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ABSTRACT

Scientific and engineering problems often require an
inexpensive surrogate model to aid understanding and the search
for promising designs. While Gaussian processes (GP) stand out
as easy-to-use and interpretable learners in surrogate modeling,
they have difficulties in accommodating big datasets, qualitative
inputs, and multi-type responses obtained from different
simulators, which has become a common challenge for a
growing number of data-driven design applications. In this
paper, we propose a GP model that utilizes latent variables and
functions obtained through variational inference to address the
aforementioned challenges simultaneously. The method is built
upon the latent variable Gaussian process (LVGP) model where
qualitative factors are mapped into a continuous latent space to
enable GP modeling of mixed-variable datasets. By extending
variational inference to LVGP models, the large training dataset
is replaced by a small set of inducing points to address the
scalability issue. Output response vectors are represented by a
linear combination of independent latent functions, forming a
flexible kernel structure to handle multi-type responses.
Comparative studies demonstrate that the proposed method
scales well for large datasets with over 10* data points, while
outperforming state-of-the-art machine learning methods
without requiring much hyperparameter tuning. In addition, an
interpretable latent space is obtained to draw insights into the
effect of qualitative factors, such as those associated with
“building blocks” of architectures and element choices in
metamaterial and materials design. QOur approach is
demonstrated for machine learning of ternary oxide materials
and topology optimization of a multiscale compliant mechanism
with aperiodic microstructures and multiple materials.
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1. INTRODUCTION

Spurred by the growth in computation capability and data
resources, surrogate modeling is increasingly becoming an
indispensable tool to expedite a design process and facilitate
knowledge discovery in scientific and engineering problems [1].
Gaussian processes (GPs) have come to prevail in the arena of
surrogate modeling with a wide range of applications in
engineering designs, such as emulating responses of expensive
simulations [2], model calibration [3], sensitivity analysis and
uncertainty quantification [4]. However, Gaussian processes
have limitations when applied to complex design problems with
challenging characteristics, such as large datasets, qualitative
design variables, and multi-type responses. Multiscale
metamaterial systems design is such an example. It requires
numerous on-the-fly homogenization calculations for each new
metamaterial system design due to a large number of unit cells
(microstructures) considered and the nested iterations in
multiscale design. In this case, data-driven design methods can
greatly accelerate the design process by using an inexpensive
surrogate model to replace the costly on-the-fly homogenization
[5]. However, the design of such systems often involves
qualitative variables, such as the type of microstructure
configurations and the choice of constituent materials [6, 7], that
span an enormous combinatorial design space which can easily
lead to exponential growth in the size of the database.
Meanwhile, homogenized properties of interest for these
metamaterials, e.g., stiffness tensors and thermal expansion
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coefficients, are examples of multi-type responses with very
different physical implications and units, lacking obvious
distance metrics to describe their discrepancies. There is a need
to extend GP modeling to address the obstacles caused by big
data, qualitative inputs, and multi-type responses.

Progress has been made in the literature to address each of
these three challenges separately. To accommodate big data,
various scalable GPs have been proposed [8]. Depending on the
nature of the approximations, they can be broadly classified into
two types. Globally approximated models focus on constructing
an approximated covariance matrix with lower complexity and
storage requirement by selecting a subset of the training data [9,
10], discarding uncorrelated entries to form a sparse covariance
matrix [11], or employing some reduced-rank structures for the
covariance matrix [ 12]. In contrast, locally approximated models
deploy the divide-and-conquer strategy by considering only a
subset of training data in the neighborhood of the query point to
compute the predictions [13]. Meanwhile, to handle qualitative
factors and multi-type responses, various modified covariance
structures have been proposed. For example, levels of qualitative
variables are viewed as different responses with simplified
covariance structures [14, 15] while non-separable covariance
structures are devised to describe multi-type responses [16-19].

Recently, attempts have been made to simultaneously
accommodate big data and multi-type outputs [20]. However,
it is not straightforward to extend these methods to handle
qualitative factors since the existing frameworks for qualitative
inputs are usually incompatible with those for big data or multi-
type outputs. For example, the locally approximated GP requires
a distance metric defined in the input variable space to obtain a
subset around the query point. However, defining appropriate
distance metrics for qualitative input spaces is challenging.
Therefore, to the best of the authors’ knowledge, no existing
method can simultaneously address all three challenges.

In this study, we propose a scalable latent variable GP
(LVGP) modeling approach that can simultaneously
accommodate large data sets, qualitative factors, and multi-type
outputs. Specifically, as shown in Figure 1, the proposed model
integrates three GP variants to handle each of the challenges,
respectively, under one unified latent-variable framework [21].
First, we adopt our previously proposed LVGP model to handle
qualitative variables [5, 22, 23] by mapping them into a
continuous latent space to capture their joint effects on the
responses. Second, to address the challenge of big data, a sparse
variational (SV) approach is employed to replace the large
dataset with sparse underlying inducing points to significantly
reduce computation and storage complexity [24]. Finally, we
model the multi-type outputs using a combination of
independent latent functions, which is known as the linear model
of coregionalization (LMC) [18].

The above three GP variants are combined into one unified
GP modeling framework for large datasets with qualitative
inputs and multi-type responses. While large data GP modeling
for multi-response problems has been achieved using variational
LMC [20], our contribution lies in extending the sparse
variational concept to LVGP by defining inducing points in the

latent space. Additionally, we propose two latent space structures
for extending the LMC model to LVGP. The new synthesized GP
model from this work has the following desirable features:

* Generalizability: Conventional correlation functions for
GP modeling of continuous quantitative inputs can be
readily applied to the dataset with qualitative factors by
using the latent variable representation. The model is also
flexible for accommodating multi-type responses.

* Scalability: The model can easily handle a large dataset
with n =10*~10° data points in our case studies,
reducing the complexity from O(n3) to 0(n3) with the
number of induing points n; K n.

* Accuracy: We demonstrate in our study that the proposed
model outperforms some of the state-of-the-art machine
learning models, such as neural networks and boosted trees
[25].

