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ABSTRACT

Automated market makers (AMMs) are automata that trade
electronic assets at rates set by mathematical formulas. AMMs
are usually implemented by smart contracts on blockchains.
In practice, AMMs are often composed: trades can be split
across AMMs, and outputs from one AMM can be directed
to another. This paper proposes a mathematical model for
AMM composition. We define sequential and parallel com-
position operators for AMMs in a way that ensures that
AMMs are closed under composition, in a way that works
for “higher-dimensional” AMM:s that manage more than two
asset classes, and so the composition of AMMs in “stable”
states remains stable.
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1 INTRODUCTION

Decentralized finance (or “DeFi”) has become a booming
area of distributed computing. For example, between June
2020 and October 2020, the total value of assets locked in
decentralized finance (DeFi) protocols surged from $1 billion
to $7.7 billion [21]. An automated market maker (‘“AMM”) is
an automaton that has custody of several pools of assets, sets
prices for those assets according to a mathematical formula,
and is always willing to trade those assets at those prices.
Unlike traditional “order book” traders, AMM:s do not need to
match up (and wait for) compatible buyers and sellers. Today,
AMMs such as Uniswap [6], Bancor [16], Balancer [18], and
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others [20] have become one of the most popular ways to
trade electronic assets.

Here is an example of a constant-product AMM loosely
based on Uniswap v1 [6]. The AMM has state (x,y) if it has
custody of x units of asset X, and y units of asset Y. The
AMM’s state is subject to the invariant that the product xy
is constant. The AMM’s states thus lie on the hyperbolic
curve xy = c, for x,y > 0 and constant ¢ > 0. If a trader
transfers dx units of X to the AMM, the AMM will transfer
dy units of Y back to the trader, preserving the invariant
(x +dx)(y — dy) = xy = c. The client profits if the value
of dy units of Y exceeds the value of dx units of X in the
current market (or at another AMM).

The price of asset Y in units of X at state (x,y) is the
curve’s slope at that point. Trades move the AMM’s state
along the curve: trading X for Y makes X cheaper and Y more
expensive, a phenomenon known as slippage. Usually, an
AMM’s state reflects current market conditions: if a constant-
product AMM is in state (x,y), then the market value of
x units of X should be the same as y units of Y, because
otherwise a trader can make an arbitrage profit by buying
the undervalued asset. Note that a constant-product AMM
can adjust to any (finite, non-zero) market rate between X
and Y, and every AMM state matches some market valuation.

It is natural to compose AMMs. If AMM A trades assets
X and Y, and B trades assets Y and Z, then a trader can buy
Z with X by transferring X to A, feeding A’s Y output to
B, and pocketing B’s Z output. Existing systems of AMMs
encourage exactly this kind of composition: for Uniswap
v1, the intermediate asset Y would be ether (ETH), and for
Bancor, it would be Bancor network token (BNT). Here is
the question at the heart of this paper: can we treat the re-
sult of composing these two constant-product AMMs as a
“black box” AMM for trading X for Z? Note that this compo-
sition is not itself a constant-product AMM, so the class of
constant-product AMMs is not closed under composition for
any reasonable notion of composition. Can we instead pick
a broader AMM definition that does support common-sense
notions of composition? What constraints on pricing formu-
las yield AMMs that behave reasonably under composition?
What should composition mean when AMMs trade more
than two kinds of assets? In short, what notions of AMM
composition make sense?

This paper makes the following contributions.
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e We give an axiomatic characterization for well-behaved
AMMs. These axioms build on prior work, but require
small but critical changes to support mathematical
properties such as composition.

e For AMMs satisfying these axioms, we show there is
a duality between asset valuations, and AMM states
where assets are balanced to reflect those valuations.
Computation can be done in whichever domain is more
convenient.

o The paper’s principal contribution is to propose novel
operators for sequential and parallel composition of
AMMs. Well-structured notions of composition for
“higher-dimensional” AMMs that manage more than
two asset classes requires novel intermediate projec-
tion and virtualization operators.

Properly defined, AMMs are mathematical objects that are
closed under sequential and parallel composition. We hope
this paper will encourage further research into how AMMs
can be combined into networks and what such networks can
do.

This paper is organized as follows. Section 2 describes the
problem and the model of computation, Section 3 presents
in axiomatic form the properties a practical AMM should
satisfy, Section 4 shows that all such AMMs have a com-
mon underlying topological structure, and Section 5 presents
basic mathematical operators useful for defining composi-
tion. Section 6 defines sequential composition, where the out-
puts of one trade becomes the inputs to another. Some care-
ful choices are needed to impose order on composition of
“higher-dimensional” AMMs that manage more than two as-
sets. Section 7 defines parallel composition, where a trader
decides how to split a trade among alternative AMMs. Sec-
tion 8 shows how AMMs with fees fit into out composition
framework, Section 9 surveys related work, and Section 10
discusses future directions and open problems.

2 MODEL

We use the following notation and terminology. Vectors are
in bold face (x) and scalars in italics (x). Variables, scalar
or vector, are usually taken from the end of the alphabet
(x,y,2z), and constants from the beginning (a,b,c). If a =
(a1,...,ay) and b = (by,...,by), then (a,b) is the vector
(a1, -..,an, b1, ..., by). Vector comparisons are component-
wise: for vectors of the same dimension, a < b means
that each a; < b;. Constant vectors 1 = (1,...,1) and
0 = (0,...,0) have dimension that will be clear from con-
text. Ry = {x € R|x > 0}, and Ry = {x € R|x < 0}. We
use x £ x’ to mean that x < x’ but x # x’, so at least one
inequality is strict.

A function f : R® — Ris strictly convex if forall t € (0,1)
and distinct x, x” € R", f(tx+(1-t)x") < tf(x)+(1-t) f(x).
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A convex function’s tangent line or plane lies below the
function’s curve or surface. The function is strictly concave
if the inequality is reversed. A set X is strictly convex if for
all distinct x,x” € X and t € (0,1), tx + (1 — t)x’ lies in the
interior of X.

For A : RZ, — R, the set {x eRZ |A(x) = c} is called a
level set at ¢, and the set {x eRZ |A(x) > c} is called the
upper contour set at c.

We use L1 and L2 norms: if v = (vq,...,0,) is a vector,

then [|olly = X, |oi| and [jo]l2 = (X, 0}

2.1 AMM State Spaces are Manifolds

An asset might be a cryptocurrency, a token, an electronic
deed to property, and so on. Assets can fluctuate in value, and
participants may want to trade assets, perhapsto respond to
past price changes, or to anticipate future price changes.

An n-dimensional AMM trades across assets X1, ..., X,.
Each AMM state has the form x = (x1,...,x,) € RZ ), where
each x; is the amount of units of asset X; in the AMM’s
custody. AMM states are points in a (twice) differentiable
manifold, a higher-dimensional generalization of a surface or
curve. A trade moves the AMM from state x = (x1,...,x,) to
state x” = (x7,... ,x7). For each i where x; > x; , the trader
pays x; — x; units of X; to the AMM, while if x] < x;, the
AMM pays x; — x; units of X; to the trader. We call x — x’
a profit-loss vector. Requiring the AMM state space to be a
differentiable manifold ensures that both prices and slippage
change gradually rather than abruptly, although we will see
in Section 3 that not every manifold makes sense as an AMM
state space.

