Liwei Wang

The State Key Laboratory of Mechanical
System and Vibration;

Shanghai Key Laboratory of Digital
Manufacture for Thin-Walled Structures;
School of Mechanical Engineering,
Shanghai Jiao Tong University,

800 Dongchuan Road,

Shanghai 200240, China;

Department of Mechanical Engineering,
Northwestern University,

2145 Sheridan Road,

Evanston, IL 60208

e-mail; iridescence@sjtu.edu.cn

Siyu Tao

Department of Mechanical Engineering,
Northwestern University,

2145 Sheridan Road,

Evanston, IL 60208

e-mail: siyutao2020@u.northwestern.edu

Ping Zhu'

The State Key Laboratory of

Mechanical System and Vibration;
Shanghai Key Laboratory of Digital
Manufacture for Thin-Walled Structures;
School of Mechanical Engineering,
Shanghai Jiao Tong University,

800 Dongchuan Road,

Shanghai 200240, China

e-mail: pzhu@sjtu.edu.cn

W) Check for updates

Data-Driven Topology
Optimization With Multiclass
Microstructures Using Latent
Variable Gaussian Process

The data-driven approach is emerging as a promising method for the topological design of
multiscale structures with greater efficiency. However, existing data-driven methods mostly
focus on a single class of microstructures without considering multiple classes to accommo-
date spatially varying desired properties. The key challenge is the lack of an inherent order-
ing or “distance” measure between different classes of microstructures in meeting a range
of properties. To overcome this hurdle, we extend the newly developed latent-variable
Gaussian process (LVGP) models to create multi-response LVGP (MR-LVGP) models for
the microstructure libraries of metamaterials, taking both qualitative microstructure con-
cepts and quantitative microstructure design variables as mixed-variable inputs. The
MR-LVGP model embeds the mixed variables into a continuous design space based on
their collective effects on the responses, providing substantial insights into the interplay
between different geometrical classes and material parameters of microstructures. With
this model, we can easily obtain a continuous and differentiable transition between different
microstructure concepts that can render gradient information for multiscale topology opti-
mization. We demonstrate its benefits through multiscale topology optimization with aperi-
odic microstructures. Design examples reveal that considering multiclass microstructures
can lead to improved performance due to the consistent load-transfer paths for micro-
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1 Introduction

The rapid development of additive manufacturing has made it
possible to fabricate components with rather complex structures,
enabling greater freedom for structure design. Along with the
enhancement in manufacturing capability, there is a growing inter-
est in topology optimization (TO) for multiscale structure design
[1]. Specifically, the layout of materials for the structure is opti-
mized in the macro-scale while the local material properties are con-
trolled by varying the configuration and/or material constituents of
microstructures in the microscale. By combining micro- and macro-
structure designs, the full structure is expected to achieve better
functionalities than the single-scale design [2]. However, multiscale
structure design faces enormous computational challenges due to
the infinite dimensionality of geometrical designs and the nested
micro- and macro-scale analyses. To address this computational
challenge, this research aims to develop a data-driven approach
that can significantly expedite multiscale TO through a novel
mixed-variable Gaussian process (GP) modeling technique, which

!Corresponding authors.

Contributed by the Design Automation Committee of ASME for publication in the
JourRNAL OF MECHANICAL DESIGN. Manuscript received May 31, 2020; final manuscript
received August 20, 2020; published online November 13, 2020. Assoc. Editor: Shikui
Chen.

Journal of Mechanical Design

Keywords: multiscale
multiclass, data-driven design

Copyright © 2020 by ASME

and macro-structures. [DOI: 10.1115/1.4048628]

topology optimization, Gaussian process, mixed variables,

allows the concurrent exploration of microstructure concepts and
the associated geometric and/or material variables.

Following the pioneering work of Rodrigues et al. [3], various
TO methods have been developed for the design of multiscale struc-
tures. A relatively direct type of methods is to assume a periodically
assembled full structure and then perform the optimization in two
scales separately [4—6] or concurrently [7,8]. While these methods
are efficient, using a single type of microstructure significantly
reduces the computational requirement at the cost of the suboptimal
solution and is not able to accommodate spatially varying property
requirements. In contrast, Xia et al. [9,10] proposed an FE>-based
method to enable element-wise microstructure design. Although
their method can provide greater design freedom, the resultant com-
putation cost is excessive. As a compromise between computation
cost and design freedom, several concurrent design methods
reduce the design space by dividing a full structure into a small
number of subregions with the same microstructure [11-16]. As a
result, the original fully aperiodic design is replaced by clusters of
periodic designs, which can greatly accelerate the optimization
process. Nevertheless, the full structure design is confined to a
fixed number of microstructures. There is a need for a multiscale
TO algorithm with a high efficiency while offering a large design
freedom for aperiodic microstructures.

In recent literature, the data-driven approach has shown promises
to address the aforementioned challenges for multiscale TO. Early
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developments of the data-driven approach focused on a single class
of microstructures (topology) and obtained microstructures with
different solid material volume fractions by changing the predefined
geometric parameters (e.g., rod thickness). The iterative evaluation
of effective properties in the nested microstructure design is
replaced by a regression function of the relation between volume
fraction and the precomputed properties, such as exponential func-
tion [17], polynomial [18-20], kriging model [21], neural network
[22], and diffuse approximation [23]. Full structures with spatially
varying porosity can be obtained efficiently by this single-class
framework. However, these methods lead to suboptimal solutions
since only a single predefined class of microstructure is used in
the whole design process.

To enable the consideration of multiple classes of microstructures
in the data-driven design, Wang et al. [24,25] proposed a sophisti-
cated parameterization method for selected classes of truss micro-
structures by controlling the aspect ratio. However, this
parameterization technique is difficult to be generalized to other
microstructures with different topologies. Alternatively, the
complex shapes of microstructures can be represented by some
reduced-order shape descriptors, such as the latent variables for the
deep generative model [26] or the Laplace-Beltrami spectrum
[27,28], to enable machine learning for accelerating the design
process. Nevertheless, these methods extract descriptors based
only on geometries but not on properties. As a result, the descriptors
of microstructures may be hard to interpret and unnecessarily
high-dimensional.

Overall, physics-based multiscale TO methods are generally time-
consuming while existing data-driven approaches have difficulties
in handling multiple classes of microstructures. There is a need
for an efficient data-driven multiscale design method that can incor-
porate multiple classes of microstructures to provide spatially
variant microstructure designs for improved structural performance.

