
An Efficient and Scalable Algorithm for Estimating Kemeny’s
Constant of a Markov Chain on Large Graphs

Shiju Li
∗

Florida Institute of Technology

sli2015@my.fit.edu

Xin Huang
∗

Florida Institute of Technology

xhuang2016@my.fit.edu

Chul-Ho Lee

Florida Institute of Technology

clee@fit.edu

ABSTRACT
The mean hitting time of a Markov chain on a graph from an ar-

bitrary node to a target node randomly chosen according to its

stationary distribution is called Kemeny’s constant, which is an

important metric for network analysis and has a wide range of

applications. It is, however, still computationally expensive to eval-

uate the Kemeny’s constant, especially when it comes to a large

graph, since it requires the computation of the spectrum of the

corresponding transition matrix or its normalized Laplacian matrix.

In this paper, we propose a simple yet computationally efficient

Monte Carlo algorithm to approximate the Kemeny’s constant,

which is equipped with an (𝜖, 𝛿)-approximation estimator. Thanks

to its inherent algorithmic parallelism, we are able to develop its

parallel implementation on a GPU to speed up the computation.

We provide extensive experiment results on 13 real-world graphs

to demonstrate the computational efficiency and scalability of our

algorithm, which achieves up to 500× speed-up over the state-of-

the-art algorithm. We further present its practical enhancements to

make our algorithm ready for practical use in real-world settings.

CCS CONCEPTS
•Mathematics of computing�Graph algorithms; •Comput-
ing methodologies� Parallel algorithms;

KEYWORDS
Kemeny’s constant; Markov chain on a graph; Monte Carlo algo-

rithm; Parallel computing

ACM Reference Format:
Shiju Li, Xin Huang, and Chul-Ho Lee. 2021. An Efficient and Scalable

Algorithm for Estimating Kemeny’s Constant of a Markov Chain on Large

Graphs. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD ’21), August 14–18, 2021, Virtual Event,
Singapore. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/

3447548.3467431

∗
Both authors contributed equally to this work.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00

https://doi.org/10.1145/3447548.3467431

1 INTRODUCTION
Kemeny’s constant is a graph/network metric first introduced by

Kemeny and Snell [16], where it was originally defined based on

the fundamental matrix of a Markov chain on a graph. It has a

natural interpretation as the mean hitting time from an arbitrary

initial node to a target node randomly chosen according to the

stationary distribution of the Markov chain [20]. It has found a

wide range of applications in many different areas. For example, it

is used to evaluate and improve user navigation efficiency through

web graphs [20], and also for search and discovery in peer-to-peer

networks by interpreting the Kemeny’s constant as the search time

of a random search method [7, 26, 30]. It is recently used as an indi-

cator of network robustness to design surveillance policies for the

quickest detection of intruders and anomalies in the network [25].

It has also been extensively studied in the literature. It is well

known that the Kemeny’s constant of a Markov chain on a graph

can be expressed by the spectrum (or eigenvalues) of its transi-

tion matrix or its normalized Laplacian matrix [9, 13, 20]. It is also

shown in [24] that there is a linear relationship between the Ke-

meny’s constant and effective resistance on regular graphs. Wang

et al. [27] recently show a new closed-form expression of the Ke-

meny’s constant based on the pseudoinverse (or Moore-Penrose

inverse) of the Laplacian matrix and establish its upper and lower

bounds. Very recently, Kooij et al. [17] provide two approximations

for the Kemeny’s constant on non-regular graphs and use their

approximations along with the closed-form expression obtained

in [27] to evaluate the Kemeny’s constant on several families of

structured networks, which are limited to small graphs.
However, it still remains a challenge to compute the Kemeny’s

constant in practice, especially when it comes to large graphs. It is
often infeasible to directly compute the Kemeny’s constant based