AMMs typically charge per-transaction fees. For exam-
ple, Uniswap v1 charges a 0.3% fee on trades, and the sums
collected are added to the AMM’s assets. For ease of expo-
sition, we focus initially on AMMs that do not divert fees
to their own liquidity pools (instead, fees might be paid to
a separate account). In Section 8, we show how an AMM
with a Uniswap-style fee structure can be modeled as the
sequential composition of a no-fee AMM with a specialized
“linear” AMM.

2.2 System Model

There are two kinds of participants in decentralized finance.
(1) Traders transfer assets to AMMs, and receive assets back.
Traders can compose AMMs into networks in complicated
ways. (2) Liquidity providers (or “providers”) fund the AMMs
by lending assets, and receiving shares, fees, or other prof-
its. Traders and providers play a kind of alternating game:
traders modify AMM states by adding and removing assets,
and providers can respond by adding or removing assets,
reinvesting fees, or adjusting other AMM properties.
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Today, AMMs are usually implemented by smart contracts
on blockchains. For our purposes, a blockchain is a highly-
available, tamper-proof distributed ledger that records which
participants own various assets. A smart contract is a public
program that controls how assets are recorded and trans-
ferred on a blockchain. Smart contracts typically support
atomic transactions that allow traders to execute atomic se-
quences of trades on multiple AMMs. The analysis given in
this paper is largely independent of the the particular tech-
nology used to implement blockchains and smart contracts.

3 DEFINITIONS
3.1 Common-Sense Axioms

Although any automaton that trades assets can be regarded
as an AMM, only those AMMs that satisfy certain proper-
ties make sense in practice. To make this presentation self-
contained, we list some informal, common-sense axioms any
practical AMM should satisfy, and then restate these infor-
mal requirements as more precise mathematical properties.
These properties mirror prior proposals [5, 8, 17], with some
adjustments to encompass higher-dimensional AMMs (those
that trade more than two kinds of assets), and to facilitate
later introduction of composition operators.

InFORMAL Ax10M 1 (CONTINUITY). Every AMM state should
define precise rates of exchange between every pair of assets,
and trades should change these rates gradually rather than
abruptly.

INFORMAL AXIOM 2 (EXPRESSIVITY). An AMM must be able
to adapt to any market conditions.

If an AMM is unable to adapt to market conditions that
cause one asset to be undervalued with respect to the others,
then traders will drain all of the undervalued asset from the
AMM at the expense of the providers.

INFORMAL AXIOM 3 (STABILITY). Every AMM state should
be the appropriate response to some possible market condition.

If no market condition justifies entering a particular state,
then that state is superfluous.

INFORMAL AX10M 4 (CONVEXITY). Slippage should work to
the disadvantage of the trader. Buying more of asset X should
make X more expensive, not less.

Otherwise, a runaway effect can occur where traders are
motivated to buy more and more of an asset until the AMM’s
supply is exhausted.

The constant product AMM A := (x, ¢/x) is an example of
an AMM that conforms to these axioms. By contrast, consider
the constant-sum AMM C := ax + by = c, which trades be-
tween assets X and Y at a fixed exchange rate. Constant-sum
AMMs fail to satisfy expressivity: as long as the exchange
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rate matches the market rate, a constant-sum AMM trades
without slippage, but as soon as the market rate departs from
the AMM’s exchange rate, arbitrage traders will exhaust the
AMM’s supply of the undervalued asset, to the detriment of
the liquidity providers. For this reason, with very few excep-
tions [4], constant-sum AMMs are not used in practice. (Note,
however, that the continuity axiom implies that any AMM’s
behavior approximates the behavior of a constant-sum mar-
ket maker when trades are sufficiently small.) Henceforth,
except when explicitly noted, we use “AMM” as shorthand
for “AMM that satisfies these axioms”.

3.2 AMMs and Valuations

Formally, an n-dimensional AMM is given by a function
A :RZ, — R such that:

e For all ¢ > 0, the upper contour set A(x) > c is closed
and strictly convex.

o A(x) is strictly increasing in each coordinate, and

o A is twice-differentiable.

We adopt the convention that the AMM’s state space is the
level set A(x) = 0, though sometimes we replace 0 with
another constant. For brevity, when there is no danger of
confusion, we use A to refer to the AMM’s function, its state
space, and the AMM itself. We use upper(A) for A’s upper
contour set at 0. We sometimes define an AMM by saying
A := F(x) = 0 to mean the AMM A’s states lie on the curve
F(x)=0

We remark that restricting the domain of an AMM’s func-
tion to all-positive coordinates is a “without loss of gen-
erality” convention, since an AMM’s trading behavior is
unaffected by any linear change of variables.

It is often convenient to express an AMM in an alternative
form. The implicit function theorem [9] implies that for any
point on the manifold, all but one coordinate can be chosen
freely, and the remaining coordinate is a twice-differentiable
convex function f; of the rest:

A1, o Xio1, fi (X1 -+ oy Xim1s Xit1s - - - Xn)s Xit1s - - - Xp) = 0.

An opinion on the relative values of assets X, ..., X, is
captured by a valuationv = (vy,...,v,), where! 0 < v; < 1
and )};0; = 1. A trader who moves an AMM from state x
to state x” makes a profit if the dot product v - (x — x”) is
positive, and otherwise incurs a loss. The current market

value is a valuation accepted by most participants.

IFor simplicity, we assume valuations never assign an asset relative value 0
or 1.
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The standard simplex A" € RZ, is the set of points (vy, ..., 0

wherefori=1,...,n,0 <v; < 1,and 2}, v; = 1. Each val-
uation forms the barycentric coordinates of a point in the
interior of the standard n-simplex?: int(A™).

A stable point for an AMM A and valuation v is a point
x € A that minimizes the dot product v - x. If v is the market
valuation, then any trader can make an arbitrage profit by
moving the AMM from any state to a stable point, and no
trader can make a profit by moving the AMM out of a stable
point.

Of course, this model is idealized in several ways. Asset
pools are not continuous variables: they assume discrete
values. Computation is not infinite-precision: round-off er-
rors and numerical instability are concerns. Popular AMM
such as Uniswap v2 [2] and v3 [3] perform trades under a
more complicated and dynamic model than the one consid-
ered here. Nevertheless, the problem of AMM composition
remains largely unaddressed, at least in a formal way, and
we believe our model and definitions capture enough of the
essential properties of AMMs to make useful progress.

We assume that the functions defining an AMM do not
change over time. In practice, an AMM’s defining function
can change over time. For example, AMMs charge fees in
a variety of ways, usually adding those fees to the assets
managed by the AMM. Nevertheless, an AMM’s defining
function does not change in the course of a single transaction,
the duration for which AMM composition is meaningful. We
will further discuss the effects of fees in Section 8.

3.3 Formal Axioms

We are now able to restate the common-sense axioms of
Section 3.1 in more precise terms.

AxioMm 1 (CONTINUITY). For every AMM A, the function
A :RZ, — R is twice-differentiable.

As far as we know, existing AMMs use smooth (infinitely
differentiable) functions.

AxioMm 2 (CoNVEXITY). For every AMM A, upper(A) is
strictly convex.

The following is a standard result from convex analysis.

LEmMA 1. A function f : RL; — Ryq is a strictly convex
function if and only if its epigraph
epi(f) = {(x, a) € Ry XRyp @ f(x) < a} is a strictly convex
set.

AxioMm 3 (EXPRESSIVITY). Every valuation has a unique
stable point in A.

LEMMA 2. For any AMM A, every valuation v € int(A™)
has a stable point in upper(A).