2 Overview of the Proposed Framework

We view the multiscale TO as a concurrent macro- and micro-
structure design as shown in Fig. 1. In this concurrent design
process, design variables for the microstructure fall into two catego-
ries: quantitative (e.g., porosity, element material property) and
qualitative variables (e.g., class of microstructure and material com-
position). These two types of variables are coupled together to
determine the homogenized stiffness matrix of a microstructure
represented by several independent matrix components, e.g., Cy,
Ci2, Cay, Cge for 2D orthotropic microstructures. Therefore, the
structure—property relation of a microstructure can be considered
as a multi-response physical model with mixed-type variables as
inputs. Note that the qualitative variable normally does not have a
distance measurement between different levels, which is different
from integer or real-value variables with intrinsic distance metric.
As a result, no neighboring information or gradient value can be
obtained from the qualitative variable, imposing a major challenge
for surrogate modeling and optimization.

With this in mind, we propose to construct a unified and continu-
ous design space that allows the concurrent exploration of micro-
structure concepts and the associated geometric and/or material
parameters. Specifically, a new surrogate modeling method, multi-
response latent-variable Gaussian process (MR-LVGP) modeling,
is proposed by generalizing our recently proposed LVGP model to
enable the Gaussian process modeling for data sets with multiple
responses and mixed-variable inputs. This MR-LVGP model is
created using the multiclass microstructure libraries with precom-
puted properties, surrogating the structure—property relations of
microstructures. The special feature of the fitted MR-LVGP model
is that the unordered classes of microstructures can be mapped into
a continuous and well-organized latent space based on their effects
on responses. In this study, a latent variable is defined to be an under-
lying variable that is essential for the physical model description but
not directly observed from the input data, which can only be obtained
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by statistical inference [29]. By varying the continuous latent vari-
ables, the stiffness matrix (properties) predicted by MR-LVGP
models will have a smooth transition between different classes of
microstructures. As a result, the neighboring information and the
gradient of properties with respect to latent variables can be obtained
for the multiscale topology optimization.

The latent space underlying qualitative variables is then com-
bined with the quantitative variables, e.g., volume fraction, to
form a unified design space for the multiscale TO of the full struc-
ture. As a result, the variations of microstructure classes and their
associated quantitative parameters simply represent different
moving directions in the unified space. With MR-LVGP models
that connect micro- and macro-scale analyses, matured density-
based TO methods, e.g., SIMP method, can be directly applied to
the latent variables. In fact, the MR-LVGP model can be seen as
a generalized interpolation scheme for the density-based TO, con-
sidering the class of microstructure. Specifically, we add the
latent variables as extra design variables for the SIMP method
and use MR-LVGP models to provide stiffness matrix as well as
its associated sensitivity for the optimization in each iteration. Fol-
lowing the technique used in SIMP to avoid intermediate densities,
we propose to add a penalization term to the stiffness matrix based
on the inherent distance in the latent space, driving the design
process to converge to predefined classes of microstructures. A
closely related work is the topology optimization design based on
shared-GP modeling proposed by Xing et al. [30], constructing a
shared latent space to represent correlations within and across mul-
tiple design spaces. However, their work only focuses on the single-
scale macrostructure design and does not consider any categorical
design variable. The remaining paper begins with a brief review
of our LVGP modeling method (Sec. 3) and its extension to
MR-LVGP modeling based on multi-response datasets (Sec. 4). A
library that consists of multiclass microstructures is constructed
for both 2D and 3D cases. MR-LVGP models are fitted to each
library to obtain a continuous latent space for different classes of
microstructures (Sec. 5). The fitted MR-LVGP models are incorpo-
rated into the TO algorithm with a penalization technique, enabling
the multiscale design with multiple types of microstructures. The
advantages of considering multiple microstructure types are demon-
strated through both 2D and 3D multiscale design cases (Sec. 6).
Finally, our conclusions are drawn in Sec. 7.

3 Review of LVGP Modeling

GP modeling for functions with continuous input variables has
been well established in past decades [31,32]. The core of GP mod-
eling is to regard responses at different inputs as realizations of
jointly distributed Gaussian random variables, and the correlations
between the Gaussian random variables depend on the distances
between the inputs. However, it is not straightforward to extend
this method to functions with mixed-variable inputs, as the distances
between the levels of the qualitative variables are rarely well defined.

A number of works to address this challenge have been reported
[33-38], yet most methods rely on simplifications in the covariance
structure based on specialized domain knowledge or heuristic
assumptions [39]. In contrast, we recently developed a novel
LVGP modeling method to enable GP modeling with any standard
GP correlation function for mixed-variable data sets in a straightfor-
ward and computationally stable manner [40]. This method has been
successfully applied to the design of different material systems, such
as the light-absorbing quasi-random solar cell [41] and insulating
nanocomposites [42]. We have shown its greater flexibility and supe-
rior predictive performance over existing alternatives across a wide
variety of problems. Moreover, LVGP can provide a continuous and
meaningful embedding for qualitative variables, which is highly
desirable for gradient-based optimization in this study.

As illustrated in Fig. 2, the key intuition of LVGP modeling is
that the effects of any qualitative factor on a quantitative response
must always be due to some underlying quantitative physical
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A

The proposed data-driven design framework for assembling microstructure designs

described by both qualitative and quantitative variables. The independent components in the
stiffness matrix are considered as multiple responses. The stiffness matrix is visualized by rotat-
ing the stiffness matrix to obtain the modulus surface, with the distance from the center repre-
senting the magnitude of C4; value. The color code on the modulus surface is used to better
visualize the distribution of C;, value in different directions. (Color version online.)

input variables V.= {vy, vy, ..., v,}, € R". Although these underlying
variables can be extremely high-dimensional, their collective effects
can be represented approximately by a function g(vy, vy, ..., v,,)
residing in a low-dimensional manifold, whose local manifold coor-
dinates can be used as reduced-dimensional descriptors for different
qualitative variable combinations [43,44]. In our case, the underly-
ing physical variables for different classes of microstructures can be
different types of shape descriptors, e.g., the pixel/voxel matrix,
nodes of boundary splines, and some other geometrical parameters.
These underlying variables can be considered as a set on a low-
dimensional manifold in the sense that a feasible structure will
impose some implicit constraints to these parameters (e.g., the
solid domain should be connected). Based on this insight, LVGP

