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ABSTRACT

A sore loser attack in cross-blockchain commerce rises when one
party decides to halt participation partway through, leaving other
parties’ assets locked up for a long duration. Although vulnerability
to sore loser attacks cannot be entirely eliminated, it can be reduced
to an arbitrarily low level. This paper proposes new distributed
protocols for hedging a range of cross-chain transactions in a syn-
chronous communication model, such as two-party swaps, n-party
swaps, brokered transactions, and auctions.
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1 INTRODUCTION

Alice is heavily invested in “apricot tokens”, an electronic asset
managed on the “apricot blockchain”, a tamper-proof replicated
ledger. Token prices are volatile, so she decides to diversify. She
locates Bob, who owns "banana tokens", managed on a distinct
“banana blockchain”, and Alice and Bob agree to swap some of her
tokens for some of his.

Alice and Bob do not trust one another, nor do they both trust
any third party, so they need a way to exchange their tokens in a
safe and decentralized way. Fortunately, they can call upon well-
known cross-chain atomic swap protocols [1, 2, 6, 7, 11, 19, 20] that
ensure that neither party can steal the other’s assets.

The notion of escrow is central to most protocols for cross-chain
exchanges. An escrow is like a lock in a concurrent data structure:
escrowing an asset ensures that it can take part in only one ex-
change at a time. Typically an asset is escrowed by temporarily
transferring ownership to an automaton (called a “smart contract”)
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programmed to award that asset to the counterparty when certain
conditions are met. If those conditions are not met within a reason-
able duration, the escrow contract times out and refunds the asset
to its original owner.

In a typical atomic swap protocol, Alice might put her tokens in
escrow for, say, 48 hours, then Bob would put his tokens in escrow
for, say, 24 hours. Alice would then claim Bob’s tokens (details
vary), and Bob would claim Alice’s. Atomic swap protocols ensure
liveness: if both parties conform to the protocol, the swap takes
place, and even if parties deviate from the protocol, timeouts ensure
that no assets are locked up forever. These protocols also ensure
safety: a conforming party’s assets cannot be stolen.

Nevertheless, most prior protocols have a critical flaw: the parties
are vulnerable, at different times, to sore loser attacks (sometimes
called lockup griefing [6]). Informally, this problem arises when
mutually-untrusting parties agree to a sequence of asset transfers
in a volatile market where asset values may fluctuate. While the
transfers are in progress, incentives may change: a sudden decrease
in an asset’s value may motivate a party to abandon a swap midway,
or an unsuccessful bidder may drop out early from an auction. A
sore loser attack is roughly analogous to having a thread (deliber-
ately) halt while holding a lock.

In the atomic swap example, once Alice has escrowed her tokens,
Bob has the following option!: if he observes that Alice’s tokens
have diminished in value, then he stands to lose from the swap,
so he simply abandons the protocol, leaving Alice unable to trade
her tokens for 48 hours. If, instead, Bob does respond by escrowing
his own tokens, then the balance of power reverses. If Alice now
observes that Bob’s tokens have diminished in value, then she might
abandon the protocol, leaving Bob unable to trade his tokens for 24
hours. The sore loser attack thus introduces perverse incentives: if
either asset diminishes significantly in relative value to the other,
then one party has an incentive to quit at the other’s expense. If
asset values are volatile, parties may even have an incentive to run
the protocol as slowly as possible to keep their options open for as
long as possible.

The contribution of this paper is to describe novel ways to trans-
form various cross-chain protocols to mitigate or eliminate sore
loser attacks. We consider two-party atomic swaps, multi-party
atomic swaps, brokered commerce, and simple auctions. Since the
cross-chain protocols that we transform already assume synchro-
nous communication, our mitigation mechanisms are also based
on a synchronous communication model.

In classical finance, sore loser attacks are prevented by having
the option buyer (the party who might renege) pay a fee, called a
premium, to compensate the option seller (the party whose assets
will be locked up) if the buyer abandons the protocol.? Our goal

!n finance, this choice is called an "American call option".
%In some variations, the buyer pays the premium no matter what.
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here is to do the same for cross-chain commerce, ensuring that an
honest party is compensated if its assets are locked up through no
fault of its own. 3

Setting up a cross-blockchain premium structure presents chal-
lenges that do not arise in classical finance. Indeed, completely
eliminating sore loser attacks seems impossible in a distributed
context, because as soon as one party escrows an asset for the first
time, the counterparties might all renege, leaving that party with
no possibility of compensation. If we cannot completely eliminate
risk, we can still make it arbitrarily small. We will add a premium
distribution phase to protect high-value escrows from sore loser
attacks. This new phase is itself vulnerable to sore loser attacks,
but the values at risk are considerably smaller than the values at
risk in the main protocol. For example, Alice may be unwilling to
accept a risk that 100 of her tokens could be locked up for 48 hours,
but she may be willing to accept that risk for 1 token.

2 RELATED WORK

In finance, optionality [9] is the notion that there is value in ac-
quiring the right, without any obligation, to invest in something
later. Atomic swap based on hashed timelock contracts [11] exposes
such optionality to both parties. However, multiple researchers [5,
6, 10, 21] have observed that both parties are exposed to sore loser
attacks where the counterparty reneges at critical points in the
protocol. Robinson [14] proposes to reduce vulnerability to sore
loser attacks by splitting each swap into a sequence of very small
swaps, an approach that works only for fungible, divisible tokens.