2This notation is non-standard but convenient; others define A™ to be a
subset of R';Bl.

n)
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Proor. Pick any x in upper(A). The set
S:{x’ eRgo:v-xl Sv~x}

is compact. Since upper(A) is closed, S = S N upper(A) is
compact. A stable point solves the optimization problem

mmv x
x'eS

. . . . . ’ . . .
This minimum exists since » - x is a continuous function on
the compact set S. ]

LEMMA 3. For any AMM A and any valuation v, the stable
point forv in upper(A) is unique.

ProoF. Fix valuationo € int(A") andletx, x € upper(A)
where x # x and w = v - x = v - x. Because upper(A) is
strictly convex, for all t € (0,1), x = tx + (1 - )x is in
int(upper(A)). Since int(upper(A)) is open, there is some
€ > 0 such that the open e-ball Bzx(e) C int(upper(A)).
Now choose x* in Bz(¢) such that x* < x. Then we have

v-x"<v-Xx
=tw-x+(1-to-x
=tw+(1l-tHHw=w,
a contradiction. O

For example, for the 2-dimensional constant-product AMM
given by (x, ¢/x), the valuation (v, 1—0) has the unique stable

point
[e(1—0) v
o NVe(l-v))"

More generally, for the 2-dimensional constant-product AMM
given by (x, f(x)), the valuation (v, 1 — v) has the unique
stable point

=) )

LEMMA 4. For all valuations v, the stable point for v in
upper(A) lies on the level set A.

Proor. Fix valuation v and let x* be its stable point. Sup-
pose that x* ¢ A but x* € int(upper(A)). As in Lemma 3,
we can find € > 0 and an open ball By (€) in int(upper(A)).
Choosing x € By-(€) such that x < x*, we havev-x < v-x*,
a contradiction. O

COROLLARY 1. Every AMM satisfies expressivity.

Ax1ioM 4 (STABILITY). Every x € A is the stable point for
some valuation.

For example, for the 2-dimensional constant-product AMM
(x,¢c /x) the point (x, ¢/x) is the stable point for the valua-

tion (=% e L - +Cx2 ). More generally, for the 2-dimensional
constant-product AMM (x, f(x)), the point (x, f(x)) is the

stable point for the valuation ( f'(g) T T77( x))
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LEMMA 5. For every x € A, there is somew € RZ, such that
w-x>w-y forally € upper(A),y + x.

Proor. Pick x € A. Since upper(A) is strictly convex, the
supporting hyperplane theorem implies there is a non-zero
w € R" such thatw-x > w-yforally € upper(A),y # x. We
need to show that w € R” ). Sayw € RZ ;. Choose any € > 0
andlet X = x + ew so thatw - X =w - x + €||w||?> > w - x. By
monotonicity, X € upper(A), a contradiction. Now consider
the case where w € R” \ (R%, URZ ), namely w cannot
have all strictly positive or all strictly negative entries. We
construct w orthogonal to w. Replace all of the non-negative
entries of w in w with the sum of the absolute values of the
negative coordinates. Replace all the negative entries of w in
w with the sum of all of the non-negative entries of w. These
replacements guarantee that all coordinates of w are positive,
andw -w = 0.Pick € > 0 and let x = x + ew so

W-X=W-X+eW-w
=w-x

and yet x € upper(A) since A is strictly increasing. By con-
tradiction, w € R” . O

LEMMA 6. For every x € A, there exists a valuation v for
which x is a stable point.

PrRoOF. Let A be an n-dimensional AMM and let x € A.
Choose w € R’ as described in the previous lemma for
x. We havew - x > w -y fory € A, y # x. Negating w
and re-scaling the result so the elements sum to 1 yields
v € int(A™). Thus we have v - x < v - y for all y € A where
y # x, implying x is a stable point for v. O

COROLLARY 2. Every AMM satisfies stability.

In short, the goal of this paper is to balance axioms and
composition operators so that the class of AMMs satisfy-
ing these axioms remains closed under these composition
operators.

4 TOPOLOGICAL EQUIVALENCE

How many truly distinct AMMs of a given dimension are
there? Considered as a mathematical object, much of an
AMM’s structure is captured by the link between valua-
tions and their stable points. We say that two AMMs are
topologically equivalent if there is a stable-point preserving
homeomorphism between their manifolds. By itself, a home-
omorphism between manifolds conveys little information,
but a homeomorphism that preserves stable points preserves
the AMMs’ common underlying structure.

In this section we show that all AMMs over the same
set of assets, if they satisfy our axioms, are topologically
equivalent. More precisely, for any two AMMs A(x1, ..., x,)
and B(xy,...,x,) over asset types Xi, ..., X,, satisfying our

AFT 21, September 26-28, 2021, Arlington, VA, USA

axioms, there is a homeomorphism p : A — B such that x
and p(x) are the stable states for the same valuation. This
proof relies on the uniqueness of stable points: for example
it would not hold if AMM functions were convex instead of
strictly convex.

Although topological equivalence implies a common math-
ematical structure, two topologically equivalent AMMs may
differ substantially with respect to price slippage, fees, or
how expensive it is to move from one valuation’s stable state
to another’s.

Recall from Lemma 3 and Lemma 6 that there is a unique
function ¢ : int(A") — A carrying each valuation to its
unique stable point.

LEMMA 7. For A, an AMM, the stable point map
¢ int(A") — A
is a continuous bijection.

Proor. The map ¢ is surjective by Lemma 6, and injec-
tive by Lemma 3. To show continuity, consider the sequence

{on}oq C int(A") wherelim, o v, = v.Letx = lim, 0 ¢ (vy)

n=1
and x* = ¢(v). Suppose x # x*. Note thatv - x* < v - X
by definition of stable point. Letting x = x*; % by strict

convexity we know X € int(upper(A)). We also have that
v-x* <v-x <wv-Xx Notice now that v, - x > v, - ¢(v,) by
definition so taking limits we get v - x > v - x, a contradiction.
Thus lim, e ¢(v,) = ¢(v). O

LEMMA 8. For A, an AMM, the stable point map
¢ int(A") - A
is a homeomorphism.

Proor. From Lemma 7, ¢ is both bijective and continu-
ous, so it is enough to show ¢~! is continuous. For any v
with stable point x, the first-order conditions imply that
v = AVA(x) for some non-zero (Lagrange multiplier) A € R.
Since A is strictly increasing, A > 0. Thus we can think of
v as a function of x, written v(x) = A(x)VA(x). Because
A is continuously differentiable, VA(x) is continuous, so it
is enough to check A(x) is continuous. Because v(x) is a
convex combination, and A(x) is unique,

1
AMx) = o
IVA(x) 1
which is continuous because each a’;‘)(f) is continuous. It
follows that ¢~ is continuous. O

THEOREM 3. Let A and B be AMMs over the same set of
assets. There is a homeomorphism yi : A — B that preserves
stable points: if x is the stable point for valuation v in A, then
u(x) is the stable point for v in B.
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Proor. By Lemma 8, there exist homeomorphisms
¢ int(A") — A,
¢ :int(A") > B
Their composition y = ¢’ 0¢ ! is also a homeomorphism. For
v € int(A") with stable points x € A, x” € B, ¢(v) = x and
¢ (v) = x, 50 p(x) = ¢ (¢~ (x)) = ¢ (v) = x, implying
that p preserves stable points. O

Note that this result requires that A have continuous first
derivatives.

5 OPERATORS

It is useful to be able to reduce an AMM’s dimension, per-
haps by ignoring some assets, or by creating “baskets” of
distinct assets that can be treated as a unit. In this section we
introduce two tools for reducing dimensionality: projection,
and asset virtualization.