* Interpretability: A highly interpretable latent space of
qualitative variables obtained from the proposed approach
provides substantial insights into the black-box problem.

Qualitative Factors [
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FIGURE 1: Three aspects integrated into the proposed Gaussian
process model.

This synthesized GP model is useful for a wide range of
data-driven engineering design applications that involve a
combinatorial design space with mixed variables and multi-type
responses. The aforementioned multiscale metamaterial system
is such an example of complex engineering designs, which will
be demonstrated in our case studies. Other possible applications
include the discovery of new molecules with different
combinations of atoms and the design of composite components
with various choices of architectures and constituents that result
in combinational search over mixed (qualitative and
quantitative) variables.

The remaining paper is organized as follows. In Section 2,
we provide a brief overview of the conventional Gaussian
process modeling and explain its limitations with a large dataset
with qualitative factors and multi-type outputs. Three aspects of
the proposed approach are described in Section 3 by presenting
three corresponding GP variants. Integration of these variants in
developing a synthesized GP model is presented in Section 4. In
Section 5, to validate the effectiveness, we compare the proposed
method with some state-of-the-art machine learning models on
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two numerical examples, and two engineering examples: one on
multi-response machine learning for ternary oxide materials, and
another on the data-driven design for aperiodic metamaterial
systems. We conclude in Section 6 and discuss the scope for
future applications.

2. REVIEW OF GAUSSIAN PROCESS MODELING

In this section, we provide an overview of GP modeling and
explain the challenges posed by mixed variables, large datasets,
and multi-type responses. For a single-output computer
simulation model y(x) with only quantitative inputs x =
{x1,%3,...,x,} € RP, we assume y(x) is a realization of a
stochastic process:

Y(x) = h" (0B + G(x), (1)

where h(x) is the prior mean function comprised of a vector of
pre-defined basis functions h(x) = [y (%), ..., h,,(X)]T, B =
[B1, -, Bm]T isavector of unknown weights for basis functions
and G(x) is a stationary multivariate Gaussian process with its
covariance function defined as

cov(G(x),G(x")) = o?r(x,x), 2

where o2 is the prior variance and 7(-,) is the correlation
function. Among numerous existing correlation functions, the
Gaussian correlation function is commonly used:

r(x,x") = exp{—(x —x)Td(x — x)}, 3)

T .
where ® = diag(¢p) and ¢ = [(1)1, qbz,...,qbp] are scaling
parameters to characterize the variability of the sample
functions. The construction of a GP model requires estimating
the hyper-parameters 8, ¢ and o? based on the size-n

. o T
training dataset with input X = {x(l),x(z), ,x(n)} and output

y={W,y?, . ,y(”)}T. A common way to determine the GP
model parameters is to find a point estimate via maximum
likelihood estimation (MLE). Herein, we assume a constant prior
mean function with hT(x)B = for the GP model. The
corresponding log-likelihood can be given after ignoring the
constants:

1
Lln(d),ﬁ,a'z) = _Elan(¢)|
1
-1 K@) (y-1p), 4

“307
where In(+) is the natural logarithm, 1 is an n X 1 vector of
ones, and K is the nXn covariance matrix with K;; =
Uzr(x(i),x(j)) for i,j=1,..,n. The hyperparameters are
estimated by maximizing (4). With these estimated
hyperparameters 62,3, and @, the prediction $(x*) atany x*
can be obtained as:

y(x) =B +r"K(y —1p), (5)

where 1(x*) = [r(x", x®),r(x", x®), ..., r(x*, x™)]T . The
posterior covariance between the responses at the two given data
points x* and x' is obtained as:

cov(y*,y) = ¢4r(x, x) —r(x)TK'r(x"), (6)

For more detailed illustrations and implementation of the GP
modeling, readers are referred to [26].

As discussed in Section 1, this conventional Gaussian
process will encounter various obstacles when applied to a large
dataset with qualitative inputs and multiple-type outputs. Firstly,
existing correlation functions are devised for quantitative
variables and fail to accommodate qualitative variables. For
example, the correlation function in Equation (3) relies on a
distance metric defined for input variables to describe the
correlation between responses at different data points. However,
discrete levels of qualitative inputs only serve as a nomenclature
without any well-defined distance metric. Secondly, GP models
suffer from prohibitive computational costs and storage
requirements on large datasets, due to computing K~! and |K]|
in Equation (4). The subsequent computational and storage
complexities are 0(n3) and 0(n?), respectively. Thirdly, it is
not trivial to extend this GP model for multi-type outputs
obtained from simulators that jointly simulate different types of
quantities [17]. While training an independent single-response
GP model for each output is straightforward, it entails a time-
consuming training process, especially for large datasets. Also,
if the correlation between outputs is poorly captured, the GP
model will result in a poor prediction power and inappropriate
joint uncertainty representation.

3. VARIANTS OF GAUSSIAN PROCESSES FOR

ADDRESSING DATA CHALLENGES

In this section, we discuss three GP variants to address the
data challenges associated with qualitative factors, big data, and
multi-type output, respectively. These variants are all built upon
the concept of latent representation, including the LVGP model
for handling qualitative inputs, a sparse variational GP (SVGP)
model with inducing points for managing big data challenges,
and a GP model with the linear model of coregionalization
(LMC) to predict multi-type outputs. These three variants will be
integrated to form the proposed scalable LVGP approach in the
next section.

3.1 LVGP Model for Qualitative Factors

Different levels of qualitative variables lack a well-defined
distance metric, which precludes the use of conventional kernels
devised for quantitative variables. However, as illustrated in
mapping A of Figure 2, for a physical model, there are always
some underlying quantitative physical variables that explain the
effects of any qualitative factor on the response(s). The space
spanned by these (perhaps extremely high-dimensional)
underlying physical variables induces a natural distance metric
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between levels of the qualitative variables. Therefore, according
to sufficient dimension reduction arguments [27, 28], we could
assume a low-dimensional latent space to capture the joint
effects of these underlying variables, as shown in mapping B of
Figure 2. Based on this insight, we recently proposed an LVGP
model to enable GP modeling for a dataset with qualitative inputs
[5,23].

