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Scalable Gaussian Processes for
Data-Driven Design Using Big
Data With Categorical Factors
Scientific and engineering problems often require the use of artificial intelligence to aid
understanding and the search for promising designs. While Gaussian processes (GP)
stand out as easy-to-use and interpretable learners, they have difficulties in accommodating
big data sets, categorical inputs, and multiple responses, which has become a common chal-
lenge for a growing number of data-driven design applications. In this paper, we propose a
GP model that utilizes latent variables and functions obtained through variational inference
to address the aforementioned challenges simultaneously. The method is built upon the
latent-variable Gaussian process (LVGP) model where categorical factors are mapped
into a continuous latent space to enable GP modeling of mixed-variable data sets. By
extending variational inference to LVGP models, the large training data set is replaced
by a small set of inducing points to address the scalability issue. Output response vectors
are represented by a linear combination of independent latent functions, forming a flexible
kernel structure to handle multiple responses that might have distinct behaviors. Compar-
ative studies demonstrate that the proposed method scales well for large data sets with over
104 data points, while outperforming state-of-the-art machine learning methods without
requiring much hyperparameter tuning. In addition, an interpretable latent space is
obtained to draw insights into the effect of categorical factors, such as those associated
with “building blocks” of architectures and element choices in metamaterial and materials
design. Our approach is demonstrated for machine learning of ternary oxide materials and
topology optimization of a multiscale compliant mechanism with aperiodic microstructures
and multiple materials. [DOI: 10.1115/1.4052221]

Keywords: Gaussian process, machine learning, big data, categorical factor, multi-
response, latent variable, topology optimization, approximation-based optimal design,
artificial intelligence, data-driven design, design of engineered materials system

1 Introduction
Spurred by the growth in computation capability and data

resources, artificial intelligence is increasingly becoming an

indispensable tool to expedite a design process and facilitate knowl-
edge discovery in scientific and engineering problems [1]. As a non-
parametric modeling approach in artificial intelligence, Gaussian
processes (GPs) have come to prevail in the arena of surrogate mod-
eling with a wide range of applications in engineering designs, such
as emulating responses of expensive simulations [2], model calibra-
tion [3], sensitivity analysis, and uncertainty quantification [4].
However, Gaussian processes have limitations when applied to
complex design problems with challenging characteristics, such
as large data sets, categorical design variables, and multiple
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responses. Multiscale metamaterial systems design is one such
example. It requires numerous on-the-fly homogenization calcula-
tions for each new metamaterial system design due to a large
number of unit cells (microstructures) considered and the nested
iterations in multiscale design. In this case, data-driven design
methods can greatly accelerate the design process by using an inex-
pensive machine learning model to replace the costly on-the-fly
homogenization [5]. However, the design of such systems often
involves categorical variables, such as the type of microstructure
configurations and the choice of constituent materials [6,7], that
span an enormous combinatorial design space which can easily
lead to exponential growth in the size of the database. Meanwhile,
homogenized properties of interest for these metamaterials, e.g.,
stiffness tensors and thermal expansion coefficients, are examples
of multi-response problems with different physical implications
and behaviors for each response, lacking obvious distance metrics
to describe their discrepancies. There is a need to extend Gaussian
processes (GP) modeling to address the obstacles caused by big
data, categorical inputs, and multiple responses.
Considerable progress has been made in the literature to address

each of these three challenges separately. To accommodate big data,
various scalable GPs have been proposed [8]. Depending on the
nature of the approximations, they can be broadly classified into
two types. Globally approximated models focus on constructing
an approximated covariance matrix with lower complexity and
storage requirement by selecting a subset of the training data
[9,10], discarding uncorrelated entries to form a sparse covariance
matrix [11], or employing some reduced-rank structures for the
covariance matrix [12]. In contrast, locally approximated models
deploy the divide-and-conquer strategy by considering only a
subset of training data in the neighborhood of the query point to
compute the predictions [13]. Meanwhile, to handle categorical
factors and multiple responses, various modified covariance struc-
tures have been proposed. For example, different categories are
viewed as different responses with simplified covariance structures
[14,15] while non-separable covariance structures are devised to
describe multiple responses [16–19].
Recently, attempts have been made to simultaneously accommo-

date big data and multiple outputs [20]. However, it is not straight-
forward to extend these methods to handle categorical factors since
the existing frameworks for categorical inputs are usually incompat-
ible with those for big data or multiple outputs. For example, locally
approximated GPs require a distance metric defined in the input
variable space to obtain a subset around the query point.
However, defining appropriate distance metrics for categorical
input spaces is challenging. Therefore, to the best of the authors’
knowledge, no existing method can simultaneously address all
three challenges.
In this study, we propose a scalable latent-variable GP (LVGP)

modeling approach that can simultaneously accommodate a large
data set, categorical factors, and multiple outputs. Specifically, as

shown in Fig. 1, the proposed model integrates three GP variants
to handle each of the challenges, respectively, under one unified
latent-variable framework [21].
First, we adopt our previously proposed LVGP model to handle

categorical variables [5,22,23] by mapping them into a continuous
latent space to capture their joint effects on the responses. Second,
to address the challenge of big data, a sparse variational (SV)
approach is employed to replace the large data set with sparse
underlying inducing points to significantly reduce computation
and storage complexity [24]. Finally, we model multiple outputs
using a combination of independent latent functions, which is
known as the linear model of coregionalization (LMC) [18].
The above three GP variants are combined into one unified GP

modeling framework for large data sets with categorical inputs
and multiple responses. While large data GP modeling for multi-
response problems has been achieved using variational LMC
[20], our contribution lies in extending the sparse variational
concept to LVGP by defining inducing points in the latent space.
Additionally, we propose two latent space structures for extending
the LMCmodel to LVGP. The new synthesized GP model from this
work has the following desirable features:

• Generalizability: Conventional correlation functions for GP
modeling of continuous quantitative inputs can be readily
applied to the data set with categorical factors by using the
latent-variable representation. The model is also flexible for
accommodating multiple responses.

• Scalability: The model can easily handle a large data set with
n = 104 ∼ 105 data points in our case studies, reducing the
complexity from O(n3) to O(n3I ) with the number of inducing
points nI ≪ n.

• Accuracy: We demonstrate in our study that the proposed
model outperforms some of the state-of-the-art machine learn-
ing models, such as neural networks (multilayer perceptron)
and boosted trees [25].

• Interpretability: A highly interpretable latent space of categor-
ical variables obtained from the proposed approach provides
substantial insights into the black-box problem.