on the spectrum of the transition matrix or its normalized Lapla-

cian matrix, since computing the spectrum of a square matrix is

computationally expensive and it requires 𝑂 (𝑛3) in practice. Thus,

there is a need for a computationally efficient algorithm to com-

pute the Kemeny’s constant for large graphs. To fill this gap, very

recently, Xu et al. [28] propose a randomized algorithm named

ApproxKemeny for approximating the Kemeny’s constant. They

show that estimating the Kemeny’s constant boils down to approx-

imating a quadratic form that involves the pseudoinverse of the

Laplacian matrix, which is then obtained as a solution of its cor-

responding Laplacian system of linear equations by employing a

nearly linear-time Laplacian solver in [18]. This framework with

the pseudoinverse of the Laplacian matrix is also similarly adopted

for computing the so-called absorbing random-walk centrality [29].

In this paper, we propose a simple yet computationally efficient

Monte Carlo algorithm, which is scalable and amenable to parallel

implementation, for estimating the Kemeny’s constant, especially

https://doi.org/10.1145/3447548.3467431
https://doi.org/10.1145/3447548.3467431
https://doi.org/10.1145/3447548.3467431

for large graphs. While Monte Carlo-type methods or algorithms

have been proposed in the literature, their focus has been limited

to computing PageRank [2] and solving a large system of linear

equations [10, 15]. To the best of our knowledge, our algorithm is

the first algorithm of its kind to approximate the Kemeny’s constant.

We summarize the contributions of this paper as follows.

• First, we establish an (𝜖, 𝛿)-approximationMonte Carlo estimator

to approximate the Kemeny’s constant.

• Second, we present its practical algorithm and by leveraging its

algorithmic parallelism, we develop its parallel implementation

on a GPU. We also characterize their time and space complexity.

• Third, we empirically demonstrate the superiority of our algo-

rithm over ApproxKemeny (the state-of-the-art algorithm) in

terms of the computational efficiency based on 13 real-world

graphs. In particular, we show that the speed-up by our algo-

rithm is up to 500×, while its estimation accuracy is comparable

to that of ApproxKemeny.

• Fourth, we present a ‘dynamic’ refinement of our algorithm to

make it work without requiring a possibly impractical parameter,

which is an estimate on the second largest eigenvalue modulus

of the transition matrix P. We demonstrate that the dynamic

refinement not only resolves this issue but also further speeds

up the computation without losing its estimation accuracy.

• Finally, we discuss how the dynamic algorithm can be adopted

for estimating the Kemeny’s constant, even when the transition

matrix P is not known explicitly.

2 PRELIMINARIES
In this section, we collect definitions and relevant results to set the

stage for the development of our Monte Carlo algorithm to estimate

the Kemeny’s constant of a Markov chain on a graph.

Consider a connected, undirected, non-bipartite graph𝐺 = (𝑉 , 𝐸),
where𝑉 := {1, 2, . . . , 𝑛} is the set of nodes with |𝑉 | = 𝑛 and 𝐸 is the

set of edges with |𝐸 | =𝑚. The graph𝐺 is characterized by an 𝑛 × 𝑛
adjacency matrix A = [𝐴𝑖 𝑗] with elements 𝐴𝑖 𝑗 = 1 if there is an

edge between nodes 𝑖 and 𝑗 , i.e., (𝑖, 𝑗) ∈ 𝐸, and 𝐴𝑖 𝑗 = 0 if otherwise.

Let 𝑑𝑖 be the degree of node 𝑖 ∈ 𝑉 , i.e., 𝑑𝑖 =
∑

𝑗 𝐴𝑖 𝑗 .

