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ABSTRACT 
Scientific and engineering problems often require an 

inexpensive surrogate model to aid understanding and the search 
for promising designs. While Gaussian processes (GP) stand out 
as easy-to-use and interpretable learners in surrogate modeling, 
they have difficulties in accommodating big datasets, qualitative 
inputs, and multi-type responses obtained from different 
simulators, which has become a common challenge for a 
growing number of data-driven design applications. In this 
paper, we propose a GP model that utilizes latent variables and 
functions obtained through variational inference to address the 
aforementioned challenges simultaneously. The method is built 
upon the latent variable Gaussian process (LVGP) model where 
qualitative factors are mapped into a continuous latent space to 
enable GP modeling of mixed-variable datasets. By extending 
variational inference to LVGP models, the large training dataset 
is replaced by a small set of inducing points to address the 
scalability issue. Output response vectors are represented by a 
linear combination of independent latent functions, forming a 
flexible kernel structure to handle multi-type responses. 
Comparative studies demonstrate that the proposed method 
scales well for large datasets with over 104 data points, while 
outperforming state-of-the-art machine learning methods 
without requiring much hyperparameter tuning. In addition, an 
interpretable latent space is obtained to draw insights into the 
effect of qualitative factors, such as those associated with 
“building blocks” of architectures and element choices in 
metamaterial and materials design. Our approach is 
demonstrated for machine learning of ternary oxide materials 
and topology optimization of a multiscale compliant mechanism 
with aperiodic microstructures and multiple materials. 
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1. INTRODUCTION 
 Spurred by the growth in computation capability and data 
resources, surrogate modeling is increasingly becoming an 
indispensable tool to expedite a design process and facilitate 
knowledge discovery in scientific and engineering problems [1]. 
Gaussian processes (GPs) have come to prevail in the arena of 
surrogate modeling with a wide range of applications in 
engineering designs, such as emulating responses of expensive 
simulations [2], model calibration [3], sensitivity analysis and 
uncertainty quantification [4]. However, Gaussian processes 
have limitations when applied to complex design problems with 
challenging characteristics, such as large datasets, qualitative 
design variables, and multi-type responses. Multiscale 
metamaterial systems design is such an example. It requires 
numerous on-the-fly homogenization calculations for each new 
metamaterial system design due to a large number of unit cells 
(microstructures) considered and the nested iterations in 
multiscale design. In this case, data-driven design methods can 
greatly accelerate the design process by using an inexpensive 
surrogate model to replace the costly on-the-fly homogenization 
[5]. However, the design of such systems often involves 
qualitative variables, such as the type of microstructure 
configurations and the choice of constituent materials [6, 7], that 
span an enormous combinatorial design space which can easily 
lead to exponential growth in the size of the database. 
Meanwhile, homogenized properties of interest for these 
metamaterials, e.g., stiffness tensors and thermal expansion 
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coefficients, are examples of multi-type responses with very 
different physical implications and units, lacking obvious 
distance metrics to describe their discrepancies. There is a need 
to extend GP modeling to address the obstacles caused by big 
data, qualitative inputs, and multi-type responses.  

Progress has been made in the literature to address each of 
these three challenges separately. To accommodate big data, 
various scalable GPs have been proposed [8]. Depending on the 
nature of the approximations, they can be broadly classified into 
two types. Globally approximated models focus on constructing 
an approximated covariance matrix with lower complexity and 
storage requirement by selecting a subset of the training data [9, 
10], discarding uncorrelated entries to form a sparse covariance 
matrix [11], or employing some reduced-rank structures for the 
covariance matrix [12]. In contrast, locally approximated models 
deploy the divide-and-conquer strategy by considering only a 
subset of training data in the neighborhood of the query point to 
compute the predictions [13]. Meanwhile, to handle qualitative 
factors and multi-type responses, various modified covariance 
structures have been proposed. For example, levels of qualitative 
variables are viewed as different responses with simplified 
covariance structures [14, 15] while non-separable covariance 
structures are devised to describe multi-type responses [16-19]. 

Recently, attempts have been made to simultaneously 
accommodate big data and multi-type outputs [20].  However, 
it is not straightforward to extend these methods to handle 
qualitative factors since the existing frameworks for qualitative 
inputs are usually incompatible with those for big data or multi-
type outputs. For example, the locally approximated GP requires 
a distance metric defined in the input variable space to obtain a 
subset around the query point. However, defining appropriate 
distance metrics for qualitative input spaces is challenging. 
Therefore, to the best of the authors’ knowledge, no existing 
method can simultaneously address all three challenges.       

In this study, we propose a scalable latent variable GP 
(LVGP) modeling approach that can simultaneously 
accommodate large data sets, qualitative factors, and multi-type 
outputs. Specifically, as shown in Figure 1, the proposed model 
integrates three GP variants to handle each of the challenges, 
respectively, under one unified latent-variable framework [21]. 
First, we adopt our previously proposed LVGP model to handle 
qualitative variables [5, 22, 23] by mapping them into a 
continuous latent space to capture their joint effects on the 
responses. Second, to address the challenge of big data, a sparse 
variational (SV) approach is employed to replace the large 
dataset with sparse underlying inducing points to significantly 
reduce computation and storage complexity [24]. Finally, we 
model the multi-type outputs using a combination of 
independent latent functions, which is known as the linear model 
of coregionalization (LMC) [18]. 

The above three GP variants are combined into one unified 
GP modeling framework for large datasets with qualitative 
inputs and multi-type responses. While large data GP modeling 
for multi-response problems has been achieved using variational 
LMC [20], our contribution lies in extending the sparse 
variational concept to LVGP by defining inducing points in the 

latent space. Additionally, we propose two latent space structures 
for extending the LMC model to LVGP. The new synthesized GP 
model from this work has the following desirable features: 
y Generalizability: Conventional correlation functions for 
GP modeling of continuous quantitative inputs can be 
readily applied to the dataset with qualitative factors by 
using the latent variable representation. The model is also 
flexible for accommodating multi-type responses. 

y Scalability: The model can easily handle a large dataset 
with 𝑛 = 104~105  data points in our case studies, 
reducing the complexity from 𝑂(𝑛 3) to 𝑂(𝑛𝐼3) with the 
number of induing points 𝑛𝐼 ≪ 𝑛 . 

y Accuracy: We demonstrate in our study that the proposed 
model outperforms some of the state-of-the-art machine 
learning models, such as neural networks and boosted trees 
[25].   

y Interpretability: A highly interpretable latent space of 
qualitative variables obtained from the proposed approach 
provides substantial insights into the black-box problem. 

 

 
FIGURE 1: Three aspects integrated into the proposed Gaussian 
process model. 
 

This synthesized GP model is useful for a wide range of 
data-driven engineering design applications that involve a 
combinatorial design space with mixed variables and multi-type 
responses. The aforementioned multiscale metamaterial system 
is such an example of complex engineering designs, which will 
be demonstrated in our case studies. Other possible applications 
include the discovery of new molecules with different 
combinations of atoms and the design of composite components 
with various choices of architectures and constituents that result 
in combinational search over mixed (qualitative and 
quantitative) variables. 

The remaining paper is organized as follows. In Section 2, 
we provide a brief overview of the conventional Gaussian 
process modeling and explain its limitations with a large dataset 
with qualitative factors and multi-type outputs. Three aspects of 
the proposed approach are described in Section 3 by presenting 
three corresponding GP variants. Integration of these variants in 
developing a synthesized GP model is presented in Section 4. In 
Section 5, to validate the effectiveness, we compare the proposed 
method with some state-of-the-art machine learning models on 



 3 © 2021 by ASME 

two numerical examples, and two engineering examples: one on 
multi-response machine learning for ternary oxide materials, and 
another on the data-driven design for aperiodic metamaterial 
systems. We conclude in Section 6 and discuss the scope for 
future applications. 
 