This synthesized GP model is useful for a wide range of data-
driven engineering design applications that involve a combinatorial
design space with mixed variables and multiple responses. The
aforementioned multiscale metamaterial system design is such an
example of complex engineering designs, which will be demon-
strated in our case studies. Other possible applications include the
discovery of new molecules with different combinations of atoms
and the design of composite components with various choices of
architectures and constituents that result in a combinational search
over mixed (categorical and quantitative) variables.
It should be noted that physics-informed machine learning

(PIML) [26] is emerging as another promising tool to improve the
generalizability and interpretability of models, and it has been suc-
cessfully applied to many design applications [27–31]. However,
fundamental differences exist between our method and these
physics-informed models, in terms of application scope and func-
tionality. PIML mainly focuses on solving partial differential equa-
tions (PDE) functions and requires prior knowledge or some
reduced-order physical models [32]. In contrast, our model targets
general design cases for which prior knowledge and efficient
reduced-order models are unavailable. Also, our method is intended
to address the relationship between categorical inputs and multiple
responses based on larger data sets. In contrast, PIML methods
mainly consider PDE-related systems with quantitative inputs and
a small or even no training data set.
The remaining paper is organized as follows. In Sec. 2, we

provide a brief overview of the conventional Gaussian process mod-
eling and explain its limitations with large data sets, categorical
factors, and multiple outputs. Three aspects of the proposed
approach are described in Sec. 3 by presenting three corresponding
GP variants. Integration of these variants in developing a

Fig. 1 Three aspects integrated into the proposed Gaussian
process model
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synthesized GP model is presented in Sec. 4. In Sec. 5, to validate
the effectiveness, we compare the proposed method with some
state-of-the-art machine learning models on two numerical exam-
ples, and two engineering examples: one on multi-response
machine learning for ternary oxide materials, and another on the
data-driven design of aperiodic metamaterial systems. We conclude
in Sec. 6 and discuss the scope for future applications.

2 Review of Gaussian Process Modeling
In this section, we provide an overview of GP modeling and

explain the challenges posed by mixed variables, large data sets,
and multiple responses. For a single-output computer simulation
model y(x) with only quantitative inputs x= {x1, x2, …, xp}∈Rp,
we assume y(x) is a realization of a stochastic process

Y(x) = hT (x)β + G(x) (1)

where h(x) is the prior mean function comprised of a vector of pre-
defined basis functions h(x)= [h1(x), …, hm(x)]

T, β= [β1, …., βm]
T

is a vector of unknown weights for basis functions and G(x) is a sta-
tionary multivariate Gaussian process with its covariance function
defined as

cov(G(x), G(x′)) = σ2r(x, x′) (2)

where σ2 is the prior variance and r( · , · ) is the correlation function.
Among numerous existing correlation functions, the Gaussian cor-
relation function is commonly used

r(x, x′) = exp{−(x − x′)TΦ(x − x′)} (3)

where Φ = diag(ϕ) and ϕ= [ϕ1, ϕ2, …, ϕp]
T are scaling parame-

ters to characterize the variability of the sample functions. The con-
struction of a GP model requires estimating the hyperparameters β,
ϕ, and σ2 based on the size-n training data set with input X =
{x(1), x(2), . . . , x(n)}T and output y= {y(1), y(2), …, y(n)}T. A
common way to determine the GP model parameters is to find a
point estimate via maximum likelihood estimation (MLE).
Herein, we assume a constant prior mean function with hT(x)β=
β for the GP model. The corresponding log-likelihood can be
given after ignoring the constants

Lln(ϕ, β, σ2) = −
1
2
ln |K(ϕ)|− 1

2σ2
(y − 1β)T · K(ϕ)−1 · (y − 1β)

(4)

where ln( · ) is the natural logarithm, 1 is an n× 1 vector of ones, and
K is the n× n covariance matrix with Kij= σ2r(x (i), x ( j)) for i, j= 1,
…, n. The hyperparameters are estimated by maximizing Eq. (4).
With these estimated hyperparameters σ̂2, β̂, and ϕ̂, the prediction
ŷ(x∗) at any x* can be obtained as

ŷ(x∗) = β̂ + rTK−1(y − 1β̂) (5)

where r(x*)= [r(x*, x (1)), r(x*, x (2)),…, r(x*, x (n))]T. The posterior
covariance between the responses at the two given data points x*

and x′ is obtained as

cov(y∗, y′) = σ̂2r(x∗, x′) − r(x∗)TK−1r(x′) (6)

For more detailed illustrations and implementation of the GP
modeling, readers are referred to [33].
As discussed in Sec. 1, this conventional Gaussian process will

encounter various obstacles when applied to a large data set with
categorical inputs and multiple outputs. First, existing correlation
functions are devised for quantitative variables and fail to accom-
modate categorical variables. For example, the correlation function
in Eq. (3) relies on a distance metric defined for input variables to
describe the correlation between responses at different data
points. However, discrete categories of categorical inputs only
serve as a nomenclature without any well-defined distance metric.

Second, GP models suffer from prohibitive computational costs
and storage requirements on large data sets, due to computing
K−1 and |K| in Eq. (4). The subsequent computational and storage
complexities are O(n3) and O(n2), respectively. Third, it is not
trivial to extend this GP model for multiple outputs obtained from
simulators that jointly simulate different types of quantities [17].
While training an independent single-response GP model for each
output is straightforward, it entails a time-consuming training
process, especially for large data sets. Also, if the correlation
between outputs is poorly captured, the GP model will result in a
poor prediction power and inappropriate joint uncertainty
representation.

3 Variants of Gaussian Processes for Addressing Data
Challenges
In this section, we discuss three GP variants to address the data

challenges associated with categorical factors, big data, and multi-
ple outputs, respectively. These variants are all built upon the
concept of latent representation, including the LVGPmodel for han-
dling categorical inputs, a sparse variational GP (SVGP) model with
inducing points for managing big data challenges, and a GP model
with the linear model of coregionalization (LMC) to predict multi-
ple outputs. These three variants will be integrated to form the pro-
posed scalable LVGP approach in Sec. 4.

3.1 LVGP Model for Categorical Factors. Different catego-
ries of categorical variables lack a well-defined distance metric,
which precludes the use of conventional kernels devised for quan-
titative variables. However, as illustrated in mapping A of Fig. 2, for
a physical model, there are always some underlying quantitative
physical variables that explain the effects of any categorical factor
on the response(s). Space spanned by these (perhaps extremely
high-dimensional) underlying physical variables induces a natural
distance metric between different categories of the categorical vari-
ables. Therefore, according to sufficient dimension reduction argu-
ments [34,35], we could assume a low-dimensional latent space to
capture the joint effects of these underlying variables, as shown in
mapping B of Fig. 2. Based on this insight, we recently proposed an
LVGP model to enable GP modeling for a data set with categorical
inputs [5,23]. This method has been shown to have advantages over
state-of-the-art counterparts, such as GPs with unrestrictive covari-
ance [36], multiplicative covariance [15], and additive covariance
[14], in terms of predictive power and model interpretability [23].
Specifically, consider a single-response computer simulation

model y(u) with input u= [xT, tT]T containing both quantitative vari-
ables x= [x1, x2, …, xp]

