
Invited Paper: Failure is (literally) an Option:
Atomic Commitment vs Optionality in

Decentralized Finance ?

Daniel Engel1, Maurice Herlihy1[0000−0002−3059−8926], and Yingjie Xue1

Brown University Computer Science Dept, Providence RI 02912, USA

Abstract. Many aspects of blockchain-based decentralized finance can
be understood as an extension of classical distributed computing. In this
paper, we trace the evolution of two interrelated notions: failure and
fault-tolerance. In classical distributed computing, a failure to complete
a multi-party protocol is typically attributed to hardware malfunctions.
A fault-tolerant protocol is one that responds to such failures by rolling
the system back to an earlier consistent state. In the presence of Byzan-
tine failures, a failure may be the result of an attack, and a fault-tolerant
protocol is one that ensures that attackers will be punished and victims
compensated. In modern decentralized finance however, failure to com-
plete a protocol can be considered a legitimate option, not a transgres-
sion. A fault-tolerant protocol is one that ensures that the party offering
the option cannot renege, and the party purchasing the option provides
fair compensation (in the form of a fee) to the offering party. We sketch
the evolution of such protocols, starting with two-phase commit, and
finishing with timed hashlocked smart contracts.

1 Introduction

Decentralized finance (DeFi) is on the rise: between June and October 2020,
the value of assets managed by DeFi protocols increased from $1 billion to $7.7
billion [26]. This paper is an informal tutorial, explaining certain basic problems
in DeFi as if they were problems in fault-tolerant distributed computing. Con-
versely, many core problems in DeFi represent interesting and important exten-
sions of distributed computing problems. The goal of this paper is to encourage
distributed computing researchers to consider the kinds of problems and models
that arise in DeFi, and conversely, to encourage DeFi researchers to benefit from
the rich history of distributed computing techniques and algorithms.

The contribution of this work is simply to illustrate these claims through
an extended example, presented with the hope of provoking others to take up
research in this area. We explore how one core problem of distributed computing
has evolved over time, gradually turning into a superficially distinct core problem
of finance. We consider the problem of atomic commitment : how can we install
updates at multiple databases or ledgers in such a way that guarantees that if

? Supported by NSF grant 1917990.

ar
X

iv
:2

10
9.

12
16

7v
1

 [c
s.D

C
]

24
 S

ep
 2

02
1

2 D. Engel et al.

all goes well, all updates are installed, but if something goes wrong, all updates
are discarded. The classical challenge is, of course, tolerating failures: databases
can crash or communication can be lost or delayed.

This is one of the oldest problems in distributed computing, and not sur-
prisingly, it is central to key problems in DeFi. We explore two aspects of this
problem. First, we explore the technical solutions, where DeFi has tended to
borrow, whether consciously or not, from prior solutions in distributed comput-
ing. Second, we explore underlying conceptual frameworks, where DeFi extends
the notion of fault-tolerance well beyond the classical models of distributed com-
puting. We hope that our examples illustrate how each field can learn from the
other.

In Section 3, we review the well-known two-phase commit protocol [2], a clas-
sical technique for making atomic updates to independently-failing databases
in a distributed system. In Section 4, we consider the cross-chain atomic swap
problem, where mutually-suspicious parties exchange assets atomically across
distinct blockchains. The simplest atomic swap protocols are based on hashed
timelocked contracts [11,17] (HTLCs). Technically, HTLC protocols closely re-
semble classical two-phase commit. The principal difference between the two
protocols is in their underlying conceptual frameworks. In two-phase commit, a
failure is typically an operational malfunction at a node or a network, while in
atomic swap, a failure could also be a malicious action chosen by an adversarial
party.

This distinction becomes more pronounced in Section 5. In both two-phase
commit and atomic cross-chain swap protocols, fault tolerance means that if one
party falls silent in the middle, the other parties are eventually made whole:
database replicas are eventually restored, and escrowed assets are eventually re-
funded. For distributed computing’s two-phase commit, the story ends there,
but for DeFi’s atomic swap protocol, the story has just begun. In finance, the
ability to abandon or to complete an in-progress swap is called an option, and
options themselves have value. Any party who abandons an atomic swap should
compensate the other parties by paying a small fee called a premium. Treating
failures as compensated options is alien to classical distributed computing mod-
els, where all parties implicitly are on the same team, but it opens up a range of
new research challenges for distributed computing. Incorporating premiums into
atomic swaps turns out to be a challenging technical problem [25], effectively
requiring nesting one atomic commitment protocol within another.