There are prior two-party swap protocols that are asymmetric,
meaning that one party pays a premium to the other, but not vice
versa, protecting only one side of the swap from a sore loser attack.
These protocols include Han et al. [5], Eizinger et al. [4], Liu [10],
the Komodo platform [12], and the Arwen protocols [6]. Eizinger
et al. [4] address the optionality problem by a premium mechanism,
however they address only Alice’s optionality and neglect Bob’s,
allowing Bob to renege after Alice escrows her assets. Han et al.
[5] quantified optionality unfairness, and have Alice pay premiums
to Bob if she deviates from the protocol, but not vice-versa. In
the Arwen protocols [6], one party to each swap is a centralized
exchange, which is assumed to be trustworthy because it wants
to protect its reputation. Komodo [12] mitigates sore loser attacks
by incentives. For example, Alice pays a small fee if she is caught
deviating, but that fee is not used to compensate Bob.

Xu et al. [17] use game-theoretic techniques to analyze the suc-
cess rate of cross-chain swaps using hashed timelock contracts,
showing that both parties can rationally choose not to follow the
protocol. To the best of our knowledge, Liu [10] was the first to
propose an atomic swap protocol that protects both parties from
sore loser attacks. This protocol is still asymmetric in the sense that
Alice explicitly purchases an option from Bob, and her premium is
not refunded. There is no obvious way to extend this protocol to
more than two parties, or to applications such as brokered sales or
auctions. Tefagh et al. [15] propose a similar protocol based on an
options model.

3The aim is to compensate honest parties, not primarily to deter or punish dishonest
parties.

3 MODEL

Although we will propose protocols based on today’s blockchains
and smart contracts, none of our principal results depends on spe-
cific blockchain technology, or even blockchains as such. Instead,
we focus on computational abstractions central to any systematic
approach to commerce among untrusting parties, no matter what
technology underlies the shared data stores.

3.1 Ledgers and Contracts

A blockchain is a tamper-proof distributed ledger (or database) that
tracks ownership of assets by parties. A party can be a person, an
organization, or even a contract (see below). An asset can be a
cryptocurrency, a token, an electronic deed to property, and so on.
There are multiple blockchains managing different kinds of assets.
We focus here on applications where mutually-untrusting parties
trade assets among themselves, possibly in complicated ways, an
activity sometimes called adversarial commerce [8]. Examples of
adversarial commerce include swaps, loans, auctions, markets, and
SO on.

A smart contract (or “contract”) is a blockchain-resident program
initialized and called by the parties. A party can publish a new
contract on a blockchain, or call a function exported by an existing
contract. Contract code and contract state are public, so a party
calling a contract knows what code will be executed. Contract code
must be deterministic because contracts are typically re-executed
multiple times by mutually-suspicious parties.

A contract can read or write ledger entries on the blockchain
where it resides, but it cannot directly access data from the outside
world, and cannot call contracts on other blockchains. A contract
on blockchain A can learn of a change to a blockchain B only if
some party explicitly informs A of B’s change, along with some
kind of “proof” that the information about B’s state is correct. In
short, contract code is passive, public, deterministic, and trusted,
while parties are active, autonomous, and potentially dishonest.

We assume a synchronous execution model where there is a
known upper bound A on the propagation time for one party’s
change to the blockchain state to be noticed by the other parties.
Specifically, blockchains generate new blocks at a steady rate, and
valid transactions sent to the blockchain will be included in a block
and visible to participants within a known, bounded time A. In
practice, contracts measure A in terms of block height.

3.2 Threat Model

We do not consider attackers who compromise the blockchain
itself, through, for example, denial-of-service attacks. Although
parties may display Byzantine behavior, smart contacts can enforce
ordering?, timing, and well-formedness restrictions on transactions
that significantly limit the ways in which Byzantine parties can
misbehave.

We make standard cryptographic assumptions. Each party has a
public key and a private key, and any party’s public key is known to
all. Messages are signed so they cannot be forged, and they include
single-use labels (“nonces”) so they cannot be replayed.

4Smart contracts can record the order in which messages are received.



4 OVERVIEW

Cross-chain commerce is founded on the notion of escrow. An
asset’s owner does not directly transfer that asset to a counterparty.
Instead, the owner temporarily transfers that asset to an escrow
contract. If certain conditions are met within a certain time, that
contract redeems the asset, transferring it to the counterparty, and
otherwise it refunds that asset to the original owner. The party and
counterparty both trust the contract, even if they do not trust one
another.

Multiple parties agree on a common protocol to execute a series
of transfers, an agreement that can be monitored, but not enforced.
Instead of distinguishing between faulty and non-faulty parties, as
in classical distributed computing, we distinguish only between
compliant parties who follow the agreed-upon protocol, and deviat-
ing parties who do not. We make no assumptions about the number
of deviating parties.

Each section in this paper starts with a base protocol, adapted
from the literature, that performs some form of adversarial com-
merce: two-party swap, multi-party swaps, brokered sales, and sim-
ple auctions. By hypothesis, each such protocol guarantees that if
all parties comply, all transfers take place, that no asset is escrowed
forever, and that no compliant party ends up with a negative payoff
(e.g., has its assets stolen).

Nevertheless, these protocols are vulnerable to sore loser attacks:
at one or more points, one party can walk away leaving the other
parties’ assets locked up in escrow for a long time. Suppose Alice
escrows an asset with value v in a situation where her counterparty
Bob can walk away. A premium is a value p < v such that (1) Alice
considers p large enough to be acceptable compensation for locking
up her asset for the duration of the protocol, and (2) Bob considers p
small enough that he accepts the risk his premium could be locked
up for the duration of the protocol.

We extend each base protocol to protect parties against sore loser
attacks by associating a premium with each escrow. We modify each
escrow contract to refund the premium if the asset is redeemed,
and to pay the premium to the counterparty if the asset is refunded.
The base protocol is prefaced by one or more premium distribution
phases, where premiums are deposited in escrow contracts.