5.1 Projection

An AMM may provide the ability to trade across a variety of
asset types, but traders may choose to restrict their attention
to a subset, ignoring the rest. Perhaps the ignored assets are
too volatile, or not volatile enough, or there are regulatory
barriers to owning them.

Mathematically, the projection operator acts on an AMM by
fixing some state coordinates to constant values and letting
the rest vary. We will show that projecting an AMM in this
way yields another AMM of lower dimension. Informally,
traders are free to ignore uninteresting assets.

Definition 4. Let x = (x1,...,%n), Yy = (Y1,...,Ym), and
a constant a = (ay, ..., a,). The projection of A onto a is
given by A4(y) = A(a,y) =0

LEMMA 9. Given an (n+m)-dimensional AMM A(x,y) =0
and a € RZ, the projection A,4(y) is an m-dimensional AMM.

>0’

Proor. Itisenough to check that A, is twice-differentiable,
strictly increasing, and upper(A) is strictly convex. Because
A(x,y) is twice-differentiable, so is A(a,y) = As(y). To
show that A, is strictly increasing, let x” = x.

Aq(x) = Ala, x)
< A(a,x")
= Aa(x,)~

To show that upper(A,) is strictly convex, pick distinct x
and x’ in upper(A,). Namely A(a,x) = Ay(x) > 0 and
A(a,x) = Ag(x’) > 0.For t € (0,1):

Agtx+(1-t)x") = A(ta+ (1 - t)a, tx+ (1 - t)x’)
= A(t(a,x) + (1 -t)(a,x)) > 0
by the strict convexity of upper(A). O
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LEMMA 10. For index set I, let v = (v;|i € I) be a valuation
for a sequence of asset types X = (X;li € I). For J C I,
v’ = (1—21,1#” € J) is a valuation for X' = (X;|j € J) ¢ X.

We say that X’ inherits v’ from valuation v of X.
The next lemma states that stable points persist under
projection.

LEmMMA 11. Let A(x,y) = 0 be an (n + m)-dimensional
AMM, v € int(A™™) a valuation on (x,y). If (a,b) is the
stable point for v in A(x,y) then b is the stable point for the
inherited valuation v’ .

PROOF. Suppose the stable point for o is b’ # b, namely
o b < v -b. Scaling both sides by 1 — 1 v; yields
(Vnt1s - > Ontem) b’ < (Onsts - - o> Opam)-b. Adding (vy, . .., 0y,)-
a to both sides yields v - (a,b”) < v - (a,b), contradicting the
assumption that (a, b) is the stable point for v. m]

5.2 Virtualization

It is sometimes convenient to create a “virtual asset” from a
linear combination of assets. Here we show that replacing a
set of assets traded by an AMM with a single virtual asset is
also an AMM. This construction works for any linear com-
bination, although the most sensible combination is usually
the assets’ current market valuation.

Here is a simple example of asset virtualization. Consider
an AMM that trades across three asset types, X, Y, Z, defined
by the constant-product formula

A(x,y,z) =xyz -8 =0,

initialized in state (2, 2, 2). A trader believes that 2 units of
Y are always worth 1 unit of Z, and that it makes sense to
link them in that ratio by creating a virtual asset W worth
2/3 units of Y and 1/3 unit of Z, and to trade in a single
denomination of W instead of individual denominations of
Y and Z.

Formally, the trader defines W in terms of the valuation
v= (%, %) on Y, Z. The virtualized AMM A|v is defined by

2
(Alo) (. w) = A(x, 55 5 +1)
2w w
=x—(—+1) -
X (3 +1)-8

=0,

with initial state (2, 3). (The “+1” in the Z co-ordinate appears
because 2 Y and 2 Z units are not evenly divisible into W
units.)

Let x = (x1,...,x,) and y = (y1,-..,Ym). Let A(x,y) =
A(x1, .3 XnsY1,-- -, Ym) = 0 be an (n + m)-dimensional
AMM with initial state (a,b) = (ay,...,an b1,...,bm). Let
us create a virtual asset Z from y, . . ., Y, using the valua-
tionv = (v1,...,0m).
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Let ¢ € R be the largest value such that b — co > 0. The
value c is the number of Z assets in b, and r = b — cv is the
vector of residues if b is not evenly divisible into Z units.
The virtualized AMM is given by

(Alo)(x,z) = A(x, 012 + 11, ..
=0,

S UmZ+ )

with initial state (a1, ..., an,c).
The next lemma says that in any AMM state, it is always
possible to virtualize any set of assets.

LEMMA 12. Let A be an (m + n)-dimensional AMM in state
(a,b), wherea € RT), b € R, and valuation v € int(A").

We claim that for any a’ € RT,), there is a unique t € R such

that (a’,b + tv) is a state of A.

Proor. We seek t € R such that A(a’, b + tv) = 0. There
are several cases. If A(a’,b) = 0, then ¢t = 0 and we are done.
Suppose A(a’,b) < 0.If A(a’,b +v) =0, thent = 1 and we
are done. If A(a’, b +v) < 0, pick a vector ¢ = (cy,...,¢p,) €
RZ , such that A(a’,b +¢c) = 0. Let € > 0,

s; = ﬂ 0<i<n,
Ui

and s = maxg<;j<y $;. It follows that sv > ¢+¢l,and b +sov >
b +c +€l. Since Ay is strictly increasing, A(a’,b + sv) >
Ag(b+c) =0.Define a(t) : [0,1] > Rby a(t) = Axg(b+
v + t(s — 1)v). Because «a is continuous, the intermediate
value theorem guarantees a unique t* € (0,1) such that
a(t*) = 0. Taking t = (1 +t*(s — 1)) establishes the claim. If
A(a’,b+0v) >0, let

and s = ming<;<p S;, and the claim follows from a symmetric
argument.

Suppose A(a’,b) > 0.Pick avectorc = (cy,...,cp) € RZ
such that A(a’,b —¢) = 0.Lete > 0,5; = ©C5,0 < i <
n. and s = maxg<i<n S;. It follows that so > c+ €l, and
b—sv<b-c—e€l,soA(a’,b—-sv) <A(a’,b—c) =0.Let
a(t) : [0,1] - Rbea(t) = A(a’,b+(t—1)sv). As before, the
intermediate value theorem guarantees a unique t* € (0, 1)
such that a(t*) = 0. Taking t = (1 — t*)s establishes the
claim. O

THEOREM 5. Given an (n+m)-dimensional AMM A(x,y) =
0, and a valuation v € int(A™), the virtualized (Alv)(x, z) is
an (n + 1)-dimensional AMM.

Proor. It is enough to check that Alv is twice-
differentiable, strictly increasing, and upper(Alv) is strictly
convex. (Alv) is twice-differentiable because A is twice-
differentiable.
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To show that Alv is strictly increasing, let x’ > x and
zZ 2z

(Alo)(x1,...,Xn,2)
=A(X1, .. s X, 012471, .., UZ + Tiy)
<A(x], ... %012 11,02 )
= (Alo)(x1,...,x,,2").

