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Abstract—We study the problem of how to estimate the latent
in-degree distribution of large directed graphs from random
samples, when the samples only indicate the presence of partial
incoming edges into nodes and thus their sampled distribution is
far from the original one. While this problem can be cast as an
inverse problem, it often appears to be ill-posed and leads to poor
estimation performance. There have thus been few recent studies
to overcome this problem, which include a constrained, penalized
weighted least squares estimator and an asymptotic estimator.
The recent estimators, however, are computationally expensive
or only limited to estimating the tail distribution, and their
performance may not be satisfactory. In this paper, we formulate
the problem as a maximume-likelihood estimation problem. We
then employ the expectation-maximization algorithm to solve this
problem and derive a simple iterative estimator, which is easy
to implement and computationally fast. Finally, we empirically
demonstrate that our estimator is significantly more accurate
than the state-of-the-art estimators and it can also be further
improved with a proper choice of its parameter.

I. INTRODUCTION

Sampling and estimating structural and topological proper-
ties and characteristics has been at the heart of understanding
of large complex networks such as Web graphs and online
social networks, which is prohibitively expensive without
resorting to sampling due to their size and scale. In other
words, since networks are often too large to observe in their
entirety, the estimation and inference of their properties need
to be made from sampled networks. Thus, there have been a
plethora of research works in the literature [1] that develop and
analyze network/graph sampling techniques and estimators to
evaluate a wide range of target quantities, including degree
distribution, density, diameter, assortativity coefficient, and
clustering coefficient [2]-[8], as well as subgraph patterns,
e.g., triples, motifs and graphlets [9]-[11].

Most of the sampling problems can be tackled by developing
estimators in the form of sample averages or using sampled
distributions. There is, however, still a non-trivial problem that
is no longer solvable by the common framework and has not
been well studied in the literature. It is to infer or estimate the
latent in-degree distributions of directed graphs from random
samples, when the samples represent only a few ‘discovered’
incoming edges into nodes and their sampled distribution is
far from the original distribution. The latent nature of in-
degrees arises in practice, because outgoing edges or links
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are only visible to users when querying and sampling nodes
on a graph. The technical challenge is then how to recover
the true yet unknown distribution from a skewed, sampled
distribution. While this problem itself can find its importance
for social network analysis and recommendation systems, it
can also be generalized as recovering the distribution of set
sizes on a graph when samples are available only in the form of
some ‘elements’ of the sets, not the set sizes. Such a problem
recently arises in the literature, e.g., for correcting the bias in
classification tasks on a graph [12] and for inferring the entity
frequency from Twitter data sampling [13].

The above problem can be formulated as an inverse problem
and leads to a simple inversion estimator, as originally shown
in [14], [15]. However, the inverse problem often appears to
be ill-posed and thus results in poor estimation performance.
For example, the resulting estimated distribution can exhibit
oscillations to a great extent and even contain negative values.
To avoid this problem, Zhang et al. [16] propose a novel esti-
mator as the solution to a penalized, generalized least squares
problem with non-negative constraints. While this estimator
greatly improves the performance of the inversion estimator, it
turns out to be computationally expensive. It is a ‘numerical’
solution of a complicated optimization problem, which first
requires two key parameters to be determined by non-trivial
algorithmic operations and then is numerically solved by an
optimization toolbox. In addition, Antunes et al. [17] recently
propose a simple asymptotic estimator that aims to estimate the
tail distribution. Specifically, this estimator provides estimates
on the probabilities of a few large, distant degrees. Despite
its limited estimation capability, it is computationally much
cheaper than the one in [16] and practically usable due to its
simple design.

In this paper, we cast the problem as a constrained max-
imum likelihood estimation (MLE) problem under a random
graph model. We first show that the solution to the MLE prob-
lem becomes identical to that of the inverse problem, when the
non-negativity constraints of the MLE problem are ignored.
We then resort to the expectation-maximization algorithm to
solve the constrained MLE problem, which iteratively finds
the maximum likelihood estimate of the unknown in-degree
distribution. This leads to a simple iterative estimator in a
closed form, where a prior distribution needs to be chosen.
Here a uniform distribution can be simply used as the prior.
We can summarize the benefits of our iterative estimator over
the state-of-the-art estimators as follows.

« First, our estimator is easy to implement due to its closed-
form expression and computationally fast, unlike the penal-



ized weighted least squares estimator in [16]. The empirical
evaluation under real-world network datasets shows that the
runtime of our estimator is faster than the runtime of the
latter by two orders of magnitude.

