑢𝑖 ) is

A

BC

(a) Multi-party Atomic Swap

(C,A)

𝑞 = (𝐵, 𝐴)

𝑞 = (𝐵, 𝐶, 𝐴)

𝑞 = (𝐴) 𝑞 = (𝐴)

𝑞 = (𝐶, 𝐴)(A,B)

(B,A)

(B,C)

(A,B)

(b) Paths for hashkey 𝑘𝐴

Figure 3: Multi-party Swap Digraphs

an arc of G, and the 𝑢𝑖 are distinct. If 𝑢0 = 𝑢𝑘 , we say 𝑞 is a cycle.
Concatenation is defined as 𝑣 | | (𝑢0, . . . , 𝑢𝑘 ) = (𝑣,𝑢0, . . . , 𝑢𝑘 ).

The base protocol is adapted from the multi-party swap pro-

tocol of Herlihy [7], summarized here for completeness. See the

original [7] for details and proofs. Some vertices are designated as

leaders, the rest as followers. The leaders must form a feedback

vertex set
6
in the digraph. Each leader 𝐿𝑖 , for 𝑖 ∈ 1..ℓ , generates

a secret 𝑠𝑖 and hashlock value ℎ𝑖 = 𝐻 (𝑠𝑖 ), yielding a hashlock vec-
tor (ℎ1, . . . , ℎℓ ), which is sent to each arc. A hashkey 𝑘𝑖 for ℎ𝑖 on

arc (𝑢, 𝑣) is a triple (𝑠𝑖 , 𝑞, 𝜎), where 𝑠𝑖 is the secret ℎ𝑖 = 𝐻 (𝑠𝑖 ), 𝑞
is a path (𝑢0, . . . , 𝑢𝑖 ) in G where 𝑢0 = 𝑣 and 𝑢𝑖 is the leader who

generated 𝑠𝑖 , and 𝜎 is a sequence of signatures that authenticates

the path 𝜎 = 𝑠𝑖𝑔(· · · 𝑠𝑖𝑔(𝑠𝑖 , 𝑢𝑖 ), · · · , 𝑢0). Figure 3b shows how paths

are collected on each arc in G of Figure 3a where Alice is the only

leader generating 𝑠𝑎 . The nodes represents arcs. A hashkey (𝑠𝑖 , 𝑞, 𝜎)
times out at time (diam(G) + |𝑞 |) · Δ after the start of the protocol.

A hashkey no longer unlocks its hashlock after it times out. That

hashkey (𝑠𝑖 , 𝑞, 𝜎) unlocks the hashlock ℎ𝑖 on (𝑢, 𝑣) if it is presented
before it times out.

The base protocol has two phases. In Phase One, each leader (1)

escrows an asset on every arc leaving that vertex, then (2) waits

until assets have been escrowed on all arcs entering that vertex.

Each follower (1) waits until assets have been escrowed on all arcs

entering that vertex, then (2) escrows an asset on every arc leaving

that vertex. In Phase Two, each leader whose incoming arcs have the

expected escrowed assets sends its hashkey to those arcs. Each party

6
A feedback vertex set is a subset of vertices whose deletion leaves G acyclic.



who learns a hashkey from an incoming arc extends that hashkey’s

path and propagates the extended hashkey on its outgoing arcs.

When an arc has collected all hashkeys needed, the asset escrowed

in that arc is redeemed and transferred to the counterparty.

The base multi-party swap protocol satisfies the same safety

properties as the two-party swap: for each compliant party 𝑣 , (1) if

𝑣 transfers an asset on an outgoing arc, then it receives all assets on

incoming arcs, and (2) if 𝑣 fails to receive an asset on an incoming

arc, then it transfers no assets on any outgoing arcs.

7.1 Premium Distribution
The two-party premium distribution protocol of Section 5 does

not easily generalize to multi-party swaps. Consider the graph in

Figure 3a. Suppose Alice posts premiums on her incoming edges

(𝐵,𝐴) and (𝐶,𝐴). In Phase One, (conforming) Bob escrows his

assets on (𝐵,𝐴), but (deviating) Carol never escrows hers. Alice has
a dilemma. If she releases her secret, Bob will take her asset, but she

will not get Carol’s asset in return. If she does not release her secret,

she will have to pay a premium to Bob. The dilemma arises because

Alice’s counterparty in a two-party swap is either compliant or

deviating, but in a multi-party swap, her counterparties may include

both.