Section 6 takes the notion of optionality to the next level. What if one party
could sell such an option to another? Alice, who has paid for the option to com-
plete or cancel a swap, should be able to transfer that option to Bob for a fee.
Alice would relinquish her power over the swap’s outcome, and Bob would as-
sume all of Alice’s power, including the power to complete or cancel the swap,
and the right to be compensated if another party cancels the swap. This prob-
lem is also technically challenging, as it requires embedding yet another atomic
commitment mechanism within other nested atomic commitment mechanisms.

Failure is an option 3

While we advocate thinking about DeFi mechanisms as if they were dis-
tributed computing problems, we also advocate DeFi as a rich source of new
problems and models for mainstream distributed computing. Originally, aban-
doning an atomic commitment protocol was considered a simple operational
failure, and the meaning of fault-tolerance was simply to restore integrity and
availability. When the parties become autonomous and potentially adversar-
ial, however, failures can become deliberate choices, and the meaning of fault-
tolerance must be extended to provide financial compensation to any victims of
other parties’ choices. Once failures become options (in the financial sense), then
those options themselves become assets to be traded.

The questions raised here are not really about blockchains, as blockchains.
Instead, they are really about the scientific and engineering problems of safely
transferring value among autonomous parties. This problem will remain of en-
during importance to society, independently of whether particular blockchain
technologies bloom or fade, whether certain asset bubbles expand or pop, or
whether regulatory agencies do or do not intervene to protect gullible investors.
We believe the fault-tolerant distributed computing community has much to
offer on these fundamental problems, and we encourage the community to get
involved.

2 Model

A blockchain is a tamper-proof distributed ledger or database that tracks own-
ership of assets by parties. (Our discussion is mostly independent of which
blockchain technology is used.) A party can be a person, an organization, or even
a contract (see below). An asset can be a cryptocurrency, a token, an electronic
deed to property, and so on. There are multiple blockchains managing different
kinds of assets. We focus here on applications where mutually-untrusting parties
trade assets among themselves, for example by swaps, loans, auctions, markets,
and so on.

A contract is a blockchain-resident program initialized and called by the
parties. A party can publish a new contract on a blockchain, or call a function
exported by an existing contract. Contract code and contract state are public,
so a party calling a contract knows what code will be executed. Contract code
must be deterministic because contracts are typically re-executed multiple times
by mutually-suspicious parties.

Multiple parties agree on a common protocol to execute a series of transfers,
an agreement that can be monitored, but not enforced. Instead of distinguishing
between faulty and non-faulty parties, as in classical distributed computing, we
distinguish only between compliant parties who follow the agreed-upon protocol,
and deviating parties who do not. We make no assumptions about the number
of deviating parties.

We assume a synchronous execution model where there is a known upper
bound ∆ on the propagation time for one party’s change to the blockchain state
to be noticed by the other parties. Specifically, blockchains generate new blocks

4 D. Engel et al.

at a steady rate, and valid transactions sent to the blockchain will be included
in a block and visible to participants within ∆. Our example protocols use ∆ as
the basis for timeouts: it is typically chosen conservatively.

We make standard cryptographic assumptions. Each party has a public key
and a private key, and any party’s public key is known to all. Messages are signed
so they cannot be forged, and they include single-use labels (“nonces”) so they
cannot be replayed.

3 Classical Two-Phase Commit Protocol

Imagine we have a distributed database with a number of replicas. These replicas
might be identical, or they may hold different portions of the database (so-called
shards). For simplicity, assume Alice’s node holds one replica, and Bob’s node
holds another. A node may crash (cease operation), and later recover (resume
operation). Node memory is divided into volatile memory lost on a crash, and
stable memory that survives crashes.

A transaction is a sequence of steps that modifies both replicas. As a trans-
action executes, Alice and Bob accumulate a list of tentative changes. If the
transaction commits, those changes take effect, and if the transaction aborts,
they are discarded.

The two-phase commit protocol [2] is a classical technique for ensuring atom-
icity : if a transaction makes tentative changes at both Alice’s node and Bob’s
node, then the transaction either commits at both nodes or aborts at both.

Here is the simplest form of this protocol. One node, say Carol, is chosen as
the coordinator.

1. Prepare phase
– Carol, the coordinator, instructs Alice and Bob to record their tentative

changes in stable storage, so they will not be lost in a crash.
– If Alice is able to write her changes to stable storage, she sends Carol a

yes vote. At this point, some or all of the database becomes inaccessible
pending the outcome of the transaction. If for any reason, Alice cannot
save her changes, she sends Carol a no vote. Bob does the same.