Underlying Variables

Mapping A

E--------------) A. ..
(A, 008
Qualitative Factors ¢ Zy R
z(t) A o
> Zq

Mapping B Latent Space

FIGURE 2: Illustration of the latent variable representation for
qualitative factors. The shape is the qualitative factor here for geometry
design.

Specifically, consider a single-response computer
simulation model y(u) with input u = [x7,t"]" containing
both quantitative variables x = [x4,%,,...,x,]" € RP and
qualitative variables t = [tq, t;, ..., tq]T, with the jt"qualitative
factor t; € {1,2 ...,l]-}, where [; € N* is the total number of
levels for t;. By assuming a g -dimensional latent vector
zi(t;) = [ijl(tj), ...,Zj,g(tj)]T € RY for each t;, the original
mixed-variable input x can be transformed into quantitative
input vector s = [xT,z(t)"]" € RP*9*9 | where z(t) =
[zl(tl)T, ...,zq(tq)T]T. The standard GP model can then be

modified as (using a constant mean function):
Y(s) =B +G(s), (7
cov(G(s),G(s")) = a?r(s,s"), (8)

Since the transformed input vector § contains only quantitative
variables, we can use any existing correlation function in
equation (8). Herein, we still adopt the prevailing Gaussian
correlation function:

7(s,s") = exp{—(x — x)Td(x — x")
—(z—-2)"®,(z-2)}, 9

It should be noted that this correlation function contains two sets
of parameters to be estimated: scaling parameters @ for
quantitative variables and the set of latent vectors mapped from
the qualitative variables Z = Ule{zi(l),...,zi(li)} . The
scaling parameter matrix @, for latent variables is fixed to be
an identity matrix in LVGP since these scaling factors are
absorbed into the estimated latent variable values Z. In our

previous work [23], we follow the same procedure in Section 2
to estimate the values of B, 2, ®,and Z via MLE.

LVGP enables easy integration with Bayesian optimization,
which has been successfully applied in materials discovery and
design [22, 29]. However, like conventional GPs, LVGPs also
require enormous computation and storage resources when
applied to big data. Moreover, the original LVGP could only
accommodate a single response instead of multi-type responses.
To address these, we need to integrate LVGP with the two GP
variants introduced in the following subsections.

3.2 SVGP for Big Data

In this subsection, we introduce the concept of the sparse
variational (SV) model where an artificial training dataset that is
much smaller than the original training set is used to provide an
approximately equivalent covariance information. These
artificial training points, also called inducing points, might not
be observed in the original training data and are not necessarily
obtained from a real physical model. Instead, the locations and
responses of these inducing points are estimated by stochastic
variational inference [21] from the collected big data. This type
of model is also called the sparse variational model [24].

Consider a large training dataset with quantitative input
dataX =[x, x®, ., x™]T and observed response data y =

[y, y®, .., y(")]T, where n is the size of the training data. In
constructing the conventional GP model in Section 2, we assume
a unified multivariate Gaussian distribution for the residual
process G(-) at n training input data points X and n, query
input data points X*:

[gg))] = [g] ~N (0' ﬁrx ﬁxﬂ) (10)

where K,y is an n, X n cross-covariance matrix between
responses at X* and X, K,, is an n, X n, covariance matrix
for X*, and Kxyx is an n X n covariance matrix for X. Kyyx
plays an essential role in both the training and prediction stages,
as shown in Equations (4) through (6). We are using the
covariance information of the training data stored in Kyy to
predict responses at S*. In other words, G, at the query points
X* can be “explained” by G at the training points X, as
illustrated in the first row of Figure 3.

However, as discussed in Section 2, the use of this n X n
covariance matrix Kyy is the primary contributor to the curse
of dimensionality in GP modeling. To address this issue, we
assume that there is a small set of inducing points at the location
X; (n; K n), with the residual process G(X;) subjects to

leool =[] (i i) av

as illustrated in the second row of Figure 3. Following the same
logic in Equation (10), G at the size-n training dataset X can
be “explained” by G; at the size-n; inducing input data points
X;. The inducing points can now replace the original data to

4 © 2021 by ASME



improve efficiency. Under this setting, besides the original
parameters in the LVGP model, we also need to estimate the
locations and the corresponding G; of these inducing points
during the training process.

G
% B @E--m
° 0 * K K. % Query Points
' ° " .
| ‘*’ ° ‘.’ * 5] m Training Points
T Kix  Kxx
L - a2
B @ E% B B B x Covariance Matrix
G ) EE--E A o .
? B m Training Points
1o 2 09 L
| ? v Kxx Kxi A Inducing Points

A Ky |Ky
BAE B A B A B x Covariance Matrix

FIGURE 3: Covariance matrices used to describe residual process G
at query points based on training points (first row) and describe G at
the training points based on sparse inducing points (second row).

To achieve this, a variational distribution is defined to
approximate the posterior:

q(G,G)) = p(G|Gq(G)), (12)

where q(G;) = N (G;; p, X) is the probability density function
of the marginal variational distribution and p(G|G,) is the
conditional distribution that is readily obtained from Equation
(11). With these, parameters to be estimated include 8, o2, ®,
p, X, X; and G;. Since maximizing the likelihood function
will involve the costly calculation of Kyt and |Kyx|, we turn
to estimate parameters by maximizing the evidence lower bound
(ELBO):

ELBO = Ly — Di,[q(G, G)Ip(G, G)], (13)

with the likelihood term L, and the Kullback—Leibler (KL)
divergence Dg,[q(G,G))||p(G,G,)] given as

L, = f log[p(y|6)]- N (G; Au, AZAT + B)dG, (14)

_ 1 |K ]
Dk.[q(G,G)IIp(G, GP] ) log W —ny

+2r(KGE) + (0 - wTKG (O — ), (15)

where A= K;xK; and B = Kyy — Ky, K;1K%, . From
Equations (13) ~ (15), we note that the evaluation of ELBO does
not involve the expensive calculation of Kyxy and |Kyy].
Instead, it only requires Kj' and |Kj;| with the calculation
complexity reduced to O(n}). The storage requirement can be

reduced to O(n?) by using mini-batch stochastic gradient
descent algorithms, where n;, « n is the size of mini-batch.