T∈Rp and categorical variables t= [t1, t2,
…, tq]

T, with the jth categorical factor tj∈ {1, 2…, lj}, where lj∈
N+ is the total number of categories for tj. By assuming a
g-dimensional latent vector zj(tj)= [zj,1(tj), …, zj,g(tj)]

T∈Rg for
each tj, the original mixed-variable input x can be transformed

Fig. 2 Illustration of the latent-variable representation for cate-
gorical factors. The shape here represents the categorical
factors for geometry design.
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into quantitative input vector s= [xT, z(t)T]T ∈Rp+q*g, where z(t) =
[z1(t1)

T, …, zq(tq)
T]T. The standard GP model can then be modified

as (using a constant mean function)

Y(s) = β + G(s) (7)

cov(G(s), G(s′)) = σ2r(s, s′) (8)

Since the transformed input vector s contains only quantitative
variables, we can use any existing correlation function in
Eq. (8). Herein, we still adopt the prevailing Gaussian correlation
function

r(s, s′) = exp{−(x − x′)TΦ(x − x′) − (z − z′)TΦz(z − z′)} (9)

It should be noted that this correlation function contains two sets of
parameters to be estimated: scaling parameters Φ for quantitative
variables and the set of latent vectors mapped from the categorical
variables Z =

⋃q
i=1 {zi(1), . . . , zi(li)}. The scaling parameter matrix

Φz for latent variables is fixed to be an identity matrix in LVGP
since these scaling factors are absorbed into the estimated latent-
variable values Z. In our previous work [23], we follow the same
procedure in Sec. 2 to estimate the values of β, σ2, Φ, and Z via
MLE.
LVGP enables easy integration with Bayesian optimization,

which has been successfully applied in materials discovery and
design [22,37]. However, like conventional GPs, LVGPs also
require enormous computation and storage resources when
applied to big data. Moreover, the original LVGP could only
accommodate a single response instead of multiple responses. To
address these, we need to integrate LVGP with the two GP variants
introduced in the following subsections.

3.2 SVGP for Big Data. In this subsection, we introduce the
concept of the sparse variational (SV) model where an artificial
training data set that is much smaller than the original training set
is used to provide approximately equivalent covariance informa-
tion. These artificial training points, also called inducing points,
might not be observed in the original training data and are not nec-
essarily obtained from a real physical model. Instead, the locations
and responses of these inducing points are estimated by stochastic
variational inference [21] from the collected big data. This type of
model, which is also called the sparse variational model [24], was
demonstrated in Ref. [8] to have a good balance between scalability
and predictive power across a variety of examples.
Consider a large training data set with quantitative input data

X = [x(1), x(2), . . . , x(n)]T and observed response data y= [y(1),
y(2), …, y(n)]T, where n is the size of the training data. In construct-
ing the conventional GP model in Sec. 2, we assume a unified mul-
tivariate Gaussian distribution for the residual process G(·) at n

training input data points X and n∗ query input data points X∗

G(X∗)
G(X)

[ ]
= G∗

G

[ ]
∼ N 0, K∗∗ K∗X

KT
∗X KXX

[ ]( )
(10)

where K*X is an n∗ × n cross-covariance matrix between responses
at X∗ and X, K** is an n∗ × n∗ covariance matrix for X∗, and KXX is
an n× n covariance matrix for X. KXX plays an essential role in both
the training and prediction stages, as shown in Eqs. (4)–(6). We are
using the covariance information of the training data stored in KXX
to predict responses at S∗. In other words, G* at the query points X∗

can be “explained” by G at the training pointsX, as illustrated in the
first row of Fig. 3.
However, as discussed in Sec. 2, the use of this n× n covariance

matrix KXX is the primary contributor to the curse of dimensionality
in GP modeling. To address this issue, we assume that there is a
small set of inducing points at the locationXI (nI≪ n), with the resi-
dual process G(XI) subjects to

G(X)
G(XI)

[ ]
= G

GI

[ ]
∼ N 0,

KXX KXI

KT
XI KII

[ ]( )
(11)

as illustrated in the second row of Fig. 3. Following the same logic
in Eq. (10), G at the size-n training data set X can be “explained” by
GI at the size-nI inducing input data points XI. The inducing points
can now replace the original data to improve efficiency. Under this
setting, besides the original parameters in the LVGP model, we also
need to estimate the locations and the corresponding GI of these
inducing points during the training process. To achieve this, a var-
iational distribution is defined to approximate the posterior

q(G, GI) = p(G|GI)q(GI) (12)

where q(GI) =N (GI; μ, Σ) is the probability density function of
the marginal variational distribution and p(G|GI) is the conditional
distribution that is readily obtained from Eq. (11). With these,
parameters to be estimated include β, σ2, Φ, μ, Σ, XI, and GI.
Since maximizing the likelihood function will involve the costly
calculation of K−1

XX and |KXX|, we turn to estimate parameters by
maximizing the evidence lower bound (ELBO)

ELBO = Lt − DKL[q(G, GI)||p(G, GI)] (13)

with the likelihood term Lt and the Kullback–Leibler (KL) diver-
gence DKL[q(G, GI)||p(G, GI)] given as

Lt =
∫
log[ p(y|G )] · N (G; Aμ, AΣAT + B)dG (14)

DKL[q(G, GI)||p(G, GI)]

=
1
2

log
|KII|
|Σ|

( )
− nI

{ }
+
1
2
tr(K−1

II Σ) + (0 − μ)TK−1
II (0 − μ) (15)

where A = KIXK−1
II and B = KXX − KXIK−1

II K
T
XI. From Eqs.

(13)∼(15), we note that the evaluation of ELBO does not involve
the expensive calculation of K−1

XX and |KXX|. Instead, it only requires
K−1

II and |KII| with the calculation complexity reduced to O(n3I ). The
storage requirement can be reduced to O(n2b) by using mini-batch
stochastic gradient descent algorithms, where nb≪ n is the size of
mini-batch. After the training, prediction at query points X∗ can
be readily obtained as

ŷ(X∗) = β̂ + K∗IK−1
II (μ − 1β̂),

cov(X∗, X′) = (K∗IK−1
II )Σ(K∗IK−1

II )
T + K∗∗ − K∗IK−1

II K
T
∗I

(16)

The prediction in Eq. (16) only depends on the sparse inducing
points and thus remains efficient even with a large training data
set. While this model only considers quantitative inputs, we
extend it to accommodate data sets with mixed-variable inputs in
Sec. 4.1.