2. Commit phase
– If Carol receives two yes votes, she instructs Alice and Bob to apply

their tentative changes, committing the transaction. If Carol receives a
no vote, or if either Alice or Bob fails to respond in time, she instructs
them to discard their tentative changes, aborting the transaction. Before
Carol sends her decision to Alice and Bob, she records her decision in
stable memory, in case she herself crashes.

– Alice follows Carol’s instructions. If Alice crashes after preparing but
before Carol decides, Alice must learn the transaction’s outcome from
Bob or Carol before resuming use of her database.

This description is vastly simplified, and omits many practical considerations,
but it serves as a baseline for the more complex DeFi commitment protocols

Failure is an option 5

considered in later sections. The key pattern is that commitment requires that
each party agrees to lock up a set of tentative changes, thereby freezing something
of value (here, the database) until the outcome of the protocol becomes known.

4 Cross-Chain Atomicity

Alice has invested in the guilder cryptocurrency, while Bob has invested in the
florin cryptocurrency. Alice and Bob would both like to diversify: Alice wants
to trade some her guilders for florins, and Bob wants the opposite trade. Such
an exchange would be almost trivial if both cryptocurrencies reside on the same
chain, but florins reside on the Florin blockchain, and guilders on the Guilder
blockchain. Naturally, Alice and Bob do not trust one another, so we are pre-
sented with a more difficult version of last section’s atomic commitment problem:
is there a safe way to guarantee that either both transfers happen, or neither
happens, given untrusting participants.

The two-phase commit protocol is a good start, but it assumes that all par-
ties are acting in good faith. Each node reports honestly whether it was able
to prepare, and the coordinator does not lie about the votes it received. Nev-
ertheless, we can build an atomic cross-chain swap by “hardening” the classical
two-phase commit protocol.

We assume each blockchain supports contracts, and each party can inspect
the state of each blockchain. We make use of a technical gadget called a hashlock.
Alice creates a secret value s, called the hashkey. She then applies a cryptographic
hash function H to s, yielding a (public) hashlock h = H(s). It is effectively
impossible to reconstruct s from h, or to find another value s′ such that h =
H(s′).

The notion of escrow plays the role of stable storage: an escrow contract is
given custody of Alice’s coins, along with a hashlock h and a timeout. If s is
presented to the contract before the timeout, then Alice’s coins are transferred
to Bob, and if not, those coins are refunded to Alice. Bob creates a symmetric
escrow contract, only with Alice’s hashlock and a different timeout.

Here is the hardened two-phase commit protocol.

1. Prepare phase

– Alice transfers her guilders to her escrow contract with timeout 2∆.
– When Bob verifies that Alice’s coins have been escrowed, he transfers

his florins to his escrow contract with timeout ∆.

2. Commit phase

– When Alice verifies that Bob has put his florins in escrow, she sends
her secret to the escrow contract on the Florin blockchain, unlocking
and collecting Bob’s florins. Alice has now recorded her hashkey on the
Florin blockchain.

– As soon as Alice’s hashkey appears on the Florin blockchain, Bob for-
wards that hashkey to the escrow contract on the Guilder blockchain,
unlocking and collecting Alice’s guilders.

6 D. Engel et al.

Placing coins in escrow is the analog of writing updates to stable storage and
then voting to commit: each party gives up the ability to back out. For two-phase
commit, it does not matter which party writes first to stable storage. For the
atomic swap, however, Alice must escrow first, and Bob second, because Alice
controls the hashkey, and she could steal Bob’s coins if he escrowed first. The
choice of timeouts is critical: if Bob’s timeout were 2∆ instead of ∆, then Alice
could wait until the timeout was about to expire to claim Bob’s florins, leaving
Bob without enough time to claim Alice’s guilders. Atomic swap is less forgiving
than two-phase commit: if Bob falls asleep and fails to claim Alice’s guilders
before 2∆ timeout, then Bob loses the coins on both chains.

A full analysis of this protocol, including failure paths, is beyond the scope
of this paper. This protocol is called a hashed timelock contract protocol. It
was invented by Nolan [17], generalized to multiple parties [11], and used on a
number of blockchains [3,4,6,18,28].

5 Cross-Chain Atomicity with Optionality

In the previous section, we argued that one can solve the atomic cross-chain
swap problem by “hardening” an existing solution to the atomic cross-chain
commitment problem. In this section, we argue that the transition from a system
where agents cooperate with one another despite failures, to a system where
agents are potentially adversarial changes the conceptual framework underlying
common coordination problems.