To show that upper(Al|v) is strictly convex, pick distinct
(x,z) and (x’, z’) on the manifold:

(Alv)(x,2) = (Alo)(x",2") = 0.
Fort € (0,1),

Alo)(tx+ (1 - t)x',tz+ (1 - t)Z")
=A(tx+ (1 -t)x",o(tz+ (1 -1t)z") +r)
=A(ltx+ (1 -t)x',t(oz+r)+ (1 -t)(vz' +71))
=A(t(x,oz+r)+ (1 -t)(x",0z" +r)) >0

by the strict convexity of upper(A). O

Stable points are well-behaved under virtualization. Let
A(x,y) = 0 be an (n + m)-dimensional AMM and v €
int(A™) a valuation. If A is an (n + m)-dimensional AMM in
state (a,b), and v € int(A") a valuation, then (Alv)(a,c) =
A(a,cv +r) = A(a,b) = 0. For any state in the virtualized
AMM, (Alv)(x,t) = A(x,b+(t—c)v) = 0. This expression de-
pends on b and v, where c is a constant determined by b and
v. Since (A|v)(x,t) is an (n + 1)-dimensional AMM, we can
write t = f(x) for some f : RZ, — R. The virtualized AMM
can be expressed as (x, f(x)) where A(x,b+(f(x)—c)v) = 0.

LEmMA 13. If (a*,b") is the stable point on AMM A(x,y)
for valuation (v,w), then (a* f(a*)) is the stable point
on the virtualized AMM (Alw)(x,t) for the wvaluation
(o, [Iwli3)/ Il (@, IwliZ)1-

Proor. Suppose (a*, f(a*)) is not a stable point for
(v, ||w||§): there is a distinct point (a, f(a)) € Alw where
v-a+ ||w||gf(a) <v-a+ ||w||§f(a*). Now define b =
b* +w(f(a) — f(a")), which by the virtualization construc-
tion we have (a,b) € A. Then

v-a+w-b=v-a+w-b"+w-w(f(a) - f(a"))
=v-a+|wl3f(a) - |wll5f(a") +w - b*
<ov-a" +|wl3f(a*) - [wl5f(a") +w - b*
=v-a" +w-b*

This is a contradiction since (a*, b*) is the stable point for
(v,w). O
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6 SEQUENTIAL COMPOSITION

AMMs are intended to be composed. A Uniswap vl AMM
typically converts between an ERC-20 token and ether cryp-
tocurrency. To convert, say, florin tokens to guilder tokens,
one would first convert florins to ether, then ether to guilders.
Bancor uses a proprietary BNT token for the same purpose.
Some form of composition seems to be essential to making
AMMs useful, but we will see that while there are many
ways in which AMMs might be composed, not all of them
make sense. The most basic property one would demand
is closure under composition: the result of composing two
AMMs should itself be an AMM.

Being closed under composition should not be taken for
granted. For example, consider two constant-product AMMs:
A := (x,1/x), initialized in state (a, 1/a), and B := (y, 1/y),
initialized in state (b, 1/b). Their composition A®B = (x, h(x)),
where

ax

= (1)

-1 x—a+abx’
X

h(x) = b+

Q| =

The set of constant-product AMMs is thus not closed under
composition.

6.1 Omne-to-One Composition

We first consider the result of composing 2-dimensional
AMMs, that is, AMMs that trade between two asset types.
Consider AMMs A := (x, f(x)), initialized to (a, f(a)),
and B := (y,¢(y)), initialized to (b, g(b)). A trades between
asset types X and Y, and B between Y and Z. Their composi-
tion, initialized to (a, g(b)), trades between X and Z.
Operationally, composition is defined as follows.

e Move A from state (a, f(a)) to state (x, f(x)), yielding
profit-loss vector (a — x, f(a) — f(x)).

e Add f(a) — f(x) to the Y balance of B, yielding new
state (b -+ £(a) — f(x),g(b + f(a) - ().

This trade takes the composition from (a, g(b)) to (x, g(b +

f(a)—f(x))).Let h(x) = g(b+f(a)—f(x)). The composition
A ® B is given in the form (x, h(x)). Because f, g are twice-
differentiable:

LeMMA 14. (A ® B)(x,y) is twice-differentiable.
LEmMA 15. (A ® B)(x,y) is strictly increasing.

Proor. We show that if (x’,y") = (x,y), meaning at least
one coordinate is strictly greater, then (A ® B)(x",y’) >
(A ® B)(x,y). Recall that f and g are strictly decreasing by
hypothesis. There are two cases. First, suppose x” > x and
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x' > x
f(x") < f(x)
b+f(a) - f(x") >b+f(a) - f(x)
g(b+ f(a) - f(x)) < g(b+ f(a) - f(x))
y—gb+f(a) - f(x) >y—gb+f(a) - f(x))
Yy —gb+f(a) - f(x) >y—g(b+f(a) - f(x))
(A®B)(x,y') > (A® B)(x,y)

The second case, where x” > x and y’ > y is similar. m]

LeEmMA 16. The upper contour set upper(A ® B) is strictly
convex.

Proor. Since upper(A ® B) = epi(h), by Lemma 1, it is
enough to check the strict convexity of . Pick two distinct x
and x’. Recall that for t € (0,1), f(tx+ (1 —t)x’) < tf(x) +
(1 —t)f(x"), and similarly for g(y) by hypothesis. For t €
(0,1),

FA=-Dx+tx") < (1=1)f(x) +tf(x")

b+f(a) - f((1-t)x+tx")
> (1=1)(b+f(a) - f(x))
+i(b+f(a) - f(x))

g(b+ f(a) = f((1 = t)x +1tx"))
<(1=-t)g(b+f(ag) - f(x))
+tg(b+ f(a) - f(x')))

h((1 = t)x+tx) < (1 —t)h(x) + th(x')

which proves the claim. ]

The next lemma relates stability and sequential composi-
tion for 2-dimensional AMMs.

LEmMMA 17. Let (v, w,v”) be a valuation for assets X, Y, Z. If
(a, f(a)) is the stable point for AMM A := (x, f(x)) for valu-
ation (v, w)/||(v, w)||1 and (b, g(b)) the stable point for AMM
(y, g(y)) for valuation (w,v")/||(w,v")||1, then (a, h(a)) is the
stable point for the valuation (v,v")/||(v,0")||1.

Proor. If (a, h(a)) is not the stable point for (v,v"), there
is some x # a such that (x, h(x)) is the stable point. By
assumption, for x # aand y # b,

va+wf(a) <ovx+wf(x)

wb +0'g(b) < wy +0'g(y)



Composing Networks of Automated Market Makers

Also by assumption,

ox + 0 h(x) < va+0'h(a)
=va+0'g(b+f(a) - f(a))
=va+0'g(b)
=va+wf(a) —wf(a) + wb— wb +0"g(b)
<ox+wf(x)—wf(a)+wy+0'g(y) —wb
=ox+w(f(x) = f(a) +w(y—b) +0'g(y)
=ox +w(f(x) - f(a)) +w(f(a) - f(x))

+0'g(b+ f(a) - f(x))

=ox + 0 h(x),

a contradiction. (The last step follows by taking y = b +
f(a) — f(x) # b, possible since f strictly decreasing). O

The converse is false. Consider two constant product AMMs
A = (x, %) and B := (y, i), both initially in state (1, 1). The
composed AMM is given by A® B (x, 57— ) with state (1,1).
Now if (v, w,0’) = (%, %, 4—11), (1, 1) is the stable point of A® B
with respect to (v, w, v”). However, the stable point for (v, w)

on Ais (V2, ‘/—5) and (w,0’) on Bis (%E, V2).

6.2 Many-to-One Composition

AMM A trades asset types X, ..., Xy, Z, with initial state
(a, f(a)), where a = (ay,...,an), and f(a) is the explicit
function defining the Z coordinate in terms of the others.