After the training, prediction at query points X* can be
readily obtained as

yX) = B + K K (e — 1B),
cov(X*,X") = (K Ki)E(K Kit) + K., — K. K KT, (16)

The prediction in Equation (16) only depends on the sparse
inducing points and thus remains efficient even with a large
training data set. While this model only considers quantitative
inputs, we extend it to accommodate datasets with mixed-
variable inputs in Section 4.1.

3.3 LMC for Multi-type Responses

In this section, we introduce the linear model of
coregionalization (LMC) approach to handle multi-type
responses [18]. The key idea behind LMC is to represent a
multivariate Gaussian process by a linear combination of
independent univariate Gaussian processes. Consider a multi-
response computer simulation model y(x) with output y =

T
[yl,yz,...,yNOp] € RNor . Assume the prior model for the

outputs is constructed from a linear transformation W € RNor*L
of L (L < N,,) independent latent functions f(x):

Y(x) = B+ G(x) = Wf(x), (17)

where B isavector of priormeans, G =[Gy, G5, ...,GNop]T is
a multi-response stationary Gaussian process, f(x) =

{fitx)}-, and f;(x;) is an independent Gaussian process
with its covariance defined to be:

cov (fi(x), fi(x,) = o2 (x1, %), (18)

where 7;(-,7) has the same definition as in Equation (3). By
using this LMC structure, the covariance of multi-response
stationary Gaussian process G is given by

L
cov (6100, 6;x)) = ) Wucom (fiGx), fitx)) Wy, (19)
=1

This can be written in matrix form as

Kyy (G(X),G(X)) = Z K xx' ®T, (20)
=1

where T} = W:‘lel with W.; being the /' column of W, ®
is the Kronecker product. To estimate parameters in the LMC

model, we can follow a similar approach in Section 2 to obtain
MLE (see [16] for the details).
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4, SCALABLE MULTI-RESPONSE LATENT

VARIABLE GAUSSIAN PROCESS

In this section, we illustrate how three GP variants are
integrated for scalable multi-response latent variable Gaussian
process modeling. We first extend the sparse variational
inference to LVGP, enabling scalable modeling on a large
dataset with qualitative factors. This sparse variational LVGP
(SV-LVGP) is then generalized to multi-type responses by
integrating LMC models with specially devised latent spaces of
the qualitative variables.

4.1 Extension of Variational Inference to LVGP

As mentioned in Section 3.2, the essence of the SV model is
to approximate the covariance information with a set of inducing
points. In the LVGP model, the original inputs u = [xT,¢"]"
with both quantitative x and qualitative factors t are
transformed to quantitative inputs s = [xT,z(t)T]T by
mapping levels of qualitative factors t to the corresponding
latent vectors z. As a result, there are two different input spaces
u and s that can be used to define the locations of inducing
points, as illustrated in Figure 4.

Z2‘
)
x|01(|06]||02-+ 09 %
09
°
@
t|A||@| Hq| @ 7,
¥
@ @ .3 (np) X @ InducingPoints S;
woow o by Latent Vectors Z

Mixed-variable Input Space Transformed Input Space

FIGURE 4: Defining the locations of inducing points in the mixed-
variable input space (left) and the transformed quantitative input space

(right).

For the former (shown in the left column of Figure 4), the
variational inference process for the inducing points will become
a mixed-variable optimization problem that is computationally
expensive and sensitive to initialization. Therefore, we define the
locations of inducing points in the transformed quantitative input
space, as shown in the right column of Figure 4. We denote the
locations of inducing points, transformed training points, and
query input data points as S;, S and S*, respectively. The
SVGP defined in Equations (10) ~ (16) can be introduced into
LVGP by simply replacing X;, X and X*with S;, S and S*,
respectively. The covariance matrices involved are calculated
through Equations (8) and (9). We name this new integrated
model as sparse variational latent variable GP (SV-LVGP). In
SV-LVGP, parameters to be estimated include S, ®, Z, u, X,
S; and G;, which can be obtained by maximizing the ELBO as
discussed in Section 3.2. Note that Z and S; are
simultaneously optimized in the training process. The feasibility
of this practice is grounded in the observation that these two
parameters are coupled together in the covariance matrices
involving inducing points in ELBO. For better estimation of the

inducing points S;, we can fix the latent vectors Z in the later
stages of optimization and optimize only S;. This SV-LVGP
model can now accommodate a large data set with qualitative
factors. It is highly scalable since the computational and storage
complexity remain O(n?) and 0(n?), respectively, with the
number of induing points n; <K n.

4.2 Extension of LMC to SV-LVGP

In this subsection, we extend LMC to the proposed SV-
LVGP model for multi-type responses and present two types of
model structures (illustrated in Figure 5) - one with independent
latent spaces and one with shared latent spaces. Specifically, to
achieve this extension, the domain of latent functions in LMC is
changed from the original mixed qualitative-quantitative input
space to the transformed quantitative input space of SV-LVGP.
In general cases, the qualitative variables might show different
joint effects on different responses. Accordingly, we may
construct an independent latent variable space for each latent
function in LMC to capture different effects of qualitative
variables, as shown in the first row of Figure 5.

LMC-SV-LVGP(1)
230 P :
» L, Firas ™,

t ok s
u { Z141} Latent Function 1
X

Latent Space 1 V1 w;\/v\,u
¥z o,
u
Z22) L Y3 T,
E o ogg .
- Responses
N o w7 L. f2 EANV\N;\?Z P
o s
Z1[2) Latent Function 2

° Inducing Points (5, f)

Latent Space 2 B Latent Vectors Z

LMC-SV-LVGP(S)

© V Latent Funct\on 1 V1 Ao
t1T— c V2 sy
‘u{ ¥3 ’J"\'\N-v
LatentSpace
X

Responses

-o

>o
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FIGURE 5: Illustration of the latent space structures for LMC-SV-
LVGP(I) with independent latent spaces (first row) and LMC-SV-
LVGP(S) with shared latent space (second row).