The HTLC protocol in the last section is safe in the sense that no compliant
party’s coins can be stolen. Each party either completes the swap, or gets its
coins back. Nevertheless, the HTLC protocol introduces a new problem that
could not have been formulated in the classical distributed computing model:
the sore loser attack [25].

Suppose that after Alice escrows her coins, but before Bob escrows his, the
market shifts, and Alice’s florins lose value with respect to Bob’s guilders. Bob
now has the option to walk away from the deal, leaving Alice’s coins locked up
for a long time, while Bob is free to use his coins as he pleases. This problem did
not arise in the classical two-phase commit protocol where all parties’ interests
were assumed to be aligned.

Premiums The problem of optionality is well-understood in the financial world.
If Bob has the option to walk away, leaving Alice temporarily unable to access
her coins, called her principal, then Bob should compensate Alice by paying her
a small fee, called a premium. There are well-known formulas for computing
fair premiums given asset volatility and escrow duration [9]. In practice, a 2%
premium is often appropriate.

The problem of adding premiums to atomic swaps is tricky, because it involves
nesting one kind of atomic commitment (the premium deposit) inside another
(the swap). If the premium is deposited before the principal, then the principal
is protected from sore loser attacks. But the premium itself is now exposed to a

Failure is an option 7

reverse sore loser attack: what if Alice walks away immediately after Bob escrows
his premium? The way to resolve this “chicken-and-egg” problem is to observe
that the value of the premium is much lower than the value of the principal, and
while Alice might not be willing to risk locking up 100 coins, Bob is probably
willing to risk locking up 1 coin. For very large principals, Alice and Bob can
bootstrap their premiums: Bob risks 1 coin, Alice escrows 100 coins protected
by Bob’s 1-coin premium, Bob escrows 1000 coins protected by Alice’s 100-coin
premium, and so on.

Two-Party Swap with Premiums Here we present a simple two-party swap proto-
col with premiums, taken from Xue and Herlihy [25]. Let pa be the compensation
Alice should pay to Bob if Bob is a victim, and let pb be the compensation from
Bob to Alice. A contract on the guilder blockchain accepts Alice’s principal and
Bob’s premium, and a symmetric contract on the florin blockchain accepts Bob’s
escrow and Alice’s premium. The timeout for the first step is ∆ from the start
of the protocol, and subsequent timeouts increase by ∆.

A straightforward idea is to let Alice deposit premium pa and Bob pb. How-
ever, if Alice does not redeem Bob’s principal, Bob will not be able to redeem
Alice’s principal, so as a result, Bob pays a premium to Alice, and Alice to Bob.
Therefore, Alice should pay pa + pb to Bob in case she does not redeem Bob’s
principal. Here is the protocol, where each step is labeled with its timeout. See
Figure 1.

∆ Alice deposits her premium pa+pb on the florin blockchain’s escrow contract
with timelock tB = 5∆.

2∆ Bob deposits his premium on the guilder blockchain’s escrow contract with
timelock tA = 6∆.

3∆ Alice escrows her principal on guilder blockchain’s escrow contract. If she
fails to do so, the premium pb is refunded to Bob. Otherwise, the premium
remains in the contract.

4∆ Bob escrows his principal on florin blockchain’s escrow contract. If he fails
to do so, the premium pa + pb is refunded to Alice. Otherwise, the premium
remains in the contract.

5∆ Alice sends a secret x where H(x) = h to redeem Bob’s principal. If she fails
to do so, the premium pa + pb in the contract is paid to Bob. If she redeems
Bob’s principal, the premium is refund to her.

6∆ Bob sends a secret s where H(x) = h to redeem Alice’s principal. If he fails
to do so, the premium pb in the contract is paid to Alice. If he redeems
Alice’s principal, the premium is refund to him.

After Alice escrows her principal, if Bob reneges, Alice can get pb as com-
pensation. If the swap fails after Bob escrows his principal due to Alice, Bob is
compensated pa.

The goal of this chapter is to illustrate the progression from the classical
two-phase commit protocol to atomic cross-chain swap, to atomic cross-chain
swap with premiums. The techniques are recognizably similar: move the item of
value to a safe place, check that everything is ok, and if so, pull the trigger. The

8 D. Engel et al.

Alice BobGuilder Blockchain Florin Blockchain

Escrow guilders

ℎ, 𝑡! Escrow florins

ℎ, 𝑡"Send x: H(x)=h

Send x: H(x)=h

Deposit 𝑝# + 𝑝$

Deposit 𝑝$

Fig. 1. Two-party Swap with Premiums

nature of the problem has shifted in interesting ways: protocol failures are no
longer external events beyond the parties’ control, they have become potentially
rational choices requiring nested atomic commitment mechanisms for protection.
In the following section, we take optionality to the next level.