These extended protocols have a semi-modular structure : the
premium protocol vulnerable to (minor) sore loser attack is superim-
posed on a base protocol to protect it from (major) sore loser attack.
The premium protocol observes the base layer’s state, and as long as
premium distribution completes successfully, it does not otherwise
affect the base protocol’s control flow or timeouts. If the premium
protocol fails, then so does the base protocol, although parties may
need to execute truncated versions of the base protocol to recover
their premiums. The advantage of factoring protocols this way
is that in the normal case, when the premium protocol succeeds,
safety and liveness of the base protocol layer are independent of
the premium protocol layer.

We assume each blockchain has a native currency that can be
used to pay premiums on that chain. For simplicity, we treat all
premiums as if they were denominated in the same currency. For
example, if Alice is pays a premium p on one chain, but receives a
premium p on another chain, we say she breaks even. For clarity
when describing protocols, we talk of depositing premiums, and

escrowing assets, even though these are essentially the same mech-
anism.

The premiums can be estimated using formula such as the Cox-
Ross-Rubinstein option pricing model [3]. If the value of Alice’s
escrowed asset is high enough, her minimal acceptable lock-up
compensation may exceed Bob’s maximum acceptable lock-up risk,
and no premium exists. As described in Section 6, this mismatch can
be resolved by bootstrapping premiums: using smaller premiums to
protect distribution of larger premiums.

5 TWO-PARTY SWAP

We now consider an atomic swap protocol where Alice and Bob
exchange assets. Like most atomic swap protocols in the literature,
ours is based on hashed timelock contracts (HTLCs) [11]. Alice
generates a secret s, its cryptographic hash h = H(s), and a timelock
t after which the contract expires. Alice publishes on the blockchain
an HTLC initialized with h, ¢, then escrows (transfers ownership
of) her asset to that contract. If the contract receives the matching
secret s, h = H(s), before time ¢ has elapseds, then the contract
irrevocably transfers ownership of the asset to Bob. If the contract
does not receive the matching secret before time ¢ has elapsed, then
the asset is refunded to Alice. We refer to the asset being swapped
as the principal.
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Figure 1: A Hedged Two-Party Atomic Swap Protocol

5.1 The Base Two-Party Swap Protocol

Here is a well-known atomic swap protocol that does not protect
against sore losers. Suppose Alice wants to trade A apricot tokens
for one of Bob’s B banana tokens. (1) Alice generates secret s, pub-
lishes an escrow contract on the apricot blockchain with hashlock
h = H(s) and timelock t4 = 3A, and escrows her apricot tokens at
that contract. (2) Within time A, Bob sees Alice’s escrow contract
on the apricot blockchain. He publishes an escrow contract on the
banana blockchain with the same hashlock h, but with timelock
tg = 2/, and escrows his banana tokens at that contract. (3) Within
time 2A after the start of the protocol, i.e. the time 0, Alice sees
Bob’s contract on the banana blockchain. She sends s to his contract,
acquiring Bob’s principal and revealing s to Bob. (4) Within time
3A, Bob learns s. He forwards s to Alice’s contract, acquiring Alice’s
principal.

5Since most blockchains cannot tell time directly, ¢ is usually expressed in terms of
changes to block height.



This protocol guarantees that if both parties are compliant, the
swap takes place, that no principal is locked up forever, and that
no deviating party can steal from a compliant party.

This protocol does not protect against sore loser attacks. Re-
call that A is enough time for one compliant party to modify the
blockchain state (by publishing or calling a contract) and for the
other compliant party to detect that change. To be safe, A should
be long, say on the order of 12 hours. If Bob walks away at Step 2,
Alice’s asset is locked up for 3A, and if Alice walks away at Step
3, Bob’s asset is locked up for A. Bob pays no penalty for walking
away. Alice’s assets remain locked up if she walks away, but Bob
gains no benefit from Alice’s penalty.

5.2 A Hedged Two-party Atomic Swap
An atomic swap protocol should satisfy the following properties:

o Liveness. If each party is conforming, the assets are swapped
and the premiums are refunded. No assets are escrowed
forever.

o Safety.If a compliant party transfers its asset to the counter-
party, then it receives the counterparty’s asset, and if it fails
to receive the counterparty’s asset, it does not transfer its
own.

DEFINITION 1. An atomic swap protocol is hedged if, whenever
a compliant party escrows assets that are not redeemed, that party
receives what it considers sufficient compensation for its inability to
use its escrowed assets.

Informally, by the above definition, that party’s risk is limited
to locking up acceptably small premiums over some bounded time,
without compensation.

Suppose that Bob deposits a premium with Alice’s swap contract.
What should happen to Bob’s premium if he does not unlock Alice’s
principal in time? From outside, it is easy to assign blame. After
Alice escrows her principal, if Bob abandoned the swap without
escrowing his principal, then Alice is blameless, and should be
awarded the premium. If, instead, Alice abandoned the swap with-
out revealing her secret, then Bob is blameless, and his premium
should be refunded. Unfortunately, the contract managing Bob’s
premium cannot tell the difference. That contract resides on the
apricot blockchain, and so cannot inspect the state of Bob’s escrow
contract on the banana blockchain.

Here is how to solve this puzzle (See Figure 1). Say Alice’s pre-
mium is p, and Bob’s py,. Alice must escrow a premium of p, + pp.
If Bob reneges, his premium p;, goes to Alice. If Alice reneges, her
premium p, + pp goes to Bob, Bob’s premium p;, goes to Alice,
so Bob’s net compensation is p,. Alice’s lock-up risk is pg + pp
until Bob’s principal should be redeemed, and Bob’s risk is p;, until
Alice’s principal should be redeemed.

For brevity, we will often use terms like "Bob escrows his princi-
pal on the banana blockchain" to mean "Bob temporarily transfers
ownership of his coin to an agreed-upon escrow contract on the
banana blockchain".