AMM B trades asset types Z, Y1, . .., Y,, with initial state
(¢,b,g(c,b)), where b = (by,...,b,-1), and g(c,b) is the
function defining the Y;, coordinate in terms of the others.

The Z asset flows between A and B but is not directly
accessible to traders. The composition A ® B trades asset
types X1, ..., Xm, Y1, ..., Yy, with initial state (a, b, h(a, b)),
for h to be defined.

Operationally, the composition works as follows. The
trader changes each a; to x;, 0 < i < m, and each b; to
y;,0<i<n-1.Letx=(x1,....,xn) andy = (y1,...,Yn-1)-
The new state of A is (x, f(x)). The amount of Z that flows
from A to B is f(a) — f(x). The new state of B is (¢ +
f(a) — f(x),y,g9(c+ f(a) — f(x))). The new state of A® B
is (x.9.9(c + f(a) - f(x)))

Define h(x,y) = g(c + f(a) - f(x),y). (A® B)(x,y,2) =
z—h(x,y).

LEmMA 18. (A ® B)(x,y, z) is twice-differentiable.

Proor. Immediate because f, g are twice-differentiable by
hypothesis. O

LEMMA 19. (A ® B)(x,y, z) is strictly increasing.

Proor. We show that if (x’,y’,z") 2 (x,y,z), then (A®
B)(x',y’,z’) > (A ® B)(x,y,z). There are two cases. First,
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suppose (x’,y’) 2 (x,y) and 2’ > z.
(x.y) z (x.y)
fG&y) < f(xy)
b+f(a)-f(x',y") >b+f(a) - f(xy)
gb+f(a) - f(x".y) < g(b+ f(a) - f(x,y))
z=gb+f(a) - f(x".y) >z-g(b+ f(a) - f(x,y))
Z—gb+f(a) - f(x'.y) >z-g(b+f(a) - f(xy))
(A®B)(x',y',Z") > (A® B)(x,y,2)
The second case, where x” > x and z” > z is similar. O

LEMMA 20. upper(A ® B) is strictly convex.

PrRoOF. Again it is enough to show h is strictly convex.
Pick two different points (x, y) and (x’, y’). Recall that f and
g are strictly convex by hypothesis. For t € (0, 1),

f1=-t)(xy) +t(x",y"))
<(A-t)f(xy) +tf(x"y)

b+f(a) - f((1-1)(xy) +1(x"y")
> (=0 +f(a) - f(x.y)
+t(b+f(a) - f(x"y"))

g(b+ f(a) - f(A =) (x,y) +1(x".y)))
< (1 -1)g((b+f(a) - f(xy))
+1tg(b+f(a) - f(x".y"))

h((1-1t)(x,y) +t(x",y"))
< (1-0h(x,y)+th(x",y")
(]

Here is how stable points behave under sequential com-
position of multi-dimensional AMMs.

THEOREM 6. Let (v, w,v’) be a valuation, v € R", w € R,
and v’ € R™. If (a*, f(a")) is the stable point on AMM
(x, f(x)) for valuation (v, w)/||(v, w)|l1 and (¢, b", g(c,b™))
is the stable point on AMM (z,y,9(z,y)) for valuation
(w,0")/||(w,0")||1, then (a*,b", h(a*,b")) is the stable point
for the valuation (v,v")/||(v,2")||1.

Proor. if (a*,b*, h(a*, b)) is not a stable point for (v,v’),
there is some (x,y) # (a*,b") such that (x,y, h(x,y)) is the
stable point. We write o’ = (v],_,,v;,) to separate the first
m — 1 components from the m-th component. By assump-
tionm for x # a* and (z,y) # (¢, b"),

bv-a* +wf(a*) <v-x+wf(x)wc+o, _,-b+v,9(ch)

<wz+o,,_; -y+0,9(zy)
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Also by assumption
v-x+v, | y+o,h(xy)
<v-a"+v,,_4-b"+o, h(a*,b")
=v-a"+wf(a)—wf(a)+wc—wc+o,,_,;-b"
+0,,9(c,b")
<v-x+wf(x)—wf(a") +wz+
Vo1 Y +op9(2y) —we
=0 x+v,Y+0,9(zYy)
1Y +opg(c+ f(a’) - f(x).y)
1Y +o,h(xy)

—_— . J: Z'/

v m—
—_— . 4
=v-x+o,,_

a contradiction.

6.3 Many-to-Many Composition

What does it mean to compose two AMMs that share multiple
assets? We will see that this definition requires some care.

Here is the most obvious definition. Let W, X, Y, Z be as-
set types. Consider two 3-dimensional AMMs, A defined by
wxy = 1 and B defined by xyz = 8. where A is in state
(1,1,1) and B in state (2,2, 2). We want to compose them
into a 2-dimensional AMM (A@®B) between W and Z treating
X and Y as “hidden” intermediate assets.

A trader adds dx > 0 units of X to (A & B):

(1) pickany dy, dz < O satistying (1+dx)(1+dy)(1+dz) =
1, yielding a profit-loss vector on Y, Z of (dy, dz).

(2) Subtract this profit-loss vector from the first two com-
ponents of B, then solve for dw < 0 so that (2—-dy)(2—
dz)(2+dw) = 8.

More generally, let A be initialized in (a, b, ¢), B in (b’, ¢’, d).
and A @ B in (a,d). Then (w,z) is in A @ B if there exist
dx, dy < 0 (the assets transferred) such that (w, b+dx, c+dy)
isin A and (b’ — dx, ¢’ — dy, z) is in B.

Here is why this naive definition of composition is flawed.
As before, A(w,x,y) := wxy = 1 starts in state (1,1,1),
B(x,y,z) = xyz = 8 starts in (2,2,2). Let dw = 3, dx = —%,
dy = —%, so dz satisfies:

25
(2-dx)(2-dy)(2+dz) = Z(Q +dz) =2

implying dz = —%. If instead dw = 3, dx = —}l, dy = -2
then dz satisfies:

(2-dx)(2-dy)(2+dz) =6(2+dz) =2

meaning dz = —5/3. So both (4, %) and (4, %) are valid
states in the naive composition, violating the requirement
that each coordinate is a function of the others.

We have just seen that AMMs joined by more than one

hidden asset type provide too many degrees of freedom to
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allow composition in a simple, well-defined way. In a prac-
tical sense, however, if two AMMs agree on a valuation for
the hidden assets, then it makes sense to transfer them in
proportion to their agreed-upon relative values. To define
composition for AMMs with multiple hidden assets, we cre-
ate a single virtual asset from a convex combination of the
hidden assets (Section 5.2). Although any convex combina-
tion would produce a well-behaved composition, it makes
sense to use the current market valuation, if one exists. By
reducing the number of hidden assets to one, virtualization
reduces many-to-many composition to many-to-one compo-
sition, as analyzed in Section 6.2.

Our next theorem concerns stable points under this most
general type of sequential composition.

THEOREM 7. Let (v,w,v’) be a valuation, v € R",w €
RF o’ € R™. Let (a*,b*) be the stable state for valua-
tion (v,w)/||(v,w)||1 on the AMM A(x,y) and (c*,d",e*)
the stable state for (w,v’)/||(w,v’)||1 on the AMM B(z,r,q).
If Aw = (x,f(x)) and Blw := (z,rg(zr)), then
(a*,d*, h(a*,d")), where e* = h(a*,d") is the stable state on
(Alw) @ (Bl|w) for the valuation (v,0")/||(v,v")||1.