Define a (time-homogeneous) Markov chain {𝑋𝑡 }𝑡 ≥0 on the

graph𝐺 , where𝑋𝑡 denotes the location of the Markov chain at time

𝑡 . Its transition matrix is given by P = [𝑃𝑖 𝑗], where the 𝑖 𝑗-th entry

represents the transition probability 𝑃𝑖 𝑗 := P{𝑋𝑡+1 = 𝑗 |𝑋𝑡 = 𝑖}.
For example, the simple random walk on 𝐺 is a random walk on

𝐺 where the next node is chosen uniformly at random from the

set of neighbors of the current node, and it is characterized by

𝑃𝑖 𝑗 = 𝐴𝑖 𝑗/𝑑𝑖 . It is well known that the resulting Markov chain {𝑋𝑡 }
is an ergodic Markov chain, which is irreducible and aperiodic, and

it has a unique stationary distribution 𝝅 := [𝜋1, 𝜋2, . . . , 𝜋𝑛], where
𝜋𝑖 = 𝑑𝑖/(2𝑚) for all 𝑖 . It is also time-reversible, i.e., 𝜋𝑖𝑃𝑖 𝑗 = 𝜋 𝑗𝑃 𝑗𝑖
for 𝑖, 𝑗 ∈ 𝑉 .

Consider aMarkov chain {𝑋𝑡 } on𝐺 that is ergodic and reversible.

We define the hitting time of the Markov chain {𝑋𝑡 } on node 𝑖 ,

which is given by 𝑇𝑖 := min{𝑡 ≥ 0 : 𝑋𝑡 = 𝑖}. The mean hitting time

from node 𝑖 to node 𝑗 can also be defined by E𝑖 [𝑇𝑗] := E[𝑇𝑗 |𝑋0 = 𝑖],
i.e., the expected number of steps to ‘hit’ node 𝑗 for the first time,

when the Markov chain starts from 𝑖 . Then, we can define the mean

hitting time of {𝑋𝑡 } from a given node 𝑖 to a ‘random’ destination

that is a randomly chosen node according to 𝝅 as follows:

E𝑖 {𝑇𝜋 } :=
∑
𝑗 ∈𝑉
E{𝑇𝑗 |𝑋0 = 𝑖}𝜋 𝑗 , 𝑖 ∈ 𝑉 . (1)

This quantity is called Kemeny’s constant, and it can be viewed as a

‘weighted’ mean hitting time [16, 21]. It is also known that this quan-

tity does not depend on the initial node 𝑖 . In other words, E𝑖 {𝑇𝜋 }
remains the same, no matter where the Markov chain {𝑋𝑡 } initially
starts from. This result is often called ‘random target lemma’. For

notational simplicity, we use K to denote the Kemeny’s constant

in (1) throughout the paper.

We note that the Kemeny’s constantK can be interpreted from a

viewpoint of a ‘random surfer’ [20]. From the random target lemma

and

∑
𝑖 𝜋𝑖 = 1, we can write

K =
∑
𝑖∈𝑉

𝜋𝑖E𝑖 {𝑇𝜋 } =
∑
𝑖∈𝑉

𝜋𝑖

∑
𝑗 ∈𝑉
E{𝑇𝑗 |𝑋0 = 𝑖}𝜋 𝑗 . (2)

Thus, the Kemeny’s constant can be viewed as the mean hitting

time from an ‘unknown’ (or randomly chosen) initial node to an

unknown destination. Suppose that there is a random surfer moving

over 𝐺 according to P for a while. At some stage the surfer is in

the stationary regime, which can be thought of as if it gets ‘lost’

without knowing its position and whereabouts. The random surfer

then randomly goes through K steps on average before it reaches

its destination. In other words, it is the expected number of steps

required for the surfer to reach the destination after getting lost.

In a similar vein, K can be considered as the search time of a

random search method and thus it has been used for search and

discovery in peer-to-peer networks [7, 26, 30]. It is also often used

to measure how long it takes for a random walk having a desired

stationary distribution to reach a random destination in various

applications [5, 12, 19, 21].