A contract on the apricot blockchain escrows Alice’s coin and
Bob’s premium, and another contract on the banana blockchain that
escrows Bob’s coin and Alice’s premium. The timeout for the first
step is A from the start of the protocol, and subsequent timeouts
increase by A.

(1) Alice deposits her premium p,+py, on the banana blockchain’s
escrow contract with timelock t4 = 5A. The timeout for Alice
to deposit her premium is A. The timeout for Bob to escrow
his principal t, , = 4A. If Bob’s principal is not escrowed
before t, ., Alice’s premium is refunded. If Bob’s principal
is escrowed before 1}, ., then 1) if it is redeemed before t4
elapses, Alice’s premium is refunded 2) if it is not redeemed
before that timeout elapses, Alice’s premium goes to Bob.

(2) Bob deposits his premium pj, on the apricot blockchain’s
escrow contract with timelock tg = 6A. The timeout for
Bob to deposit his premium is 2A. The timeout for Alice to
escrow her principal 4 = 3A. The contract is symmetric to
Bob’s escrow contract. If Alice’s escrowed principal is not
redeemed, the premium is awarded to Alice. Otherwise, it is
refunded.

If this premium distribution phase is successful, the parties then
execute the base swap protocol, with escrow contracts modified to
transfer premiums when assets are redeemed or refunded.

It is easy to check that if Alice and Bob are both conforming, their
principals are swapped and their premiums refunded. If Alice is the
first to omit a step after Bob escrows his principal, she will pay Bob
Ppa+pp,and Bob will pay Alice py,. If Bob is first to deviate after Alice
escrows her principal, he will pay Alice pj. Because the control
flow and timeouts of the swap protocol are unaffected by premium
distribution, the correctness of the swap phase is unaffected.

To circumvent the constraint that smart contracts on different
blockchains cannot observe one another’s states, we make repeated
use of the following premium passthrough pattern. If party Py fails
to redeem escrowed asset Ag on blockchain Cy, then Ay’s escrow
contract transfers premium p from Py to Ag’s owner. Perhaps this
omission was not Py’s fault because Py was blocked by the failure of
another party, P;, to redeem asset A; on a distinct blockchain Cy. If
P; was the source of Py’s omission, then the escrow contract for Ay
on C; transfers premium p from P; to Py, ensuring that Py breaks
even. This passthrough pattern can be extended to sequences of
arbitrary length.

6 BOOTSTRAPPING PREMIUMS
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If Alice escrows a high-value asset, there may be no overlap
between the smallest amount she will accept as a premium and the
largest amount Bob will expose to lock-up risk. We can reconcile
this mismatch by bootstrapping Bob’s premium, using multiple
atomic swap rounds where smaller premiums are used to protect
the distribution of larger premiums.

Suppose that to protect against locking up an escrowed asset
of value v, Alice and Bob consider a premium of v/P for P > 1 to
be acceptable. In the atomic swap protocol described above, Alice
deposits a premium of value (A + B)/P to Bob’s escrow contract B,
and Bob deposits A/P to Alice’s escrow contract A. Alice and Bob
can run a slightly modified atomic swap protocol where instead of
exchanging assets, they deposit their premiums in their next-round
escrow contracts: Bob deposits premium (24 + B)/P? to protect the
escrow of (A + B)/P as Alice’s next premium, and Alice deposits
A/P? to protect Bob’s escrow of A/P. (Since Alice’s premium should
be deposited first, Bob acts as leader when they deposit premiums,
see Figure 2.) If they precede their swap with r rounds of premium
exchanges, then Alice’s and Bob’s initial premium is (rA + B)/P"
and A/P" and vice-versa, depending on who is the first leader.

Here we show a bootstrapping protocol with 2 rounds of pre-
mium deposits (Figure 2) . We use A B to denote premiums
used to escrow A(i_l), B(=1 in the next round, and A = A and
B =B.In Figure 2, in the first premium deposition round, Bob
deposits B® then Alice deposits A® In the second premium de-
position round, Alice and Bob deposit B (1) and AW respectively.
Bob acts as leader since he wants Alice to deposit BW to cover
the next round. Once the next round finishes, the previous round’s
premiums are refunded, except for the follower’s premium in the
current round. In this example, Alice is the follower, since she will
be a leader in the next round. If she reneges, Bob has a lock-up risk
of A®) which exceeds Bob’s acceptable risk. Alice’s A®@ should be
refunded after Alice deposits her principal on this escrow contract.
If Alice does not deposit her principal, Bob receives A® as com-
pensation for locking up AW Otherwise, A is refunded and the
hedged swap protocol proceeds as in Figure 2.

The duration of the premium lock-up risk is one atomic swap ex-
ecution plus A, independent of the number of bootstrapping rounds.
For example, with initial premium p, Alice and Bob need approxi-
mately logp( %) bootstrapping rounds. With 1% premiums and
$4 initial lock-up risk, 3 bootstrapping rounds are enough to hedge
a $1,000,000 swap.

7 MULTI-PARTY SWAP

Although two-party atomic swaps are the most common in practice,
there are still situations where multiple parties want to swap assets.
A multi-party swap is represented as a strongly-connected directed
graph (“digraph”) G where each vertex is a party, and each arc is
a proposed asset transfer. Figure 3a shows one such swap config-
uration. Henceforth, we use party and vertex, escrow contract and
arc, interchangeably, depending on whether we emphasize roles or
digraph structure.

Let G denote the swap digraph. We say (u,0) € G to mean
(u,v) an arc of G and similarly for verticesv € G. A pathqin G
is a sequence of vertices (uo, ..., ux) such that each (ujt1,u;) is

q=(A) @ q=(4)
q=(B,A) q=(C,A)

(b) Paths for hashkey k4

Figure 3: Multi-party Swap Digraphs

an arc of G, and the u; are distinct. If ugp = u, we say q is a cycle.
Concatenation is defined as v||(uo, . .., ux) = (v, ug, . . ., Ug).