2. REVIEW OF GAUSSIAN PROCESS MODELING 

In this section, we provide an overview of GP modeling and 
explain the challenges posed by mixed variables, large datasets, 
and multi-type responses. For a single-output computer 
simulation model 𝑦(𝒙)  with only quantitative inputs 𝒙 =
{𝑥1, 𝑥2, … , 𝑥𝑝} ∈ 𝑅𝑝 , we assume 𝑦(𝒙)  is a realization of a 
stochastic process: 
 

𝑌(𝒙) = 𝒉𝑇(𝒙)𝜷 + 𝐺(𝒙), (1) 
 
where 𝒉(𝒙) is the prior mean function comprised of a vector of 
pre-defined basis functions 𝒉(𝒙) = [ℎ1(𝒙), … , ℎ𝑚(𝒙)]𝑇 , 𝜷 =
[𝛽1, … . , 𝛽𝑚]𝑇 is a vector of unknown weights for basis functions 
and 𝐺(𝒙) is a stationary multivariate Gaussian process with its 
covariance function defined as 
 

𝑐𝑜𝑣(𝐺(𝒙), 𝐺(𝒙′)) = 𝜎2𝑟(𝒙, 𝒙′), (2) 
 
where 𝜎2  is the prior variance and 𝑟(⋅,⋅)  is the correlation 
function. Among numerous existing correlation functions, the 
Gaussian correlation function is commonly used: 
 

𝑟(𝒙, 𝒙′) =  exp{−(𝒙 − 𝒙′)𝑇𝚽(𝒙 − 𝒙′)} , (3) 
 
where 𝚽 = 𝑑𝑖𝑎𝑔(𝝓)  and 𝝓 = [𝜙1, 𝜙2, … , 𝜙𝑝]

𝑇 are scaling 
parameters to characterize the variability of the sample 
functions. The construction of a GP model requires estimating 
the hyper-parameters 𝜷 , 𝝓  and 𝜎2  based on the size-n 
training dataset with input 𝐗 = {𝒙(1), 𝒙(2), … , 𝒙(𝑛)}

𝑇
 and output 

𝒚 = {𝑦(1), 𝑦(2), … , 𝑦(𝑛)}
𝑇
. A common way to determine the GP 

model parameters is to find a point estimate via maximum 
likelihood estimation (MLE). Herein, we assume a constant prior 
mean function with 𝒉𝑻(𝒙)𝜷 = 𝛽  for the GP model. The 
corresponding log-likelihood can be given after ignoring the 
constants: 
 

𝐿𝑙𝑛(𝝓, 𝛽, 𝜎2) = −
1
2
ln|𝑲(𝝓)|

−
1
2𝜎2

(𝒚 − 𝟏𝛽)𝑇 ∙ 𝑲(𝝓)−𝟏 ∙ (𝒚 − 𝟏𝛽), (4)
 

 
where ln(∙) is the natural logarithm, 𝟏 is an 𝑛 × 1 vector of 
ones, and 𝑲  is the 𝑛 × 𝑛  covariance matrix with 𝐾𝑖𝑗 =
𝜎2𝑟(𝒙(𝑖), 𝒙(𝑗))  for 𝑖, 𝑗 = 1,… , 𝑛 . The hyperparameters are 
estimated by maximizing (4). With these estimated 
hyperparameters 𝜎̂2, 𝛽̂, and 𝝓̂, the prediction 𝑦̂(𝒙∗) at any 𝒙∗ 
can be obtained as: 
 

𝑦̂(𝒙∗) = 𝛽̂ + 𝒓𝑻𝑲−1(𝒚 − 𝟏𝛽̂), (5)  
 
where 𝒓(𝒙∗) = [𝑟(𝒙∗, 𝒙(1)), 𝑟(𝒙∗, 𝒙(2)), … , 𝑟(𝒙∗, 𝒙(𝑛))]𝑻 . The 
posterior covariance between the responses at the two given data 
points 𝒙∗ and 𝒙′ is obtained as: 
 

𝑐𝑜𝑣(𝑦∗, 𝑦′) = 𝜎̂2𝑟(𝒙∗, 𝒙′) − 𝒓(𝒙∗)𝑻𝑲−1𝒓(𝒙′) , (6) 
 
For more detailed illustrations and implementation of the GP 
modeling, readers are referred to [26].  
   As discussed in Section 1, this conventional Gaussian 
process will encounter various obstacles when applied to a large 
dataset with qualitative inputs and multiple-type outputs. Firstly, 
existing correlation functions are devised for quantitative 
variables and fail to accommodate qualitative variables. For 
example, the correlation function in Equation (3) relies on a 
distance metric defined for input variables to describe the 
correlation between responses at different data points. However, 
discrete levels of qualitative inputs only serve as a nomenclature 
without any well-defined distance metric. Secondly, GP models 
suffer from prohibitive computational costs and storage 
requirements on large datasets, due to computing 𝑲−1 and |𝑲| 
in Equation (4). The subsequent computational and storage 
complexities are 𝑂(𝑛3) and 𝑂(𝑛2), respectively. Thirdly, it is 
not trivial to extend this GP model for multi-type outputs 
obtained from simulators that jointly simulate different types of 
quantities [17]. While training an independent single-response 
GP model for each output is straightforward, it entails a time-
consuming training process, especially for large datasets. Also, 
if the correlation between outputs is poorly captured, the GP 
model will result in a poor prediction power and inappropriate 
joint uncertainty representation.  

 
3. VARIANTS OF GAUSSIAN PROCESSES FOR 

ADDRESSING DATA CHALLENGES   
In this section, we discuss three GP variants to address the 

data challenges associated with qualitative factors, big data, and 
multi-type output, respectively. These variants are all built upon 
the concept of latent representation, including the LVGP model 
for handling qualitative inputs, a sparse variational GP (SVGP) 
model with inducing points for managing big data challenges, 
and a GP model with the linear model of coregionalization 
(LMC) to predict multi-type outputs. These three variants will be 
integrated to form the proposed scalable LVGP approach in the 
next section. 
 
3.1 LVGP Model for Qualitative Factors 

Different levels of qualitative variables lack a well-defined 
distance metric, which precludes the use of conventional kernels 
devised for quantitative variables. However, as illustrated in 
mapping A of Figure 2, for a physical model, there are always 
some underlying quantitative physical variables that explain the 
effects of any qualitative factor on the response(s). The space 
spanned by these (perhaps extremely high-dimensional) 
underlying physical variables induces a natural distance metric 
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between levels of the qualitative variables. Therefore, according 
to sufficient dimension reduction arguments [27, 28], we could 
assume a low-dimensional latent space to capture the joint 
effects of these underlying variables, as shown in mapping B of 
Figure 2. Based on this insight, we recently proposed an LVGP 
model to enable GP modeling for a dataset with qualitative inputs 
[5, 23].  

 

 
FIGURE 2: Illustration of the latent variable representation for 
qualitative factors. The shape is the qualitative factor here for geometry 
design. 