6 Cross-Chain Atomicity with Transferrable Optionality

At this point, we have shifted the protocol from one where Alice and Bob agree
to trade guilders for florins to one where Alice buys the option to make that
trade. If she exercises the option, the swap happens, and if she declines to do so,
she pays Bob a premium for his troubles.

While the option is capable of being exercised, it has value. It is standard
in traditional finance to trade option contracts: Alice should be able to sell her
option with Bob to a third party, Carol. If Carol buys the option, she acquires
Alice’s right to exercise the option before it expires, and Alice relinquishes all
her rights. As usual, it should be possible for Alice to sell the option to Carol
without placing any compliant party at risk.

Why might Alice want to transfer her option to Carol? Perhaps Alice has
private information suggesting that the relative value of florins to guilders will
change in the near future. If she does not plan to exercise the option, then selling
it will help pay for her lost premium.

Why might Carol be willing to by an option from Alice? Perhaps Alice and
Carol have asymmetric information: one thinks florins will increase in value and
the other disagrees. In an illiquid options market, Carol might have trouble
finding a way to buy florins, so Alice would be a natural counterparty. In a
highly liquid market, Alice might be willing to offer a discount to dump her
option.

Failure is an option 9

Even if Alice and Carol have symmetric information, they might have differ-
ent risk tolerances. Consider the price of a florin expressed in guilders at time
t = 0. At t = 1, both Alice and Carol believe that with equal probability, the
price will either increase by dx or decrease by dx. If Alice is risk-averse or indif-
ferent, but Carol is risk-seeking, then Carol will want to buy that option from
Alice, and Alice will want to sell.

A full protocol for transferable cross-chain options is beyond the scope of
this paper, and appears elsewhere [8]. Instead, we present a naive protocol that
almost solves the problem, but the ways in which it falls short are instructive.

Timeout Action

Alice creates AB swap edge with timeout A : 7∆.
∆ Bob creates BA with A : 6∆.
2∆ If Carol does not show up, the protocol proceeds as a normal swap.

Otherwise Carol creates CA with C : 9∆.
3∆ Alice modifies AB to A : 7∆ or C : 8∆.
4∆ Bob modifies BA to A : 6∆ or C : 7∆.
5∆ Alice creates AC swap edge with C : 7∆.
6∆ Carol reveals C on both BA,AC.
7∆ Alice reveals C on CA.

Fig. 2. Partial Protocol for Transferable Option

Here is a näıve Transfer Protocol. For simplicity, we address the easier prob-
lem: how to transfer a position in a 2-party swap (without premiums). The
protocol is shown in Figure 2. Initially Alice creates a swap with Bob. If Carol
offers to buy the option and Alice agrees, Alice transfers her position to Carol.
If Alice does not agree, Alice proceeds with the protocol as normal. Alice has a
secret A and Carol has a secret C.

For brevity, we use edge XY as shorthand for a tentative (escrowed) transfer
from party X to party Y . The notation X : k∆ means that the asset on that
edge is transferred if triggered by X’s secret before k∆ time after the start of
the protocol. “X : k∆ or Y : `∆” means the asset is transferred if either X or Y
triggers the transfer by revealing a secret before the respective timeouts. While
this näıve protocol conveys the flavor of a full protocol, there are several reasons
it is unsatisfactory.

First, there is no clear distinction between when Carol buys the swap from
Alice, and when she exercises the swap. Alice just wants to sell her option and
have Carol assume Alice’s role immediately. Here, however, Alice she has to wait
for Carol to make up her mind. Alice should be able to walk away as soon as
decides she wants to buy the option.

Whether Carol does nor does not decide to participate, the ability to sell the
option adds 3∆ extra rounds to the original swap protocol. An ideal protocol

10 D. Engel et al.

would behave like a typical 2-party swap if Carol never participates, taking the
usual 4∆ rounds at most.

Because Alice is entangled in the protocol until Carol decides to exercise it,
Alice has to escrow more than she would otherwise. That is, she has to escrow
assets on AC in addition to the original assets she escrowed on AB. Alice should
only have to escrow what she had in the original swap protocol.

These observations illustrate the challenges of designing transferrable options
for even a simple two-party swap option. In general, we would like to be able to
transfer more complex, linked options. For example, in a cross-chain deal [13],
parties can set up a complex network of swaps to be executed atomically, and a
mature DeFi system would allow any party to sell their position in that network
to another party. Similar challenges arise with types of cross-chain commerce
such as bonds, stocks, and derivatives.