The base protocol is adapted from the multi-party swap pro-
tocol of Herlihy [7], summarized here for completeness. See the
original [7] for details and proofs. Some vertices are designated as
leaders, the rest as followers. The leaders must form a feedback
vertex set ® in the digraph. Each leader L;, for i € 1..£, generates
a secret s; and hashlock value h; = H(s;), yielding a hashlock vec-
tor (hi,. .., he), which is sent to each arc. A hashkey k; for h; on
arc (u,v) is a triple (s;, g, o), where s; is the secret h; = H(s;), ¢
is a path (uo, ..., u;) in G where uy = v and u; is the leader who
generated s;, and o is a sequence of signatures that authenticates
the path o = sig(- - - sig(si, u;), - - - , up). Figure 3b shows how paths
are collected on each arc in G of Figure 3a where Alice is the only
leader generating s,. The nodes represents arcs. A hashkey (s;, g, 0)
times out at time (diam(G) + |q|) - A after the start of the protocol.
A hashkey no longer unlocks its hashlock after it times out. That
hashkey (s;, g, 0) unlocks the hashlock h; on (u,v) if it is presented
before it times out.

The base protocol has two phases. In Phase One, each leader (1)
escrows an asset on every arc leaving that vertex, then (2) waits
until assets have been escrowed on all arcs entering that vertex.
Each follower (1) waits until assets have been escrowed on all arcs
entering that vertex, then (2) escrows an asset on every arc leaving
that vertex. In Phase Two, each leader whose incoming arcs have the
expected escrowed assets sends its hashkey to those arcs. Each party

® A feedback vertex set is a subset of vertices whose deletion leaves G acyclic.



who learns a hashkey from an incoming arc extends that hashkey’s
path and propagates the extended hashkey on its outgoing arcs.
When an arc has collected all hashkeys needed, the asset escrowed
in that arc is redeemed and transferred to the counterparty.

The base multi-party swap protocol satisfies the same safety
properties as the two-party swap: for each compliant party v, (1) if
v transfers an asset on an outgoing arc, then it receives all assets on
incoming arcs, and (2) if v fails to receive an asset on an incoming
arc, then it transfers no assets on any outgoing arcs.

7.1 Premium Distribution

The two-party premium distribution protocol of Section 5 does
not easily generalize to multi-party swaps. Consider the graph in
Figure 3a. Suppose Alice posts premiums on her incoming edges
(B,A) and (C, A). In Phase One, (conforming) Bob escrows his
assets on (B, A), but (deviating) Carol never escrows hers. Alice has
a dilemma. If she releases her secret, Bob will take her asset, but she
will not get Carol’s asset in return. If she does not release her secret,
she will have to pay a premium to Bob. The dilemma arises because
Alice’s counterparty in a two-party swap is either compliant or
deviating, but in a multi-party swap, her counterparties may include
both.

There are two ways a deviating party can lock up its counterpar-
ties’ assets. In Phase One, a deviating party may fail to escrow its
principal, and in Phase Two, it may fail to deliver a hashkey needed
to redeem an asset. In response, we define two kinds of premiums
for each arc (u,v): an escrow premium is awarded to v by u if the
expected asset is not escrowed on that arc in time, and a redemption
premium is awarded to u by v if v does not produce the hashkey k;
in time.

Premiums are deposited in two phases that mirror the phases of
the base protocol: first the escrow premiums are deposited, then the
redemption premiums. It is convenient to describe these protocols
in reverse chronological order, redemption premiums first. Redemp-
tion premiums flow “backwards” though the digraph, starting at
leaders, and moving against the orientation of the arcs. Consider
hashkey k; from leader L;. A redemption premium for arc (u, v) has
the form R;(q, u), where q is a path from o to L; in G. (This path
reverses the order in which that premium was distributed.) Exactly
as in Phase Two of the base protocol, this path is authenticated by
signatures, and the path length determines timeouts.

Here is the redemption premium distribution protocol for leader
L;. Protocols for different leaders can be run in parallel. Assume for
simplicity that each asset has the same premium p.

(1) L; deposits premium R;(L;, u) on each incoming arc (u, L;),

and

(2) waits until each outgoing arc (L;,v) has a premium for k;.
Each party v # L;,

(1) waits for the first time a premium R; (g, v) for k; appears on
some outgoing arc (v, w), then
(2) if vl|q is a path, then deposits premium R; (v||q, u) on every
incoming arc (u,v).
Once a premium for k; has appeared on any of u’s outgoing arcs,
any later premiums for k; that appear on other outgoing arcs are
ignored. The proof that the redemption premium distribution proto-
col terminates is identical to the proof that the hashkey distribution

phase of the base protocol terminates, which appears elsewhere [7].
If this phase times out, the party still goes to next phase.

How are redemption premiums calculated? Each party v’s re-
demption premium for path q is:

P ifv||q is a cycle

: (1)
P+ 2 (ul(wo)eg) Ri(vllgu) otherwise

Ri(q.v) = {
This formula is well-defined because each path in G is finite, being
acyclic. Each leader’s redemption premium is

RL)= D)
{ul(wL) G}
the sum of the premiums on its incoming arcs.
Escrow premiums propagate “forwards” through the digraph,
passing from asset sender to asset receiver. Let E(u,v) denote the
escrow premium on arc (u,v). Each leader L

Ri(Li, u),

(1) deposits premium E(L, v) on each outgoing arc (L, v), and
(2) waits until premium E(u, L) has been deposited on each
incoming arc (u,L).
Each follower F

(1) waits until premium E(u, F) has been deposited on each

incoming arc (u, F), and

(2) deposits premium E(F, v) on each outgoing arc (F,v).