There are two ways a deviating party can lock up its counterpar-

ties’ assets. In Phase One, a deviating party may fail to escrow its

principal, and in Phase Two, it may fail to deliver a hashkey needed

to redeem an asset. In response, we define two kinds of premiums

for each arc (𝑢, 𝑣): an escrow premium is awarded to 𝑣 by 𝑢 if the

expected asset is not escrowed on that arc in time, and a redemption
premium is awarded to 𝑢 by 𝑣 if 𝑣 does not produce the hashkey 𝑘𝑖
in time.

Premiums are deposited in two phases that mirror the phases of

the base protocol: first the escrow premiums are deposited, then the

redemption premiums. It is convenient to describe these protocols

in reverse chronological order, redemption premiums first. Redemp-

tion premiums flow “backwards” though the digraph, starting at

leaders, and moving against the orientation of the arcs. Consider

hashkey 𝑘𝑖 from leader 𝐿𝑖 . A redemption premium for arc (𝑢, 𝑣) has
the form 𝑅𝑖 (𝑞,𝑢), where 𝑞 is a path from 𝑣 to 𝐿𝑖 in G. (This path
reverses the order in which that premium was distributed.) Exactly

as in Phase Two of the base protocol, this path is authenticated by

signatures, and the path length determines timeouts.

Here is the redemption premium distribution protocol for leader

𝐿𝑖 . Protocols for different leaders can be run in parallel. Assume for

simplicity that each asset has the same premium 𝑝 .

(1) 𝐿𝑖 deposits premium 𝑅𝑖 (𝐿𝑖 , 𝑢) on each incoming arc (𝑢, 𝐿𝑖 ),
and

(2) waits until each outgoing arc (𝐿𝑖 , 𝑣) has a premium for 𝑘𝑖 .

Each party 𝑣 ≠ 𝐿𝑖 ,

(1) waits for the first time a premium 𝑅𝑖 (𝑞, 𝑣) for 𝑘𝑖 appears on
some outgoing arc (𝑣,𝑤), then

(2) if 𝑣 | |𝑞 is a path, then deposits premium 𝑅𝑖 (𝑣 | |𝑞,𝑢) on every

incoming arc (𝑢, 𝑣).
Once a premium for 𝑘𝑖 has appeared on any of 𝑢’s outgoing arcs,

any later premiums for 𝑘𝑖 that appear on other outgoing arcs are

ignored. The proof that the redemption premium distribution proto-

col terminates is identical to the proof that the hashkey distribution

phase of the base protocol terminates, which appears elsewhere [7].

If this phase times out, the party still goes to next phase.

How are redemption premiums calculated? Each party 𝑣 ’s re-

demption premium for path 𝑞 is:

𝑅𝑖 (𝑞, 𝑣) =
{
𝑝 if 𝑣 | |𝑞 is a cycle

𝑝 +∑
{𝑢 | (𝑢,𝑣) ∈G} 𝑅𝑖 (𝑣 | |𝑞,𝑢) otherwise

(1)

This formula is well-defined because each path in G is finite, being

acyclic. Each leader’s redemption premium is

𝑅(𝐿𝑖 ) =
∑︁

{𝑢 | (𝑢,𝐿𝑖 ) ∈G}
𝑅𝑖 (𝐿𝑖 , 𝑢),

the sum of the premiums on its incoming arcs.

Escrow premiums propagate “forwards” through the digraph,

passing from asset sender to asset receiver. Let 𝐸 (𝑢, 𝑣) denote the
escrow premium on arc (𝑢, 𝑣). Each leader 𝐿

(1) deposits premium 𝐸 (𝐿, 𝑣) on each outgoing arc (𝐿, 𝑣), and
(2) waits until premium 𝐸 (𝑢, 𝐿) has been deposited on each

incoming arc (𝑢, 𝐿).
Each follower 𝐹

(1) waits until premium 𝐸 (𝑢, 𝐹 ) has been deposited on each

incoming arc (𝑢, 𝐹 ), and
(2) deposits premium 𝐸 (𝐹, 𝑣) on each outgoing arc (𝐹, 𝑣).