 
Specifically, consider a single-response computer 

simulation model 𝑦(𝒖)  with input 𝒖 = [𝒙𝑇, 𝒕𝑇]𝑇  containing 
both quantitative variables 𝒙 = [𝑥1, 𝑥2, … , 𝑥𝑝]𝑇 ∈ 𝑅𝑝  and 
qualitative variables 𝒕 = [𝑡1, 𝑡2, … , 𝑡𝑞]𝑇, with the 𝑗𝑡ℎqualitative 
factor 𝑡𝑗 ∈ {1,2… , 𝑙𝑗} , where 𝑙𝑗 ∈ 𝑁+  is the total number of 
levels for 𝑡𝑗 . By assuming a 𝑔 -dimensional latent vector 
𝒛𝑗(𝑡𝑗) = [𝑧𝑗,1(𝑡𝑗), … , 𝑧𝑗,𝑔(𝑡𝑗)]

T ∈ 𝑅𝑔  for each 𝑡𝑗 , the original 
mixed-variable input 𝒙  can be transformed into quantitative 
input vector 𝒔 = [𝒙𝑇, 𝒛(𝒕)𝑇]𝑇  ∈ 𝑅𝑝+𝑞∗𝑔 , where 𝒛(𝒕) =

[𝒛1(𝑡1)𝑇, … , 𝒛𝑞(𝑡𝑞)
𝑇]
𝑇

. The standard GP model can then be 
modified as (using a constant mean function): 
 

𝑌(𝒔) = 𝛽 + 𝐺(𝒔), (7) 
 

𝑐𝑜𝑣(𝐺(𝒔), 𝐺(𝒔′)) = 𝜎2𝑟(𝒔, 𝒔′), (8) 
 
Since the transformed input vector 𝒔 contains only quantitative 
variables, we can use any existing correlation function in 
equation (8). Herein, we still adopt the prevailing Gaussian 
correlation function: 
 

           𝑟(𝒔, 𝒔′) =  exp{−(𝒙 − 𝒙′)𝑇𝚽(𝒙 − 𝒙′)
− (𝒛 − 𝒛′)𝑇𝚽𝒛(𝒛 − 𝒛′)},           (9) 

 
It should be noted that this correlation function contains two sets 
of parameters to be estimated: scaling parameters 𝚽  for 
quantitative variables and the set of latent vectors mapped from 
the qualitative variables 𝒁 = ⋃ {𝒛𝑖(1), … , 𝒛𝑖(𝑙𝑖)}

𝑞
𝑖=1 . The 

scaling parameter matrix 𝚽𝒛 for latent variables is fixed to be 
an identity matrix in LVGP since these scaling factors are 
absorbed into the estimated latent variable values 𝒁 . In our 

previous work [23], we follow the same procedure in Section 2 
to estimate the values of 𝛽, 𝜎2, 𝚽, and 𝒁 via MLE.  
   LVGP enables easy integration with Bayesian optimization, 
which has been successfully applied in materials discovery and 
design [22, 29].  However, like conventional GPs, LVGPs also 
require enormous computation and storage resources when 
applied to big data. Moreover, the original LVGP could only 
accommodate a single response instead of multi-type responses. 
To address these, we need to integrate LVGP with the two GP 
variants introduced in the following subsections.  
 
3.2 SVGP for Big Data 

In this subsection, we introduce the concept of the sparse 
variational (SV) model where an artificial training dataset that is 
much smaller than the original training set is used to provide an 
approximately equivalent covariance information. These 
artificial training points, also called inducing points, might not 
be observed in the original training data and are not necessarily 
obtained from a real physical model. Instead, the locations and 
responses of these inducing points are estimated by stochastic 
variational inference [21] from the collected big data. This type 
of model is also called the sparse variational model [24]. 

Consider a large training dataset with quantitative input 
data 𝐗 = [𝒙(1), 𝒙(2), … , 𝒙(𝑛)]𝑇  and observed response data 𝒚 =
[𝑦(1), 𝑦(2), … , 𝑦(𝑛)]

𝑇
, where 𝑛 is the size of the training data. In 

constructing the conventional GP model in Section 2, we assume 
a unified multivariate Gaussian distribution for the residual 
process 𝑮(∙) at 𝑛 training input data points 𝐗 and 𝑛∗ query 
input data points 𝐗∗: 
 

[𝑮(𝐗
∗)

𝑮(𝐗) ] = [
𝑮∗
𝑮 ] ~𝒩 (𝟎, [

𝑲∗∗ 𝑲∗𝑿

𝑲∗𝑿
𝑻 𝑲𝑿𝑿

]) , (10) 

 
where 𝑲∗𝑿  is an 𝑛∗ × 𝑛  cross-covariance matrix between 
responses at 𝐗∗ and 𝐗, 𝑲∗∗ is an 𝑛∗ × 𝑛∗ covariance matrix 
for 𝐗∗ , and 𝑲𝑿𝑿  is an 𝑛 × 𝑛 covariance matrix for X. 𝑲𝑿𝑿 
plays an essential role in both the training and prediction stages, 
as shown in Equations (4) through (6). We are using the 
covariance information of the training data stored in 𝑲𝑿𝑿  to 
predict responses at 𝐒∗. In other words, 𝑮∗ at the query points 
𝐗∗  can be “explained” by 𝑮  at the training points 𝐗 , as 
illustrated in the first row of Figure 3. 

However, as discussed in Section 2, the use of this 𝑛 × 𝑛 
covariance matrix 𝑲𝑿𝑿 is the primary contributor to the curse 
of dimensionality in GP modeling. To address this issue, we 
assume that there is a small set of inducing points at the location 
𝐗𝑰 (𝑛𝐼 ≪ 𝑛), with the residual process 𝑮(𝐗𝑰) subjects to 
 

[𝑮
(𝐗)
𝑮(𝐗𝑰)

] = [𝐆𝐆𝑰
]~𝒩 (𝟎, [

𝑲𝑿𝑿 𝑲𝑿𝑰

𝑲𝑿𝑰
𝑻 𝑲𝑰𝑰

]) , (11) 

 
as illustrated in the second row of Figure 3. Following the same 
logic in Equation (10), 𝑮 at the size-𝑛 training dataset 𝐗 can 
be “explained” by 𝐆𝑰 at the size-𝑛𝐼 inducing input data points 
𝐗𝑰 . The inducing points can now replace the original data to 
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improve efficiency. Under this setting, besides the original 
parameters in the LVGP model, we also need to estimate the 
locations and the corresponding 𝐆𝑰  of these inducing points 
during the training process. 
 

 
FIGURE 3: Covariance matrices used to describe residual process 𝐺 
at query points based on training points (first row) and describe 𝐺 at 
the training points based on sparse inducing points (second row).  
 

To achieve this, a variational distribution is defined to 
approximate the posterior: 
 

𝑞(𝑮, 𝑮𝑰) = 𝑝(𝑮|𝑮𝑰)𝑞(𝑮𝑰), (12) 
 
where 𝑞(𝑮𝑰) = 𝒩(𝑮𝑰; 𝝁, 𝚺) is the probability density function 
of the marginal variational distribution and 𝑝(𝐺|𝐺𝐼)  is the 
conditional distribution that is readily obtained from Equation 
(11). With these, parameters to be estimated include 𝛽, 𝜎2, 𝚽, 
𝝁 , 𝜮 , 𝐗𝑰  and 𝑮𝑰 . Since maximizing the likelihood function 
will involve the costly calculation of 𝑲𝑿𝑿

−𝟏  and |𝑲𝑿𝑿|, we turn 
to estimate parameters by maximizing the evidence lower bound 
(ELBO): 
 

𝐸𝐿𝐵𝑂 = 𝐿𝑡 − 𝐷𝐾𝐿[𝑞(𝑮,𝑮𝑰)||𝑝(𝑮, 𝑮𝑰)], (13) 
 
with the likelihood term 𝐿𝑡  and the Kullback–Leibler (KL) 
divergence 𝐷𝐾𝐿[𝑞(𝑮, 𝑮𝑰)||𝑝(𝑮, 𝑮𝑰)] given as 
 