7 Related Work

The use of HTLCs for two-party cross-chain swaps is generally attributed to
Nolan [17]. HTLCs have adapted to several uses [3,4,6,18]. Herlihy [11] extended
HTLCs to support multi-party swaps on directed graphs.

Herlihy et al. [14] introduce the notion of cross-chain deals. They focus on
how conventional notions of atomicity are inadequate for an adversarial en-
vironment, and give protocols using both HTLCs and a central coordinating
blockchain. Zakhary et al. [27] propose a cross-chain swap protocol for proof-of-
work blockchains using a witness blockchain as a central coordinator.

The BAR (byzantine, altruistic and rational) model [1,5] supports coopera-
tive services spanning autonomous administrative domains that are resilient to
Byzantine and rational manipulations. BAR-tolerant systems assume a bounded
number of Byzantine faults, and as such do not fit our adversarial model, where
any number of parties may be Byzantine, rationally or not.

In finance, optionality [15] is the notion that there is value in acquiring
the right, but not the obligation, to invest in something later. Atomic swap
based on HTLCs exposes such optionality to both parties. However, multiple
researchers [9,10,16] have observed that both parties are exposed to sore loser
attacks where the counterparty reneges at critical points in the protocol. Robin-
son [21] proposes to reduce vulnerability to sore loser attacks by splitting each
swap into a sequence of very small swaps, an approach that works only for fun-
gible, divisible tokens.

Xue and Herlihy [25] show how to incorporate premiums into multi-party
swaps, auctions, and brokered sales. Prior work was focused exclusively on two-
party swaps, and proposed asymmetric protocols, meaning that only one party
pays a premium to the other, protecting only that side of the swap from a sore
loser attack. These protocols include Han et al. [9], Eizinger et al. [7], Liu [16],
the Komodo platform [19], Eizinger et al. [7], and the Arwen protocols [10].

Xu et al. [24] analyze the success rate of cross-chain swaps using HTLCs.
Liu [16] proposed an atomic swap protocol that protects both parties from sore

Failure is an option 11

loser attacks, structured so that Alice explicitly purchases an option from Bob,
and her premium is never refunded. There is no obvious way to extend this
protocol to applications other than two-party swaps. Tefagh et al. [22] propose
a similar protocol based on an options model.

8 Conclusions

We have argued elsewhere [12] that some early blockchain work recapitulated
ideas and algorithms from distributed computing, sometimes falling prey to fa-
miliar pitfalls [20,23]. Here, we argue that blockchain and DeFi open up new
opportunities for distributed computing research. In this paper, we outlined how
atomic commitment, a classical distributed computing problem, lies at the heart
of several DeFi challenges. At the same time, moving from a hardware failure
model to a Byzantine failure model opens up rich new research possibilities.
Dealing with optionality requires nesting one atomic commitment mechanism
inside another (to support premiums), and fully embracing optionality requires
nesting yet another atomic commitment mechanism (to support option sale and
transfer). We hope that this paper will help draw the attention of our community
to these intriguing questions.

References

1. Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.P., Porth, C.: BAR
fault tolerance for cooperative services. In: Proceedings of the twentieth ACM
symposium on operating systems principles. pp. 45–58. SOSP ’05, ACM, New
York, NY, USA (2005). https://doi.org/10.1145/1095810.1095816, http://doi.

acm.org/10.1145/1095810.1095816

2. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency control and recovery
in database systems. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA (1986)

3. bitcoinwiki: Atomic cross-chain trading, https://en.bitcoin.it/wiki/Atomic_

cross-chain_trading

4. Bowe, S., Hopwood, D.: Hashed time-locked contract transactions, https://

github.com/bitcoin/bips/blob/master/bip-0199.mediawiki

5. Clement, A., Li, H., Napper, J., Martin, J.P.M., Alvisi, L., Dahlin, M.: BAR primer.
In: Proceedings of the international conference on dependable systems and net-
works (DSN), DCC symposium (2008), place: Anchorage, AK

6. DeCred: Decred cross-chain atomic swapping, https://github.com/decred/

atomicswap

7. Eizinger, T., Fournier, L., Hoenisch, P.: The state of atomic swaps. http://diyhpl.
us/wiki/transcripts/scalingbitcoin/tokyo-2018/atomic-swaps/ (2018)

8. Engel, D., Herlihy, M., Xue, Y.: Transferrable cross-chain options (2021)
9. Han, R., Lin, H., Yu, J.: On the optionality and fairness of Atomic