Fig. 3 Covariancematrices used to describe residual processG
at query points based on training points (first row) and describe
G at the training points based on sparse inducing points (second
row)
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3.3. Linear Model Coregionalization for Multi-Type
Responses. In this section, we introduce the linear model of core-
gionalization (LMC) approach to handle multiple responses [18].
The key idea behind LMC is to represent a multivariate Gaussian
process by a linear combination of independent univariate Gaussian
processes. Consider a multi-response computer simulation model
y(x) with output y = [y1, y2, . . . , yNop ]

T ∈ RNop . Assume the prior
model for the outputs is constructed from a linear transformation
W ∈ RNop×L of L (L≤Nop) independent latent functions f (x)

Y(x) = β + G(x) =Wf (x) (17)

where β is a vector of prior means, G = [G1, G2, . . . , GNop ]
T is a

multi-response stationary Gaussian process, f (x) = { fl(xl)}Ll=1, and
fl(xl) is an independent Gaussian process with its covariance
defined to be

covl( fl(xl), fl(x′l)) = σ2rl(xl, x′l) (18)

where rl( · , · ) has the same definition as in Eq. (3). By using this
LMC structure, the covariance of multi-response stationary Gauss-
ian process G is given by

cov(Gi(x), Gj(x′)) =
∑L

l=1
Wilcovl( fl(xl), fl(x′l))Wjl (19)

This can be written in matrix form as

KXX′ (G(X), G(X′)) =
∑L

l=1
Kl, XX′ ⊗ Tl (20)

where Tl =W :,lWT
:,l with W:,l being the lth column of W, ⊗ is the

Kronecker product. To estimate parameters in the LMC model,
we can follow a similar approach in Sec. 2 to obtain MLEs [16].
We chose this model over other alternatives, such as convolved
Gaussian Processes [16,38], due to its relative ease of training
and its compatibility with the other GP variants integrated into
the proposed model, which will be further illustrated in Sec. 4.2.

4 Scalable Multi-Response Latent-Variable Gaussian
Process
In this section, we illustrate how the three GP variants are inte-

grated for scalable multi-response latent-variable Gaussian
process modeling. We first extend the sparse variational inference
to LVGP, enabling scalable modeling on a large data set with cate-
gorical factors. This sparse variational LVGP (SV-LVGP) is then
generalized to multiple responses by integrating LMC models
with specially devised latent spaces of the categorical variables.

4.1 Extension of Variational Inference to LVGP. As men-
tioned in Sec. 3.2, the essence of the SV model is to approximate
the covariance information with a set of inducing points. In the
LVGP model, the original inputs u= [xT, tT]T with both

quantitative xT and categorical factors tT are transformed to quanti-
tative inputs s= [xT, z(t)T]T by mapping categories of categorical
factors t to the corresponding latent vectors z. As a result, there
are two different input spaces u and s that can be used to define
the locations of inducing points, as illustrated in Fig. 4.
For the former (shown in the left column of Fig. 4), the varia-

tional inference process for the inducing points will become a
mixed-variable optimization problem that is computationally
expensive and sensitive to initialization. Therefore, we define the
locations of inducing points in the transformed quantitative input
space, as shown in the right column of Fig. 4. We denote the loca-
tions of inducing points, transformed training points, and query
input data points as SI, S, and S∗, respectively. The SVGP
defined in Eqs. (10)∼(16) can be introduced into LVGP by
simply replacing XI, X, and X∗ with SI, S, and S∗, respectively.
The covariance matrices involved are calculated through Eqs. (8)
and (9). We name this new integrated model as sparse variational
latent-variable GP (SV-LVGP). In SV-LVGP, parameters to be esti-
mated include β, Φ, Z, μ, Σ, SI, and GI, which can be obtained by
maximizing the ELBO as discussed in Sec. 3.2. Note that Z and SI
are simultaneously optimized in the training process. The feasibility
of this practice is grounded in the observation that these two param-
eters are coupled together in the covariance matrices involving
inducing points in ELBO. For better estimation of the inducing
points SI, we can fix the latent vectors Z in the later stages of opti-
mization and optimize only SI. This SV-LVGP model can now
accommodate a large data set with categorical factors. It is highly
scalable since the computational and storage complexity remain
O(n3I ) and O(n2b), respectively, with the number of inducing points
nI ≪ n.

4.2 Extension of Linear Model of Coregionalization to
SV-LVGP. In this subsection, we extend LMC to the proposed
SV-LVGP model for multiple responses and present two types of
model structures (illustrated in Fig. 5)—one with independent
latent spaces and one with shared latent spaces. Specifically, to
achieve this extension, the domain of latent functions in LMC is
changed from the original mixed categorical-quantitative input
space to the transformed quantitative input space of SV-LVGP. In
general cases, the categorical variables might show different joint
effects on different responses. Accordingly, we may construct an
independent latent-variable space for each latent function in LMC
to capture different effects of categorical variables, as shown in
the first row of Fig. 5.
With this independent latent space structure, the original LMC

model is changed to

Y(u) = β + G(s) =Wf (s) (21)

where s= [xT, z(t)T]T∈Rp+L*q*g is the mapped input corre-
sponding to u, z(t)= [z1(t1)

T, …, zq(tq)
T]T∈RL*q*g is the

assembled latent vector for all categorical variables with
zi(ti) = [zi,{1}(ti)T , . . . , zi,{L}(ti)T ]T ∈ RL∗g, zi,{l}(ti)∈Rg is the
latent vector of ti for the lth latent function, f (s) = { fl(sl)}Ll=1 with
sl = [xT , zT1,{l}, . . . , z

T
q,{l}]

T . The definition of the correlation function
rl( · , · ) in Eq. (18) is changed to the one for LVGP as in Eq. (9). We
could then follow the same procedure in Sec. 4.1 of introducing
inducing points (SI, GI) for scalable GP modeling, but the computa-
tional complexity will surge to O(N3

opn
3
I ) due to the Kronecker

product in Eq. (20). To avoid this significant increase in the compu-
tational costs, we propose to use the values of the latent functions
f(SI) as the response data for the inducing points, instead of the
final residual function G(SI). KII is now a block diagonal matrix,
and the computational complexity is reduced to O(Ln3I ). Note that
different latent functions in LMC will have different inducing
points since they are defined on independent latent-variable spaces.
We will refer to this model as LMC-SV-LVGP(I).
In practice, one could impose constraints on the structure of the

different latent-variable spaces based on prior knowledge of the

Fig. 4 Defining the locations of inducing points in (a) the mixed-
variable input space and (b) the transformed quantitative input
space
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physical model to reduce the number of model parameters. For
example, when the categorical variables have similar joint effects
on responses, higher efficiency and interpretability can be achieved
by using a special structure shown in the second row of Fig. 5, in
which the latent functions share the same latent-variable space for
all the categorical variables. Specifically, we modify the definition
of the latent vector by setting zi,{l}(ti)

T≡ zi,{1}(ti)
T and

zi(ti) = [zi,{1}(ti)T ]T ∈ Rg. Moreover, we now estimate a different
scaling parameter matrix Φz for the latent variables (in Eq. (9)) in
different latent functions, instead of fixing them to be the identity
matrix as was done earlier. These scaling parameters would
account for small differences in the effects of the categorical vari-
ables on the different responses. We refer to this variant with the
shared latent-variable space as LMC-SV-LVGP(S). Compared to
the more general model with independent latent spaces,
LMC-SV-LVGP(S) sacrifices some flexibility for improving opti-
mization efficiency with fewer parameters and inducing points to
be estimated. Moreover, in the case that the categorical variables
indeed have similar joint effects on different responses, the
LMC-SV-LVGP(S) model will have comparable performance.
We will highlight these trade-offs in Sec. 5.