vy L
[]
\»% Level 2 z = g(Level)
Level 39 =81vz.)
—_—
Uy 1

Low-dimensional manifold in the
underlying high-dimensional space

2D latent space

Fig.2 Anillustration of the mapping from the high-dimensional
underlying quantitative variables to the 2D latent variables for a
qualitative variable with three discrete levels, the axes on the
manifold represent a local coordinate system
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modeling assumes a latent space (e.g., two-dimensional z,z, space
in Fig. 2) that corresponds to local coordinates on the manifold
and maps the levels of the qualitative variables (e.g., levels 1, 2,
and 3 in Fig. 2) to some locations in the latent space (e.g., the discrete
points in the z;-z, space in Fig. 2). The existing distance-based cor-
relations can then be applied to these levels through their latent vari-
ables in GP modeling. It should be noted that the mapping is
constructed directly between the qualitative variables and the
latent variables without the need to identify any underlying quantita-
tive physical input for qualitative variables. The corresponding latent
variables are treated as undetermined parameters and estimated effi-
ciently by maximizing the likelihood function of the LVGP model,
which will be illustrated in the remaining part of this section.
Consider a single-response computer simulation model y(w) with
inputw =[x T tT]Tcontaining both quantitative variables x = [x1, X,
- x,,]Te R? and qualitative variables =1y, 15, ..., 1,] T with the jth
qualitative factor ;€ {1, 2, ..., [;}. Herein, [;€ N7 is the total
number of levels for the jth qualitative factor #;. Assume that each
#; is mapped to a g-dimensional latent vector z;(t;) = [zy-,l(tj?, e Zlf
g(tj)]TeRg . Denote the transformed input vector as s =[x ", z2®7]
ERPTI*8 where z() =[z:(t)7, ..., zq(tq)T]T. The standard GP
model can then be modified as (using a constant mean function)

Y)=p+G6) (€Y

where f is the constant mean and G(:) is a zero-mean Gaussian
process with its correlation defined as

cov(G(s), G(s")) = c(s, §') = 6%r(s, §') )
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where 67 is the prior variance, c(:,-) is the covariance function, and
7(-,-) is the correlation function. Among numerous existing correla-
tion functions, the Gaussian correlation function is commonly used

r(s, s') = exp{—(x —x) D — x') - () — 2(¢)) @) — 2(t))}
3)

where ® = diag(¢) and ¢p=[¢y, P>, ..., ¢p]T are scaling parameters
to be estimated. Because the latent variables z(¢) are to be estimated
as hyperparameters, their scaling parameters are set to ones to avoid
over-parameterization.

For a size-n training data set with inputs W=
w®D, w®, .., w®]T and outputs y = [y(l), y(z), s y(")]T, the corre-
sponding log-likelihood function is

1
Ln(Z, §, p, 0 = —gln (0) =5 InRZ. ¢)|

1
—530- IHRZ, ) y—1p) &

where In() is the natural logarithm, 1 is an n x 1 vector of ones, R is
the n x n correlation matrix with R;; = r(s ® s for i,j=1,...,n,and
Z =UL {zi(1),..., zi(l)} is the set of mapped latent-variable values
for all the levels of the qualitative variables.

By setting derivatives of Eq. (4) with respect to # and &> to be
zero, we obtain maximum likelihood estimates (MLEs) for f and o?

~ 1TR7ly
= B4 5
b ITR™ 11 ®
o1 2w p-1 2
G =;(v—1ﬂ) R (y-1p (©)

After substituting Egs. (5) and (6) into Eq. (4), the estimates of Z

and ¢ can be obtained by minimizing the negative log-likelihood
function (ignore constant terms)

argmin
Z, ¢

This minimization problem can be solved with various mature
optimization algorithms. The prediction for the response y(w*)
can then be made at w* by

(Z, $1= nln(6%) + In (|R)) ©)

w ) =p+r"R'(y - 1) (8)

where r = [r(s*, s(V), r(s*, s@),..., r(s*, s™)]T.

In this way, the qualitative variables can be transformed into con-
tinuous latent variables according to their effects on output. For
more detailed illustrations and implementation of the LVGP model-
ing, readers are referred to Ref. [40].

4 Multi-response LVGP Modeling

The original LVGP modeling was proposed only for single-
response computer simulation models. However, the responses of
material properties are often multidimensional. For example, in
our case, the responses are the independent components in the stiff-
ness matrix, e.g., Cy; and Cj,, for the mechanical constitutive rela-
tions, which would be four-dimensional for 2D orthotropic
microstructures and nine-dimensional for 3D microstructures. A
naive method is to fit a single-response (SR) LVGP model for
each output separately and transform the qualitative variables into
different latent spaces for each output. However, this is not the
most efficient way to handle qualitative variables and it is more
desirable to obtain unified latent variables for them by considering
all the responses and their correlations. Herein, we follow the pro-
cedure in Ref. [45] to extend the LVGP to multi-response cases.

Consider a multi-response computer simulation model y(w) with
output y =[y1, y2,..., yN”p]T € R¥r and input w= 7 M

031708-4 / Vol. 143, MARCH 2021

Assume the prior model for the outputs is
Y(s) = BTh(w) + G(s) )

where s has the same definition as in Sec. 3, h(:) is the prior mean
function composed of a vector of given regression functions [/;(-),
ha(), .. (OIS Bis [y, B - . . ﬁzv,,p]’ a matrix of unknown regres-
sion coefficients with g;=[f1, fair - ﬂvyi]T, and G is
[Gy, Gy, ..., GN’JP]T, a multi-response stationary Gaussian process
with zero-mean values and separable covariance structure. In this
section, we will use s as the mapped input of w without further
notice. The covariance matrix between the outputs at any given
pair of inputs is

cov(G(s), G(s)) =2 - r(s, §') (10)
or written component-wise as
cov(Gi(s), Gi(s") = Zy; - r(s, s') an

where X; is the corresponding entry of an unknown nonspatial
Ny, XN, covariance matrix X, and r(-,-) is a spatial correlation
function with the same definition as in Eq. (3). Compared with
the covariance definition in LVGP modeling, the covariance for
the MR-LVGP model becomes a matrix with each entry com-
posed of the spatial correlation between different input vectors
and an extra term X; capturing the covariance between the pair
of response variables.

Consider a training data set for MR-LVGP with input data W =
w®, w?®, . w®]" and observed response dataD = [y ", y®, ...,
y™17, the corresponding log-likelihood is (with constants dropped)

Lw(Z, ¢, B, 2) = —gln 1z —gln R|

- %vec(D —HB)'(Z ® R)"'vec(D — HB)
12)

where vec(-) converts a matrix to a column vector by stacking the
columns of a matrix, ® denotes the Kronecker product, H is
(hw®y, ..., h(w")]7, a matrix containing all the basis function
values for input data, and R is an nXxn correlation matrix with
Rj=ris®, sV) fori, j=1, ..., n.