Let 𝜆1, 𝜆2, . . . , 𝜆𝑛 be the eigenvalues of the transition matrix P.
Since the Markov chain {𝑋𝑡 } is ergodic and reversible, they are real
and can be rearranged as

1 = 𝜆1 > 𝜆2 ≥ 𝜆3 ≥ · · · ≥ 𝜆𝑛 > −1. (3)

We also define the second largest eigenvalue modulus (SLEM) of

the transition matrix P as

𝜆∗ := max{|𝜆𝑖 | : 𝜆𝑖 is eigenvalue of P, 𝜆𝑖 ≠ 1},
which characterizes themixing rate of the Markov chain, i.e., the as-

ymptotic rate of convergence of the Markov chain to the stationary

distribution 𝝅 [4]. Then, it is known that the Kemeny’s constant

can be written in terms of the eigenvalues of P and is given by

K =

𝑛∑
𝑖=2

1

1 − 𝜆𝑖
. (4)

It is also known that K is bounded below and above as follows [13,

20, 24].

(𝑛 − 1)2
𝑛

≤ K ≤ 𝑛 − 1
1 − 𝜆2

, (5)

which implies that K increases linearly with the size of the graph.

It is worth noting that there is another version of Kemeny’s

constant in the literature. For example, as recently used in [28], it is

the one given by K =1 +∑𝑛
𝑖=2

1

1−𝜆𝑖 . It is, in fact, the case when the

hitting time of {𝑋𝑡 } on node 𝑖 is defined as 𝑇 +
𝑖

:= min{𝑡 ≥ 1 : 𝑋𝑡 =

𝑖}. Note that 𝑇 +
𝑖

= 𝑇𝑖 , unless 𝑋0 = 𝑖 in which case 𝑇 +
𝑖
is the first

return time to 𝑖 with E[𝑇 +
𝑖
|𝑋0 = 𝑖] = 1/𝜋𝑖 . Thus, if E𝑖 {𝑇 +𝜋 } and K

are defined in (1) and (2), respectively, with 𝑇𝑖 replaced by 𝑇 +
𝑖
, the

Kemeny’s constant becomes K =1 +∑𝑛
𝑖=2

1

1−𝜆𝑖 , and the difference

with (4) is only 1.

In addition, the Kemeny’s constant can be represented in terms

of the eigenvalues of the normalized Laplacian matrix. Consider

a simple random walk on 𝐺 for now, which corresponds to the

normalized Laplacian matrix of the graph 𝐺 . It will be generalized

for any ergodic, reversible Markov chain on 𝐺 below. Define the

Laplacian matrix L and its normalized Laplacian matrix L by L :=

D−A and L := D−1/2LD−1/2, respectively, whereD is the diagonal

matrix of degrees, i.e., the 𝑖-th diagonal entry of D is 𝑑𝑖 [8]. Letting

𝝈 := [𝜎1, 𝜎2, . . . , 𝜎𝑛] be the vector of eigenvalues of L, which satisfy
0 = 𝜎1 < 𝜎2 ≤ 𝜎3 ≤ · · · ≤ 𝜎𝑛 , we have

K =

𝑛∑
𝑖=2

1

𝜎𝑖
, (6)

which is the Kemeny’s constant of a simple random walk on 𝐺 .

The Kemeny’s constant of any given ergodic, reversible Markov

chain on 𝐺 can also be obtained using the identity in (6), as long

as the eigenvalues 𝜎𝑖 are the ones of the normalized Laplacian

matrix of a properly defined ‘weighted’ graph. Observe that any

ergodic, reversible Markov chain on𝐺 can be regarded as a random

walk on a weighted graph [1]. For a given Markov chain with P
and 𝝅 , we can define a weighted graph, say 𝐺 ′, characterized by a

weight matrixW := [𝑊𝑖 𝑗] with elements𝑊𝑖 𝑗 := 𝜋𝑖𝑃𝑖 𝑗 for (𝑖, 𝑗) ∈ 𝐸,
𝑊𝑖𝑖 := 𝜋𝑖𝑃𝑖𝑖 for node 𝑖 with 𝑃𝑖𝑖 > 0, and𝑊𝑖 𝑗 = 0 if otherwise. The