5 Comparative Case Studies
We include two numerical examples for numerical performance

comparisons and two engineering problems to demonstrate the use-
fulness of the proposed methods in data-driven design, including
machine learning of ternary oxide materials and topology optimiza-
tion of a multiscale compliant mechanism. To validate the effective-
ness of our proposed methods, we compare them against two
machine learning methods that are commonly used for big data:
neural networks (NN) [39] and extreme gradient boosted decision
trees (XGBoost) [25]. The former has been extensively used in data-
driven designs due to its flexibility and capability of handling many
regression problems, even with only two hidden layers [39,40]. The
latter has achieved excellent results over a wide range of problems
and is recognized as a powerful tool in handling categorical and
numerical inputs [41,42], as is the case here. Consequently, these
models constitute an appropriate baseline for comparison to our
approach. For all case studies, 10-fold cross-validation (CV) was
performed for all the models to compare their predictive power.

Note that the hyperparameters of the NN and XGBoost models
were tuned in an additional CV process before the comparative vali-
dation to ensure the best performance. Specifically, a random grid
search with 4000 iterations and 10-fold CV (i.e., 40,000 separate
models were trained) was performed in the hyperparameter selec-
tion for NN and XGBoost, respectively, with the search space
shown in Tables 1 and 2. A batch normalization layer was inte-
grated into each hidden layer for a faster learning rate and better
generalizability.
In contrast, we intentionally avoid this exhaustive tuning process

for all the proposed GP models to demonstrate their ease of use and
generality. The proposed GP models are implemented using the
GPflowpackage [43] in PYTHON. The initial latent vectors for categor-
ical variables are randomly assigned while the locations of the initial
inducing points are randomly selected from the training data.We use
the natural gradient optimizer [44] to optimize the variational param-
eters μ and Σ while the Adam optimizer [45] is adopted for all other
parameters for faster convergence and better parameter estimation
[46,47]. We train the GP models in batches of size 100 and set the
maximum number of training iterations to 20,000.

Fig. 5 Illustration of the latent space structures for LMC-SV-LVGP(I ) with indepen-
dent latent spaces (first row) and LMC-SV-LVGP(S) with shared latent space (second
row)

Table 1 The hyperparameter space of the random grid search
for NN

Number of
hidden layers

Neurons per
layer

Activation function
(of each individual layer) Learning rate

1, 2, 3, 4 4, 8, 16, 32,
64, 128

“Logistic,” “tanh,” “relu,”
“leaky-relu,” “linear”

0.05, 0.01,
0.005, 0.001

Table 2 The range of the random grid search for XGBoost

Parameter Rangea Parameter Range

Colsampleb [0.3, 0.7] Learning rate [0.03, 0.3]
Gamma [0.0, 0.5] Maximum depth [2, 6]
Number of estimators [100, 150] Subsamplec [0.4, 0.6]

aUniform distribution is assumed for each range.
bSubsample ratio of columns when constructing each tree.
cSubsample ratio of the training instances.
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5.1 Single-Response Math Function. In this case study, we
focus on a large single-response data set with categorical variables
generated by a math function [48] given as

y =

7sin(2πx1 − π) + sin(2πx2 − π), if t = 1
7sin(2πx1 − π) + 13sin(2πx2 − π), if t = 2
7sin(2πx1 − π) + 1.5sin(2πx2 − π), if t = 3
7sin(2πx1 − π) + 9.0sin(2πx2 − π), if t = 4
7sin(2πx1 − π) + 4.5sin(2πx2 − π), if t = 5






(22)

where x1, x2∈ [0, 1] are continuous quantitative variables and t∈
{1, 2, 3, 4, 5} is a categorical variable with five categories represent-
ing different coefficients for the second sine function. Therefore, the
true ordering of different categories should be 1-3-5-4-2 based on
the second coefficient. We generate a large data set by sampling
on a 100 × 100 × 5 grid in the x1-x2-t space, rendering 50,000 data
points. To test the sensitivity of the model, we consider Gaussian
random noise with three different levels of standard derivation
(SD), i.e., no noise (SD= 0.0), low noise (SD= 0.4), and high
noise (SD= 4.0). We adopt a 2D latent space to represent the cate-
gorical variable in SV-LVGP, which is reported in Ref. [23] to be
sufficient for most physical problems. To study the influence of
the number of inducing points, we trained a set of SV-LVGP
models with 50, 100, and 500 inducing points, respectively. The
performance is measured by root-mean-squared error (RMSE), as
shown in Fig. 6. It should be noted that while we use normalized
data during the training process with the normalized mean-squared
error as a loss function, the RMSE values shown in the boxplots of
all the examples are mapped back to the original range of responses
without normalization. Therefore, in the ideal predictive perfor-
mance case, the RMSE value will equal the corresponding noise
SD value with noisy data.
In no noise (SD= 0.0) and low noise (SD= 0.4) situations, our

SV-LVGP models outperform both NN and XGBoost, even with
only 50 inducing points. The reason for the poor performance of
NN and XGBoost may be due to the fact that the ordering of cate-
gories does not relate to their real underlying numerical values,
eliminating a critical clue for the modeling. As the number of induc-
ing points increases, so does the predictive power of SV-LVGP.
However, when the level of the noise is high (noise SD= 4.0),
using a larger number of inducing points does not significantly
improve the prediction quality. In fact, it even results in worse per-
formance. A possible reason is that a high level of noise in the data
increases the difficulty of estimating the inducing points, and there-
fore, models with more inducing points might require more careful
initialization of these parameters and/or a more robust training pro-
cedure. Moreover, since we have intentionally skipped hyperpara-
meter tuning for our proposed models to demonstrate their
robustness to this choice, the settings of the hyperparameters we
have used might not be optimal for training under high levels of
noise. Although XGBoost performs the best on the highly noisy
data set, the SV-LVGP model with 100 inducing points has a