With this independent latent space structure, the original
LMC model changed to

Y(u) = B+ G(s) = Wf(s), (21)

where s = [xT,z(t)T]T € RPTL*4*9 is the mapped input
.,zq(tq)T]T € RL*ag
is the assembled latent vector for all qualitative variables with
z(t) = [z, ()7, -:Zi,{L}(ti)T]T €RM™, z;y(t;) ERI is
the latent vector of t; for the /™ latent function, f(s) =
Uils)Yey with s, = [x7,2,07, -, g "] - The definition

of the correlation function 7;(+,) in (18) is changed to the one
for LVGP as in Equation (9).

corresponding to u, z(t) = [zl(tl)T,
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With these modifications, we could then follow the same
procedure in Section 4.1 of introducing inducing points (S;, G;)
for scalable GP modeling, but the computational complexity will
surge to O(Nj,n}) due to the Kronecker product in Equation
(20). To avoid this significant increase in the computational
costs, we propose to use the values of the latent functions f(S;)
as the response data for the inducing points, instead of the final
residual function G(S;). K,; is now a block diagonal matrix,
and the computational complexity is reduced to O(Ln}). Note
that different latent functions in LMC will have different
inducing points since they are defined on independent latent
variable spaces. We will refer to this model as LMC-SV-
LVGP(D).

In practice, one could impose constraints on the structure of
the different latent variable spaces based on prior knowledge of
the physical model to reduce the number of model parameters.
For example, when the qualitative variables have similar joint
effects on responses, higher efficiency and interpretability can be
achieved by using a special structure shown in the second row of
Figure 5, in which the latent functions share the same latent
variable space for all the qualitative variables. Specifically, we
modify the definition of the latent vector by setting zi‘{l}(ti)T =

z;y(t;) and z;(t;) = [zil{l}(ti)T]T € RY. Moreover, we now
estimate a different scaling parameter matrix @, for the latent
variables (in Equation (9)) in different latent functions, instead
of fixing them to be the identity matrix as was done earlier. These
scaling parameters would account for small differences in the
effects of the qualitative variables on the different responses. We
refer to this variant with the shared latent variable space as LMC-
SV-LVGP(S). Compared to the more general model with
independent latent spaces, LMC-SV-LVGP(S) sacrifices some
flexibility for improving optimization efficiency with fewer
parameters and inducing points to be estimated. Moreover, in the
case that the qualitative variables indeed have similar joint
effects on different responses, the LMC-SV-LVGP(S) model will
have comparable performance. We will highlight these trade-offs
in the next section.

5. COMPARATIVE CASE STUDIES

To validate the effectiveness of our proposed methods, we
compare them against two state-of-the-art machine learning
models that are most commonly used for big data: neural
networks (NN) [30] and the extreme gradient boosted decision
trees (XGBoost) [25]. We include two numerical examples for
numerical performance comparisons and two engineering
problems to demonstrate the usefulness of the proposed methods
in data-driven design, including machine learning of ternary
oxide materials and topology optimization of a multiscale
compliant mechanism. For all case studies, 10-fold cross-
validation (CV) is performed for all the models to measure their
predictive power. Note that the hyperparameters of the NN and
XGBoost models are tuned in an additional CV process before
the comparative validation to ensure the best performance.
Specifically, a grid search and a random grid search are

performed in the hyperparameter selection for NN and XGBoost,
respectively, with the search space shown in Tables 1 and 2.

Table 1. The hyperparameter space of the grid search for NN

Number of Neurons Activation Learnine rate
hidden layers  per layer function &
12 4,8, 16, ‘logistic’, 0.05,0.01,
’ 32, 64 ‘tanh’, ‘relu”  0.005, 0.001

Table 2. The range of the random grid search for XGBoost

Parameter Range” Parameter Range
Colsample ™  [0.3,0.7] Learning rate  [0.03,0.3]
Gamma (0.0,0.5] Maximum depth [2,6]

Number of .
estimators [100,150] Subsample [0.4,0.6]

" uniform distribution is assumed for each range.
** subsample ratio of columns when constructing each tree.
™" subsample ratio of the training instances.

In contrast, we intentionally avoid this exhaustive tuning
process for all the proposed GP models to demonstrate their
casy-of-use and generality. The proposed GP models are
implemented using the GPflow package [31] in Python. The
initial latent vectors for qualitative variables are randomly
assigned while the locations of the initial inducing points are
randomly selected from the training data. We use the natural
gradient optimizer [32] to optimize the variational parameters p
and X while the Adam optimizer [33] is adopted for all other
parameters for faster convergence and better parameter
estimation [34, 35]. We train the GP models in batches of size
100 and set the maximum number of training iterations to
20,000.

5.1 Single-response Math Function

In this case study, we focus on a large single-response
dataset with qualitative variables generated by a math function
[36] given as

7sin(2rnx; —m) +  sinQRux, —m), ift =1
7sin(2nx; — ) + 13sin(Rux, —m), if t = 2

y =< 7sin(2rx; — ) + 1.5sin(2nx, —m), if t =3, (22)
7sin(2mx; — ) + 9.0sin(2nx, — ), if t =4
7sin(2mx; — ) + 4.5sin(2nx, — ), if t =5

where x;,x; € [0,1] are continuous quantitative variables and
t €{1,2,3,4,5} is a qualitative variable with five levels
representing different coefficients for the second sine function.
Therefore, the true ordering of different levels should be 1-3-5-
4-2 based on the second coefficient. We generate a large dataset
by sampling on a 100 X 100 X 5 grid in the x;- x,-t space,
rendering 50,000 data points. To test the sensitivity of the model,
we consider Gaussian random noise with three different levels of
standard derivation (SD), i.e., no noise (SD=0.0), low noise
(SD=0.4), and high noise (SD=4.0). We adopt a 2D latent space

7 © 2021 by ASME



to represent the qualitative variable in SV-LVGP, which is
reported in [23] to be sufficient for most physical problems. To
study the influence of the number of inducing points, we trained
a set of SV-LVGP models with 50, 100, and 500 inducing points,
respectively. The performance is measured by root mean squared
error (RMSE), as shown in Figure 6. In the ideal case, the RMSE
value should be equal to the corresponding SD value of the noisy
dataset.
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FIGURE 6: Boxplots of RMSE over 10-fold CV for all the models in
the first case study under different noise levels. Red dashed lines
represent the SD of the Gaussian noise.