« Second, it estimates the entire distribution, while the asymp-
totic estimator in [17] is only limited to estimating its tail
distribution.

o Third, our estimator is empirically shown to be substan-
tially more accurate than these estimators under real-world
network datasets. In particular, the reduction in the mean
squared error (MSE) of our estimator compared to the MSE
of the one in [16] can be up to over 90%.

« Finally, our estimator can also be further improved with a
proper choice of the prior distribution.

II. PRELIMINARIES

We explain the sampling problem of inferring or estimating
the latent distributions of large graphs, whose representative
example is to estimate the latent in-degree distributions of
directed graphs. While this is our focus in this paper and
its specific problem is described below in detail, it can be
a more general problem. Suppose that we have n sets with
their corresponding sizes S1, S, ..., S,. The problem here is
how to recover the distribution of set sizes {.9;} from a sample
that is some ‘elements’ of the sets, which only provide partial
information of the set sizes. If we are given samples directly
from {S;}, it would be straightforward to estimate the set-size
distribution.” The problem at hand, however, is fundamentally
different and becomes non-trivial, as shall be shown shortly.

A. Problem Setup

Consider a directed graph G = (N, E), which represents a
network of interest with nodes N={1,2,...,ng} and edges
E. Here ng is assumed to be known a priori, as it has been the
case in the literature [14]-[17]. Let d; denote the in-degree of
node i € N, which is given by d; =|{j : (j,i) € E}|. Let w
be the maximum in-degree, so 0 < d; < w for all <. Hereafter
we simply refer to ‘in-degree’ as ‘degree’ for brevity, unless
otherwise stated. Define ny, £ = 0,1, ..., w, to be the number
of nodes of degree k£ in GG, which is given by

ng =Yy 1{d; =k}, (1)
=1

and ng = > ,_,nk where 1{A} denotes an indicator
function of an event A, having 1{A} =1 if A occurs, and
1{A} =0 otherwise. The fraction of nodes having degree k,
denoted by f, can also be written as

fk = nk/nG.

“Most of the previous studies in the ‘graph sampling’ literature [3]-[5], [7]-
[11] fall into this category. Their common task is to estimate an expectation
En{f}=>;cn f(i)7(3) of a target function defined over the node set IV,
with a desired probability distribution 7 = [m(7),% € N]. The estimators are
often in the form of the sample average of f(X1), f(X2), ..., f(X¢), where
{X}} are independently drawn from N according to 7 or form a Markov
chain on N whose stationary distribution equals 7r. The sample average over a
large number of samples becomes a good approximation of Ex{f} due to the
ergodic theorem, i.e., fit(f) == S°L_, f(Xs)/t — Ex{f} as t grows [18].

Let n := [no, Ny, ... ,nw]T and f := [fo, fiy-ey fw]T. The
latter is the degree distribution of graph G or its probability
mass function, with ZZ}:O fr=1. The former is an ‘unnormal-
ized’ version of the degree distribution, or to indicate degree
counts. Then, if we let D denote the degree of a node chosen
uniformly at random in GG, we have that the probability that it
has degree k is simply P{D = k} = f.

We consider the Bernoulli sampling methods with sampling
rate p > 0, which are random node sampling and random
edge sampling [1], [14]-[17]. Note that the solutions to the
inference problem developed under these sampling methods
have also been effectively used with samples obtained under
other sampling methods such as random-walk sampling [16],
[17]. While we expect that our solution can also be applied
similarly, we here simply focus on the Bernoulli sampling
methods to tackle the inference problem itself, which is still
non-trivial. In the random node sampling, each node is selected
or sampled with probability p. Then, all the edges between
those selected nodes are included into the ‘sampled’ graph. For
random edge sampling, we select (or sample) each edge with
probability p and then include all the nodes that are incident
to at least one selected edge into the sampled graph.

Observe that both sampling methods can then be character-
ized as follows. For a node with degree k in G, after sampling,
it retains j neighbors (out of k) with probability

b, :=P {its sampled degree is j | original degree isk}, (2)

where bj;, = 0 for all 7 > k. Specifically, for random node
sampling, this probability becomes, for 0 < j, k < w,

_ () *1gE =7 + q{j=0} if j <k for k=0,...,w,
ik 0 otherwise,

3)
where ¢ := 1 — p. Similarly, under random edge sampling, it
is given by

kY, i k=3 if 5 —
bij{(j)pq 1fj§{€f0rk—0,...,w, @

0 otherwise.