degree 𝑑𝑖 of 𝐺
′
is now defined to be 𝑑𝑖 :=

∑
𝑗𝑊𝑖 𝑗 = 𝜋𝑖 , and thus

D is the diagonal matrix of elements 𝜋𝑖 . We can then generalize

the normalized Laplacian matrix L for the weighted graph 𝐺 ′ as
L = D−1/2 (D −W)D−1/2 [8]. Thus, we see that (6) holds with the

eigenvalues of this normalized Laplacian matrix L, by observing

that L = I − D1/2PD−1/2 and thus 𝜎𝑖 = 1 − 𝜆𝑖 for all 𝑖 , where I is
the identity matrix.

We note that it is generally faster to compute the spectrum (or

eigenvalues) of L than that of P when they are feasible to compute

(or when the graphs are small), since L is a symmetric matrix but P is
not. Similar to the matrix multiplication, however, the computation

of the spectrum of a square matrix is computationally expensive and

it requires 𝑂 (𝑛3) in practice [28]. Thus, it is often difficult or even

infeasible to directly compute the Kemeny’s constant based on (4) or

(6) for large graphs. Therefore, there is a need for a computationally

efficient and scalable algorithm to estimate the Kemeny’s constant

for large graphs.

3 THE STATE-OF-THE-ART ALGORITHM
In this section, we provide an overview of ApproxKemeny pro-

posed by Xu et al. in [28], which is the state-of-the-art randomized

algorithm for approximating the Kemeny’s constantK of a Markov

chain on a graph𝐺 .
1
We here focus on a simple random walk on𝐺

for the Markov chain on 𝐺 , as assumed in [28].

1
Note that ApproxHK is proposed by the same group of authors in [29] for estimating

the so-called absorbing random-walk centrality, from which the Kemeny’s constant

can also be computed. Note that ApproxHK and ApproxKemeny share the common

framework that involves the pseudoinverse of the Laplacian matrix and its Laplacian

solver. However, in [29], they do not provide any theoretical results nor experiment

ApproxKemeny is based on Hutchinson’s estimator [3, 14] to

approximate the trace of the pseudoinverse (or Moore-Penrose in-

verse) of the normalized Laplacian matrix L, since computing K
is equivalent to computing the trace of the pseudoinverse of L. By
leveraging the relationship between the pseudoinverse of L and

that of the (original) Laplacian matrix L, estimating the trace of

the pseudoinverse of L boils down to approximating a quadratic

form that involves the pseudoinverse of L. Here, instead of directly
computing this pseudoinverse, they employ a nearly linear-time

Laplacian solver in [18] to solve its corresponding Laplacian system

of linear equations. They empirically demonstrate that ApproxKe-

meny exhibits state-of-the-art performance in terms of the runtime.

We below explain the mathematical framework of ApproxKe-

meny for the sake of completeness. Since the normalized Laplacian

matrix L is a symmetric matrix, by spectral decomposition, we can

write L = UΣU𝑇 , where U is an orthogonal matrix and Σ is a diago-

nal matrix with the eigenvalues of L on its diagonal. Although L is

not invertible due 𝜎1 = 0, it has a pseudoinverse L†, which is also

symmetric. Thus, we have L† = UΣ−1U𝑇 , where Σ−1 is a diagonal
matrix whose elements are the eigenvalues of L†, i.e., 𝜎∗

1
= 0 and

𝜎∗
𝑖
= 1/𝜎𝑖 for 𝑖 = 2, 3, . . . , 𝑛. Therefore, from (6), we have

K =

𝑛∑
𝑖=2

𝜎∗𝑖 = tr(L†). (7)