Noting that (£ ® R)™! = X! ® R~!, we can obtain the MLEs for
parameters B and X by following a similar practice to that in Sec. 3
[46]

B=HR'H) 'H'R'D (13)

2:%(0 —HB'R'(D - HB) (14)

The MLEs for Z and ¢ can be obtained by maximizing the
log-likelihood function in Eq. (12) after substituting B and X with
B and £. The prediction for the response y(w*) can then be made
at w* by

$w*) =B hw*) +r"R™\(D — HB) (15)

where r = [r(s*, s1), r(s*, s®), ..., r(s*, s")]T.

5 MR-LVGP Modeling for Multiclass Microstructures

Our study aims to demonstrate the benefits of MR-LVGP model-
ing in the data-driven multiscale TO with aperiodic microstructures.
In this section, we first construct libraries containing multiple
microstructure patterns (classes) for both 2D and 3D cases. The
MR-LVGP modeling method is then applied to these libraries,
mapping different types of microstructures into a latent space for
the multiscale TO in Sec. 6.
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Fig. 3 Different classes of microstructures for
structure is shown on the left while its homoge
The small 3 x 3 matrix is a schematic represent

the 2D library. In each block, the representative
nized elasticity modulus surface is on the right.
ation of the 2D effective stiffness matrix shown

in Fig. 1. Different types of modulus are represented by different shapes, and independent com-
ponents are represented by markers with unique combinations of shape and color. (Color version

online.)

5.1 Construction of Microstructure Libraries. To accom-
modate different stress distributions under different loading condi-
tions in a multiscale structure, the desired microstructure libraries
should contain diverse structures to meet a range of mechanical
properties. In the 2D library, for illustration, we focus on orthotro-
pic microstructures and use the six classes shown in Fig. 3. In each
class, the structure consists of a set of rods with the same thickness.
Therefore, when the volume fraction of the microstructure is given,
the structure is fully determined. All the microstructures are ortho-
tropic, and classes A through D also have cubic symmetry, which
means that their mechanical properties are the same in x and y direc-
tions. In contrast, classes E and F are stiffer in the x and y directions
than the other direction, respectively. The difference between each
class’ effective stiffness matrix can also be illustrated through their
homogenized elasticity modulus surfaces shown in the figure. The
overall 2D library will require four independent components
(responses) to fully represent the stiffness matrix, which are
marked in red in Fig. 1 and represented by the unique markers of
the schematic representative stiffness matrix in Fig. 3.

For the 3D library, all 14 classes of microstructures are orthotro-
pic as shown in Fig. 4, among which classes A through H have extra
cubic symmetry. Therefore, the whole 3D library generally requires
nine independent components (responses) to describe the 3D stiff-
ness matrix, which are also marked in red in Fig. 1 and represented
by the unique markers of the schematic representative stiffness
matrix in Fig. 4. Similar to those in the 2D library, the 3D micro-
structures can be parameterized by the thickness of the thinnest
rod, which can be determined for a given volume fraction. Note
that another benefit of using these microstructures is that they are
designed to be connected with each other. This feature can avoid
the possible boundary compatibility issue in the macro-scale design.

In this paper, the 2D microstructure is represented by a 100 x 100
pixel matrix while the 3D microstructure is discretized by a 50 x 50
% 50 voxel cube. To construct multiclass libraries, we sample differ-
ent microstructures for each class by uniformly varying the volume
fraction (adjusted by the rod thickness). The total numbers of micro-
structures are 120 for the 2D library and 261 for the 3D library.
Based on our empirical study, the stiffness matrices of the

o, D

/'. \
' ‘./
y"ﬁ.x H

F=0
> (@

A
@

[ |
representative

stiffness matrix
® ¢;i<3
mcyi=4

Aﬁ% | | z
1| J’Lx L
I ~

AC;i+j<3

Fig. 4 Different classes of microstructures for the 3D library. Microstructures in the first two

rows have cubic symmetry. Classes | through

K have thicker rods in x-, y-, and z directions,

respectively. Classes L through N have thicker rods in xy, yz, and xz directions, respectively.
In each block, the representative structure is shown on the left while its homogenized elastic
modulus surface is on the right. The small 6 x 6 matrix is a schematic representation of the 3D
effective stiffness matrix corresponding to the 3D effective stiffness matrix shown in Fig. 1. Dif-
ferent types of modulus are represented by different shapes, and independent components are
represented by markers with unique combinations of shape and color. (Color version online.)
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Fig.5 Two input variables for the library of microstructures. We
use 2D microstructures for illustration.

microstructures have a monotonic increase with small nonlinearity
when the volume fraction is increased. Therefore, a satisfying pre-
diction ability can be obtained with a mid-size data set. In this study,
the effective stiffness matrices for these microstructures are calcu-
lated by numerical homogenization [47].

5.2 Construction of Continuous Latent Space by MR-
LVGP Modeling. Within the constructed libraries, two variables
control the structure of a microstructure, i.e., volume fraction and
the qualitative class of microstructure, as shown in Fig. 5.

We take the volume fraction p as a quantitative input, class of
microstructures f as a qualitative input, and a vector of the indepen-
dent components in the stiffness matrix ¥ as a multidimensional
response for the MR-LVGP modeling. Specifically, Y is [Cyy, Ci2,
Cyo, Cesl? for 2D microstructures and [Cyy, Cia, Ci3, Caz, Cas,
Cs3, Cas, Css, Ceg]” for 3D microstructures. We adopt a 2D latent
space for MR-LVGP modeling, which is reported in Ref. [40] to
be sufficient for most physical problems. Constant mean functions
are used for the MR-LVGP model, i.e., h(w) =1 in Eq. (9).

As illustrated in the last subsection, we include 120 and 261
microstructures for 2D and 3D libraries, respectively, with uni-
formly sampled volume fraction for each class of microstructure.
To validate the accuracy of MR-LVGP models for this problem,
we randomly divide the data set into training (80%) and test
(20%) data sets for both 2D and 3D cases. An MR-LVGP model
with 2D latent space is fitted to the training data set and validated
on the test data set, which is repeated 10 times with random
divisions of training/test data sets. To study the influence of the
dimensionality of output and latent variables, we also train a single-
response LVGP model for each property to obtain an assembled
SR-LVGP model and MR-LVGP models with 3D and 4D latent
space. The results are shown in Tables 1 and 2. While smaller
values of the means and variances of MSEs mean more accurate
predictions, these results show that MR-LVGP models with 2D
latent space perform well on both 2D and 3D data sets, even
though they involve complex behavior with high-dimensional
outputs. MR-LVGP models with 3D or 4D latent spaces bring neg-
ligible improvements and even less accurate results in a few cases.
We also perform the Mantel test [48] with 10* permutations for dis-
tance matrices between latent vectors of microstructure classes
under different dimensions. The result shows that the distance
matrices in 2D latent space are highly correlated with those in 3D
and 4D latent space (r3;>0.9214 and p<0.01 for 2D database;
rp;>0.8915 and p< 1076 for 3D database). Therefore, 2D latent
space is enough to encode the information on the correlation
between mechanical responses of different classes. This observation
substantiates our previous finding in Ref. [40] that 2D latent space is
sufficient for most physical models. In addition, MR-LVGP models
retain good predictive capability with much lower dimensionalities
of the latent spaces than assembled single-response (A-SR) LVGP
models. For example, there are two latent variables associated with
each of the nine properties for the 3D library, resulting in an 18D
assembled latent space for the assembled model with highly corre-
lated latent axes and sparsely distributed latent variables. High-
dimensionality and sparsity of the ensemble latent space of single-
response LVGP models will pose challenges to the data-driven