Note that in addition to sampled nodes (or the ones with
sampled edges), we here also consider unsampled/unselected
nodes as nodes with zero sampled degree, since their counts
are still available. In other words, for each sampling method,
we can write its (w+1) x (w+1) ‘sampling’ matrix B := [bjx].
Note that the sampling methods under consideration are agnos-
tic to the underlying network structure [16], [17], so they are
mainly characterized by their corresponding sampling matrices
B. One can easily see that B is a column stochastic matrix,
ie., bjr > 0 and Z;J:O bjr = 1. Note that the forms of B in
(3) and (4) are slightly different from the ones in [16], due
to the inclusion of unsampled/unselected nodes. Nonetheless,

the inference problem itself still remains the same.

Let G’ = (N', E’) denote the resulting sampled graph by
either random node sampling or edge sampling, where N’ is a
(random) permutation of N and E’ C F is the set of sampled
edges. The nodes that are not sampled are included as zero-
degree nodes in N’, so its size remains the same as ng. In



other words, we have a set of the sampled degrees of all nodes
as a sampling outcome. Let d;- be the sampled degree of node
Jj in G'. Then, if we let n/ be the number of the nodes of
(sampled) degree j in G’, we have

ng

nh=> 1{d;=j}, j=12.. w, 5)
i=1

and ng :=ng — Y5, n;. We can also obtain the fraction of

nodes having (sampled) degree j in G’, denoted by f7, as

[ =n}/ng, (6)

Let n' :=[n),n},...,n,)T and f:=[f, f1,..., f.]%. The
latter indicates the sampled degree distribution of G’ with
Z}“:O fJ’» = 1, while the former is its unnormalized version.
From a given f’ (or »'), which is considered collectively as
‘a sample’ throughout the rest of the paper, our problem is
to recover the original degree distribution f (or n). Note that
this should be distinguished from the problem of estimating
the exact degree of each node from samples [19]. Also, since
it is to estimate the ‘marginal’ distribution of degrees, it
does not require the estimation of any possible degree-degree
correlation in the original graph.

i=0,1,...,w.

B. Inversion Estimator and Its Drawbacks

For a randomly chosen node in G, if we let D’ be its
sampled degree in G’, we can write

g =P{D' =4} = bfr, i=01,...,w, ()

k=0
which can also be written in a matrix form as
g=Bf, (8)
where g := [g0, 91, -, 9w’ . In addition, from (5) and (6),
we have
n o ERCEE {d; =4} Y0 E{d] = j}]
E[f}] = -
ng ng
S P{D' =4} ngg;
= = = 9y, 9)
ng ng

where the third equality follows since d; has the same distri-
bution as D’ for all 4. Thus, from (8) and (9), we have

E[f'] = Bf. (10)

One can then naturally construct the following inversion
estimator for a given sample f’ [14]-[16]:

fw =B7If". (1D
It is straightforward to see that this estimator finv is unbiased,
since E[fiy] = B"'Bf = f. By leveraging the singular value
decomposition of the sampling matrix B, we can also rewrite
(11) as

. YT
fy = VDU =) [—u;{ ’} v, (12)
g LMk

from B=UDVT, where D =diag (0, ft1, - - - , ftw) is a diag-
onal matrix of singular values p;, and U = [ug, u1, ..., Uy,
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Fig. 1. Estimating the in-degree distribution of a directed Erdds-Rényi graph
of 100 nodes by the estimator fi,, from a sample f’, which is drawn with
p = 0.6.

Degree k

V = [vg,v1,...,0,] are the orthogonal matrices of the left-
and right-singular vectors, respectively [20].

Despite its simple form, this inversion estimator f'inv has two
drawbacks [16]. First, the matrix B may not be invertible in
practice. Second, some elements of f'inv may be negative, even
when B is invertible. In other words, this estimator suffers
from an ill-posed inversion problem. Specifically, the stability
of the estimator can be characterized by the condition number
of B, which is the ratio of the maximum singular value to the
minimum singular value. The larger the condition number is,
the more unstable the estimator would be. Note that a non-
invertible matrix has condition number equal to infinity. When
the estimator is unstable, i.e., B is ill-conditioned, its estimated
degree distribution can exhibit oscillations to a great extent.
See Figure 1 for an example. Here the in-degree distribution
of a directed Erd6s-Rényi random graph with 100 nodes is
estimated from a sample f’, which is drawn by the random
edge sampling with the sampling rate p=0.6."

III. STATE-OF-THE-ART METHODS

We provide an overview of two recently proposed estimators
for the problem of recovering the latent in-degree distribution
of a directed graph from a sample f’, or n’, while overcoming
the poor estimation performance of the inversion estimator.