similar performance. It should be noted that SV-LVGP models
achieve this high accuracy without tuning their hyperparameters
(which was done for NN and XGBoost), such as the learning rate
and batch size. The NNs exhibit a large variance in their perfor-
mances, while the SV-LVGPs have consistently better performance
with much less variation across different runs. This demonstrates
the robustness of the SV-LVGP model. Regarding the computa-
tional cost, the average training time is 1.2 min, 2.5 min, and
16.8 min for SV-LVGP with 50, 100, and 500 inducing points,
respectively. The sparse variational model, therefore, has a manage-
able training expense even with over 50,000 data points. In contrast,
although the NN and XGBoost models take less than a minute to
train, the computational cost of the pre-tuning stage is extremely
high. It took more than 18 h to find the optimal hyperparameters
in the pre-tuning stage even with parallel computing on 12 CPUs.
Finally, the proposed model provides interpretation for the cate-

gories of the categorical variable through the latent space shown in
Fig. 7. It can be seen that the latent vectors mapped from different
categories reside on a straight line with a correct ordering as
1-3-5-4-2. Thus, the correlation structure captured by this
mapping agrees closely with the real underlying numerical values
(the coefficient of the second sine function). Therefore, even
though the correlation information is lost in the categorical repre-
sentation, it can be rediscovered from the data by using the pro-
posed model. This could provide extra knowledge when applied
to an unknown physical model. In contrast, NN does not have
this interpretability while XGBoost fails to provide a quantitative
measure for the correlation between categories. Moreover, it
should be noted that the inducing points surround the latent

Fig. 6 Boxplots of RMSE over 10-fold CV for all the models in the first case study under dif-
ferent noise levels. Dashed lines represent the standard deviation of the Gaussian noise.

Fig. 7 Latent vectors and inducing points in the latent space of
SV-LVGPmodel with nI=500. The category of t corresponding to
each latent vector is marked in the figure.
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vectors in the latent space. This is because all categorical inputs in
the training data are mapped to those latent vectors. As a result,
regions around the latent vectors are the most critical to describe
the statistical characteristics of training data. This provides
another validation of the proposed method.

5.2 Multi-Response Math Function. In this example, we use
a mathematical multi-response data set to validate the effectiveness
of the LMC-SV-LVGP model. The corresponding multi-response
math function is

y1 =
∑2

i=1

xi(t2−i − 3)
80

+
∏2

j=1

cos
xj/
j

√
( )

cos
50(tj − 3)//

2
√

( )

y2 =
∑2

i=1

xi(t2−i − 3)
80

+
∏2

j=1

cos
xj/
j

√ −
( j − 1)π

2

( )
cos

50(tj − 3)//
2

√
( )

(23)

where y1, y2 are two responses, x1, x1∈ [−100, 100] are continuous
quantitative variables and t1, t2∈ {1, 2, 3, 4, 5} are categorical vari-
ables with five categories. Note that different categories of t1, t2 have
similar effects on the response, which can be reduced to a function of
a single underlying numerical variable. We intentionally design this
characteristic of categorical variables to demonstrate the ability of
the proposed model to discover underlying patterns. We generate a
large data set with 22,500 data points from a 30× 30× 5× 5
uniform grid in the x1-x2-t1-t2 space. Similarly, we consider three
levels of Gaussian noise for the data set, i.e., SD= 0.0, 0.1, and
1.0. Both single-response SV-LVGP and multi-response
LMC-SV-LVGP are considered in this case study. Specifically, we
fit an independent SV-LVGP model for each output, which will be
used as a reference for other multi-response models. For multi-
response LMC-SV-LVGP, we consider three different structures:
(a) LMC-SV-LVGP(S) model with just a single latent function for
the LMC kernel, which degenerates to the separable kernel [49],
(b) LMC-SV-LVGP(S) model with L= 2 latent functions for the
LMC kernel, and (c) LMC-SV-LVGP(I) model with L= 2 latent
functions for the LMC kernel. For all these models, 100 inducing
points are used for the sparse variational inference. The performance
of all the models over the 10-fold CV is given in Fig. 8.

It can be noted that all three LMC-SV-LVGP models have lower
average RMSE values than both NN and XGBoost. The more latent
functions considered in the model, the better the performance of
LMC-SV-LVGP. As before, the NN shows a large variance in the
predictive power across replicates, while our proposed models
have a more stable performance. For this example, there is no sig-
nificant difference between LMC-SV-LVGP models with shared or
independent latent space, indicating the similar joint effects of cat-
egorical variables on the two responses. It is interesting to note that
LMC-SV-LVGP models generally outperform the SV-LVGP
model. In fact, SV-LVGP can be viewed as a special case of the
LMC-SV-LVGP(I) model with theWmatrix restricted to be a diag-
onal matrix. Therefore, a more flexible structure to exploit common-
alities across responses should be the reason for the better
performance of LMC-SV-LVGP model over its single-response
counterpart. Also, it should be noted that it takes around 8 min in
total to train two separate SV-LVGP models. In contrast, it only
takes 5 min and 6.5 min to train LMC-SV-LVGP models with
shared and independent latent spaces, respectively. We show the
latent spaces of LMC-SV-LVGP(S) and LMC-SV-LVGP(I) with
L= 2 latent functions in Fig. 9.

Fig. 8 Boxplots of RMSE over 10-fold CV for all the models in the second case study under
different noise levels. The first and second rows present the result of the first and second
responses, respectively.

Fig. 9 Latent space of LMC-SV-LVGP(S) and LMC-SV-LVGP(I ).
The first (second) row presents the latent space for the first
(second) categorical variable.
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For the LMC-SV-LVGP(S) model with a shared latent space for
the two latent functions, different categories of the two categorical
variables are both equally distributed on a straight line and correctly
ordered as 1-2-3-4-5, which again agrees with the underlying
numerical t1, t2 in Eq. (23). For the LMC-SV-LVGP(I) model,
the two latent functions have independent latent space for the cate-
gorical variables. In this case, while similar equally spaced latent
points are observed for the second latent function, the latent embed-
ding of categorical variables for the first latent function has a very
different pattern. The reason can be explained from the linear trans-
formation for the latent functions with W learned from the training
process

Y(u) =Wf (s) = −0.02 1.14
−0.03 1.12

[ ]
· f1

f2

[ ]
(24)

Note that the weights assigned to the second latent function are
much larger than those of the first latent function, which indicates
that the second latent function dominates the prediction result. As
a result, the latent space of the second latent function captured
most of the correlation information between different categories
of categorical variables, implying a similar joint effect for the cate-
gorical variables on the two responses. This shows how the latent
space can help to extract knowledge on the input-output relations.