The proof that the escrow premium distribution protocol terminates

is identical to the proof that the escrow phase of the base protocol

terminates, which appears elsewhere [7]. If this phase times out,

the party still moves to the next phase of the protocol.

Before an escrow premium deposited by 𝑢 can be awarded to 𝑣 ,

that premium must be activated. A premium deposited on arc (𝑢, 𝑣)
is activated when (𝑢, 𝑣) has received redemption premiums for all

hashkeys 𝑘𝑖 . If 𝑢’s escrow premium times out before activation, it

is refunded to 𝑢, but after activation, it is awarded to 𝑣 if the asset

on (𝑢, 𝑣) is not escrowed in time.

Escrow premiums are computed by the following formula:

𝐸 (𝑢, 𝑣) =
{
𝑅(𝐿𝑖 ) if 𝑣 is leader 𝐿𝑖∑

(𝑣,𝑤) ∈G 𝐸 (𝑣,𝑤) otherwise.

(2)

The first clause states that each arc entering a leader carries a

premium equal to that leader’s redemption premium. The second

clause states that each arc entering a follower covers the premiums

on arcs leaving that follower. The escrow premium formula is well-

defined because leaders form a feedback vertex set, so every cycle

is broken by a leader.

The hedged protocol has four phases: (1) depositing escrow

premiums, (2) depositing redemption premiums, (3) base proto-

col Phase One, and (4) base protocol Phase Two. If the first two

premium distribution phases execute successfully, the base protocol

phases execute normally, with some additional steps to manage pre-

miums. If premium distribution fails, the parties execute truncated

versions of the base protocol phases to recover their premiums.

Timeouts are determined as follows. Each step takes time at most

Δ. In the first phase, the leaders should escrow their outgoing es-

crow premiums before Δ elapses, and each following step’s timeout

increases by Δ. Premiums and assets are locked until they are due

to be activated, redeemed, or refunded.

In the following lemmas, 𝑣 is a compliant party.



Lemma 1. If a swap completes successfully, then each 𝑣 has all its
premiums refunded.

Proof. For each outgoing arc (𝑣,𝑤), 𝑣 ’s escrow premium 𝐸 (𝑣,𝑤)
is refunded as soon as 𝑣 escrows its asset on that arc. For each

incoming arc (𝑢, 𝑣) and each hashkey 𝑘𝑖 , 𝑣 ’s redemption premium

𝑅𝑖 (𝑞,𝑢) is refunded as soon as 𝑣 party sends hashkey 𝑘𝑖 on that

arc. □

What can go wrong?

Lemma 2. In Phase Four, if hashkey 𝑘𝑖 is never revealed on any of
𝑣 ’s outgoing arcs, then 𝑣 ends up with net redemption premium profit
at least 𝑝 for each asset 𝑣 escrowed.

Proof. Denote the redemption premium that 𝑣 receives on each

outgoing arc (𝑣,𝑤) as 𝑅𝑖 (𝑞, 𝑣), where 𝑞 = (𝑣,𝑤, · · · , 𝐿𝑖 ). If 𝑣 ’s
outgoing redemption premiums on incoming arcs have the form

𝑅𝑖 (𝑣 | |𝑞,𝑢) for all arc (𝑢, 𝑣) ∈ G, then by Equation 1, 𝑣 ends up

with net redemption premium profit at least 𝑝 for any outgoing

arc (𝑣,𝑤). If 𝑣 | |𝑞 is a cycle, 𝑣 is awarded at least 𝑝 for any outgoing

arc (𝑣,𝑤). Every outgoing arc contributes a redemption premium

profit at least 𝑝 . □

Lemma 3. In Phase Three, if some 𝑢 fails to escrow an asset on
(𝑢, 𝑣), then a party 𝑣 ends up with a net escrow profit at least zero, and
a net redemption premium profit at least 𝑝 for each asset 𝑣 escrowed.