A. Improved Inversion Estimator

We first explain an ‘improved’ inversion estimator proposed
in [16]. It is based on a regularization method to solve the
above inversion problem, especially when the matrix B is
ill-conditioned. Specifically, the proposed estimator is a pe-
nalized, generalized least squares estimator with non-negative
constraints, which is to estimate the degree counts n and is the
solution 7 := [fig, A1, . .., 7y| to the following optimization
problem for a given sample n/':

argmin (Bn—n/)" C™' (Bn—n')+ A ||Dn|?

n

13)

w
subject to ni >0,k =0,1,...,w, an =ng,
i=0

where C:=Cov(n') is the covariance matrix of n’ and X is
a tuning parameter, to be determined separately. Note that the

f , fu]

resulting ‘estimated’ degree distribution f = | fo, fl, .

A directed ER graph of 100 nodes is generated by placing a directed edge
for each pair of nodes (in each direction) with probability pgen =0.05.



is given by fi =n;/n¢g for all i. The remaining second term
in (13) is the regularization term and is a squared l/s-norm
penalty function of n, where D is a (w—1)x (w+1) matrix
representing the second-order differencing operator defined by

1 -2 1 0 -+ 0 0 0 O
o 1 -21 -~ 0 0 0 O
D=|: : e o (14)
o o o 0 -1 -2 1 0
o o o0 0 -+ 0 1 =21

We can then rewrite the objective function in (13) so that
the above problem is transformed to the following quadratic
programing problem:

1
arg min EnTHn +nTn (15)

subject to n = 0, 1"n = ng,
where
T
H:—2[B’C'B+ /\’DT’D} ,and n = —2{n'TC_1B} .

Here = denotes the componentwise inequality and O is the
w-dimensional column vector whose elements are all zeros.
Similarly for 1 with all-one elements. Since this problem
is a well-defined quadratic programing problem, we use the
MATLAB optimization toolbox to solve this problem for
numerical simulations of the improved inversion estimator in
Section V.

While the improved inversion estimator in [16] is a solution
to the problem in (15), or the original one in (13), there are two
non-trivial algorithmic operations to determine the covariance
matrix C and the penalty parameter A before the problem is
solved. First, since the matrix C needs to be estimated based
only on the given sample n/, by ignoring non-zero off-diagonal
terms, they approximate the matrix C with a diagonal matrix
of the following form:

C = diag(n') + 4I, (16)

where I is the (w + 1) X (w + 1) identity matrix and ¢
is a constant. Each diagonal element of C, i.e., Var[n}], is
here approximated based on the Poisson approximation, which
implies that Var[n}] = E[n}], and by replacing E[n}] with a
sample value n/ for all 7. Since the errors between n’ and E[n/]
can be substantial, they employ a kernel-smoothing method to
smooth out n’ and obtain its smoothed version, say 1., ..
which is then used to compute C.In addition, the value of ¢ is
chosen to adjust C so that the resulting optimization problem
remains stable [16].

Second, the parameter A needs to be determined judiciously,
since it controls the amount of the regularization or penalty
term in (13), which can in turn significantly affect the accuracy
of the resulting estimator. For a given n/, the value of \ is
chosen so as to minimize the ‘estimate’ of the weighted mean
square error (WMSE), which is in the form of the first term in
(13). To this end, they employ the so-called Stein’s unbiased
risk estimation (SURE) method [21] to obtain an estimate
of the WMSE with a value of A. Then, for a given n/, by

minimizing the estimated WMSE with respect to ), they find
the optimal value of A that minimizes the estimated WMSE.
Note that this entire process of choosing the value of A is
computationally expensive, since it needs to search through
a grid of A\ values, for which their corresponding estimated
WMSEs are computed, and then to find the optimal value of
A. We refer to [16] for more details.

B. Asymptotic Estimator

We next present an asymptotic estimator proposed in [17]
to mainly estimate the ‘tail’ distribution of in-degrees from
a sample n’. Recall that D is the original degree of a node
chosen uniformly at random in G and D’ is its sampled degree
after sampling. Then observe that

D
D'=Y" 7%,
k=1

where Zj; is an i.i.d. Bernoulli random variable with p. The
following approximation can be made under mild assump-
tions [17], [22].