Let 𝒙 be a 𝑛-dimensional random vector whose elements are

i.i.d. Rademacher random variables, i.e., P{𝑥𝑖 = ±1} = 1/2 for 𝑖 =

1, 2, . . . , 𝑛. It is known from [3, 14] that E{𝒙𝑇 L†𝒙} = tr(L†) and
thus the following estimator called Hutchinson’s estimator can be

constructed to approximate the trace of the pseudoinverse L†:

tr(L†) ≈ 1

𝑀

𝑀∑
𝑖=1

𝒙𝑇𝑖 L
†𝒙𝑖 (8)

for some sufficiently large 𝑀 , where 𝒙𝑖 are i.i.d copies of 𝒙 . In
addition, by noting that L = D1/2LD1/2

, we can write

L† = (I − 1

2𝑚
D

1

211𝑇D
1

2)D
1

2L†D
1

2 (I − 1

2𝑚
D

1

211𝑇D
1

2), (9)

where𝑚 is the number of edges and 1 is the 𝑛-dimensional column

vector whose elements are all ones.

Let 𝒚𝑖 := D
1

2 (I − 1

2𝑚D
1

211𝑇D
1

2)𝒙𝑖 . Observe that L can be writ-

ten as L = B𝑇B, where B is the𝑚×𝑛 edge-node oriented incidence

matrix of the graph 𝐺 , i.e., its (𝑖, 𝑗) entry is −1 if the 𝑖-th node is

the source node of the 𝑗-th edge, 1 if it is the target node and zero

otherwise (the edge orientation can be arbitrary but fixed). Thus,

from (7)–(9), we have

K ≈ 1

𝑀

𝑀∑
𝑖=1

𝒚𝑇𝑖 L
†𝒚𝑖 =

1

𝑀

𝑀∑
𝑖=1

𝒚𝑇𝑖 L
†LL†𝒚𝑖

=
1

𝑀

𝑀∑
𝑖=1

𝒚𝑇𝑖 (L
†)𝑇B𝑇BL†𝒚𝑖 =

1

𝑀

𝑀∑
𝑖=1

∥BL†𝒚𝑖 ∥2, (10)

where the third equality is from that L† is a symmetric matrix.

Finally, approximating K boils down to evaluating the quadratic

form in (10) that involves L†, the pseudoinverse of the Laplacian

results under real-world network datasets for estimating the Kemeny’s constant. Thus,

we do not include ApproxHK for performance comparison in this paper.

matrix L. Here, instead of directly computing this pseudoinverse,

letting 𝒛𝑖 := L†𝒚𝑖 , ApproxKemeny employs a nearly linear-time

Laplacian solver in [18] to solve a Laplacian system L𝒛𝑖 = 𝒚𝑖 for
𝒛𝑖 , 𝑖 = 1, 2, . . . , 𝑀 . We refer to [28] for more details.

4 MONTE CARLO ALGORITHM
In this section, we present a novel Monte Carlo (MC) algorithm that

is computationally efficient and amenable to parallel implementa-

tion, to approximate the Kemeny’s constant K of a Markov chain

on a graph 𝐺 . We first provide its mathematical framework that

leads to an (𝜖, 𝛿)-approximation MC estimator, and then present

the MC algorithm and its parallel implementation on a GPU.

4.1 Mathematical Framework
Observe that (4) can be written as

K =

𝑛∑
𝑖=2

(1 + 𝜆1𝑖 + 𝜆
2

𝑖 + · · ·) = 𝑛 − 1 +
𝑛∑
𝑖=2

∞∑
𝑘=1

𝜆𝑘𝑖 , (11)

from |𝜆𝑖 | < 1 for all 𝑖 ≠ 1. Since the trace of a matrix is the sum of

its diagonal elements and is also the sum of its eigenvalues, we see

that

𝑛∑
𝑖=2

𝜆𝑘𝑖 = tr(P𝑘) − 𝜆𝑘
1
= tr(P𝑘) − 1. (12)

From (11) and (12), we have

K = 𝑛 − 1 +
∞∑
𝑘=1

[
tr(P𝑘) − 1

]
. (13)