Swaps. In: Proceedings of the 1st ACM Conference on Advances in Fi-
nancial Technologies. pp. 62–75. ACM, Zurich Switzerland (Oct 2019).
https://doi.org/10.1145/3318041.3355460, https://dl.acm.org/doi/10.1145/

3318041.3355460

https://doi.org/10.1145/1095810.1095816
http://doi.acm.org/10.1145/1095810.1095816
http://doi.acm.org/10.1145/1095810.1095816
https://en.bitcoin.it/wiki/Atomic_cross-chain_trading
https://en.bitcoin.it/wiki/Atomic_cross-chain_trading
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0199.mediawiki
https://github.com/decred/atomicswap
https://github.com/decred/atomicswap
http://diyhpl.us/wiki/transcripts/scalingbitcoin/tokyo-2018/atomic-swaps/
http://diyhpl.us/wiki/transcripts/scalingbitcoin/tokyo-2018/atomic-swaps/
https://doi.org/10.1145/3318041.3355460
https://dl.acm.org/doi/10.1145/3318041.3355460
https://dl.acm.org/doi/10.1145/3318041.3355460

12 D. Engel et al.

10. Heilman, E., Lipmann, S., Goldberg, S.: The arwen trading protocols (Jan 2019),
https://www.arwen.io/whitepaper.pdf

11. Herlihy, M.: Atomic cross-chain swaps. In: Proceedings of the 2018 ACM sym-
posium on principles of distributed computing. pp. 245–254. PODC ’18, ACM,
New York, NY, USA (2018). https://doi.org/10.1145/3212734.3212736, http:

//doi.acm.org/10.1145/3212734.3212736, number of pages: 10 Place: Egham,
United Kingdom tex.acmid: 3212736

12. Herlihy, M.: Blockchains from a distributed computing perspective. Commun. ACM
62(2), 78–85 (Jan 2019). https://doi.org/10.1145/3209623, https://doi.org/10.
1145/3209623

13. Herlihy, M.: Cross-chain Deals and Adversarial Commerce. CoRR
abs/1905.09743 (2019), http://arxiv.org/abs/1905.09743

14. Herlihy, M., Liskov, B., Shrira, L.: Cross-chain Deals and Adversarial Com-
merce. Proceedings of the VLDB Endowment 13(2), 100–113 (Oct 2019).
https://doi.org/10.14778/3364324.3364326, http://arxiv.org/abs/1905.09743,
arXiv: 1905.09743

15. Higham, D.J.: An introduction to financial option valuation: mathematics, stochas-
tics and computation. Cambridge Univ. Press, Cambridge, 4. printing edn. (2009)

16. Liu, J.A.: Atomic Swaptions: Cryptocurrency Derivatives. arXiv:1807.08644 [cs,
q-fin] (Mar 2020), http://arxiv.org/abs/1807.08644, arXiv: 1807.08644

17. Nolan, T.: Atomic swaps using cut and choose (Feb 2016), https://bitcointalk.
org/index.php?topic=1364951

18. Organization, T.K.: The BarterDEX whitepaper: A decentralized, open-
source cryptocurrency exchange, powered by atomic-swap technology, https://

supernet.org/en/technology/whitepapers/BarterDEX-Whitepaper-v0.4.pdf

19. Platform, K.: Advanced blockchain technology, focused on freedom. https://docs.
komodoplatform.com/basic-docs/start-here/core-technology-discussions/

introduction.html#note-on-changes-since-whitepaper-creation-cr-2019

(July,2019)
20. Popper, N.: A venture fund with plenty of virtual capital, but no capitalist.

New York Times (man 2016), https://www.nytimes.com/2016/05/22/business/
dealbook/crypto-ether-bitcoin-currency.html

21. Robinson, D.: Htlcs considered harmful. http://diyhpl.us/wiki/transcripts/

stanford-blockchain-conference/2019/htlcs-considered-harmful/ (2019)
22. Tefagh, M., Bagheri, F., Khajehpour, A., Abdi, M.: Capital-free futures arbitrage

(October, 2020). https://doi.org/10.13140/RG.2.2.31609.90729/1, https://www.

researchgate.net/profile/Mojtaba-Tefagh-2/publication/344886866_

Capital-free_Futures_Arbitrage/links/5fdc88e3a6fdccdcb8d89ee1/

Capital-free-Futures-Arbitrage.pdf

23. Vigna, P.: Chiefless company rakes in more than $100 million.
Wall Street Journal (may 2016), https://www.wsj.com/articles/

chiefless-company-rakes-in-more-than-100-million-1463399393

24. Xu, J., Ackerer, D., Dubovitskaya, A.: A Game-Theoretic Analysis of Cross-Chain
Atomic Swaps with HTLCs. arXiv:2011.11325 [cs] (Apr 2021), http://arxiv.org/
abs/2011.11325, arXiv: 2011.11325

25. Yingjie Xue, Maurice Herlihy: Hedging Against Sore Loser Attacks in Cross-Chain
Transactions. In: ACM Symposium on Principles of Distributed Computing (2021)

26. Young, J.: Defi explosion: Uniswap surpasses coinbase pro in daily volume (2020)
27. Zakhary, V., Agrawal, D., El Abbadi, A.: Atomic commitment across blockchains.