The proof that the escrow premium distribution protocol terminates
is identical to the proof that the escrow phase of the base protocol
terminates, which appears elsewhere [7]. If this phase times out,
the party still moves to the next phase of the protocol.

Before an escrow premium deposited by u can be awarded to v,
that premium must be activated. A premium deposited on arc (u, v)
is activated when (u, v) has received redemption premiums for all
hashkeys k;. If ’s escrow premium times out before activation, it
is refunded to u, but after activation, it is awarded to v if the asset
on (u,0) is not escrowed in time.

Escrow premiums are computed by the following formula:

R(L; if o is leader L;
E(u,0) = (Li) ifois .ea er L; o
2 (ow)eg E(v,w) otherwise.

The first clause states that each arc entering a leader carries a
premium equal to that leader’s redemption premium. The second
clause states that each arc entering a follower covers the premiums
on arcs leaving that follower. The escrow premium formula is well-
defined because leaders form a feedback vertex set, so every cycle
is broken by a leader.

The hedged protocol has four phases: (1) depositing escrow
premiums, (2) depositing redemption premiums, (3) base proto-
col Phase One, and (4) base protocol Phase Two. If the first two
premium distribution phases execute successfully, the base protocol
phases execute normally, with some additional steps to manage pre-
miums. If premium distribution fails, the parties execute truncated
versions of the base protocol phases to recover their premiums.

Timeouts are determined as follows. Each step takes time at most
A. In the first phase, the leaders should escrow their outgoing es-
crow premiums before A elapses, and each following step’s timeout
increases by A. Premiums and assets are locked until they are due
to be activated, redeemed, or refunded.

In the following lemmas, v is a compliant party.



LEmMA 1. If a swap completes successfully, then each v has all its
premiums refunded.

Proor. For each outgoing arc (v, w), v’s escrow premium E (v, w)
is refunded as soon as v escrows its asset on that arc. For each
incoming arc (u,v) and each hashkey k;, v’s redemption premium
Ri(q,u) is refunded as soon as v party sends hashkey k; on that
arc. m]

What can go wrong?

LEMMA 2. In Phase Four, if hashkey k; is never revealed on any of
v’s outgoing arcs, then v ends up with net redemption premium profit
at least p for each asset v escrowed.

Proor. Denote the redemption premium that v receives on each
outgoing arc (v, w) as Rj(q,v), where ¢ = (v, w,---,L;). If 0’s
outgoing redemption premiums on incoming arcs have the form
R;i(v]|q,u) for all arc (u,v) € G, then by Equation 1, v ends up
with net redemption premium profit at least p for any outgoing
arc (v, w). If v||q is a cycle, v is awarded at least p for any outgoing
arc (v, w). Every outgoing arc contributes a redemption premium
profit at least p. ]

LEMMA 3. In Phase Three, if some u fails to escrow an asset on
(u,v), then a partyv ends up with a net escrow profit at least zero, and
a net redemption premium profit at least p for each asset v escrowed.

Proor. If u fails to escrow its asset, then v collects the escrow
premium on (u,v). By Equation 2, if v is a follower, v does not
escrow any outgoing assets, and the premium E(u, v) is enough to
cover the cost of paying the escrow premiums on v’s outgoing arcs,
yielding the net escrow premium profit at least zero. If v is a leader,
since the leader v escrows assets on the outgoing arcs whose escrow
premiums are activated, v does not need to pay escrow premiums
to anyone, yielding the net escrow premium profit at least zero.
The leader v then proceeds to Phase Four without revealing ky,
the premium E(u,v) is enough to cover the cost of paying *h-
redemption premiums on v’s incoming arcs. For any arc (o,
that v has escrowed asset, since the escrow premium E (v, w
activated, and k;, on (v, w) cannot be revealed, yielding per-a:
net redemption premium profit at least p by Lemma 2.

LEMMA 4. In Phase Two, if no redemption premium for k; is
posited on any outgoing arc (v, w), then v ends up with a net esc
premium profit at least zero, and a net redemption premium profi
least zero.

Proor. If no redemption premium for k; is deposited on :
outgoing arc (v, w), then v’s escrow premiums on those arcs are
activated, and they are all refunded to o, for a net escrow premi
profit at least zero. If v # L;, then v does not deposit any redempt
premiums for k; on any incoming arc, for a net k; redempt
premium profit at least zero. If v = L;, v proceeds to Phase Th
without escrowing any assets since no escrow premium is activa._ ...
v just releases k; on its incoming arcs and gets a net k; redemption
premium profit at least zero since v does not pay any premium. O

LEMMA 5. In Phase One, if some u fails to deposit an escrow pre-
mium on (u,v), then v ends up with a net escrow premium profit at
least zero.

Proor. Ifv is a follower, v does not deposit any escrow premiums
since v does not receive all incoming escrow premiums. If v is a
leader, v proceeds to Phase Two without depositing the redemption
premium R, (v, w) for any (w,v) € G and its outgoing escrow
premiums are refunded eventually. O

LEmMMA 6. The multi-party swap protocol is hedged.

Proor. Lemmas 2-5 imply that in every situation where a com-
pliant party escrows an asset, it ends up with a premium profit of
at least p for that asset. O

A leader deposits a premium proportional to the number of paths
in the digraph. If there is a unique path between any two parties,
then each leader’s premium is linear in n, the number of digraph
vertices. In the worst case, for a complete digraph, each leader’s
premium is exponential in n. This premium can be reduced to
linear by preceding the protocol with O(log n) rounds of premium
bootstrapping as described in Section 6.