𝐿𝑡 = ∫ 𝑙𝑜𝑔[𝑝(𝒚|𝑮 )] ∙ 𝒩(𝑮; 𝑨𝝁, 𝑨𝜮𝑨𝑻 + 𝑩)𝑑𝑮, (14) 

 

𝐷𝐾𝐿[𝑞(𝑮, 𝑮𝑰)||𝑝(𝑮, 𝑮𝑰)] =
1
2
{𝑙𝑜𝑔 (

|𝑲𝑰𝑰|
|𝜮|

) − 𝑛𝐼}

+
1
2
𝑡𝑟(𝑲𝑰𝑰

−𝟏𝜮) + (𝟎 − 𝝁)𝑇𝑲𝑰𝑰
−𝟏(𝟎 − 𝝁), (15)

 

 
where 𝑨 = 𝑲𝑰𝑿𝑲𝑰𝑰

−𝟏  and 𝑩 = 𝑲𝑿𝑿 − 𝑲𝑿𝑰𝑲𝑰𝑰
−𝟏𝑲𝑿𝑰

𝑻 . From 
Equations (13) ~ (15), we note that the evaluation of ELBO does 
not involve the expensive calculation of 𝑲𝑿𝑿

−𝟏   and |𝑲𝑿𝑿| . 
Instead, it only requires 𝑲𝑰𝑰

−𝟏  and |𝑲𝑰𝑰|  with the calculation 
complexity reduced to 𝑂(𝑛𝐼3). The storage requirement can be 

reduced to 𝑂(𝑛𝑏2)  by using mini-batch stochastic gradient 
descent algorithms, where 𝑛𝑏 ≪ 𝑛 is the size of mini-batch.  

After the training, prediction at query points 𝐗∗  can be 
readily obtained as  

 
𝒚̂(𝐗∗) = 𝛽̂ + 𝑲∗𝑰𝑲𝑰𝑰

−𝟏(𝝁 − 𝟏𝛽̂),

𝑐𝑜𝑣(𝐗∗, 𝐗′) = (𝑲∗𝑰𝑲𝑰𝑰
−𝟏)𝜮(𝑲∗𝑰𝑲𝑰𝑰

−𝟏)𝑇 + 𝑲∗∗ − 𝑲∗𝑰𝑲𝑰𝑰
−𝟏𝑲∗𝑰

𝑻 , (16)
 

 
The prediction in Equation (16) only depends on the sparse 
inducing points and thus remains efficient even with a large 
training data set. While this model only considers quantitative 
inputs, we extend it to accommodate datasets with mixed-
variable inputs in Section 4.1. 
 
3.3 LMC for Multi-type Responses 

In this section, we introduce the linear model of 
coregionalization (LMC) approach to handle multi-type 
responses [18]. The key idea behind LMC is to represent a 
multivariate Gaussian process by a linear combination of 
independent univariate Gaussian processes. Consider a multi-
response computer simulation model 𝒚(𝒙)  with output 𝒚 =

[𝑦1, 𝑦2, … , 𝑦𝑁𝑜𝑝]
𝑇
∈ 𝑅𝑁𝑜𝑝 . Assume the prior model for the 

outputs is constructed from a linear transformation 𝑾 ∈ 𝑅𝑁𝑜𝑝×𝐿 
of 𝐿 (𝐿 ≤ 𝑁𝑜𝑝) independent latent functions 𝒇(𝒙): 

 
𝒀(𝒙) = 𝜷 + 𝑮(𝒙) = 𝑾𝒇(𝒙), (17) 

 
where 𝜷 is a vector of prior means,  𝑮 = [𝐺1, 𝐺2, … , 𝐺𝑁𝑜𝑝]

𝑇  is 
a multi-response stationary Gaussian process, 𝒇(𝒙) =
{𝑓𝑙(𝒙𝑙)}𝑙=1𝐿  and  𝑓𝑙(𝒙𝑙)  is an independent Gaussian process 
with its covariance defined to be: 
 

𝑐𝑜𝑣𝑙(𝑓𝑙(𝒙𝑙), 𝑓𝑙(𝒙𝑙′)) = 𝜎2𝑟𝑙(𝒙𝑙, 𝒙𝑙′), (18) 
 
where 𝑟𝑙(∙,∙)  has the same definition as in Equation (3). By 
using this LMC structure, the covariance of multi-response 
stationary Gaussian process 𝑮 is given by 
 

𝑐𝑜𝑣 (𝐺𝑖(𝒙), 𝐺𝑗(𝒙′)) =∑𝑊𝑖𝑙𝑐𝑜𝑣𝑙(𝑓𝑙(𝒙𝑙), 𝑓𝑙(𝒙𝑙′))
𝐿

𝑙=1

𝑊𝑗𝑙, (19) 

 
This can be written in matrix form as 
 

𝑲𝐗𝑿′(𝐆(𝐗), 𝐆(𝐗′)) =∑𝑲𝒍,𝐗𝐗′⨂𝑻𝒍

𝐿

𝑙=1

, (20) 

 
where 𝑻𝒍 = 𝑾:,𝒍𝑾:,𝒍

𝑻  with 𝑾:,𝒍 being the lth column of 𝑾, ⨂ 
is the Kronecker product. To estimate parameters in the LMC 
model, we can follow a similar approach in Section 2 to obtain 
MLE (see [16] for the details). 
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4. SCALABLE MULTI-RESPONSE LATENT 
VARIABLE GAUSSIAN PROCESS 
In this section, we illustrate how three GP variants are 

integrated for scalable multi-response latent variable Gaussian 
process modeling. We first extend the sparse variational 
inference to LVGP, enabling scalable modeling on a large 
dataset with qualitative factors. This sparse variational LVGP 
(SV-LVGP) is then generalized to multi-type responses by 
integrating LMC models with specially devised latent spaces of 
the qualitative variables.  
 
4.1 Extension of Variational Inference to LVGP 

As mentioned in Section 3.2, the essence of the SV model is 
to approximate the covariance information with a set of inducing 
points. In the LVGP model, the original inputs 𝒖 = [𝒙𝑇, 𝒕𝑇]𝑇 
with both quantitative 𝒙  and qualitative factors 𝒕  are 
transformed to quantitative inputs 𝒔 = [𝒙𝑇, 𝒛(𝒕)𝑇]𝑇  by 
mapping levels of qualitative factors 𝒕  to the corresponding 
latent vectors 𝒛. As a result, there are two different input spaces 
𝒖 and 𝒔 that can be used to define the locations of inducing 
points, as illustrated in Figure 4.  
 

 
FIGURE 4: Defining the locations of inducing points in the mixed-
variable input space (left) and the transformed quantitative input space 
(right). 
 