Table 1 MSE errors for MR-LVGP and assembled SR-LVGP models fitted for the 2D library

Mean of MSE Variance of MSE (x107%)
Model MR MR MR A-SR MR MR MR A-SR
Dim. of z 2 3 4 4x2 2 3 4 4%x2
Cn 0.0011 0.0009 0.0008 0.0004 2.0408 1.0937 1.1940 0.2051
Ci, 0.0002 0.0002 0.0002 0.0001 0.0627 0.0357 0.0381 0.0271
Con 0.0014 0.0013 0.0013 0.0011 1.8928 2.0425 1.7767 2.8194
Ceo 0.0002 0.0001 0.0002 0.0001 0.0481 0.0215 0.0308 0.0105

Note: The mean and variance are calculated over 10 random repetitions.

Table 2 MSE errors for MR-LVGP and assembled SR-LVGP models fitted for the 3D library

Mean of MSE Variance of MSE (x107°)

Model MR MR MR A-SR MR MR MR A-SR
Dim. of z 2 3 4 9x2 2 3 4 9x2

Cii 0.0190 0.0173 0.0182 0.0048 4.8665 1.4299 0.0287 0.0324
Ci 0.0027 0.0028 0.0028 0.0006 0.0846 0.0640 0.0000 0.0307
Cis 0.0026 0.0027 0.0026 0.0004 0.1037 0.1229 0.0123 0.0013
Ca 0.0188 0.0227 0.0242 0.0040 1.8733 42234 0.3256 0.0019
Cos 0.0026 0.0028 0.0026 0.0004 0.1290 0.0869 0.0053 0.0009
Css 0.0182 0.0256 0.0202 0.0041 5.6794 1.3148 1.2126 0.0519
Cu 0.0017 0.0017 0.0019 0.0002 0.0407 0.0230 0.0063 0.0002
Css 0.0018 0.0019 0.0018 0.0002 0.0739 0.0125 0.0054 0.0000
Ces 0.0019 0.0019 0.0021 0.0001 0.0521 0.0030 0.0000 0.0000

Note: The mean and variance are calculated over 10 random repetitions.
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Fig. 6 Latent spaces for 2D and 3D libraries, (a) and (b) are the
latent spaces for the 2D library, while (c) and (d) are the latent
spaces for the 3D library. Different classes of microstructures
are marked with their geometries and elasticity modulus sur-
faces. (Color version online.)

multiscale design. Therefore, we will use the MR-LVGP model
with 2D latent space in the remaining part.

Figure 6 presents the 2D latent spaces for the MR-LVGP models
obtained for 2D and 3D cases. The latent space is only constructed
for the qualitative variable (class of microstructures). From the
result, we can see that MR-LVGP models capture well the correla-
tion between the mechanical responses of different classes by their
distances in the 2D latent space. The larger the distance in the latent
space between two classes of microstructures, the weaker the corre-
lation between them in terms of their responses.

In the 2D case, classes A through D with cubic symmetry cluster
on the upper right corner of the latent space. This cluster and the
other two classes (E and F) are relatively distant from each other,
which is consistent with their differences in the directional charac-
teristics of the stiffness matrix. Within those cubic symmetric
classes, A and C are close to each other in the latent space,
though they have different topologies. This result makes sense
because the latent space is constructed based on the similarities
between different microstructures’ property responses. In the
latent space of the 3D library, different classes form a pair of con-
centric rings in the latent space, with cubically symmetric classes A
through H on the inner ring and solely orthotropic classes I through
N on the outer ring. This is because these two symmetry types have
distinct stiffness matrices illustrated by their modulus surfaces.

From these examples, we conclude that MR-LVGP modeling pro-
vides substantial insights and easy interpretations of the characteris-
tics of different microstructure classes, inducing an interpretable
distance metric between different microstructure concepts. Com-
pared with other representations in machine-learning-based techni-
ques, such as integer encoding and one-hot encoding, this
organized latent space representation is more desirable because: (a)
complex correlation can be expressed with a much lower dimension-
ality and a more condense embedding, and (b) the distance between
different vectors of design variables can encode the similarity infor-
mation for optimization. Another desirable feature of our MR-LVGP
model is that the stiffness matrix can change smoothly and continu-
ously by varying latent variables. Taking the latent space for the 3D
library in Fig. 6(d) as an example, when we examine the shape of the
elasticity surface located on the inner ring in a clockwise direction

Journal of Mechanical Design

starting from A, we observe that it begins with a star-like shape
and gradually expands into a sphere, followed by a cube with “anten-
nae,” and then transforms back to the beginning in areversed order. A
similar cycle with this smooth transition can also be identified on the
outer ring.

Moreover, we find that this kind of transition exists not only on
certain tracks but also in the whole latent space. For demonstration,
we fix the volume fraction to be 0.5 and then sample the latent space
of the obtained MR-LVGP to get the spatial distribution of the
multi-response elasticity modulus surfaces as shown in Fig. 7.

It is noted the modulus surfaces can change smoothly following
any continuous route in the latent space, enabling the extraction of
gradient information. This characteristic is critical for the integra-
tion of MR-LVGP models into multiscale topology optimization
explained in the later sections.

The concept of a low-dimensional latent space is also featured in
some dimension reduction and deep generative methods, e.g.,
Gaussian process latent variable model (GPLVM) [49,50], genera-
tive adverserial network (GAN) [51], variational autoencoder
(VAE) [52], and deep Gaussian processes [53]. However, funda-
mental differences exist between our method and these latent-
variable models, with distinct functions and input/output definition.
Specifically, both dimension reduction and deep generative
methods generally create unsupervised learning models. They are
geared to reconstruct or generate high-dimensional samples from
a low-dimensional space with no direct link to the response predic-
tion. Also, most deep generative models construct a latent space
based on the features extracted from the high-dimensional geomet-
ric descriptor, e.g., pixelated matrix, rather than the qualitative vari-
ables used in this study. In contrast, our MR-LVGP model is a
supervised predictive model with an aim to surrogate the relation
between qualitative inputs and real-value response. It constructs a
latent space of geometries based on the correlation in material
responses, incorporating more physics into the learning model.