8 BROKERED COMMERCE

Not all cross-chain commerce can be expressed as swaps. Consider
the following scenario from Herlihy, Liskov, and Shrira [8]. Alice
is a ticket broker who buys tickets at wholesale prices from event
organizers and resells them at a small markup to consumers. Alice
discovers that Bob wants to sell some tickets for 100 coins, and
Carol is willing to buy them for 101 coins, so Alice wants to broker
the deal. This three-way exchange is not a swap, because Alice does
not own either the tickets or the coins: she is using Carol’s coins to
buy Bob’s tickets. Coins and tickets live on distinct blockchains.

8.1 Base Protocol

r _Es;w;w; I _Tra;ng;m; _\I r Eie:pta P;se_\l
Bl c1 ||:>|A1A2||:>|A3BZC2|
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(b) Broker Protocol Phases

Figure 4: Broker Protocol

The broker protocol summarized here is taken from Herlihy,
Liskov, and Shrira [8], which includes a more complete analysis. In
the terminology of the multi-party swap, every party is a leader.
Each party X € {A, B,C}, generates a secret sy and hashlock value
hx = H(sx), yielding a hashlock vector (ha, hp, hc), which is sent
to each arc. A hashkey kx for hx on arc (u,v) is a triple (sx, g, 0),



where sy is the secret hy = H(sx), q is a path (ug,...,u) in G
where up = v and uy. is the party who generated sy, and o is a
sequence of signatures that authenticates the path. An asset is
redeemed when its arc has received all three hashkeys in time. As
in the multi-party swap protocol, a hashkey (s;, g, o) times out at
time (diam(G) + |q|) - A after the start of the protocol.

Here are the steps of the base protocol.

(1) Escrow phase: B1: Bob escrows his tickets on arc (B, A), and
C1: Carol escrows 101 coins on arc (C, A).

(2) Trading phase: A1: Alice transfers the tickets to Carol on
(A, C), A2: Alice transfers 100 coins to Bob on (A, B).

(3) Redemption phase: A3: Alice releases her hashkey on (B, A), (C, A)

B2: Bob releases his hashkey on (A, B), and C2: Carol re-
leases her hashkey on (A, C). When a party observes a new
hashkey on an outgoing arc, it propagates that hashkey to
all its incoming arcs.

8.2 Premium Structure

Who should pay premiums to whom? Figure 4 shows the dependen-
cies among these steps. An arrow from one step, say B1, to another,
A1, means that A1 cannot occur until B1 has happened. If Bob omits
B1, then Carol’s coins are locked up, and Alice cannot complete
A1, forcing her to pay a premium, so Bob pays a premium to Carol
and to Alice. If Bob completes B1 but omits B2, then Carol’s coins
are locked up, so he pays a premium to Carol. Carol’s premium
payments are symmetric.

Alice’s situation is the most interesting, since her role would
not exist in a multi-party swap. She escrows no assets, but she
should still receive passthrough premiums to reimburse her for
premium payments forced on her by others. If Alice omits A1 after
Bob performs B1, then she pays Carol a premium on the ticket
blockchain since Carol is expecting her to transfer the ticket to
her. If she omits A2 after Carol performs C1, then Alice pays Bob
a premium on the coin blockchain. If she omits A3 after Bob and
Carol complete B1, B2, C1, and C2, then she pays premiums to both
on their respective blockchains.

Premiums are deposited in a three-phase protocol mirroring the
structure of the base protocol.

(1) In the escrow premium deposit phase, Bob and Carol, the
parties escrowing their own assets, deposit escrow premiums
E(B, A) and E(C, A) on those outgoing arcs.

(2) In the trading premium deposit phase, Alice, the only party
conducting intermediate trades, deposits trading premiums
T(A, B) and T(A, C) on those outgoing arcs.

(3) In the redemption premium deposit phase, for each u €
{A, B,C}, each v deposits premium Ry, (g, u) on each incom-
ing arc (u,0), where g is a path from v to L7 .

As in the multi-party swap protocol, an escrow or trading premium
is activated on an arc when all redemption premiums have been
deposited on that arc. As long as an escrow or trading premium
has not been activated, it can only be refunded.

7In this specific case, there are opportunities for optimization. Since (A, B) and (C, A)
are asset transfers on the same escrow contract, Bob can directly send his hashkey
to the coin blockchain, simplifying the redemption premium deposition. Since Alice
does not need to forward Bob’s hashkeys on (C, A) , we do not need a redemption
premium regarding the path g = (A, B) for sp. The ticket chain is symmetric.

Redemption premiums are calculated by Equation 1. Trading
premiums are defined as follows: if v transfers an asset to w in the
trading phase, then v’s trading premium T (v, w) is Ry, (w). Escrow
premiums are similar: Let T(0) = 3,|(s,w)eg T(0,w). then u’s
escrow premium E(u, 0) is T(v).

As long as all trading-phase transfers are known in advance, we
can extend this approach to encompass multiple rounds of trading.
Premiums for r trading rounds are defined as follows. If v transfers
an asset to w in the escrow phase, then v’s escrow-phase premium
E(v,w) is T1(w). If v transfers an asset to w in trading phase k,
1 < k < r, then v’s phase-k trading premium Ty (v, w) is Tpyq (w). If
v transfers an asset to w in trading phase r, then v’s phase-r trading
premium T, (v, w) is Ryy(w). In an r-round deal, assets change hands
r times.

9 AUCTIONS

Consider a scenario where Alice has purchased some tickets she
now wants to auction to Bob and Carol. What happens if we naively
try to adapt Section 8’s broker protocol? If Bob submits the higher
bid, but Alice dishonestly tries to take his coins without awarding
him the tickets, then Bob simply cancels the auction by withholding
his final vote to commit (his hashkey). Bob is safe, but he is exposed
to a sore loser attack: if Carol is angry because her bid lost, she
withholds her vote to commit, ensuring that no one gets the tickets.
A premium structure similar to the hedged broker protocol could
compensate Bob if sore loser Carol wrecks the auction, but suppose
again that a dishonest Alice tries to take Bob’s money without
awarding him the tickets. When Bob justifiably withholds his vote
to commit, he will be unfairly required to pay premiums to the
others.