For the former (shown in the left column of Figure 4), the 
variational inference process for the inducing points will become 
a mixed-variable optimization problem that is computationally 
expensive and sensitive to initialization. Therefore, we define the 
locations of inducing points in the transformed quantitative input 
space, as shown in the right column of Figure 4. We denote the 
locations of inducing points, transformed training points, and 
query input data points as 𝐒𝑰 , 𝐒  and 𝐒∗ , respectively. The 
SVGP defined in Equations (10) ~ (16) can be introduced into 
LVGP by simply replacing 𝐗𝑰, 𝐗 and 𝐗∗with 𝐒𝑰, 𝐒 and 𝐒∗, 
respectively. The covariance matrices involved are calculated 
through Equations (8) and (9). We name this new integrated 
model as sparse variational latent variable GP (SV-LVGP). In 
SV-LVGP, parameters to be estimated include 𝛽, 𝚽, 𝒁, 𝝁, 𝜮, 
𝐒𝑰 and 𝑮𝑰, which can be obtained by maximizing the ELBO as 
discussed in Section 3.2. Note that 𝒁  and 𝐒𝑰  are 
simultaneously optimized in the training process. The feasibility 
of this practice is grounded in the observation that these two 
parameters are coupled together in the covariance matrices 
involving inducing points in ELBO. For better estimation of the 

inducing points 𝐒𝑰, we can fix the latent vectors 𝒁 in the later 
stages of optimization and optimize only 𝐒𝑰 . This SV-LVGP 
model can now accommodate a large data set with qualitative 
factors. It is highly scalable since the computational and storage 
complexity remain 𝑂(𝑛𝐼3)  and 𝑂(𝑛𝑏2) , respectively, with the 
number of induing points 𝑛𝐼 ≪ 𝑛 . 
 
4.2 Extension of LMC to SV-LVGP 

In this subsection, we extend LMC to the proposed SV-
LVGP model for multi-type responses and present two types of 
model structures (illustrated in Figure 5) - one with independent 
latent spaces and one with shared latent spaces. Specifically, to 
achieve this extension, the domain of latent functions in LMC is 
changed from the original mixed qualitative-quantitative input 
space to the transformed quantitative input space of SV-LVGP. 
In general cases, the qualitative variables might show different 
joint effects on different responses. Accordingly, we may 
construct an independent latent variable space for each latent 
function in LMC to capture different effects of qualitative 
variables, as shown in the first row of Figure 5.  

 

 
FIGURE 5: Illustration of the latent space structures for LMC-SV-
LVGP(I) with independent latent spaces (first row) and LMC-SV-
LVGP(S) with shared latent space (second row). 
 

With this independent latent space structure, the original 
LMC model changed to 
 

𝒀(𝒖) = 𝜷 + 𝑮(𝒔) = 𝑾𝒇(𝒔), (21) 
 
where 𝒔 = [𝒙𝑇, 𝒛(𝒕)𝑇]𝑇 ∈ 𝑅𝑝+𝐿∗𝑞∗𝑔  is the mapped input 

corresponding to 𝒖 , 𝒛(𝒕) = [𝒛1(𝑡1)𝑇, … , 𝒛𝑞(𝑡𝑞)
𝑇]
𝑇
∈ 𝑅𝐿∗𝑞∗𝑔 

is the assembled latent vector for all qualitative variables with 
𝒛𝑖(𝑡𝑖) = [𝒛𝑖,{1}(𝑡𝑖)𝑇, … , 𝒛𝑖,{𝐿}(𝑡𝑖)𝑇]

𝑇 ∈ 𝑅𝐿∗𝑔 , 𝒛𝑖,{𝑙}(𝑡𝑖) ∈ 𝑅𝑔 is 
the latent vector of 𝑡𝑖  for the lth latent function, 𝒇(𝒔) =
{𝑓𝑙(𝒔𝑙)}𝑙=1𝐿  with 𝒔𝑙 =  [𝒙𝑇, 𝒛1,{𝑙}𝑇, … , 𝒛𝑞,{𝑙}𝑇]

𝑇
 . The definition 

of the correlation function 𝑟𝑙(∙,∙) in (18) is changed to the one 
for LVGP as in Equation (9).  
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With these modifications, we could then follow the same 
procedure in Section 4.1 of introducing inducing points (𝐒𝑰, 𝑮𝑰) 
for scalable GP modeling, but the computational complexity will 
surge to 𝑂(𝑁𝑜𝑝3 𝑛𝐼3) due to the Kronecker product in Equation 
(20). To avoid this significant increase in the computational 
costs, we propose to use the values of the latent functions 𝒇(𝐒𝑰) 
as the response data for the inducing points, instead of the final 
residual function 𝑮(𝐒𝑰). 𝑲𝑰𝑰 is now a block diagonal matrix, 
and the computational complexity is reduced to 𝑂(𝐿𝑛𝐼3). Note 
that different latent functions in LMC will have different 
inducing points since they are defined on independent latent 
variable spaces. We will refer to this model as LMC-SV-
LVGP(I).  

In practice, one could impose constraints on the structure of 
the different latent variable spaces based on prior knowledge of 
the physical model to reduce the number of model parameters. 
For example, when the qualitative variables have similar joint 
effects on responses, higher efficiency and interpretability can be 
achieved by using a special structure shown in the second row of 
Figure 5, in which the latent functions share the same latent 
variable space for all the qualitative variables. Specifically, we 
modify the definition of the latent vector by setting 𝒛𝑖,{𝑙}(𝑡𝑖)𝑇 ≡
𝒛𝑖,{1}(𝑡𝑖)𝑇and 𝒛𝑖(𝑡𝑖) = [𝒛𝑖,{1}(𝑡𝑖)𝑇]

𝑇 ∈ 𝑅𝑔. Moreover, we now 
estimate a different scaling parameter matrix 𝚽𝒛 for the latent 
variables (in Equation (9)) in different latent functions, instead 
of fixing them to be the identity matrix as was done earlier. These 
scaling parameters would account for small differences in the 
effects of the qualitative variables on the different responses. We 
refer to this variant with the shared latent variable space as LMC-
SV-LVGP(S). Compared to the more general model with 
independent latent spaces, LMC-SV-LVGP(S) sacrifices some 
flexibility for improving optimization efficiency with fewer 
parameters and inducing points to be estimated. Moreover, in the 
case that the qualitative variables indeed have similar joint 
effects on different responses, the LMC-SV-LVGP(S) model will 
have comparable performance. We will highlight these trade-offs 
in the next section. 

 

5. COMPARATIVE CASE STUDIES 
To validate the effectiveness of our proposed methods, we 

compare them against two state-of-the-art machine learning 
models that are most commonly used for big data: neural 
networks (NN) [30] and the extreme gradient boosted decision 
trees (XGBoost) [25]. We include two numerical examples for 
numerical performance comparisons and two engineering 
problems to demonstrate the usefulness of the proposed methods 
in data-driven design, including machine learning of ternary 
oxide materials and topology optimization of a multiscale 
compliant mechanism. For all case studies, 10-fold cross-
validation (CV) is performed for all the models to measure their 
predictive power. Note that the hyperparameters of the NN and 
XGBoost models are tuned in an additional CV process before 
the comparative validation to ensure the best performance. 
Specifically, a grid search and a random grid search are 

performed in the hyperparameter selection for NN and XGBoost, 
respectively, with the search space shown in Tables 1 and 2. 

 
Table 1. The hyperparameter space of the grid search for NN  

Number of 
hidden layers 

Neurons 
per layer 

Activation 
function Learning rate 

1, 2 4, 8, 16, 
32, 64 

‘logistic’, 
‘tanh’, ‘relu’ 

0.05, 0.01, 
0.005, 0.001 

 
Table 2. The range of the random grid search for XGBoost  

Parameter Range*  Parameter Range 
Colsample ** [0.3,0.7]  Learning rate [0.03,0.3] 
Gamma (0.0,0.5]  Maximum depth [2,6] 

Number of 
estimators [100,150]  Subsample*** [0.4,0.6] 

* uniform distribution is assumed for each range. 
** subsample ratio of columns when constructing each tree. 
*** subsample ratio of the training instances. 
 