6 Data-Driven Topology Optimization

6.1 Integration of MR-LVGP into Multiscale Topology
Optimization. MR-LVGP models map different microstructure
design concepts into a low-dimensional and continuous latent
space and fully capture the collective effect of microstructure
class and volume fraction on the stiffness matrix. With the
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Fig. 7 A set of elasticity modulus surfaces obtained by sam-

pling on the latent space of 3D microstructures with the
volume fraction fixed to 0.5 (Color version online.)
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meaningful distance metric, continuity, and gradient information, it
is straightforward to replace the nested microstructure designs and
homogenization process in multiscale TO with the fitted
MR-LVGP models for higher efficiency.

Denote the fitted MR-LVGP model for the microstructure library
as Y(p, z(t)), where p is the volume fraction of microstructures (a
smaller p corresponds to microstructures with thinner rods as illus-
trated in Sec. 5.1), ¢ is the class of microstructures, z = [z;, z2]” is a
2D vector of latent variables corresponding to ¢, and Y is a vector
of independent components of the stiffness matrix. In multiscale
TO, the full structure is divided into N subregions. We then associate
each subregion with three design variables, p, z; and z,, and obtain
the corresponding stiffness matrix in each iteration as k(p, z1, 22) =
k(Y(p, z1, z2)). Although the stiffness matrix can have a smooth tran-
sition when exploring the latent space, only those latent variables
transformed from existing microstructures can have practical mean-
ings. Therefore, we drive the optimization solutions to the predefined
classes in the libraries by using the penalized stiffness matrix k

k(p, 21, 2) = f(z1, 2)k(p, 21, 22) (16)

f=exp{=1/r-minl z -z 1)}
(17)
=max{exp(~1/y - llz =2() [19)}

where f:R* — (0, 1] is the penalty function and y is a decay parameter
of the penalty. To put it intuitively, this penalization will make the
mechanical properties decay with the nearest distance to the set of
latent variables corresponding to existing classes in the library. To
integrate it with TO, we adopt an approximated differentiable
penalty function to replace the maximization operator

f= l/ﬂ-ln{ZeXP(NEXp(—l/% llz — (1) II§))} (18)

where 1 is a large constant. Based on our experience, we recommend
Ato be 500 and y to be the diagonal length of the minimum bounding
rectangle for the discrete latent variables. The multiscale TO problem
can then be formulated as

min C(p 215 ZZ) = U KU = Z MTk (p(L) (e) Z(Ze))ue
P22 g

s.t. KU=F
V(p) S VmaX
g <z<z, i=12,

0 <[)min =p= Pmax

19)

where K is the global stiffness matrix; U and F are global displace-
ment and loading vectors, respectively; u, and I:te are elemental dis-
placement and stiffness matrix, respectively; V and V., are the solid
material  volume fraction and its upper constraint,
respectively; z;” (z})is the lower (upper) bound for the ith latent vari-
able, pin 18 @ vector of small values to avoid singularity and p . is a
vector of the maximum volume fraction for each subregion.

For this optimization problem, the sensitivities of the objective
function ¢ with respect to the design variables of each microstruc-
ture can be obtained through the adjoint method and chain rule as

aC _ (e) ON 6’((} 5Y,
5 =@ A D Gy e (20)
aC _ (e) (e) 5k 6Y f
az@_‘ 2 )Zay 82@ (e)k Ue @n
J

where 0Y/dp' and 6f/ 62(6) can be obtained through direct differen-
tiation of Egs. (15) and (18) respectively.

031708-8 / Vol. 143, MARCH 2021

Initialize p, 24,25

4

Map z4,2; to

existing classes

¥

Obtain k and its partial
—>| gradients for each sub-
region by MR-LVGP

Obtain k and its partial
gradients for each sub- e
region by MR-LVGP

4 4

Calculate penalized k
and its partial gradients

| Finite element analysis

for each sub-region d
. I Update p |
| Finite element analysis | '

4

| Update p, 2,2,
& §v

| Full structure assembling |

Meet termination
criteria?

Meet termination
criteria?

Fig. 8 Flowchart for the data-driven multiscale topology
optimization

With the above definition of the optimization problem and sensi-
tivities information, we propose a sequential three-stage method to
obtain the optimized multiscale structure with multiclass micro-
structures. The flowchart for this is shown in Fig. 8.

In Stage 1, both quantitative volume fraction and latent variables
representing the class of microstructures are taken as design vari-
ables. The optimization problem (19) is solved by iteratively updat-
ing the design variables p, z; and z, with the method of moving
asymptotes (MMA) [54] based on the sensitivity calculated from
Egs. (20) and (21). The optimization will terminate when the
change in design variables (normalized) is less than 0.01 or the
number of iterations exceeds 200. In this paper, the initial design
is set to be a full structure consisting of the first class of microstruc-
ture with the same volume fraction V,,,/V, where Vj, is the overall
volume for the design space. Note that the penalization can drive the
latent variables to those discrete points mapped from existing
classes of microstructures but an exact convergence is not guaran-
teed. The possible resultant “intermediate classes” cannot be used
to reversely generate corresponding topologies. In this case, the
optimization result may not be accurate due to the penalization,
which is similar to the issue of intermediate density values in the
classical SIMP.

This issue is addressed in Stage 2. Specifically, the z; and z
results from Stage 1 optimization will be mapped to the nearest
classes of microstructures in the latent space. The same optimization
procedure in Stage 1 will be repeated in Stage 2 but with only
volume fraction p as design variables. In Stage 3, the optimized
structure of the microstructure for each subregion can be determined
from the result of Stage 2 to assemble the full structure with the opti-
mized performance.

6.2 Design Applications. In this section, we apply the pro-
posed method to a few classical multiscale TO problems in both
2D and 3D cases. The design results will be compared with the opti-
mized designs using a single type of microstructure to demonstrate
the advantages of using a multiclass library. For all design cases, the
matrix material is assumed to have relative Young’s modulus 1.0
and Poisson’s ratio 0.3. A filtering technique is applied to both
quantitative and latent variables to avoid checkerboard patterns
and excessive local flipping of the microstructure class.