P{D' > i} ~ P{E[Z]D > i} = P{pD >i} (17

for sufficiently large values of i. Since P{D’ =i} = P{D’ >
i— 1} —P{D’ > i}, (17) can be written as P{D’ = i} ~
(1/p) -P{D = i/p}, which leads to

P{D =i}~ p-P{D’ = pi} (18)

for sufficiently large values of . Thus, from (18), they develop
the following asymptotic estimator to estimate the degree
counts 12, which forms an ‘unnormalized’ version of the degree
distribution f, from a given sample n':

f, = 4P — L D€ [/ (pe?), 7/,

Mo i€ (r/p,w'/pl,
where ¢ is some predetermined small value, 7 is a threshold
value given by 7 := argmin;{n; : n; > 0}, and w' is the
largest sampled degree. Note that w’/p is an estimate of the
maximum degree w. While the asymptotic estimator 7; in (19)
mainly originates from (18), it also reflects their observation
that the number of large-degree nodes near the maximum
degree is one (more or less) for each large degree [17]. We
choose the value of ¢ as in [17], and use fz = f;/ng to
estimate the degree distribution f for numerical simulations
of the asymptotic estimator in Section V.

It is worth noting that the asymptotic estimator 7; produces
valid estimates only for a few distant values of ¢ due to the
discrete nature of the degree distribution. In other words, the
nearest integer value of pi can remain the same for a wide
range of (contiguous) values of ¢ and so is n;n». Nonetheless,
this estimator is practically usable thanks to its simple design,
and it is computationally much cheaper than the improved
inversion estimator.

19)

IV. AN ITERATIVE EM ESTIMATOR

In this section, we propose a new estimator based on the
expectation-maximization (EM) algorithm. We first formulate



the problem of estimating the latent in-degree estimation as a
constrained maximum likelihood estimation (MLE) problem
under a random graph model. We show that the solution
to its unconstrained MLE problem becomes identical to the
inversion estimator in (11). We then resort to the EM algorithm
to solve the original constrained MLE problem, which leads to
a simple iterative estimator that is computationally inexpensive
and readily usable in practice. It is also substantially more
accurate than the state-of-the-art estimators, as shall be shown
based on real-world network datasets in Section V.

Consider a random graph model in which the in-degree of
each node in G is independently drawn from an arbitrary (yet
unknown) distribution f. Fix a sample n' = [n{,n},...,n,]
that is obtained from G, where ”3 is the number of nodes
having the sampled degree j in the sampled graph G’. Then,
observe from (7) that the sampled degree d;; of each node 7 in
G’ follows

P{d;=j}=g; = birfr, §=01,...,w

That is, each node 7 in G’ contributes to one of the sampled-
degree counts ng, nf, ..., n,, according to the probabilities g;.
Thus, we can write the following likelihood function, which
is the probability that the sample n’ is observed when the
degree distribution is f, and is in the form of a multinomial
distribution:

soif)= (0 T
W/ i=0 k=0

Taking the log function on both sides of (20) and ignoring the
constant terms, we can write the following MLE problem that
is to find the distribution f that maximizes the log-likelihood
function from a given sample n/.

Zn log <ijkfk)

subject to f = 0, 1Tf =1.

(20)

argmax L(f;n (21)

Note that the problem here is to estimate the (unknown) degree
distribution f from a sample n’, but without knowing which
nodes have how many (incoming) edges. In other words, it is
not to estimate the exact degree of each node but to estimate
the distribution f.

We see that since the log function is concave and L is a
linear combination of them, £ has a unique stationary point
f* with 17 f* = 1, which is the solution to an unconstrained
problem of (21). Then we have the following.

Lemma 1: When the non-negativity constraints, i.e., f >~
0, are ignored, the solution to (21) becomes identical to the
inversion estimator in (11), provided that B is invertible.

Proof: See our technical report [23]. [ ]

From Lemma 1, we can see that the stationary point f*
may not fall within the feasible region of the problem in (21),
since some elements of f* may be negative, as seen from the
inversion estimator in (11). In such a case, the solution to (21)
lies on the boundary of the feasible region, which may be hard

to solve analytically.

We employ the EM algorithm [24]-[26] to solve the MLE
problem in (21), which leads to a simple iterative estimator.
The main idea behind the EM algorithm is to find the
maximum likelihood estimate of the (unknown) distribution
f by maximizing the expectation of the likelihood function
that involves ‘unobserved’ latent variables in addition to the
observed sample n’. The EM algorithm iteratively alternates
between an expectation step and a maximization step to update
the estimate of f, as described below in detail. Let f(*) be
the estimate of f at iteration t.

1) Initialization: Pick a reasonable prior distribution f(®).
We use a uniform distribution as the prior, unless otherwise
specified.

2) Expectation: We introduce unobserved latent variables,
denoted by z;z, 0 < j < k < w, to represent the number
of nodes whose degrees are k in the original graph G and
become j in the sampled graph G”. Note that n; = 37" i Tk
Let ¢ := {5 |0 <j <k <w}.