In contrast, we intentionally avoid this exhaustive tuning 
process for all the proposed GP models to demonstrate their 
easy-of-use and generality. The proposed GP models are 
implemented using the GPflow package [31] in Python. The 
initial latent vectors for qualitative variables are randomly 
assigned while the locations of the initial inducing points are 
randomly selected from the training data. We use the natural 
gradient optimizer [32] to optimize the variational parameters 𝝁 
and 𝜮 while the Adam optimizer [33] is adopted for all other 
parameters for faster convergence and better parameter 
estimation [34, 35]. We train the GP models in batches of size 
100 and set the maximum number of training iterations to 
20,000. 
 
5.1 Single-response Math Function 

In this case study, we focus on a large single-response 
dataset with qualitative variables generated by a math function 
[36] given as 
 

𝑦 =

{
 
 

 
 
7𝑠𝑖𝑛(2𝜋𝑥1 − 𝜋) +       𝑠𝑖𝑛(2𝜋𝑥2 − 𝜋),  𝑖𝑓 𝑡 = 1
7𝑠𝑖𝑛(2𝜋𝑥1 − 𝜋) +  13𝑠𝑖𝑛(2𝜋𝑥2 − 𝜋),  𝑖𝑓 𝑡 = 2
7𝑠𝑖𝑛(2𝜋𝑥1 − 𝜋) + 1.5𝑠𝑖𝑛(2𝜋𝑥2 − 𝜋),  𝑖𝑓 𝑡 = 3
7𝑠𝑖𝑛(2𝜋𝑥1 − 𝜋) + 9.0𝑠𝑖𝑛(2𝜋𝑥2 − 𝜋),  𝑖𝑓 𝑡 = 4
7𝑠𝑖𝑛(2𝜋𝑥1 − 𝜋) + 4.5𝑠𝑖𝑛(2𝜋𝑥2 − 𝜋),  𝑖𝑓 𝑡 = 5

, (22) 

 
where 𝑥1, 𝑥1 ∈ [0,1] are continuous quantitative variables and 
𝑡 ∈ {1,2,3,4,5}  is a qualitative variable with five levels 
representing different coefficients for the second sine function. 
Therefore, the true ordering of different levels should be 1-3-5-
4-2 based on the second coefficient. We generate a large dataset 
by sampling on a 100 × 100 × 5  grid in the 𝑥1 - 𝑥2 -t space, 
rendering 50,000 data points. To test the sensitivity of the model, 
we consider Gaussian random noise with three different levels of 
standard derivation (SD), i.e., no noise (SD=0.0), low noise 
(SD=0.4), and high noise (SD=4.0). We adopt a 2D latent space 
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to represent the qualitative variable in SV-LVGP, which is 
reported in [23] to be sufficient for most physical problems. To 
study the influence of the number of inducing points, we trained 
a set of SV-LVGP models with 50, 100, and 500 inducing points, 
respectively. The performance is measured by root mean squared 
error (RMSE), as shown in Figure 6. In the ideal case, the RMSE 
value should be equal to the corresponding SD value of the noisy 
dataset.  
 

 
FIGURE 6: Boxplots of RMSE over 10-fold CV for all the models in 
the first case study under different noise levels. Red dashed lines 
represent the SD of the Gaussian noise. 
 

In no noise (SD=0.0) and low noise (SD=0.4) situations, our 
SV-LVGP models outperform both NN and XGBoost, even with 
only 50 inducing points. The reason for the poor performance of 
NN and XGBoost may be due to the fact that the ordering of 
qualitative levels does not relate to their real underlying 
numerical values, eliminating a critical clue for the modeling.  
As the number of inducing points increases, so does the 
predictive power of SV-LVGP. However, when the level of the 
noise is high (SD=4.0), using a larger number of inducing points 
does not bring much benefit in prediction. Although XGBoost 
performs the best on the highly noisy dataset, the SV-LVGP 
model with 100 inducing points has a similar performance. Note 
that SV-LVGP models achieve this high accuracy without much 
tuning of the hyperparameters (which was done for NN and 
XGBoost). This demonstrates the robustness and ease-of-use of 
the SV-LVGP model.  

Moreover, the proposed model provides interpretation for 
the levels of the qualitative variable through the latent space 
shown in Figure 7. It can be seen that the latent vectors mapped 
from different levels of the qualitative variable reside on a 
straight line with a correct ordering as 1-3-5-4-2. Thus, the 
correlation structure captured by this mapping agrees closely 
with the real underlying numerical values (the coefficient of the 
second sine function). Therefore, even though the correlation 
information is lost in the qualitative representation, it can be 
rediscovered from the data by using the proposed model. This 
could provide extra knowledge when applied to an unknown 
physical model. In contrast, NN does not have this 
interpretability while XGBoost fails to provide a quantitative 
measure for the correlation between classes. Moreover, it should 
be noted that the inducing points surround the latent vectors in 
the latent space. This is because all qualitative inputs in the 
training data are mapped to those latent vectors. As a result, 
regions around the latent vectors are the most critical to describe 

the statistical characteristics of training data. This provides 
another validation of the proposed method. 
 

 
FIGURE 7: Latent vectors and inducing points in the latent space of 
SV-LVGP model with 𝑛𝐼 = 500 . The level of 𝑡  corresponding to 
each latent vector is marked in the figure. 
 
 
5.2 Multi-response Math Function 

In this example, we use a mathematical multi-response 
dataset to validate the effectiveness of the LMC-SV-LVGP 
model. The corresponding multi-response math function is 
 

𝑦1 = ∑
𝑥𝑖(𝑡2−𝑖−3)

80
2
𝑖=1 +  ∏ 𝑐𝑜𝑠 (

𝑥𝑗
√𝑗
) 𝑐𝑜𝑠 (

50(𝑡𝑗−3)

√2
)2

𝑗=1

𝑦2 = ∑
𝑥𝑖(𝑡2−𝑖−3)

80
2
𝑖=1

+∏ 𝑐𝑜𝑠 (
𝑥𝑗
√𝑗
− (𝑗−1)𝜋

2
) 𝑐𝑜𝑠 (

50(𝑡𝑗−3)

√2
)2

𝑗=1 ,

(23)  

 
where 𝑦1 ,  𝑦2  are two responses, 𝑥1 ,  𝑥1 ∈ [−100,100]  are 
continuous quantitative variables and 𝑡1 ,  𝑡2 ∈ {1,2,3,4,5}  are 
qualitative variables with five levels. We generate a large dataset 
with 22,500 data points from a 30 × 30 × 5 × 5 uniform grid in 
the 𝑥1 - 𝑥2 -𝑡1 - 𝑡2  space. Similarly, we consider three levels of 
Gaussian noise for the dataset, i.e., SD=0.0, 0.1, 1.0. Both single-
response SV-LVGP and multi-response LMC-SV-LVGP are 
considered in this case study. Specifically, we fit an independent 
SV-LVGP model for each output, which will be used as a 
reference for other multi-response models. For multi-response 
LMC-SV-LVGP, we consider three different structures: a. LMC-
SV-LVGP(S) model with just a single latent function for the 
LMC kernel, which degenerates to the separable kernel [37], b. 
LMC-SV-LVGP(S) model with 𝐿 = 2 latent functions for the 
LMC kernel, c. LMC-SV-LVGP(I) model with 𝐿 = 2  latent 
functions for the LMC kernel. For all these models, 100 inducing 
points are used for the sparse variational inference. The 
performance of all the models over the 10-fold CV is given in 
Figure 8. 