To better illustrate the high adaptability to spatially varying stress
conditions, we deliberately choose an L-shape optimization
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Fig. 9 Example 1—2D Single-loading L beam. (a) Problem
setting for Example 1. The upper end of the L-shape structure
is fixed. (b) The distribution of the normalized magnitude of hor-
izontal stress. (c) The distribution of the normalized magnitude of
vertical stress. (d) The distribution of the normalized magnitude
of shear stress. (Color version online.)

problem with distinctly different stress distributions in different
parts of the structure as shown in Fig. 9.

Specifically, the L-shape beam is fixed on the top while a point
force is loaded on the up-right corner of the lower rectangle. In
this case, the stress in the vertical direction dominates the upper rec-
tangular area while the bending region mainly bears shear stress.
The stress distribution for the lower rectangular part is more compli-
cated, with the outer part dominated by the horizontal normal stress
and the inner region being shear-dominant. It should be pointed out
that our algorithm only focuses on compliance minimization and
does not directly consider the stress. The discussion on the stress
distribution here is only to demonstrate that different regions of
the L-shape beam are under different deformation conditions,
which results in spatially varying requirements for the magnitude
and directional characteristics of the stiffness tensor to achieve
lower overall compliance.

To obtain the optimized full structures, the beam is discretized
into square subregions with a length of 0.025 L. In practice, the
level of discretization will depend on the minimum feature size in
manufacturing. We set the maximum overall material volume frac-
tion to be 0.6 and the maximum volume fraction for each subdo-
main to be 0.95.

The full structures with single-class and multiclass microstruc-
tures are shown in Figs. 10(a) and 10(b), respectively. For all
single-class designs in this study, we only optimize the volume frac-
tion distribution while the microstructures are fixed to be Class A
during the whole optimization process. We only show one micro-
structure in each subregion for the convenience of illustration.
However, each subregion could actually be tiled by multiple
repeated microstructures to meet the homogenization assumption.

The achieved objective function ¢ (compliance) for the single-
class design is 332.8629 while the value for the multiclass design
is 291.6044. There are two reasons for this performance improve-
ment. The first reason is that different classes of microstructures
can be allocated in a way that matches the principal stress direction.
This can be indicated from the distribution of different classes of
microstructures shown in Fig. 10(c). In the multiclass design,
microstructures in the upper rectangular area have thicker rods in
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C = 332.8629

c = 291.6044
(a) (b)

. A 5.26%
B 221%

C 7.88%
D 26.83%
E 29.32%
F 28.49%

(c)

Fig. 10 Design result of Example 1. (a) Full structure design with
a single class of microstructures. (b) Full structure design with
multiple classes of microstructures. (c) The distribution of differ-
ent classes of microstructures in the multiclass design in (a),
with the percentages of usage marked in the legend. (Color
version online.)

the y-direction to bear the vertical loading while the bending
region mainly contains microstructures with diagonal rods to
resist the shear deformation. As expected, the outer layer of the
lower rectangle prefers microstructures stiffer in the x-direction to
resist the horizontal strain induced by bending while the inner
region chooses microstructures with more diagonal rods. Another
reason for the better performance is the better compatibility
between the main load-bearing directions of macro- and microstruc-
tures. Compared with the single-class structure, microstructures in
the multiclass design have their main loading axes better conformed
to the shape of the macrostructure.

The benefits of multiclass microstructures can also be indicated by
the percentages of different classes used in the multiclass design.
While no class of microstructure dominates the full structure,
classes D through F rank top among all six classes in the library.
This means that a better performance should be achieved by a com-
bination of different microstructure design concepts. Therefore,
using a single predefined microstructure design concept for the
whole structure will be suboptimal for this and other general cases.

In terms of efficiency, compared with the physics-based multi-
scale TO, our data-driven approach replaces the numerous micro-
scale design evaluations with a mixed-variable GP model
obtained from the precomputed library. Specifically, for this
design example, assuming each microstructure has 100 x 100 ele-
ments and there are 924 subregions in the L-shape beam, there
will be 924 x 100 x 100 design variables in the original multiscale
TO but only 924 x 3 (one quantitative variable and two latent vari-
ables for each microstructure) ones in our method. This treatment
can avoid the time-consuming homogenization process and
greatly reduce the number of topological design variables. Since
there are only two extra latent variables associated with each subre-
gion, the optimization process can have an efficiency comparable to
the classical single-scale SIMP method. To further demonstrate the
efficiency as well as the effectiveness of the proposed algorithm, we
design a half Messerschmidt—-Bolkow—Blohm (MBB) beam using
our method for compliance minimization to compare with the
optimal design obtained through FE> framework proposed by Xia
et al. in Ref. [9], as shown in Fig. 11.
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Fig. 11 Example 2—2D Single-loading half MBB beam. (a) Problem setting illustration. (b) The
distribution of different classes of microstructures in the multiclass design shown in (d), with
the percentage of usage marked in the legend. (c) Full structure design by Xia et al. [9]. (d) Full
structure design with multiple classes of microstructures. (Color version online.)

We divide the design area into a 40x 16 mesh and set the
maximum overall material constraint to be 0.36, which is the
overall material usage of the optimal structure obtained by Xia
et al. in Ref. [9]. The optimized class distribution and the corre-
sponding full structures are shown in Figs. 11(b) and 11(d).

L L2, L2, L2 , L2

Compared with the optimal structure in Fig. 11(d) obtained by
the FE? method, the compliance value of our optimal design is
slightly higher, which is mainly due to the restriction of microstruc-
ture topology. However, the main load-bearing directions of the
microstructures are similar in both designs. It takes the FE>

I
T

¢ = 123.0031
(c)

HA 4.03% BB 1.32% ' C 2.05%
D 39.09% HE 50.20% BF 3.31%

(b)

¢ = 114.1735
(d)

031708-10 / Vol. 143, MARCH 2021

Fig. 12 Example 3—2D Multi-loading MBB beam. (a) Problem setting illustration. The beam is
fixed on its low-left end and supported on the right. There are two sets of loading forces. The
first one is loaded in the middle of the bottom layer and colored in red. The second one consists
of two equal forces loaded at the two-quarter points, which are colored in blue. (b) The distribu-
tion of different classes of microstructures in the multiclass design shown in (d), with the per-
centage of usage marked in the legend. (c) Full structure design with a single class of
microstructures. (d) Full structure design with multiple classes of microstructures. (Color
version online.)
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method about 200 h to obtain the assembled structure in this size
while our data-driven method only takes fewer than 5 min.