From (2), we can see that the probability that the ‘sampled’
degree of a node becomes j from its original degree k is bjp, fx.
In a manner similar to (21), we can write the following joint
probability of having the latent variables = and the observed
sample n’ when the degree distribution is f:

p(wvn/; f) =

=T bikfr) "
szo Hk:j ! jl;[o ,g
We thus define the complete log-likelihood function of f as

Z chgk log(bjr fx)-

Jj=0k=j

(22)

Lf;x, n (23)

Also, we can obtain the conditional probability of & given n’
as

w TL/» w bkfk Tk
el =T1(, " )T ()
j=0 x777 cee ,.Tjw k=j Zi:j ijf’L (24)
Letting
bik fx .
Pik = = 55> 0<7<k<w, (25)
! Zi:j bji fi

we see that its marginal probability becomes, for 0 < j < k <

n.\
p(xjrln’s f) = (x;k)Pjé’“ (1

and E[z;x|n’; f] = n)pjx. We refer to our technical re-
port [23] for more details.

Having the estimate f(t) at iteration ¢, we define the
‘expectation’ of the complete log-likelihood function as

Q(flf(t)) = Emwp(m\n’;f(t)) [Ec(f7 Z, nl)] ’
where the expectation is with respect to & drawn according to
p(zn/; £®), which is given by (24) with f replaced by f®).
From (23) and (26), we have

f|ft) ZZE%HTL

j=0 k=j

s

— pjk)"3' TR (26)

] log (bjr fr)



= ZZ” k)log (bj fr),

J=0 k=j

where pgig is defined as in (25) with f replaced by f(*). That
is, the expectation step at iteration ¢ is to compute Q(f|f®)
in (27) based on the current estimate f(*) and the given sample
n'. This expectation step, in fact, turns out to be unnecessary
in finding the (maximum likelihood) estimate of f, as will be
shown below.

27)

3) Maximization: Update the estimate f(*+1) as the solution
to the problem of maximizing Q(f|f®"), i.e.,

£ = argmax Q(f|f®).
f

Unlike the original MLE problem in (21), we can ignore the
non-negativity constraints f > 0, due to the structure of
Q(FI£®) in (27), where f;, should be positive for all k. Thus,
as was done in the proof of Lemma 1, we can simply use the
Lagrange multiplier method to solve the problem in (28) with
the equality constraint, i.e., 17 f¢+1) = 1. Then, we obtain
that f*1) needs to be in the following form:

(t+1) _
& Canpjk, k=0,1,...

for some constant C, and 17 f t+1) = 1, In addition, from
(25), we observe that Y ,_ Opj =y jp = 1, where
bjr =0 for all £ < j, as can be seen from (2). Thus we have

I ) S LR I ot
=0 j=

k=0 j—0
which leads to C' = ng, since 17 f(t+1) =1. Therefore, from
(29), we finally have, for kK =0,1,...,w,

S bafy)
Zp JZO Mo biif" b
where f] = n' /nG for all j. That is, the maximization step
at iteration ¢ is to update £**1) in (30) based on the current
estimate f(*) and the given sample n’. Note that this step
does not require the computation of Q(f|f®) in (27) at the
expectation step.

(28)

(29)

’w’

t+1) (30)

To sum up, the EM algorithm leads to an iterative estimator
in a closed form, which is simply to keep on updating the
estimate £+ in (30) for a given sample ', or f’. The
iteration continues until the difference between two consecu-
tive estimates becomes insignificant, i.e., || f¢+)—f®)||5 < €
for a given value e, where || - ||2 indicates the I norm. This
iterative estimator is summarized in Algorithm 1, where the
prior distribution is a uniform prior. Note that Algorithm 1
takes the maximum in-degree w as an input, but it also works
with a rough estimate w, as will be shown in Section V. Note
also that € is a tunable parameter, whose value can be chosen
based on the graph size and the choice of the prior distribution.

In addition, we can characterize the time complexity of
our EM estimator at each iteration. From lines 4 to 10 of
Algorithm 1, we see that the time complexity at each iteration

Algorithm 1: Iterative EM estimator
Input: w, B, f’
1 Define ¢ as a w-dimensional vector

2 fO 115« {5 f >0}
3fort=0,1,2,... do
4 c+—0
5 for j € S do
6 fori=0,1,...,w do
7 L cj < ¢+ b”fl(t)

for k=0,1,...,w do
9 for j € S do

o)

10 Lf]gt-i-l) - f]gt+1)+bjkc§k f
| if | FETY — £, < € then
12 | break

13 return f+1)

is O(w|S]), where S denotes the set of nodes with non-
zero sampled degrees. In addition, the number of required
iterations until the stopping criterion is met (i.e., the speed of
convergence) turns out to be insignificant, as shall be shown
in the next section, e.g., Table III. We shall also empirically
demonstrate that the overall runtime of our estimator is fast
enough for various graphs.