5.3 Machine Learning for Ternary Oxide Materials. Mate-
rials informatics require a machine learning model to replace the
expensive simulation or experiments in accelerating high-
throughput materials discovery and iterative design process [50].
In this case study, we demonstrate that the proposed method
lends itself well for use in machine learning for the combinatorial
design of materials composition, by applying it to predict both for-
mation energy and stability of ternary oxide materials. Specifically,
multi-response property data for 2030 ternary oxide materials have
been extracted from the Open Quantum Material Database
(OQMD) [51]. These ternary oxide materials have the molecular
formula as Ax1Bx2Ox3 , where A and B can be selected from a set
of 25 and 22 elements, respectively, and O is the oxygen atom. A
and B are categorical inputs, and x1∼ x3 are quantitative inputs,
forming a mixed-variable input space for the model with the forma-
tion energy and the stability as outputs. Seven models are trained on
the data set: (a). SV-LVGP with 100 inducing points, (b).
LMC-SV-LVGP(S) model with L= 2 latent functions and 100
inducing points, (c). LMC-SV-LVGP(I) model with L= 2 latent
functions and 100 inducing points, (d). NN, e. XGBoost, (f).
LMC-LVGP(I) model with L= 2 latent functions but no sparse var-
iational inference, and (g). LMC-SV-GP model with L= 2 latent
functions but no latent-variable representation. In the

LMC-LVGP(I) model, we have intentionally disabled the SV
model to demonstrate its usefulness in reducing the computational
expanse. It should be noted that we truncated the LMC-LVGP(I)
training at 4000 iterations (which corresponded to more than 5 h)
due to excessive training time. Similarly, in the last model, we
have intentionally disabled the LV component of our proposed
models to show its effectiveness in handling categorical data, espe-
cially when the categorical variables have a large number of catego-
ries, as is the case here.
From their RRMSE values over 10-fold CV shown in Fig. 10, it

can be concluded that all three SV-LVGP models, i.e., SV-LVGP,
LMC-SV-LVGP(S), and LMC-SV-LVGP(I), outperform both NN
and XGBoost in predicting the formation energy and stability.
Multi-response LMC-SV-LVGP models perform better than single-
response SV-LVGP as before. This indicates the use of the LMC
model can better accommodate multiple responses with different
behaviors. Note that LMC-LVGP has a similar performance as
XGBoost but much worse than that of other SV-LVGP models.
Although its performance most likely would be improved if more
training iterations are performed, we truncated the training at
4000 iterations (>5 h), because this is already more than two
orders of magnitude larger than the training time (<5 min) for all
the SV-LVGP models. This demonstrates the importance and use-
fulness of including the SV feature. Moreover, without the latent-
variable representation, the LMC-SV-GP model, which does not
include the LV representation, has much worse performance than
the LMC-SV-LVGP models, with its RMSE values close to that
of NN. This shows that the ordering of the categories captured by
the LV representation is extremely important given the larger
number of categories per categorical variable.
Among the LMC-SV-LVGP models, there is a significant

increase in performance when the shared space is replaced by inde-
pendent latent spaces. This indicates that the type of elements
included in A and B has different joint effects on the formation of
energy and stability. The linear transformation for the latent func-
tions in the LMC-SV-LVGP(I) model is

formation energy
stability

[ ]
=Wf (s) = 1.41 0.08

0.80 1.12

[ ]
· f1

f2

[ ]
(25)

The first latent function f1 dominates the prediction of formation
energy while the second latent function f2 contributes the most to
the stability prediction, indicating a large discrepancy between the
two responses.
We show the latent space of two categorical variables in Fig. 11,

which contains rich information on the effects of element types. For
example, elements in position A form four clusters in the latent
space for the first latent function. The majority of elements in

Fig. 10 Boxplots of RMSE over 10-fold CV for all the models in the third case study. The left
and right figures correspond to formation energy and stability, respectively.
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each cluster belong to a specific element group in the periodic table,
i.e., in order from top to bottom, the alkali element group (marked
by a red ellipse), the alkaline-earth element group (marked by a blue
ellipse), the first and second half of the lanthanides element group
(marked by a green and a yellow ellipse, respectively). Since f1
dominates the prediction of formation energy, this clustering indi-
cates that these groups have different effects on the formation
energy. In contrast, there are only three clusters in the latent
space for f2, with the elements from the lanthanides element
group being merged into the same cluster (marked by the red
ellipse on the top left corner), indicating that all lanthanides ele-
ments have a similar influence on stability. Moreover, the proposed
models require less time for the training and prediction after

replacing the large data with 100 inducing points, thereby greatly
reducing the time for high-throughput materials filtering or iterative
design.

5.4 Data-Driven Aperiodic Metamaterials System Design.
In this case study, we demonstrate the usefulness of the proposed
method in data-driven multiscale designs by applying it to a large
database of unit-cell metamaterials for the design of aperiodic
complex metamaterial systems [5,52]. The microstructures are com-
posed of two different base materials with one stiffer than the other.
There are four variables to describe the microstructure of metama-
terials, the volume fraction x of the stiff material, the class of micro-
structure t1, the type of stiff material t2, and the type of soft material
t3. x ∈ [0, 1] is a quantitative input for the machine learning model
while t1 through t3 are categorical inputs with the definition of their
discrete categories shown in Fig. 12. Large data are expected for
such problems due to the high number of possible combinations.
We generated 19,200 microstructures with precomputed stiffness

tensor by uniformly sampling 100 volume fraction values x for
each possible combination of categorical variables. The stiffness
tensor is calculated through energy-based homogenization which
takes 3 h to compute for the whole database on a single central pro-
cessing unit (CPU; Intel i7-9750H 2.6 GHz). Note that this evalua-
tion process is only performed once for the database construction
but can be applied to numerous data-driven design cases. Indepen-
dent entries of the stiffness tensor, i.e., C11, C12, C22, and C33, are
viewed as outputs for the model. SV-LVGP, LMC-SV-LVGP(S),
LMC-SV-LVGP(I) with four latent functions, NN and XGBoost
are trained on this metamaterial data set to compare the predictive
precision, as shown in Fig. 13.
The three proposed models have much higher predictive power

than both NN and XGBoost. While the single-response
SV-LVGP model has the best performance, the difference among
the three proposed GP models is not so obvious. However, as dem-
onstrated in Ref. [5], LMC-SV-LVGP(S) is more desirable in meta-
material system design due to a much lower dimensionality of the
transformed design variables (a 7D vector). Moreover, the latent
space of LMC-SV-LVGP(S) provides a highly interpretable dis-
tance metric for different categorical variables, as shown in
Fig. 14, which will be very beneficial for the optimization process.

Fig. 11 Latent space of LMC-SV-LVGP(I ) trained on the ternary
oxide materials data set. The first (second) row shows the latent
space for element A (B) in the molecular formula. The first
(second) column shows the latent space used in the first
(second) latent function.