ProoF. Applying Lemma 13 twice, (a*, f(a*)) is the stable
point for valuation (v, |[w||2) /|| (v, [lw||3)||1 and (¢*,d*, g(t*,d"))
is the stable point for valuation (||(w||2,2")/||(]|(wl||2, o")|l1,
where e* = g(t*,d"). Applying Lemma 13, (a*,d", h(a*,d"))
is stable on (Alw) @ (B|w) with respect to valuation
(v,0) /(w01

O

This result shows that the composition of AMMs at stable
points remains stable.

7 PARALLEL COMPOSITION

Parallel composition arises when a trader is faced with mul-
tiple AMMs, but wants to treat them them as if they were
a single AMM. In sequential composition, the composed
AMMs exchange “hidden” assets . In parallel composition,
the composed AMMs compete for overlapping assets.

Suppose Alice wants to trade asset X for asset Y. Bob and
Carol both offer AMMs to convert from X to Y. Bob’s AMM
is B(x,y) == x%y = % in state (1, %), while Carol’s AMM is
C(x,y) := xy = 1 in state (1, 1). Alice would like to compose
the two AMMs and treat them as one AMM. Bob provides
a better initial rate of exchange for small trades, but Carol
provides less slippage for large trades. One can check that if
Alice converts 1 unit of X, she gets more Y assets from Bob
than from Carol, while if she converts 3 units, she gets more
from Carol.

This process is not the same as order-book clearing, be-
cause order-book offers are typically expressed in terms of a
fixed amount and a fixed price, while parallel AMM offers are
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expressed in terms of price curves. This type of composition
occurs, for example, when a trader is faced with multiple
pools as in Uniswap v3 [3].

A rational Alice will split her assets between Bob and Carol
to maximize her return. Suppose A(x, y) is in state (a, f(a))
and B(x, y) in (b, g(b)). Alice splits her d assets, transferring
td to Bob’s AMM and (1 — t)d to Carol’s, returning

f(a) = fla+tx)+g(b) - g(b+ (1 - 1t)x)

units of Y. Let h(x) = f(a+tx) +g(b+ (1 —t)x). Define the
parallel composition of B and C with respect tov = (¢,1 — t)
to be.

(BlIC)(x,y) ==y — h(x) = 0.
LemmMa 21. (B||C)(x,y) is a 2-dimensional AMM.
ProoF. (BJ|C)(x,y) is twice-differentiable because f and g
are twice-differentiable. To check that (B||C)(x, y) is strictly

increasing,letx” > x andy’ > y where at least one inequality
is strict. For the first case, suppose x’ > x and y’ > v.

fla+tx") < f(a+tx)
g+ (1-1t)x") < g(b+(1-1t)x)
fla+tx")+gb+(1-t)x") < f(a+tx) +g(b+ (1 -1)x)
h(x") < h(x)
y—h(x) >y —h(x)
Y —h(x') >y -h(x)
The case where x” > x and y’ > y is similar.

To check that upper((B||C)(x,y)) is strictly convex, we
can verify h is strictly convex. Pick distinct x, x’. For s €
(0! 1):

sfla+tx)+(1—s)f(a+tx")

> f(s(a+tx)+(1=s)(a+tx"))

sg(b+ (1 -1)x)+(1-s)g(b+(1-1)x")
>g(s(b+(1-tx)+(1-s)(b+(1-1t)x")

s(fla+tx)+g(b+ (1-1)x))
+(1=s)(f(a+tx") +gb+ (1-1t)x"))
> f(s(a+tx)+ (1 —s)(a+tx"))
+g(s(b+(1-0)x)+(1-s)(b+ (1-1t)x"))
sh(x) + (1 = s)h(x") > h(sx + (1 —s)x")
which establishes the claim. O
LEmMMA 22. Let A := (x, f(x)), B := (y,g(y)) be two AMMs
trading assets X and Y, such that (a, f(a)) and (b, g(b)) are
their respective stable points for the valuation (v,1 — v). If
hi(x) = f(a+tx) +g(b+ (1 —1t)x), then (0, h,(0)) is stable
point on A||B with respect to (v,1 —v) forallt € R.
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Proor. By assumption we have
va+(1-0)f(a) <v(a+tx)+(1-0)f(a+tx)
(1-9)f(a) <tox+ (1 -0)f(a+tx)
and
ob+ (1 -0v)g(b) <o(b+(1-t)x)+(1-0)g(b+(1-1)x)
(1-0)g(b) < (1 -t)ox+ (1 -0)g(b+ (1 -1t)x),
yielding
00+ (1 —0)h (0) = (1 — v)h(0)
(1-0)f(a) + (1 - 0)g(h)
tox+ (1 -ov)f(a+tx)+ (1 —1t)ox
+(1-9)g(b+(1-1t)x)
ox+(1-0)(f(a+tx)+g(b+ (1-1)x))
=ox+ (1 -0)h(x)
so (0, h;(0)) is a stable point for (v, (1 —v)). O

A

Parallel composition is well-defined for any valuation, but
what valuation should a rational Alice pick? Differentiating
with respect to ¢ yields

0=-xf"(a+tx) +xqg’(b+(1-1)x)
xf'(a+tx) =xg (b+ (1 -1t)x)

fla+tx) =g (b+(1-1t)x). (2)
Alice maximizes her return when she splits her assets so that
Bob and Carol end up offering the same rate. Informally, if
Bob had ended up providing a better rate, then Alice should
have given him a larger share. If there isno ¢ € (0, 1) that
satisfies Equation 2, Alice should give all her assets to the
AMM with the better rate.

How should parallel composition be defined for AMMs
with multiple asset types? Suppose Alice has some combi-
nation d of assets in Xi,..., X, that she wants to convert
into some combination of assets in Y1,...,Y;. Alice has a
choice of two alternative AMMs: B(x1, ..., Xp, Y1, - - ., Yq) and
C(x1,...,Xp,Y1,...,Yq). Perhaps the most sensible way to
define parallel composition is through asset virtualization.
Alice’s input asset vector d induces a valuation d/||d||; which
can be used to define a virtual asset X from X, ..., X,,. Alice
chooses a valuation v for her Y1, ..., Y; outputs (perhaps the
market valuation) which can be used to define a virtual asset
Y from Yy, ..., Y,. After asset virtualization, the alternative
AMMs have the form: B(x, t) and C(x, t), and the definition
of parallel composition proceeds as before.

The next lemma describes properties of stable points for
two 2-dimensional AMMs composed in parallel.

If (x, f(x)) and (y, g(y)) are two n-dimensional AMMs in
states (a, f(a)) and (b, g(b)), we can define parallel compo-
sition as follows. For t € [0,1]"1, let hs(x) = f(a+t*x) +
g(b + (1 —t) * x), where % is component-wise multiplication.
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LEMMA 23. Let (0,1 — ||v]|1)) be a valuation, and let A :=

(x, f(x)) and B := (y,9(y)). If (a, f(a)) and (b, g(b)) are
both stable points with respect to (v, 1—||v||1)). then (0, h¢(0))
is the stable point on A||B for (v,1 — ||o||1) for allt € R" 1,

Proor. For t € R* 1,
v-a+(1-lo|1)f(a)
<v-(a+txx)+(1— o) f(a+t*x)
(T=lloll)f(a) < (t+x) -0+ (1 =|o|l1)f(a+t*x)
and
v-b+(1-lo|l1)g(b)
<v-(b+(1-t)xy)+(1—|o|l1)g(b+(1—-1t)*y)

(1= 1loll1)g(b)
<((I=t)xy) v+ (1= |loll)gb+(1-1)+y),
implying

v - 0+(1 = [lo]l1)h:(0)

= (1 - loll1)h:(0)

= (1= lloll1)f(a) + (1 = lloll1)g(b)

<(t*x)-v+(1-oll)f(a+t*x)
+(1—t)*x- 0+
(1 =1loll)g(b + (1 —t) * x)

=ov-x+(1-|oll)(f(a+t-x)
+gb+(1-1)-x))

=v-x+ (1 - |loll1)h(x)

so (0, h;(0)) is a stable point for (v, 1 — ||||1). O

Most generally, if we have two AMMs A(x, z) and B(y, z’),
and valuation w, we can write Alw as (x, f(x)) and Blw as
(y,9(y)). We then can define parallel composition as before.