V. SIMULATION RESULTS

We present simulation results to demonstrate the efficacy of
our EM estimator compared to the improved inversion esti-
mator and the asymptotic estimator explained in Section III,
which are referred to as ‘IINV’ and ‘ASYM’, respectively. We
evaluate not only the accuracy of each estimator but also its
runtime (time efficiency). All estimators are implemented and
evaluated in MATLAB on a machine with 3.6-GHz Intel i7
CPU and 8-GB RAM. We consider four real-world directed
network datasets from SNAP [27] and KONECT [28]. We
preprocess each graph to remove self-loops and duplicate
edges. Note that nodes that only have self-loops are removed,
and the graphs may not be strongly connected. The statistics
of the graphs after preprocessing are summarized in Table I.

TABLE I
GRAPH STATISTICS
HEP-PH | Facebook | Digg | US-patents
# Nodes 34,546 45,813 30,360 | 3,774,768
# Edges || 421,578 | 264,004 | 85,247 | 16,518,947

For numerical simulations, we focus on the random edge
sampling with varying sampling rate p for estimating or
inferring the in-degree distributions from samples. Specifically,
for a given graph G, and for a sample f’, which is a set of
the ‘sampled’ in-degrees of n nodes (as a sampling outcome
with a given value of p), each estimator provides an estimate
for the in-degree distribution. While the estimated in-degree
distributions are in the form of probability mass function
(PMF), fd = ]fD{D = d}, we also report the results in the
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Fig. 2. Simulation results on a log-log scale for the degree-distribution estimation with p=0.1.
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Fig. 3. Simulation results on a log-log scale for inferring the degree distributions from samples with p=0.2.

complementary cumulative distribution function (CCDF), say
P{D > d}. Each estimated distribution shall be ‘visually’
compared to its ground-truth distribution. We also use the
empirical mean squared error (MSE) to evaluate the accuracy
of each estimator. It is to measure the average squared dif-
ference between an estimated probability and its original one,
ie., MSE = E[f; — f4]?, for each degree d. We here only
report the average of the MSEs over all d, each of which is
obtained based on 10 different samples while they remain the
same for all estimators.

We note that the value of the maximum degree w needs
to be set for each estimator. We use the ‘actual’ value of w
for the IINV estimator, as used in [16], since it requires the
exact value of w to be known a priori. We employ an estimate
w=w'/p for the ASYM estimator, as used in [17], where w’
is the observed largest sampled degree and p is the sampling
rate. For our EM estimator, it does not need the exact w, but it
works with just a rough estimate w. We empirically observed
that our estimator is robust for a wide range of values of w, as
long as w is not severely underestimated. For example, there

was not much difference between the cases of w=w'/p and
w = 2w’ /p for the performance of our estimator. Thus, we
simply choose the latter as a bit more conservative estimate in
this paper. In addition, we set the ‘termination’ threshold e =
10~3 for the EM estimator for all graphs except US-patents,
and use e=10"% for US-patents due to its sheer size.
Figures 2—4 present the original in-degree distributions and
their estimated distributions by the ASYM, IINV, and EM
estimators. For each graph and for each sampling rate p, we
use the same sample f’ to obtain the estimated in-degree dis-
tributions. Note that for the ASYM estimator, the PMF results
are only presented, since it is designed to provide an estimate
fd for only a few large degrees d that are also not contiguous,
as explained in Section III. As can be seen from Figures 2—
4, we make the following observations. First, the estimation
of our EM estimator is most accurate for almost entire range
of the values of d in both CCDF and PMF. Second, while
the IINV estimator greatly improves the ‘vanilla’ inversion
estimator in (11), it still exhibits non-negligible oscillations in
its estimated degree distribution, which are mostly noticeable
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TABLE II
RUNTIMES OF THE IINV AND EM ESTIMATORS (IN SECONDS)

Graph HEP-PH Facebook Digg US-patents

p 0.1 02 [ 05 01 [ 02 [ 05 01 [ 02 [ 05 0.1 02 0.5
IINV | 49.4270 | 48.1393 | 46.7614 | 1.8836 | 1.8556 | 1.8225 | 2.3836 | 2.3564 | 2.3119 | 41.8413 | 40.0046 | 38.8662

EM 0.0750 0.0829 0.1226 0.0187 | 0.0189 | 0.0399 | 0.0275 | 0.0308 | 0.0343 0.1790 0.4471 0.6022

for the PMFs and for small values of p, i.e., p = 0.1,0.2.
We also observe that this oscillating behavior of the IINV
estimator is affected by the choice of its penalty parameter .
We refer to our technical report [23] for more details. Third,
the IINV estimator is accurate in capturing the ‘head’ of the in-
degree distribution, while the accuracy of the ASYM estimator
is reasonable for the ‘tail’ of the distribution, as intended by
its design.