In no noise (SD=0.0) and low noise (SD=0.4) situations, our
SV-LVGP models outperform both NN and XGBoost, even with
only 50 inducing points. The reason for the poor performance of
NN and XGBoost may be due to the fact that the ordering of
qualitative levels does not relate to their real underlying
numerical values, eliminating a critical clue for the modeling.
As the number of inducing points increases, so does the
predictive power of SV-LVGP. However, when the level of the
noise is high (SD=4.0), using a larger number of inducing points
does not bring much benefit in prediction. Although XGBoost
performs the best on the highly noisy dataset, the SV-LVGP
model with 100 inducing points has a similar performance. Note
that SV-LVGP models achieve this high accuracy without much
tuning of the hyperparameters (which was done for NN and
XGBoost). This demonstrates the robustness and ease-of-use of
the SV-LVGP model.

Moreover, the proposed model provides interpretation for
the levels of the qualitative variable through the latent space
shown in Figure 7. It can be seen that the latent vectors mapped
from different levels of the qualitative variable reside on a
straight line with a correct ordering as 1-3-5-4-2. Thus, the
correlation structure captured by this mapping agrees closely
with the real underlying numerical values (the coefficient of the
second sine function). Therefore, even though the correlation
information is lost in the qualitative representation, it can be
rediscovered from the data by using the proposed model. This
could provide extra knowledge when applied to an unknown
physical model. In contrast, NN does not have this
interpretability while XGBoost fails to provide a quantitative
measure for the correlation between classes. Moreover, it should
be noted that the inducing points surround the latent vectors in
the latent space. This is because all qualitative inputs in the
training data are mapped to those latent vectors. As a result,
regions around the latent vectors are the most critical to describe

the statistical characteristics of training data. This provides
another validation of the proposed method.

0.5 * Inducing points
@ Latent vectors
Zz ()
-0.5
-0.5 0 0.5

41
FIGURE 7: Latent vectors and inducing points in the latent space of
SV-LVGP model with n; = 500. The level of t corresponding to
each latent vector is marked in the figure.

5.2 Multi-response Math Function

In this example, we use a mathematical multi-response
dataset to validate the effectiveness of the LMC-SV-LVGP
model. The corresponding multi-response math function is

_ vz Xi(t;—i—3) 2 xj 50(tj-3)
V1= di=1™ g T [15=; cos (ﬁ) cos( =

Xi(f —i_3)
Y2 = 12=1 —20 (23)

+ H?:l cos (% — (j‘zl)ﬂ') cos (&\/;3)) ’

where y,, y, are two responses, X;, x; € [-100,100] are
continuous quantitative variables and t,, t, € {1,2,3,4,5} are
qualitative variables with five levels. We generate a large dataset
with 22,500 data points from a 30 X 30 X 5 X 5 uniform grid in
the x;- x,-t;-t, space. Similarly, we consider three levels of
Gaussian noise for the dataset, i.e., SD=0.0, 0.1, 1.0. Both single-
response SV-LVGP and multi-response LMC-SV-LVGP are
considered in this case study. Specifically, we fit an independent
SV-LVGP model for each output, which will be used as a
reference for other multi-response models. For multi-response
LMC-SV-LVGP, we consider three different structures: a. LMC-
SV-LVGP(S) model with just a single latent function for the
LMC kernel, which degenerates to the separable kernel [37], b.
LMC-SV-LVGP(S) model with L = 2 latent functions for the
LMC kernel, c. LMC-SV-LVGP(I) model with L = 2 latent
functions for the LMC kernel. For all these models, 100 inducing
points are used for the sparse variational inference. The
performance of all the models over the 10-fold CV is given in
Figure 8.

It can be noted that all three LMC-SV-LVGP models have
lower average RMSE values than both NN and XGBoost. The
more latent functions considered in the model, the better the
performance of LMC-SV-LVGP. For this example, there is no
significant difference between LMC-SV-LVGP models with
shared or independent latent space, indicating the similar joint
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effects of qualitative variables on the two responses. It is
interesting to note that LMC-SV-LVGP models generally
outperform the SV-LVGP model. In fact, SV-LVGP can be
viewed as a special case of the LMC-SV-LVGP(I) model with
the W matrix restricted to be a diagonal matrix. Therefore, a
more flexible structure to exploit commonalities across
responses should be the reason for the better performance of
LMC-SV-LVGP model over its single-response counterpart. We
show the latent spaces of LMC-SV-LVGP(S) and LMC-SV-
LVGP(I) with L = 2 latent functions in Figure 9.
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FIGURE 8: Boxplots of RMSE over 10-fold CV for all the models in
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row presents the result of the first (second) response.
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FIGURE 9: Latent space of LMCSV-LVGP(S) and LMC-SV-
LVGP(I). The first (second) row presents the latent space for the first
(second) qualitative variable.

For the LMC-SV-LVGP(S) model with a shared latent space

for the two latent functions, different levels of the two qualitative
variables are both equally distributed on a straight line and
correctly ordered as 1-2-3-4-5, which again agrees with the
underlying numerical ¢, t, in Equation (23). For the LMC-SV-
LVGP(I) model, the two latent functions have independent latent
space for the qualitative variables. In this case, while similar
equally spacing latent points are observed for the second latent

function, the latent embedding of qualitative variables for the
first latent function has a very different pattern. The reason can
be explained from the linear transformation for the latent
functions with W learned from the training process:

va =wre) =200 12 ew

Note that the weights assigned to the second latent functions are
much larger than that of the first latent function, which indicates
that the second latent function dominates the prediction result.
As aresult, the latent space of the second latent function captured
most of the correlation information between different levels of
qualitative variables, implying a similar joint effect for the
qualitative variables on the two responses. This shows how the
latent space can help to extract knowledge on the input-output
relations.