Proof. If 𝑢 fails to escrow its asset, then 𝑣 collects the escrow

premium on (𝑢, 𝑣). By Equation 2, if 𝑣 is a follower, 𝑣 does not

escrow any outgoing assets, and the premium 𝐸 (𝑢, 𝑣) is enough to

cover the cost of paying the escrow premiums on 𝑣 ’s outgoing arcs,

yielding the net escrow premium profit at least zero. If 𝑣 is a leader,

since the leader 𝑣 escrows assets on the outgoing arcs whose escrow

premiums are activated, 𝑣 does not need to pay escrow premiums

to anyone, yielding the net escrow premium profit at least zero.

The leader 𝑣 then proceeds to Phase Four without revealing 𝑘𝑣 ,

the premium 𝐸 (𝑢, 𝑣) is enough to cover the cost of paying the

redemption premiums on 𝑣 ’s incoming arcs. For any arc (𝑣,𝑤)
that 𝑣 has escrowed asset, since the escrow premium 𝐸 (𝑣,𝑤) is
activated, and 𝑘𝑣 on (𝑣,𝑤) cannot be revealed, yielding per-asset
net redemption premium profit at least 𝑝 by Lemma 2. □

Lemma 4. In Phase Two, if no redemption premium for 𝑘𝑖 is de-
posited on any outgoing arc (𝑣,𝑤), then 𝑣 ends up with a net escrow
premium profit at least zero, and a net redemption premium profit at
least zero.

Proof. If no redemption premium for 𝑘𝑖 is deposited on any

outgoing arc (𝑣,𝑤), then 𝑣 ’s escrow premiums on those arcs are not

activated, and they are all refunded to 𝑣 , for a net escrow premium

profit at least zero. If 𝑣 ≠ 𝐿𝑖 , then 𝑣 does not deposit any redemption

premiums for 𝑘𝑖 on any incoming arc, for a net 𝑘𝑖 redemption

premium profit at least zero. If 𝑣 = 𝐿𝑖 , 𝑣 proceeds to Phase Three

without escrowing any assets since no escrow premium is activated.

𝑣 just releases 𝑘𝑖 on its incoming arcs and gets a net 𝑘𝑖 redemption

premium profit at least zero since 𝑣 does not pay any premium. □

Lemma 5. In Phase One, if some 𝑢 fails to deposit an escrow pre-
mium on (𝑢, 𝑣), then 𝑣 ends up with a net escrow premium profit at
least zero.

Proof. If 𝑣 is a follower, 𝑣 does not deposit any escrow premiums

since 𝑣 does not receive all incoming escrow premiums. If 𝑣 is a

leader, 𝑣 proceeds to Phase Two without depositing the redemption

premium 𝑅𝑣 (𝑣,𝑤) for any (𝑤, 𝑣) ∈ G and its outgoing escrow

premiums are refunded eventually. □

Lemma 6. The multi-party swap protocol is hedged.

Proof. Lemmas 2-5 imply that in every situation where a com-

pliant party escrows an asset, it ends up with a premium profit of

at least 𝑝 for that asset. □

A leader deposits a premium proportional to the number of paths

in the digraph. If there is a unique path between any two parties,

then each leader’s premium is linear in 𝑛, the number of digraph

vertices. In the worst case, for a complete digraph, each leader’s

premium is exponential in 𝑛. This premium can be reduced to

linear by preceding the protocol with 𝑂 (log𝑛) rounds of premium

bootstrapping as described in Section 6.

8 BROKERED COMMERCE
Not all cross-chain commerce can be expressed as swaps. Consider

the following scenario from Herlihy, Liskov, and Shrira [8]. Alice

is a ticket broker who buys tickets at wholesale prices from event

organizers and resells them at a small markup to consumers. Alice

discovers that Bob wants to sell some tickets for 100 coins, and

Carol is willing to buy them for 101 coins, so Alice wants to broker

the deal. This three-way exchange is not a swap, because Alice does

not own either the tickets or the coins: she is using Carol’s coins to

buy Bob’s tickets. Coins and tickets live on distinct blockchains.

8.1 Base Protocol
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Figure 4: Broker Protocol

The broker protocol summarized here is taken from Herlihy,

Liskov, and Shrira [8], which includes a more complete analysis. In

the terminology of the multi-party swap, every party is a leader.