To demonstrate the benefit of multiclass microstructures in the
multi-loading cases, we devise another numerical example depicted
in Fig. 12(a). The rectangular design space is divided into equal
subregions with a resolution of 30 x 60. The objective function is
the mean ¢ value for the MBB beam when applying the two sets
of loadings, respectively. We change the maximum overall material
constraint to 0.5 and then obtain the optimized full structures as
shown in Fig. 12(b) through 12(d). The mean ¢ value is 123.0031
for the single-class case and 114.1735 for the multiclass case.

From the results, we observe the adaptive distribution of different
classes of microstructures like before, aligning with the stress distri-
bution. Compared with the first example, the percentage of class F
in the full structure decreases significantly. This demonstrates that
different design conditions have different required property distri-
butions, which can benefit from the microstructure designs in the
multiclass library. It is interesting to note that single-class and mul-
ticlass designs have almost the same macrostructure, but the multi-
class design can better match the main loading axes of
microstructures with the shape of the macrostructure.

To demonstrate our method in 3D design, we optimize an
L-shape structure similar to the 2D case with the maximum
overall material distribution set to be 0.6. The beam is discretized
into cubic subregions with a length of 0.1 L. The results are pre-
sented in Fig. 13 and Table 3, with the ¢ values being 485.6963
for single-class design and 351.7484 for multiclass design.

It is noted that the main load-bearing direction of the microstruc-
tures in the 3D multiclass structure has a similar distribution as the
one in the 2D case. The rectangular region connected to the fixed
end prefers microstructure classes with thicker rods in the vertical
direction. The outer layer of the rectangular area including the
loading end has thicker rods in the horizontal direction. And the
other regions need more shear-resistant microstructures with
many diagonal rods.

From these design cases, it is evident that our MR-LVGP model-
ing and penalization techniques enable effective data-driven

Fig. 13 Example 4—3D single-loading L beam. (a) Problem
setting. The upper end of the L-shape structure is fixed. (b) The
distribution of different classes of microstructures in the multi-
class design shown in (d). (c) Full structure design with a
single class of microstructures. (d) Full structure design with
multiple classes of microstructures. (Color version online.)
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Table 3 The percentages of different classes used in the
multiclass full structure for Example 3

Class Percentage Class Percentage
A 12.17 H 8.22
B 9.56 1 0.44
C 1.22 J 38.17
D 5.33 K 0.00
E 11.50 L 6.00
F 2.50 M 0.00
G 3.33 N 1.56

multiscale TO with multiple classes of microstructures. By using
fewer design variables and avoiding the numerical homogenization
process, we can optimize the full structure with much finer subre-
gion division than physics-based methods with less computation
cost. Compared with existing data-driven algorithms considering
only single-class microstructures, each subregion in the full struc-
ture can selectively choose its class of microstructures to adapt to
the local stress distribution. The method also provides better com-
patibility between the main load-bearing directions of macro- and
microstructures due to the use of predefined classes of microstruc-
tures, resulting in better design performance.

7 Conclusion

We propose a new multi-response LVGP model for mixed-
variable datasets as well as a novel data-driven multiscale topology
optimization (TO) method that can consider multiple classes of
microstructures to design aperiodic multiscale structures efficiently.
Compared with the conventional “free-form” multiscale TO
methods, our proposed approach allows the consideration of a set
of microstructure design concepts based on the existing knowledge
of designers and consideration of manufacturability. The key idea is
to map different types of microstructures into a continuous latent
space using the proposed multi-response latent-variable Gaussian
process (MR-LVGP) modeling method based on their effects on
the multiple responses. By introducing a set of latent variables to
represent qualitative inputs and a nonspatial covariance matrix of
multiple responses, precise and computationally stable GP model-
ing is achieved for a mixed-variable data set with high-dimensional
responses. The original mixed-variable optimization problem for
aperiodic multiscale structures can then be transformed into a
continuous-variable one by including the latent variables as
design variables and replacing the nested homogenization with
our MR-LVGP model in the TO framework.

This MR-LVGP modeling approach has been applied to both 2D
and 3D microstructure libraries to obtain a unified and continuous
latent space for different classes of microstructures. A unique char-
acteristic of MR-LVGP models is that the latent variables induce an
interpretable distance metric reflecting the correlation between the
mechanical responses of different classes. Microstructure design
concepts with similar characteristics in properties, e.g., the direc-
tional characteristics of the stiffness matrix, will cluster in the
latent space to form a well-organized pattern, enabling a clear visua-
lization of the complex library. The interplay between different
classes and properties of microstructures can be fully captured in
the unified design space, which is a feature that suits the mixed-
variable nature of material and structure designs. The fitted
MR-LVGP models also enable the stiffness matrix to change
smoothly and continuously when varying the latent variables. The
multiscale TO with multiclass microstructures can then be realized
with a simple modification of the classical SIMP method for TO
which includes two-dimensional latent variables as extra design
variables. Note that this proposed framework can be directly
applied to other non-truss types of microstructures, though only
truss-type designs are studied in this paper. This is because the
latent space is directly related to the mechanical responses with
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no special requirement for the type of geometries. Provided that the
microstructures are connected with each other to ensure manufac-
turability, domain knowledge can be utilized to freely choose
types of microstructures included in the database.

The data-driven multiscale TO is applied to both 2D and 3D
design cases. With the precomputed library and significantly
reduced amount of topological design variables, the efficiency of
the data-driven multiscale TO method is comparable to the standard
single-scale SIMP method. In all design cases, full structures with
multiclass microstructures have better performance than those
with single-class microstructures. This demonstrates the advantages
of aperiodic structures with multiple microstructure patterns, which
can couple the macro- and micro-designs to better match local stress
distributions in more general cases.

For future works, our method will be applied to multi-physics
cases, such as the heat conduction structure design. Compared with
the simple compliance minimization problem, multi-physics
design may benefit more from the spatial varying property distribu-
tion. Multiscale optimization under loading uncertainty is another
promising direction where a proper combination of different micro-
structure classes could provide more robust performance. Also, the
homogenized properties might be imprecise in some cases because
of the issues related to scaling separation, which is a common chal-
lenge for multiscale TO. Currently, we use filtering techniques to
avoid excessive local flipping of the microstructure types and
assume each subregion is filled by numerous microstructures. In
the future, we will explore the integration of our algorithm with
reduced-order finite element methods to obtain more precise
mechanical responses for microstructures. Some sophisticated tech-
niques, such as the tuning of boundaries, will be included to ease pos-
sible stress concentration. Finally, even though the quantitative
variables considered in this work are only associated with the
volume fraction (density) and the design is focused on TO, the
same proposed framework can be used to treat both materials prop-
erties and density as quantitative design variables for other material
systems designs, realizing concurrent material, and structure
optimization.
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