It can be noted that all three LMC-SV-LVGP models have 
lower average RMSE values than both NN and XGBoost. The 
more latent functions considered in the model, the better the 
performance of LMC-SV-LVGP. For this example, there is no 
significant difference between LMC-SV-LVGP models with 
shared or independent latent space, indicating the similar joint 
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effects of qualitative variables on the two responses. It is 
interesting to note that LMC-SV-LVGP models generally 
outperform the SV-LVGP model. In fact, SV-LVGP can be 
viewed as a special case of the LMC-SV-LVGP(I) model with 
the 𝑾 matrix restricted to be a diagonal matrix. Therefore, a 
more flexible structure to exploit commonalities across 
responses should be the reason for the better performance of 
LMC-SV-LVGP model over its single-response counterpart. We 
show the latent spaces of LMC-SV-LVGP(S) and LMC-SV-
LVGP(I) with 𝐿 = 2 latent functions in Figure 9. 

 

 
FIGURE 8: Boxplots of RMSE over 10-fold CV for all the models in 
the second case study under different noise levels. The first (second) 
row presents the result of the first (second) response. 
 

 
 
FIGURE 9: Latent space of LMCSV-LVGP(S) and LMC-SV-
LVGP(I). The first (second) row presents the latent space for the first 
(second) qualitative variable. 
 

For the LMC-SV-LVGP(S) model with a shared latent space 
for the two latent functions, different levels of the two qualitative 
variables are both equally distributed on a straight line and 
correctly ordered as 1-2-3-4-5, which again agrees with the 
underlying numerical 𝑡1, 𝑡2 in Equation (23). For the LMC-SV-
LVGP(I) model, the two latent functions have independent latent 
space for the qualitative variables. In this case, while similar 
equally spacing latent points are observed for the second latent 

function, the latent embedding of qualitative variables for the 
first latent function has a very different pattern. The reason can 
be explained from the linear transformation for the latent 
functions with 𝑾 learned from the training process: 
 

𝒀(𝒖) = 𝑾𝒇(𝒔) = [−0.02 1.14
−0.03 1.12] ∙ [

𝑓1
𝑓2
] , (24) 

  
Note that the weights assigned to the second latent functions are 
much larger than that of the first latent function, which indicates 
that the second latent function dominates the prediction result. 
As a result, the latent space of the second latent function captured 
most of the correlation information between different levels of 
qualitative variables, implying a similar joint effect for the 
qualitative variables on the two responses. This shows how the 
latent space can help to extract knowledge on the input-output 
relations.  
 
5.3 Machine Learning for Ternary Oxide Materials  

Materials informatics require a surrogate model to replace 
the expensive simulation or experiments in accelerating high-
throughput materials discovery and iterative design process [38]. 
In this case study, we demonstrate that the proposed method 
lends itself well for use in machine learning for the combinatorial 
design of materials composition, by applying it to predict both 
formation energy and stability of ternary oxide materials.  
Specifically, multi-response property data for 2030 ternary oxide 
materials have been extracted from the Open Quantum Material 
Database (OQMD) [39]. These ternary oxide materials have the 
molecular formula as 𝐴𝑥1𝐵𝑥2𝑂𝑥3 , where A and B can be selected 
from a set of 25 and 22 elements, respectively, and 𝑂  is the 
oxygen atom. A and B are qualitative inputs, and 𝑥1  𝑥3  are 
quantitative inputs, forming a mixed-variable input space for the 
model with the formation energy and the stability as outputs. 
Five models are trained on the dataset: a. SV-LVGP with 100 
inducing points, b. LMC-SV-LVGP(S) model with 𝐿 = 2 latent 
functions and 100 inducing points, c. LMC-SV-LVGP(I) model 
with 𝐿 = 2 latent functions and 100 inducing points, d. NN and 
e. XGBoost. From their RRMSE values over 10-fold CV shown 
in Figure 10, it can be concluded that all three proposed models 
outperform both NN and XGBoost in predicting the formation 
energy and stability. Multi-response LMC-SV-LVGP models 
perform better than single-response SV-LVGP as before. There 
is a significant increase in performance when the shared space is 
replaced by independent latent spaces. This indicates that the 
type of elements included in A and B has different joint effects 
on the formation of energy and stability. The linear 
transformation for the latent functions in the LMC-SV-LVGP(I) 
model is 
 

[formation energystability ] = 𝑾𝒇(𝒔) = [1.41 0.08
0.80 1.12] ∙ [

𝑓1
𝑓2
] . (25) 

 
The first latent function 𝑓1  dominates the prediction of 
formation energy while the second latent function 𝑓2 
contributes the most for the stability prediction, indicating a large 
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discrepancy between the two responses. We show the latent 
space of two qualitative variables in Figure 11, which contains 
rich information on the effects of element types.  
 

 
FIGURE 10: Boxplots of RMSE over 10-fold CV for all the models 
in the third case study. The left and right figures correspond to formation 
energy and stability, respectively. 
 

 
FIGURE 11: Latent space of LMC-SV-LVGP(I) trained on the 
ternary oxide materials dataset. The first (second) row shows the latent 
space for element A (B) in the molecular formula. The first (second) 
column shows the latent space used in the first (second) latent function. 
 

For example, elements in position A form four clusters in 
the latent space for the first latent function. The majority of 
elements in each cluster belong to a specific element group in the 
periodic table, i.e., the alkali element group (marked by a red 
ellipse), the alkaline-earth element group (marked by a blue 
ellipse), the first and second half of the lanthanides element 
group (marked by a green and a yellow ellipse, respectively). 
Since 𝑓1  dominates the prediction of formation energy, this 
clustering indicates that these groups have different effects on 
the formation energy. In contrast, there are only three clusters in 
the latent space for 𝑓2, with the elements from the lanthanides 
element group being merged into the same cluster (marked by a 
red ellipse), indicating that all lanthanides elements have a 
similar influence on stability. Moreover, the proposed models 

require less time for the training and prediction after replacing 
the large data with 100 inducing points, thereby greatly reducing 
the time for high-throughput materials filtering or iterative 
design. 

 
 
5.4 Data-driven Aperiodic Metamaterials System 
Design 

In this case study, we demonstrate the usefulness of the 
proposed method in data-driven multiscale designs by applying 
it to a large database of unit-cell metamaterials for the design of 
aperiodic complex metamaterial systems [5, 40]. The 
microstructures are composed of two different base materials 
with one stiffer than the other. There are four variables to 
describe the microstructure of metamaterials, the volume 
fraction 𝑥  of the stiff material, the class of microstructure 𝑡1, 
the type of stiff material 𝑡2  and the type of soft material 𝑡3 . 
𝑥 ∈ [0,1] is a quantitative input for the surrogate model while 𝑡1 
through 𝑡3  are qualitative inputs with the definition of their 
discrete levels shown in Figure 12. Large data is expected for 
such problems due to the high number of possible combinations.   

 

 
FIGURE 12: Qualitative variables of metamaterials. (a) 
Microstructure classes with red and yellow regions represent the stiff 
and soft base materials, respectively. (b) and (c) show Young’s moduli 
and Poisson’s ratios for different choices of the stiff material and the 
soft material, respectively. 
 

We generated 19,200 microstructures with precomputed 
stiffness tensor by uniformly sampling 100 volume fraction 
values 𝑥  for each possible combination of qualitative variables. 
The stiffness tensor is calculated through energy-based 
homogenization which takes 3 hours to compute for the whole 
database on a single CPU (Intel i7-9750H 2.6GHz). Note that 
this evaluation process is only performed once for the database 
construction but can be applied to numerous data-driven design 
cases. Independent entries of the stiffness tensor, i.e., 
𝐶11, 𝐶12, 𝐶22  and 𝐶33 , are viewed as outputs for the surrogate 
model. SV-LVGP, LMC-SV-LVGP(S), LMC-SV-LVGP(I) with 
four latent functions, NN and XGBoost are trained on this 
metamaterial dataset to compare the predictive precision, as 
shown in Figure 13. 