Each party 𝑋 ∈ {𝐴, 𝐵,𝐶}, generates a secret 𝑠𝑋 and hashlock value

ℎ𝑋 = 𝐻 (𝑠𝑋 ), yielding a hashlock vector (ℎ𝐴, ℎ𝐵, ℎ𝐶 ), which is sent

to each arc. A hashkey 𝑘𝑋 for ℎ𝑋 on arc (𝑢, 𝑣) is a triple (𝑠𝑋 , 𝑞, 𝜎),



where 𝑠𝑋 is the secret ℎ𝑋 = 𝐻 (𝑠𝑋 ), 𝑞 is a path (𝑢0, . . . , 𝑢𝑘 ) in G
where 𝑢0 = 𝑣 and 𝑢𝑘 is the party who generated 𝑠𝑋 , and 𝜎 is a

sequence of signatures that authenticates the path. An asset is

redeemed when its arc has received all three hashkeys in time. As

in the multi-party swap protocol, a hashkey (𝑠𝑖 , 𝑞, 𝜎) times out at
time (diam(G) + |𝑞 |) · Δ after the start of the protocol.

Here are the steps of the base protocol.

(1) Escrow phase: B1: Bob escrows his tickets on arc (𝐵,𝐴), and
C1: Carol escrows 101 coins on arc (𝐶,𝐴).

(2) Trading phase: A1: Alice transfers the tickets to Carol on

(𝐴,𝐶), A2: Alice transfers 100 coins to Bob on (𝐴, 𝐵).
(3) Redemption phase:A3: Alice releases her hashkey on (𝐵,𝐴), (𝐶,𝐴)

B2: Bob releases his hashkey on (𝐴, 𝐵), and C2: Carol re-
leases her hashkey on (𝐴,𝐶). When a party observes a new

hashkey on an outgoing arc, it propagates that hashkey to

all its incoming arcs.

8.2 Premium Structure
Who should pay premiums to whom? Figure 4 shows the dependen-

cies among these steps. An arrow from one step, say B1, to another,

A1, means that A1 cannot occur until B1 has happened. If Bob omits

B1, then Carol’s coins are locked up, and Alice cannot complete

A1, forcing her to pay a premium, so Bob pays a premium to Carol

and to Alice. If Bob completes B1 but omits B2, then Carol’s coins

are locked up, so he pays a premium to Carol. Carol’s premium

payments are symmetric.

Alice’s situation is the most interesting, since her role would

not exist in a multi-party swap. She escrows no assets, but she

should still receive passthrough premiums to reimburse her for

premium payments forced on her by others. If Alice omits A1 after

Bob performs B1, then she pays Carol a premium on the ticket

blockchain since Carol is expecting her to transfer the ticket to

her. If she omits A2 after Carol performs C1, then Alice pays Bob

a premium on the coin blockchain. If she omits A3 after Bob and

Carol complete B1, B2, C1, and C2, then she pays premiums to both

on their respective blockchains.

Premiums are deposited in a three-phase protocol mirroring the

structure of the base protocol.

(1) In the escrow premium deposit phase, Bob and Carol, the

parties escrowing their own assets, deposit escrow premiums

𝐸 (𝐵,𝐴) and 𝐸 (𝐶,𝐴) on those outgoing arcs.

(2) In the trading premium deposit phase, Alice, the only party

conducting intermediate trades, deposits trading premiums

𝑇 (𝐴, 𝐵) and 𝑇 (𝐴,𝐶) on those outgoing arcs.

(3) In the redemption premium deposit phase, for each 𝑢 ∈
{𝐴, 𝐵,𝐶}, each 𝑣 deposits premium 𝑅𝑢 (𝑞,𝑢) on each incom-

ing arc (𝑢, 𝑣), where 𝑞 is a path from 𝑣 to 𝐿7 .

As in the multi-party swap protocol, an escrow or trading premium

is activated on an arc when all redemption premiums have been

deposited on that arc. As long as an escrow or trading premium

has not been activated, it can only be refunded.

7
In this specific case, there are opportunities for optimization. Since (𝐴, 𝐵) and (𝐶,𝐴)
are asset transfers on the same escrow contract, Bob can directly send his hashkey

to the coin blockchain, simplifying the redemption premium deposition. Since Alice

does not need to forward Bob’s hashkeys on (𝐶,𝐴) , we do not need a redemption

premium regarding the path 𝑞 = (𝐴, 𝐵) for 𝑠𝑏 . The ticket chain is symmetric.