In this section, we propose a simple hedged auction protocol
that is not vulnerable to a sore loser attack from the low bidder, and
that compensates the bidders if the auctioneer is caught cheating.

9.1 Base Protocol

As Section 8, there are two blockchains, the ticket chain and the
coin chain. Alice generates two secrets: sg to be used if Bob wins,
and sc if Carol wins. Alice constructs hashkeys kg based on sp,
and k¢ based on sc. Recall that a hashkey is a triple (s, g, o), where
q is the path the hashkey has traversed, s is a secret, and ¢ the
signatures authenticating the path. The hashkey times out after
time |g|A. Since there are only 3 parties, the longest a hashkey
can survive is 3A. For brevity, we use kp (kc) to denote any valid
hashkey based on sg (sc). The protocol has several phases, each of
duration A.

(1) In the bidding phase, Bob and Carol send their bids® to the
coin chain contract, which records them. At the end of this
phase, the high bidder’s identity is evident from inspecting
the coin chain contract. No new bids are accepted after this
phase.

(2) In the declaration phase, Alice inspects the coin chain con-
tract to determine the winner, and publishes the hashkey
identifying the winner on both the coin and ticket chain
contracts. (For example, if Bob wins, she publishes kp.)

8In a more realistic auction protocol, the bidders might use a two-round commit-reveal
scheme to keep their bids secret from one another, a topic beyond this paper’s scope.



(3) In the challenge phase, Bob and Carol inspect the hashkeys
Alice published on the coin and ticket chain contracts, if any.
If any hashkey appears at one contract but not the other, Bob
and Carol forward that hashkey to the contract missing that
hashkey. This phase takes time 3A, long enough for Alice’s
hashkeys to time out.

(4) In the commit phase, the auction is settled. The coin chain
contract compares the hashkeys it has received with the bids.
If it received only the actual winner’s hashkey, all is well, and
it refunds the lower bid and transfers the higher bid to Alice.
If it received the low bidder’s hashkey, or no hashkey, then
Alice cheated, and all bids are refunded. If the ticket chain
contract received exactly one hashkey, it transfers the tickets
to the matching party. If it received zero or two hashkeys, it
refunds the tickets to Alice.

LEMMA 7. If a hashkey k = (q, s, o) is published on one contract,
then it is also published on the other.

Proor. If the path q includes a compliant party, then that party
has already published k on the other contract. If path g does not
include any compliant party, then g has length at most 2, implying
k was published before 2A elapsed. The missing compliant party
has time A to publish k on the other contract before k times out. O

LEmMA 8. No compliant bidder’s bid can be stolen.

ProOF. Suppose Bob is the high bidder.

If no hashkeys are published on either contract, then all bids are
refunded at Phase 4.

If any party publishes k¢ on either contract, then some party
publishes k¢ on the coin contract, and all bids are refunded at
Phase 4.

If no party publishes k¢ on either contract, but some party pub-
lishes kg on some contract, then kg and only kg is published on
both contracts, so the chain contract will refund Carol’s bid and
transfer Bob’s bid to Alice, and the ticket blockchain will transfer
the tickets to Bob. O

If Alice deviates, she can award the tickets to either bidder (or
neither), but since she owns those tickets, she could have done
that without an auction. What matters is that if Bob or Carol are
compliant, their bids cannot be stolen.

9.2 Premium Structure

Bob and Carol do not pay premiums because they cannot mali-
ciously lock up anyone’s assets. (A party who withholds a bid
arguably does the other party a favor.) Alice should pay premiums,
because she can lock up Bob and Carol’s coins, either by abandoning
the protocol midway or by cheating.

Alice endows her coin chain contract with 2p premiums. If the
bids are refunded in Phase 4, then Bob and Carol are each awarded
p along with their refunded bids. If the auction completes, Alice’s
premiums are refunded. Generalizing this protocol to n bidders
requires Alice to deposit np premiums.

10 REMARKS AND CONCLUSIONS

We used model checking to verify the properties of the two-party
hedged swap and some three-party hedged swaps. As discussed

in Section 3.2, smart contracts severely constrain the behavior of
Byzantine participants by enforcing ordering, timing, and well-
formedness restrictions on transactions. Byzantine parties are re-
stricted to attacks that appear reasonable at individual blockchains,
even if they are globally incorrect. Surprisingly, perhaps, this con-
strained behavior can be model-checked in reasonable time. The
TLA+ source code and model specifications can be found in our
GitHub repository [18].

Blockchains such as Ethereum, whose smart contracts are im-
plemented using a Turing-complete language, can support our pro-
tocols directly. For blockchains such as Bitcoin, whose contracts
are more restricted, we note that Han et al. [5] introduced a new
opcode to support their premium protocol.

In future work, we plan to study premiums in asynchronous
protocols such as those proposed by Glabbeek et al. [16], Ranchal-
Pedrosa and Gramoli [13] and Herlihy et al. [8].

We have made no attempt to optimize the round complexity of
our protocols. It would be interesting to derive lower bounds for
round complexity of premium protocols.

We have studied the sore loser problem in the context of cross-
blockchain financial deals, but similar issues arise in any distributed
coordination protocol where a faithless party can trick another
party into locking up a resource for a non-trivial duration. The
resources at risk might be disk pages, network bandwidth, database
access, and so on. In everyday life, there are well-developed mecha-
nisms for sore loser protection, such as security deposits, "earnest
money", downpayments and so on, and we hope this paper will
focus the community’s attention on developing similar mechanisms
for distributed computing.
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