5.3 Machine Learning for Ternary Oxide Materials

Materials informatics require a surrogate model to replace
the expensive simulation or experiments in accelerating high-
throughput materials discovery and iterative design process [38].
In this case study, we demonstrate that the proposed method
lends itself well for use in machine learning for the combinatorial
design of materials composition, by applying it to predict both
formation energy and stability of ternary oxide materials.
Specifically, multi-response property data for 2030 ternary oxide
materials have been extracted from the Open Quantum Material
Database (OQMD) [39]. These ternary oxide materials have the
molecular formula as Ay, By, O, where 4 and B can be selected
from a set of 25 and 22 elements, respectively, and O is the
oxygen atom. A and B are qualitative inputs, and x;~x3; are
quantitative inputs, forming a mixed-variable input space for the
model with the formation energy and the stability as outputs.
Five models are trained on the dataset: a. SV-LVGP with 100
inducing points, b. LMC-SV-LVGP(S) model with L = 2 latent
functions and 100 inducing points, c. LMC-SV-LVGP(I) model
with L = 2 latent functions and 100 inducing points, d. NN and
e. XGBoost. From their RRMSE values over 10-fold CV shown
in Figure 10, it can be concluded that all three proposed models
outperform both NN and XGBoost in predicting the formation
energy and stability. Multi-response LMC-SV-LVGP models
perform better than single-response SV-LVGP as before. There
is a significant increase in performance when the shared space is
replaced by independent latent spaces. This indicates that the
type of elements included in A and B has different joint effects
on the formation of energy and stability., The linear
transformation for the latent functions in the LMC-SV-LVGP(I)
model is

formation energy] _ _[141 0.08]. f1]
stability ]_Wf(s) a [0.80 1.12] [fz - (25

The first latent function f; dominates the prediction of

formation energy while the second latent function f,
contributes the most for the stability prediction, indicating a large
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discrepancy between the two responses. We show the latent
space of two qualitative variables in Figure 11, which contains
rich information on the effects of element types.
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FIGURE 10: Boxplots of RMSE over 10-fold CV for all the models
in the third case study. The left and right figures correspond to formation
energy and stability, respectively.
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FIGURE 11: Latent space of LMC-SV-LVGP(I) trained on the
ternary oxide materials dataset. The first (second) row shows the latent
space for element A (B) in the molecular formula. The first (second)
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For example, elements in position 4 form four clusters in
the latent space for the first latent function. The majority of
elements in each cluster belong to a specific element group in the
periodic table, i.e., the alkali element group (marked by a red
ellipse), the alkaline-earth element group (marked by a blue
ellipse), the first and second half of the lanthanides element
group (marked by a green and a yellow ellipse, respectively).
Since f; dominates the prediction of formation energy, this
clustering indicates that these groups have different effects on
the formation energy. In contrast, there are only three clusters in
the latent space for f,, with the elements from the lanthanides
element group being merged into the same cluster (marked by a
red ellipse), indicating that all lanthanides elements have a
similar influence on stability. Moreover, the proposed models

require less time for the training and prediction after replacing
the large data with 100 inducing points, thereby greatly reducing
the time for high-throughput materials filtering or iterative
design.

5.4 Data-driven Aperiodic Metamaterials System
Design

In this case study, we demonstrate the usefulness of the
proposed method in data-driven multiscale designs by applying
it to a large database of unit-cell metamaterials for the design of
aperiodic complex metamaterial systems [5, 40]. The
microstructures are composed of two different base materials
with one stiffer than the other. There are four variables to
describe the microstructure of metamaterials, the volume
fraction x of the stiff material, the class of microstructure t,,
the type of stiff material t, and the type of soft material t;.
x € [0,1] is a quantitative input for the surrogate model while t;
through t; are qualitative inputs with the definition of their
discrete levels shown in Figure 12. Large data is expected for
such problems due to the high number of possible combinations.
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FIGURE 12: CQualitative variables of metamaterials. (a)
Microstructure classes with red and yellow regions represent the stiff
and soft base materials, respectively. (b) and (c) show Young’s moduli
and Poisson’s ratios for different choices of the stiff material and the
soft material, respectively.

We generated 19,200 microstructures with precomputed
stiffness tensor by uniformly sampling 100 volume fraction
values x for each possible combination of qualitative variables.
The stiffness tensor is calculated through energy-based
homogenization which takes 3 hours to compute for the whole
database on a single CPU (Intel i7-9750H 2.6GHz). Note that
this evaluation process is only performed once for the database
construction but can be applied to numerous data-driven design
cases. Independent entries of the stiffness tensor, i.e.,
C11,Cq2,Cyy and Css, are viewed as outputs for the surrogate
model. SV-LVGP, LMC-SV-LVGP(S), LMC-SV-LVGP(I) with
four latent functions, NN and XGBoost are trained on this
metamaterial dataset to compare the predictive precision, as
shown in Figure 13.

The three proposed models have much higher predictive
power than both NN and XGBoost. While the single-response
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SV-LVGP model has the best performance, the difference among
the three proposed models is not so obvious. However, as
demonstrated in [5], LMC-SV-LVGP(S) is more desirable in
metamaterial system design due to a much lower dimensionality
of the transformed design variables (a 7D vector). Moreover, the
latent space of LMC-SV-LVGP(S) provides a highly
interpretable distance metric for different qualitative variables,
as shown in Figure 14, which will be very beneficial for the
optimization process.
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FIGURE 13: Boxplots of RMSE over 10-fold CV for all the models
in the third case study. Each subfigure represents the result for an entry
in the stiffness tensor.

0.2

02

*DX . 0.06 5,
58 e 8 0.04 70,
z; 0 aq - Z; 0 o 2;0.02| a. °:
o B8H LTI 0 32'.1.
e % -0.02 "
-0.2 -0.2 ’
-0.2 0 0.2 -0.2 U] 0.2 0.05 0.1
2 Z Z
(a) (b) ©

FIGURE 14: Latent space of LMCSV-LVGP(S) trained on the
metamaterial database. (a) latent space of microstructure classes. (b)
latent space of the stiff material. (c) latent space of the soft material.