The three proposed models have much higher predictive 
power than both NN and XGBoost. While the single-response 
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SV-LVGP model has the best performance, the difference among 
the three proposed models is not so obvious. However, as 
demonstrated in [5], LMC-SV-LVGP(S) is more desirable in 
metamaterial system design due to a much lower dimensionality 
of the transformed design variables (a 7D vector). Moreover, the 
latent space of LMC-SV-LVGP(S) provides a highly 
interpretable distance metric for different qualitative variables, 
as shown in Figure 14, which will be very beneficial for the 
optimization process.  

  

 
FIGURE 13: Boxplots of RMSE over 10-fold CV for all the models 
in the third case study. Each subfigure represents the result for an entry 
in the stiffness tensor. 
 

 
FIGURE 14: Latent space of LMCSV-LVGP(S) trained on the 
metamaterial database. (a) latent space of microstructure classes. (b) 
latent space of the stiff material. (c) latent space of the soft material. 
 

Specifically, different classes of microstructures are 
distributed in a way that could reflect their similarity in the 
directional characteristics of the stiffness tensor considering 
multi-type responses. For example, classes A and B nearly 
overlap in the latent space shown in Figure 14 (a), which agrees 
with the fact that they have almost equivalent stiffness tensor 
under the homogenization assumption. Classes C and D are the 
closest neighbors for each other since they are the only pair with 
diagonal rods to resist shear strain. By comparing Figures 14 
(b) (c) with Figures 14 (b) (c), it can be noted that the latent 
embeddings for the stiff and soft materials match well with the 
underlying values of Young’s moduli and Poisson’s ratios. We 
mark the two ascending directions for Young’s modulus and 
Poisson’s ratio in the latent space, respectively. Materials with 
similar Young’s modulus are close to each other in the latent 

space. This indicates that Young’s modulus has a larger impact 
on the stiffness tensor than Poisson’s ratio. To demonstrate the 
usefulness of the proposed method in the multiscale 
metamaterial systems design, we apply it in designing a 
multiscale compliant mechanism [41], as shown in Figure 15 (a). 

Consider a linear strained based actuator acting on the 
component, which can be modeled as a spring with stiffness 𝑘 =
0.1 and a force 𝐹𝑖𝑛 = 1. We aim to maximize the displacement 
𝑢𝑜𝑢𝑡  performed on a workpiece modeled by a spring with 
stiffness 𝑘  through designing both macro- and microscale 
configurations. The design region is discretized into a 60 × 40  
coarse mesh with each element filled by a microstructure 
discretized into a 200 × 200  finer mesh. The constraints 
imposed on the volume fraction of the stiff and soft materials are 
0.3  and 0.1 , respectively. Each coarse element is associated 
with the 7D transformed input vector as microscale design 
variables, i.e., the volume fraction 𝑥  of the stiff material and 
three sets of 2D latent vectors for the class of microstructure 𝑡1, 
the type of stiff material 𝑡2  and the type of soft material 𝑡3 , 
respectively. Each coarse element also has a macroscale 
topological design variable 𝜌 ∈ [0,1]  with zero and one 
representing void and solid, respectively. Therefore, we only 
need an 8D design vector to represent the complex macro- and 
microscale configurations for each coarse element. In contrast, 
the conventional TO framework uses one-hot encoding to 
represent the three qualitative variables, resulting in a 23 D 
design vector for each element, i.e., one macroscale topological 
design variable 𝜌 , 6D one-hot encoding for the class of 
microstructure 𝑡1, and two sets of 8D one-hot encoding for the 
type of stiff material 𝑡2  and the type of soft material 𝑡3 , 
respectively. Moreover, the dimension of the design variables 
will increase when more microstructure classes and materials are 
considered, while the design variables in our framework remain 
the same. This demonstrates the usefulness of the latent 
representation for the qualitative variables in reducing the 
dimension of design variables.  

 

 
FIGURE 15: (a) Problem setting and (b) optimized mechanism, 
different types of stiff and soft materials are marked by red and blue 
gradient colormaps, respectively. 

 
With the above definition, we follow the multi-scale TO 

framework proposed in [5] to optimize the macro-structure, the 
microscale configurations, and constituent materials 
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simultaneously. Specifically, in each iteration, the proposed 
LMC-SV-LVGP(S) model provides the homogenized stiffness 
tensor and its gradient with respect to microscale design 
variables for each coarse element. The method of moving 
asymptotes [42] is then adopted to iteratively optimize the design 
variables based on the sensitivity value. After the optimization, 
the optimized multiscale design is obtained, which increases 
𝑢𝑜𝑢𝑡  from 0.0558 to 1.3639, as shown in Figure 15 (b). Note 
that all eight classes of microstructures are used in the optimized 
structure, aligning in a way that matches with the main load-
bearing directions of the macrostructure. The joint regions of 
different macroscale rods are composed of very soft materials, 
serving as hinges for the mechanism. This demonstrates the 
effectiveness of the simultaneous exploration of microscale 
configurations as well as constituent materials. In contrast, the 
periodic design obtained by using the same microscale design 
variables for all coarse elements generates a much smaller output 
displacement 𝑢𝑜𝑢𝑡 = 0.8147 , highlighting the advantages of 
aperiodic design. Moreover, due to the low-dimensional latent 
variables and inexpensive LVGP model, the overall design 
process only takes 253 iterations and less than two minutes to 
converge even with 96 million fine elements in the FEA model. 
In contrast, the conventional aperiodic multi-scale TO needs 
more iterations to converge and requires around 22 minutes for 
the on-the-fly homogenization process alone in each 
optimization iteration. This demonstrates that the use of the 
proposed surrogate model greatly accelerates the multiscale 
design process featuring a large combinatorial design space. 
  
6. CONCLUSIONS 

In this work, we have proposed a novel GP modeling 
approach that can accommodate big data with qualitative factors 
and multi-type responses. The proposed model integrates three 
modules based on the concept of latent variables, which has been 
highlighted in this work as a powerful tool to reduce computation 
complexity while increasing generality and interpretability. To 
address the big data challenge for problems with qualitative 
factors, we have first proposed the SV-LVGP model, which 
extends sparse variational inference to the LVGP for scalable 
modeling by using inducing points. The SV-LVGP model is 
further generalized to cases with multi-type responses by 
integrating the linear model of coregionalization with special 
latent space structures. Comparative studies demonstrate that the 
proposed model can easily handle 104~105  training data 
points and achieve a high prediction performance that can 
compete with, and in most of the cases exceed, that of the state-
of-the-art machine learning methods such as NN and XGBoost. 
The proposed model is also much easier to fit compared with 
these latter counterparts because it does not require a significant 
tuning effort. Moreover, we can gain considerable insights into 
the joint effects of qualitative variables on the responses based 
on the highly interpretable latent variable space. The most 
remarkable demonstration of this interpretability comes from the 
case study for ternary oxide materials, where clusters in the latent 
space relate to different element groups. This differentiates our 
method from other conventional black-box machine learning 

models. Through designing a compliant mechanism, we 
demonstrate that the design of multiscale metamaterial systems 
is greatly accelerated by using the data-driven approach and the 
proposed LVGP model that surrogates the material law of unit-
cell structures. These promising results indicate that our method 
can be a useful tool to expedite designs where a large number of 
levels are associated with each qualitative variable or the design 
solutions are combinatorial in nature, such as the automated 
design and discovery in emerging material systems. 
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