CoRR abs/1905.02847 (2019), http://arxiv.org/abs/1905.02847, arXiv:

https://www.arwen.io/whitepaper.pdf
https://doi.org/10.1145/3212734.3212736
http://doi.acm.org/10.1145/3212734.3212736
http://doi.acm.org/10.1145/3212734.3212736
https://doi.org/10.1145/3209623
https://doi.org/10.1145/3209623
https://doi.org/10.1145/3209623
http://arxiv.org/abs/1905.09743
https://doi.org/10.14778/3364324.3364326
http://arxiv.org/abs/1905.09743
http://arxiv.org/abs/1807.08644
https://bitcointalk.org/index.php?topic=1364951
https://bitcointalk.org/index.php?topic=1364951
https://supernet.org/en/technology/whitepapers/BarterDEX-Whitepaper-v0.4.pdf
https://supernet.org/en/technology/whitepapers/BarterDEX-Whitepaper-v0.4.pdf
https://docs.komodoplatform.com/basic-docs/start-here/core-technology-discussions/introduction.html#note-on-changes-since-whitepaper-creation-cr-2019
https://docs.komodoplatform.com/basic-docs/start-here/core-technology-discussions/introduction.html#note-on-changes-since-whitepaper-creation-cr-2019
https://docs.komodoplatform.com/basic-docs/start-here/core-technology-discussions/introduction.html#note-on-changes-since-whitepaper-creation-cr-2019
https://www.nytimes.com/2016/05/22/business/dealbook/crypto-ether-bitcoin-currency.html
https://www.nytimes.com/2016/05/22/business/dealbook/crypto-ether-bitcoin-currency.html
http://diyhpl.us/wiki/transcripts/stanford-blockchain-conference/2019/htlcs-considered-harmful/
http://diyhpl.us/wiki/transcripts/stanford-blockchain-conference/2019/htlcs-considered-harmful/
https://doi.org/10.13140/RG.2.2.31609.90729/1
https://www.researchgate.net/profile/Mojtaba-Tefagh-2/publication/344886866_Capital-free_Futures_Arbitrage/links/5fdc88e3a6fdccdcb8d89ee1/Capital-free-Futures-Arbitrage.pdf
https://www.researchgate.net/profile/Mojtaba-Tefagh-2/publication/344886866_Capital-free_Futures_Arbitrage/links/5fdc88e3a6fdccdcb8d89ee1/Capital-free-Futures-Arbitrage.pdf
https://www.researchgate.net/profile/Mojtaba-Tefagh-2/publication/344886866_Capital-free_Futures_Arbitrage/links/5fdc88e3a6fdccdcb8d89ee1/Capital-free-Futures-Arbitrage.pdf
https://www.researchgate.net/profile/Mojtaba-Tefagh-2/publication/344886866_Capital-free_Futures_Arbitrage/links/5fdc88e3a6fdccdcb8d89ee1/Capital-free-Futures-Arbitrage.pdf
https://www.wsj.com/articles/chiefless-company-rakes-in-more-than-100-million-1463399393
https://www.wsj.com/articles/chiefless-company-rakes-in-more-than-100-million-1463399393
http://arxiv.org/abs/2011.11325
http://arxiv.org/abs/2011.11325
http://arxiv.org/abs/1905.02847

Failure is an option 13

1905.02847 tex.bibsource: dblp computer science bibliography, https://dblp.org
tex.biburl: https://dblp.org/rec/bib/journals/corr/abs-1905-02847 tex.timestamp:
Mon, 27 May 2019 13:15:00 +0200

28. Zyskind, G., Kisagun, C., FromKnecht, C.: Enigma Catalyst: a machine-based
investing platform and infrastructure for crypto-assets, https://www.enigma.co/
enigma_catalyst.pdf

https://www.enigma.co/enigma_catalyst.pdf
https://www.enigma.co/enigma_catalyst.pdf

	Invited Paper: Failure is (literally) an Option: Atomic Commitment vs Optionality in Decentralized Finance