Specifically, different classes of microstructures are
distributed in a way that could reflect their similarity in the
directional characteristics of the stiffness tensor considering
multi-type responses. For example, classes A and B nearly
overlap in the latent space shown in Figure 14 (a), which agrees
with the fact that they have almost equivalent stiffness tensor
under the homogenization assumption. Classes C and D are the
closest neighbors for each other since they are the only pair with
diagonal rods to resist shear strain. By comparing Figures 14
(b)~(c) with Figures 14 (b)~(c), it can be noted that the latent
embeddings for the stiff and soft materials match well with the
underlying values of Young’s moduli and Poisson’s ratios. We
mark the two ascending directions for Young’s modulus and
Poisson’s ratio in the latent space, respectively. Materials with
similar Young’s modulus are close to each other in the latent

space. This indicates that Young’s modulus has a larger impact
on the stiffness tensor than Poisson’s ratio. To demonstrate the
usefulness of the proposed method in the multiscale
metamaterial systems design, we apply it in designing a
multiscale compliant mechanism [41], as shown in Figure 15 (a).

Consider a linear strained based actuator acting on the
component, which can be modeled as a spring with stiffness k =
0.1 and a force F;; = 1. We aim to maximize the displacement
Uyye performed on a workpiece modeled by a spring with
stiffness k through designing both macro- and microscale
configurations. The design region is discretized into a 60 X 40
coarse mesh with each element filled by a microstructure
discretized into a 200 X 200 finer mesh. The constraints
imposed on the volume fraction of the stiff and soft materials are
0.3 and 0.1, respectively. Each coarse element is associated
with the 7D transformed input vector as microscale design
variables, i.e., the volume fraction x of the stiff material and
three sets of 2D latent vectors for the class of microstructure t;,
the type of stiff material t, and the type of soft material t5,
respectively. Each coarse element also has a macroscale
topological design variable p € [0,1] with zero and one
representing void and solid, respectively. Therefore, we only
need an 8D design vector to represent the complex macro- and
microscale configurations for each coarse element. In contrast,
the conventional TO framework uses one-hot encoding to
represent the three qualitative variables, resulting in a 23D
design vector for each element, i.e., one macroscale topological
design variable p, 6D one-hot encoding for the class of
microstructure t;, and two sets of 8D one-hot encoding for the
type of stiff material t, and the type of soft material t;,
respectively. Moreover, the dimension of the design variables
will increase when more microstructure classes and materials are
considered, while the design variables in our framework remain
the same. This demonstrates the usefulness of the latent
representation for the qualitative variables in reducing the
dimension of design variables.
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FIGURE 15: (a) Problem setting and (b) optimized mechanism,
different types of stiff and soft materials are marked by red and blue
gradient colormaps, respectively.

With the above definition, we follow the multi-scale TO

framework proposed in [5] to optimize the macro-structure, the
microscale  configurations, and constituent materials
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simultaneously. Specifically, in each iteration, the proposed
LMC-SV-LVGP(S) model provides the homogenized stiffness
tensor and its gradient with respect to microscale design
variables for each coarse element. The method of moving
asymptotes [42] is then adopted to iteratively optimize the design
variables based on the sensitivity value. After the optimization,
the optimized multiscale design is obtained, which increases
Uyye from 0.0558to 1.3639, as shown in Figure 15 (b). Note
that all eight classes of microstructures are used in the optimized
structure, aligning in a way that matches with the main load-
bearing directions of the macrostructure. The joint regions of
different macroscale rods are composed of very soft materials,
serving as hinges for the mechanism. This demonstrates the
effectiveness of the simultaneous exploration of microscale
configurations as well as constituent materials. In contrast, the
periodic design obtained by using the same microscale design
variables for all coarse elements generates a much smaller output
displacement u,,; = 0.8147, highlighting the advantages of
aperiodic design. Moreover, due to the low-dimensional latent
variables and inexpensive LVGP model, the overall design
process only takes 253 iterations and less than two minutes to
converge even with 96 million fine elements in the FEA model.
In contrast, the conventional aperiodic multi-scale TO needs
more iterations to converge and requires around 22 minutes for
the on-the-fly homogenization process alone in each
optimization iteration. This demonstrates that the use of the
proposed surrogate model greatly accelerates the multiscale
design process featuring a large combinatorial design space.

6. CONCLUSIONS

In this work, we have proposed a novel GP modeling
approach that can accommodate big data with qualitative factors
and multi-type responses. The proposed model integrates three
modules based on the concept of latent variables, which has been
highlighted in this work as a powerful tool to reduce computation
complexity while increasing generality and interpretability. To
address the big data challenge for problems with qualitative
factors, we have first proposed the SV-LVGP model, which
extends sparse variational inference to the LVGP for scalable
modeling by using inducing points. The SV-LVGP model is
further generalized to cases with multi-type responses by
integrating the linear model of coregionalization with special
latent space structures. Comparative studies demonstrate that the
proposed model can easily handle 10*~10° training data
points and achieve a high prediction performance that can
compete with, and in most of the cases exceed, that of the state-
of-the-art machine learning methods such as NN and XGBoost.
The proposed model is also much easier to fit compared with
these latter counterparts because it does not require a significant
tuning effort. Moreover, we can gain considerable insights into
the joint effects of qualitative variables on the responses based
on the highly interpretable latent variable space. The most
remarkable demonstration of this interpretability comes from the
case study for ternary oxide materials, where clusters in the latent
space relate to different element groups. This differentiates our
method from other conventional black-box machine learning

models. Through designing a compliant mechanism, we
demonstrate that the design of multiscale metamaterial systems
is greatly accelerated by using the data-driven approach and the
proposed LVGP model that surrogates the material law of unit-
cell structures. These promising results indicate that our method
can be a useful tool to expedite designs where a large number of
levels are associated with each qualitative variable or the design
solutions are combinatorial in nature, such as the automated
design and discovery in emerging material systems.
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