THEOREM 8. Let (v,v’) be a valuation, and let A(x, z) and
B(y,z’) two AMMs. If (a*,b") is the stable point for A, and
(c*,d*) the stable point for B, both with respect to (v,v’), then
(@ [10°113)/11(, [0 13)|I1 is the stable point for (Alo”)||(Blv").

Proor. Lemma 13 implies that (a*, f(a*)) and (c*, g(c*))
are stable on Alv” and Blv’, both with respect to (o, ||v’||§)
Lemma 23 implies that (0, h¢(0)) is the stable point for
(Alv")||(Blo") with respect to valuation (o, ||v’||§). O

8 FEES

In practice, each AMM trade incurs a fee: each trader’s de-
posit includes a small additional fee added directly to the
AMM'’s capitalization to benefit the liquidity providers. So
far, we have neglected fees because the amounts involved
are expected to be small in relation to AMM capitalization.
Nevertheless, in this section, we show that AMM fees can be
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modeled as the sequential composition of a no-fee AMM with
a simple linear AMM. For brevity, we restrict our attention
to AMMs that manage two assets.

Here is how fees work for an AMM such as Uniswap
vl. Let A := (x,g(x)), currently at state (a,g(a)), and let
¥,0 <y < 1, be the fee parameter.

e The trader sends § units of X to A.

e (1—y)d units of X are traded for g(a) —g(a+ (1 —-y)J)
of Y.

o A fee of y§ units of X is deposited directly in A’s pool.

A’s final state is (a + §,g(a+ (1 —y)9)).
A linear AMM exchanges assets at a constant rate, gov-
erned by a constraint function:

A-x=c,

where A is a constant vector, and ¢ > 0 a constant. A linear
AMM does not satisfy all our common-sense axioms: because
its exchange rate is fixed, it is not expressive, and although its
curve is convey, it is not strictly convex, so it does not have
unique stable points. A stand-alone linear AMM L would
be a poor investment for providers, because if the market
rate diverges from the AMM’s fixed rate, perhaps so that L
overprices X and underprices Y, then arbitrage traders will
exchange X for Y until L’s Y reserve is depleted.

Even if stand-alone linear AMMs are not useful in practice,
they provide a convenient formal device for modeling AMMs
with fees. For example, consider the 2-dimensional AMM
L := (x, f(x)) that trades between X and X, where

f(x) =00 =-y)a+d-x),

for y,0 < y < 1. Note that

fla)=(1-y)o and fla+6)=0. (3)

Suppose A := (x,g(x)) starts in state (a,g(a)), and linear
L := (x, f(x)) starts in state (a, f(a)). As in Section 6, the
sequential composition L ® A is given by

h(x) = g(a+ f(a) - f(a+x)). 4)

Sending J units of X to L ® A returns

h(6) =g(a+ f(a) — f(a+6))
=g(a+(1-y)J)

The trade leaves LQ A in state (a+3J, g(a+(1—y)Jd)), precisely
the behavior of A augmented by a fee y levied on incoming
assets. An alternative structure where a fee is levied on out-
going assets can be modeled by composing the AMMs in the
reverse order, with a linear AMM deducting dy units of the
trade’s output to its pool.
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9 RELATED WORK

Angeris and Chitra [5] introduce a constant function mar-
ket maker model and consider conditions that ensure that
agents who interact with AMMs correctly report asset prices.
Our work, based on a similar but not identical AMM model,
focuses on properties such as defining AMM composition,
AMM topology, and the role of stable points.

Uniswap [6, 22] is a family of constant-product AMMs
that originally traded between ERC-20 tokens [13] and ether
cryptocurrency. Trading between ERC-20 assets requires
sequential composition of the kind analyzed in Section 6.
Uniswap v2 [2] added direct trading between selected pairs of
ERC-20 tokens, and Uniswap v3 [2] allows liquidity providers
to restrict the range of prices in which their asset participate,
giving rise to a form of parallel composition of the kind
analyzed in Section 7.

Bancor [16] AMMs permit more flexible pricing schemes.
The state space manifold is parameterized by a weight, where
different weights yield different curves. Bancor AMMs trade
between ERC-20 assets and Bancor-issued BNT tokens. Prices
are a function of assets held and BNT tokens in circulation.
Later versions [7] include integration with external “price
oracles” to keep prices in line with market conditions.

Balancer [18] AMMs trade across more than two assets.
Instead of constant product, their state space is given by
constant mean formula ¢ = H?xlm, where ¢ is constant, x;
is amount of asset X; held by the contract, and the w; are
adjustable weights that form a valuation.

Curve [12] uses a custom curve specialized for trading
across multiple stablecoins, digital assets whose values are
tied to fiat currencies such as the dollar, and likely to trade
at near-parity.

There are many are more examples of AMMs: see Pour-
pouneh et al. [20] for a survey.

Before there were AMMs for decentralized finance, there
were AMMs for event prediction markets, where parties trade
securities that pay a premium if and only if some event occurs
within a specified time. A community of researchers has fo-
cused on prediction-market AMMs [1, 10, 11, 14, 15]. Despite
superficial similarities, event prediction AMMs and security
AMMs differ from DEFI AMMs is important ways: pricing
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models are different because prediction outcome spaces are
discrete rather than continuous, prediction securities have
finite lifetimes, and composition of AMMs is not a concern.

We also note that the mathematical structure of AMMs
resembles that of a consumer utility curve from classical
economics [19], where assets are replaced with goods. The
optimal arbitrage problem is not new. A consumer choosing
an optimal bundle of goods for a fixed set of prices is the
same as an arbitrageur choosing an optimal point on an

AMM with respect to a market valuation. This is known as
the expenditure minimization problem [19]. While AMMs and

consumer indifference surfaces are mathematically similar,
they are different in application. In particular, traders interact
with AMMs via composition, an issue that does not arise in
the consumer model.

10 CONCLUSIONS

Modern AMMs provide increasingly complex rules for trades.
For example, Uniswap v3 [3] allows liquidity providers to
choose to take trades only over finite ranges. In the future,
we would like to understand how to define composition
operators for varieties of range-restricted AMMs, but we
hope the reader is convinced that understanding composition
of simple AMMs is already challenging, and an important
step to understand more general cases.

AMMs are increasingly being integrated with external
price information oracles. For example, Krishnamachari et
al. [17] describe a family of AMMs capable of adjusting their
curves in response to reported price changes. In future work,
we plan to investigate composition for AMMs that make use
of oracle services..

The work presented here is a first step toward analyzing
decentralized finance from a distributed computing perspec-
tive. In future work, we hope to consider more complex
networks of AMMs, the challenges of cross-chain AMMs,
synchronization problems such as front-running, as well as
more adaptive AMM structures.
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