We show the (averaged) MSEs of the IINV and EM estima-
tors in Figure 5. The results again confirm the superiority of
our EM estimator over the IINV estimator. The improvement
from the EM estimator compared to the IINV estimator
turns out to be significant for most cases, regardless of the
underlying graph and the sampling rate p. The reduction
in MSE can be even more than 90% for several cases. In
addition, while the comparison is here limited between the
IINV and EM estimators due to the aforementioned issue with
ASYM, we have also observed that the EM estimator generally
outperforms the ASYM estimator, even when computing the
MSEs for the values of d for which ASYM’s estimates are
available. We omit the results for brevity.

We next turn our attention to the time efficiency of our

EM estimator. We measure the runtimes of the [INV and EM
estimators and report them in Table II. Our EM estimator
turns out to be faster than the IINV estimator by two or-
ders of magnitude. This is in fact well expected from their
algorithmic operations, which clearly exhibit the advantage
of our estimator over the IINV estimator. In other words, as
explained in Section III-A, the IINV estimator involves non-
trivial operations and solving an optimization problem, while
our estimator is just a simple iterative method, as seen from
Algorithm 1. Note that we here do not report the runtime of the
ASYM estimator, since it merely estimates the tail distribution,
not the entire distribution. Nonetheless, we observed that the
runtime of our estimator is still comparable to that of the
ASYM estimator.

We finally show that the performance of our EM estimator
can be further improved with a proper choice of the prior
distribution. To this end, we newly consider an exponential
distribution as the prior distribution. Note that all the results
so far are obtained based on the uniform prior distribution.
The parameter of the exponential distribution is set to be a
reciprocal of the ‘estimated’ averaged degree, which is the
average ‘sampled’ degree divided by p. We then report the



TABLE III
IMPACT OF THE PRIOR ON THE EM ESTIMATOR

Graph HEP-PH Facebook Digg US-patents
P 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5 0.1 0.2 0.5
# Tter. Unif. 19 13 8 17 10 19 35 23 10 108 162 83
Exp. 7 6 6 7 8 17 31 20 9 94 154 80
MSE Unif. | 0.61 | 0.14 | 0.04 | 29.32 | 26.81 | 2.14 | 1091 | 2.39 | 0.24 | 1292 | 6.17 | 0.11
(x1076) ["Exp. | 0.33 | 0.13 | 0.03 | 28.99 | 2632 | 2.02 | 10.90 | 2.39 | 0.24 | 12.88 | 6.14 | O.11

results for the convergence speed in terms of the number of
iterations and the MSE in Table III. They all indicate that
the exponential prior can reduce the convergence speed, while
having the estimation accuracy to be comparable to or even
better than that of the uniform prior. We have also observed
that there is not much difference in the shapes of their resulting
distributions, which are omitted for brevity.

In summary, our EM estimator turns out to be substantially
better than the IINV and ASYM estimators, which are the
state-of-the-art estimators. The IINV estimator still exhibits os-
cillations in the estimated distributions, especially in the tails,
as seen from the inversion estimator. It is also sensitive to the
choice of its parameter A, not to mention the high complexity
of its algorithmic operation. In addition, the ASYM estimator
can only estimate the distributions for a few large degrees that
are far between.

VI. CONCLUSION

We have studied the problem of inferring or estimating the
latent in-degree distributions of directed graphs from random
samples. The technical challenge behind this problem is that it
often becomes an ill-posed inverse problem. In this work, we
have formulated the problem as an MLE problem and resorted
to the EM algorithm to solve the problem, which iteratively
finds the maximum likelihood estimate of the unknown in-
degree distribution f from an observed sample f’. The re-
sulting iterative estimator has shown to be significantly more
accurate than the state-of-the-art estimators, while being easy
to implement, computationally fast, and amenable to further
improvement with a proper choice of the prior. Finally, we
expect that our iterative estimator can also be readily adopted
and used for other problems, e.g., classification tasks on a
graph and inferring the entity frequency from Twitter, which
involve recovering the distribution of set sizes when a sample
is available only in the form of some elements of the sets.
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