Fig. 12 Categorical variables of metamaterials: (a) microstruc-
ture classes with red (dark) and yellow (light) regions represent
the stiff and soft base materials, respectively, (b) Young’s
moduli and Poisson’s ratios of different stiff materials, and (c)
Young’s moduli and Poisson’s ratios of different soft materials

Fig. 13 Boxplots of RMSE over 10-fold CV for all the models in
the fourth case study. Each subfigure represents the result for an
entry in the stiffness tensor.
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Specifically, different classesofmicrostructures aredistributed in a
way that could reflect their similarity in the directional characteristics
of the stiffness tensor. For example, classes A andBnearly overlap in
the latent space shown in Fig. 14(a), which agrees with the fact that
they have almost equivalent stiffness tensor under the homogeniza-
tion assumption. Classes C and D are the closest neighbors to each
other since they are the only pair with diagonal rods to resist shear
strain. By comparing Figs. 14(b) and 14(c) with Figs. 10(b) and
10(c), it is noted that the latent embeddings for the stiff and soft mate-
rials match well with the underlying values of Young’s moduli and
Poisson’s ratios. We mark the two ascending directions for
Young’smodulus andPoisson’s ratio in the latent space, respectively.
Materials with similar Young’smodulus are close to each other in the
latent space. This indicates that Young’smodulus has a larger impact
on the stiffness tensor than Poisson’s ratio.
To demonstrate the usefulness of the proposed method in the

multiscale metamaterial systems design, we apply it in designing
a multiscale compliant mechanism [53], as shown in Fig. 15(a).
Consider a linear strained based actuator acting on the component,
which can be modeled as a spring with stiffness k= 0.1 and a force
Fin= 1. We aim to maximize the displacement uout performed on a
workpiece modeled by a spring with stiffness k through designing
both macro- and microscale configurations. The design region is
discretized into a 60× 40 coarse mesh with each element filled by
a microstructure discretized into a 200× 200 finer mesh. The con-
straints imposed on the volume fraction of the stiff and soft materi-
als are 0.3 and 0.1, respectively.
Each coarse element is associated with the aforementioned

7D transformed input vector as microscale design variables, i.e.,

the volume fraction x of the stiff material and three sets of 2D
latent vectors for the class of microstructure t1, the type of stiff
material t2 and the type of soft material t3, respectively. Each
coarse element also has a macroscale topological design variable
ρ∈ [0, 1] with zero and one representing void and solid, respec-
tively. Therefore, we only need an 8D design vector to represent
the complex macro- and microscale configurations for each coarse
element. In contrast, the conventional TO framework uses
one-hot encoding to represent the three categorical variables, result-
ing in a 23D design vector for each element, i.e., one macroscale
topological design variable ρ, 6D one-hot encoding for the class
of microstructure t1, and two sets of 8D one-hot encoding for the
type of stiff material t2 and the type of soft material t3, respectively.
Moreover, the dimension of the design variables will increase when
more microstructure classes and materials are considered, while the
design variables in our framework remain the same. This demon-
strates the usefulness of the latent representation for the categorical
variables in reducing the dimension of design variables.
With the earlier definition, we follow the multiscale TO frame-

work proposed in Ref. [5] to optimize the macrostructure,
the microscale configurations, and constituent materials
simultaneously. Specifically, in each iteration, the proposed
LMC-SV-LVGP(S) model provides the homogenized stiffness
tensor and its gradient with respect to microscale design variables
for each coarse element. The method of moving asymptotes [54]
is then adopted to iteratively optimize the design variables based
on the sensitivity value. After the optimization, the optimized multi-
scale design is obtained with uout= 1.3639, as shown in Fig. 15(b).
In contrast, the periodic design obtained by using the same

Fig. 14 Latent space of LMC-SV-LVGP(S) trained on the metamaterial database: (a) latent
space of microstructure classes, (b) latent space of the stiff material, and (c) latent space of
the soft material

Fig. 15 (a) Problem setting and (b) optimized mechanism, different types of stiff and soft
materials are marked by red and blue gradient colormaps, respectively
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microscale design variables for all coarse elements generates a
much smaller output displacement uout= 0.8147, highlighting the
advantages of aperiodic design. Note that all eight classes of micro-
structures are used in the optimized structure, aligning in a way that
matches with the main load-bearing directions of the macrostruc-
ture. The joint regions of different macroscale rods are composed
of very soft materials, serving as hinges for the mechanism. This
demonstrates the effectiveness of the simultaneous exploration of
microscale configurations as well as constituent materials. More-
over, due to the low-dimensional latent variables and inexpensive
LVGP model, the overall design process only takes 253 iterations
and less than two minutes to converge even with 96 million fine ele-
ments in the finite element analysis (FEA) model. In contrast, the
conventional aperiodic multiscale TO needs more iterations to con-
verge and requires around 22 min on the same computer platform
for the on-the-fly homogenization process alone in each optimiza-
tion iteration. This demonstrates that the use of the proposed
machine learning model greatly accelerates the multiscale design
process featuring a large combinatorial design space.

6 Conclusions
In thiswork,we have proposed a novelGPmodeling approach that

can accommodate big data with categorical factors and multiple
responses, addressing the emerging need in AI-assisted design.
The proposed model integrates three GP variants based on the
concept of latent variables, which has been highlighted in this
work as a powerful approach to reduce computation complexity
while increasing generality and interpretability. To address the big
data challenge for problems with categorical factors, we have first
proposed the SV-LVGP model, which extends sparse variational
inference to the LVGP for scalable mixed-variable GP modeling
using inducing points. The SV-LVGP model is further generalized
to cases with multiple responses by integrating the linear model of
coregionalization with special latent space structures. Comparative
studies demonstrate that the proposedmodel can easily handle 104 ∼
105 training data points and achieve a high prediction performance
that can compete with, and in most of the cases exceed, that of the
state-of-the-art machine learning methods such as neural networks
(multilayer perceptron) and XGBoost. While these latter counter-
parts could improve their performance with some advanced embed-
ding techniques, the proposed model is much easier to fit and highly
generalizable because it does not require a significant tuning effort.
As a GP model, the proposed model has the built-in ability to quan-
tify the uncertainty in the predictions based on rigorous probability
theory, which is not straightforward to obtain with NN or
XGBoost. Moreover, we can gain considerable insights into the
joint effects of categorical variables on the responses based on the
highly interpretable latent-variable space. The most remarkable
demonstration of this interpretability comes from the case study for
ternary oxidematerials, where clusters in the latent space relate to dif-
ferent element groups. This differentiates ourmethod fromother con-
ventional black-box machine learning models. Through designing a
compliant mechanism, we demonstrate that the design of multiscale
metamaterial systems can be greatly accelerated by using the data-
driven approach and the proposed LVGP model that surrogates the
material law of unit-cell structures.
For future work, we address a performance issue, wherein we had

observed a drop in predictive power when more than 100 inducing
points are used for highly noisy data. To resolve this issue, we plan
to investigate alternative parameter initialization strategies and
more robust training procedures, such as multi-start optimization.
We also plan to investigate the effectiveness of the proposed
models for Bayesian optimization and active learning applications
involving large data sets. Nevertheless, the promising results indicate
that the proposed method can be a useful tool to expedite designs
where categorical variables are involved in the complex physical
models or the design solutions are combinatorial in nature, such as
automated design and discovery in emerging material systems.
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