Redemption premiums are calculated by Equation 1. Trading

premiums are defined as follows: if 𝑣 transfers an asset to𝑤 in the

trading phase, then 𝑣 ’s trading premium 𝑇 (𝑣,𝑤) is 𝑅𝑤 (𝑤). Escrow
premiums are similar: Let 𝑇 (𝑣) =

∑
𝑤 | (𝑣,𝑤) ∈G 𝑇 (𝑣,𝑤). then 𝑢’s

escrow premium 𝐸 (𝑢, 𝑣) is 𝑇 (𝑣).
As long as all trading-phase transfers are known in advance, we

can extend this approach to encompass multiple rounds of trading.

Premiums for 𝑟 trading rounds are defined as follows. If 𝑣 transfers

an asset to𝑤 in the escrow phase, then 𝑣 ’s escrow-phase premium

𝐸 (𝑣,𝑤) is 𝑇1 (𝑤). If 𝑣 transfers an asset to 𝑤 in trading phase 𝑘 ,

1 ≤ 𝑘 < 𝑟 , then 𝑣 ’s phase-𝑘 trading premium𝑇𝑘 (𝑣,𝑤) is𝑇𝑘+1 (𝑤). If
𝑣 transfers an asset to𝑤 in trading phase 𝑟 , then 𝑣 ’s phase-𝑟 trading

premium𝑇𝑟 (𝑣,𝑤) is 𝑅𝑤 (𝑤). In an 𝑟 -round deal, assets change hands
𝑟 times.

9 AUCTIONS
Consider a scenario where Alice has purchased some tickets she

nowwants to auction to Bob and Carol. What happens if we naïvely

try to adapt Section 8’s broker protocol? If Bob submits the higher

bid, but Alice dishonestly tries to take his coins without awarding

him the tickets, then Bob simply cancels the auction by withholding

his final vote to commit (his hashkey). Bob is safe, but he is exposed

to a sore loser attack: if Carol is angry because her bid lost, she

withholds her vote to commit, ensuring that no one gets the tickets.

A premium structure similar to the hedged broker protocol could

compensate Bob if sore loser Carol wrecks the auction, but suppose

again that a dishonest Alice tries to take Bob’s money without

awarding him the tickets. When Bob justifiably withholds his vote

to commit, he will be unfairly required to pay premiums to the

others.

In this section, we propose a simple hedged auction protocol

that is not vulnerable to a sore loser attack from the low bidder, and

that compensates the bidders if the auctioneer is caught cheating.

9.1 Base Protocol
As Section 8, there are two blockchains, the ticket chain and the

coin chain. Alice generates two secrets: 𝑠𝐵 to be used if Bob wins,

and 𝑠𝐶 if Carol wins. Alice constructs hashkeys 𝑘𝐵 based on 𝑠𝐵 ,

and 𝑘𝐶 based on 𝑠𝐶 . Recall that a hashkey is a triple (𝑠, 𝑞, 𝜎), where
𝑞 is the path the hashkey has traversed, 𝑠 is a secret, and 𝜎 the

signatures authenticating the path. The hashkey times out after

time |𝑞 |Δ. Since there are only 3 parties, the longest a hashkey

can survive is 3Δ. For brevity, we use 𝑘𝐵 (𝑘𝐶 ) to denote any valid

hashkey based on 𝑠𝐵 (𝑠𝐶 ). The protocol has several phases, each of

duration Δ.

(1) In the bidding phase, Bob and Carol send their bids
8
to the

coin chain contract, which records them. At the end of this

phase, the high bidder’s identity is evident from inspecting

the coin chain contract. No new bids are accepted after this

phase.

(2) In the declaration phase, Alice inspects the coin chain con-

tract to determine the winner, and publishes the hashkey

identifying the winner on both the coin and ticket chain

contracts. (For example, if Bob wins, she publishes 𝑘𝐵 .)

8
In a more realistic auction protocol, the bidders might use a two-round commit-reveal

scheme to keep their bids secret from one another, a topic beyond this paper’s scope.



(3) In the challenge phase, Bob and Carol inspect the hashkeys

Alice published on the coin and ticket chain contracts, if any.

If any hashkey appears at one contract but not the other, Bob

and Carol forward that hashkey to the contract missing that

hashkey. This phase takes time 3Δ, long enough for Alice’s

hashkeys to time out.

(4) In the commit phase, the auction is settled. The coin chain

contract compares the hashkeys it has received with the bids.

If it received only the actual winner’s hashkey, all is well, and

it refunds the lower bid and transfers the higher bid to Alice.

If it received the low bidder’s hashkey, or no hashkey, then

Alice cheated, and all bids are refunded. If the ticket chain

contract received exactly one hashkey, it transfers the tickets

to the matching party. If it received zero or two hashkeys, it

refunds the tickets to Alice.

Lemma 7. If a hashkey 𝑘 = (𝑞, 𝑠, 𝜎) is published on one contract,
then it is also published on the other.

Proof. If the path 𝑞 includes a compliant party, then that party

has already published 𝑘 on the other contract. If path 𝑞 does not

include any compliant party, then 𝑞 has length at most 2, implying

𝑘 was published before 2Δ elapsed. The missing compliant party

has time Δ to publish 𝑘 on the other contract before 𝑘 times out. □

Lemma 8. No compliant bidder’s bid can be stolen.

Proof. Suppose Bob is the high bidder.

If no hashkeys are published on either contract, then all bids are

refunded at Phase 4.

If any party publishes 𝑘𝐶 on either contract, then some party

publishes 𝑘𝐶 on the coin contract, and all bids are refunded at

Phase 4.

If no party publishes 𝑘𝐶 on either contract, but some party pub-

lishes 𝑘𝐵 on some contract, then 𝑘𝐵 and only 𝑘𝐵 is published on

both contracts, so the chain contract will refund Carol’s bid and

transfer Bob’s bid to Alice, and the ticket blockchain will transfer

the tickets to Bob. □

If Alice deviates, she can award the tickets to either bidder (or

neither), but since she owns those tickets, she could have done

that without an auction. What matters is that if Bob or Carol are

compliant, their bids cannot be stolen.

9.2 Premium Structure
Bob and Carol do not pay premiums because they cannot mali-

ciously lock up anyone’s assets. (A party who withholds a bid

arguably does the other party a favor.) Alice should pay premiums,

because she can lock up Bob and Carol’s coins, either by abandoning

the protocol midway or by cheating.

Alice endows her coin chain contract with 2𝑝 premiums. If the

bids are refunded in Phase 4, then Bob and Carol are each awarded

𝑝 along with their refunded bids. If the auction completes, Alice’s

premiums are refunded. Generalizing this protocol to 𝑛 bidders

requires Alice to deposit 𝑛𝑝 premiums.

10 REMARKS AND CONCLUSIONS
We used model checking to verify the properties of the two-party

hedged swap and some three-party hedged swaps. As discussed

in Section 3.2, smart contracts severely constrain the behavior of

Byzantine participants by enforcing ordering, timing, and well-

formedness restrictions on transactions. Byzantine parties are re-

stricted to attacks that appear reasonable at individual blockchains,

even if they are globally incorrect. Surprisingly, perhaps, this con-

strained behavior can be model-checked in reasonable time. The

TLA+ source code and model specifications can be found in our

GitHub repository [18].

Blockchains such as Ethereum, whose smart contracts are im-

plemented using a Turing-complete language, can support our pro-

tocols directly. For blockchains such as Bitcoin, whose contracts

are more restricted, we note that Han et al. [5] introduced a new

opcode to support their premium protocol.

In future work, we plan to study premiums in asynchronous

protocols such as those proposed by Glabbeek et al. [16], Ranchal-
Pedrosa and Gramoli [13] and Herlihy et al. [8].

We have made no attempt to optimize the round complexity of

our protocols. It would be interesting to derive lower bounds for

round complexity of premium protocols.

We have studied the sore loser problem in the context of cross-

blockchain financial deals, but similar issues arise in any distributed

coordination protocol where a faithless party can trick another

party into locking up a resource for a non-trivial duration. The

resources at risk might be disk pages, network bandwidth, database

access, and so on. In everyday life, there are well-developed mecha-

nisms for sore loser protection, such as security deposits, "earnest

money", downpayments and so on, and we hope this paper will

focus the community’s attention on developing similar mechanisms

for distributed computing.
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