We also observe that

tr(P𝑘) =
𝑛∑
𝑖=1

(P𝑘)𝑖,𝑖 = 𝑛

𝑛∑
𝑖=1

P{𝑋𝑘 = 𝑖 |𝑋0 = 𝑖}P{𝑈 = 𝑖} (14)

= 𝑛 · P{𝑋𝑘 = 𝑋0 |𝑋0 = 𝑈 }, (15)

where 𝑈 is a uniform random variable on 𝑉 and (P𝑘)𝑖,𝑖 is the 𝑖-th
diagonal entry of P𝑘 , which is the 𝑘-step transition probability from
node 𝑖 to itself, i.e., the probability of returning to 𝑖 after 𝑘 steps.

We then have two important observations that become the basis

for our proposed MC algorithm. First, from (15), we see that the

trace tr(P𝑘) can be readily estimated by 𝑟 independent realizations of
a Markov chain, which moves on𝐺 according to P for 𝑘 steps, given

that their initial positions are chosen uniformly at random from 𝑉 .

Second, by noting that

∑∞
𝑘=1

𝜆𝑘
𝑖
in (11) can be well approximated by

its partial sum (recall that |𝜆𝑖 | < 1 for all 𝑖 ≠ 1), from (11) and (13),

we can approximate the Kemeny’s constant K based on a partial

sum of [tr(P𝑘) − 1]. Note that each trace tr(P𝑘) is estimated by the

𝑟 independent realizations.

We present our MC estimator as follows. For a given Markov

chain with P and 𝝅 , we generate its 𝑟 independent sample paths of

length 𝑙 , each of which starts from a node that is chosen uniformly

at random from𝑉 . Let {𝑋 𝑗

0
, 𝑋

𝑗

1
, . . . , 𝑋

𝑗

𝑙
} be the trajectory of the 𝑗-th

realization for 𝑗 = 1, 2, . . . , 𝑟 . Note that 𝑋 1

𝑘
, 𝑋 2

𝑘
, . . . , 𝑋𝑟

𝑘
are indepen-

dent for each 𝑘 = 1, 2, . . . , 𝑙 , so we can use them to estimate tr(P𝑘)
for different 𝑘 values. Specifically, we define 𝑍

𝑗

𝑘
:= 1{𝑋 𝑗

𝑘
= 𝑋

𝑗

0
}

for the 𝑗-th realization and for each 𝑘 . For brevity, we also define

ℎ𝑘 := tr(P𝑘). Then, from (15), we can build the following MC esti-

mator for ℎ𝑘 :

ˆℎ𝑘 (𝑟) := 𝑛 · 1
𝑟

𝑟∑
𝑗=1

𝑍
𝑗

𝑘
= 𝑛 · 1

𝑟

𝑟∑
𝑗=1

1{𝑋 𝑗

𝑘
= 𝑋

𝑗

0
}. (16)

By the strong law of large numbers, we have

ˆℎ𝑘 (𝑟)
a.s.−−→ ℎ𝑘 , as 𝑟 →∞. (17)

Furthermore, from (13), we define

K𝑙 := 𝑛 − 1 +
𝑙∑

𝑘=1

[ℎ𝑘 − 1] , (18)

and construct its corresponding MC estimator as

ˆK𝑙 (𝑟) := 𝑛 − 1 +
𝑙∑

𝑘=1

[
ˆℎ𝑘 (𝑟) − 1

]
. (19)

By (17) and the linearity of almost sure convergence, we have

ˆK𝑙 (𝑟)
a.s.−−→ K𝑙 , as 𝑟 →∞.

In other words,
ˆK𝑙 (𝑟) is an asymptotically consistent estimator of

K𝑙 in (18).

We below demonstrate that the estimator in (19), with a proper

choice of 𝑙 , can also be used to approximate the Kemeny’s constant

K in (13). Specifically, we establish an (𝜖, 𝛿)-approximation of this

estimator, which implies, for any small 𝜖, 𝛿 > 0, how many realiza-

tions 𝑟 are necessary with a choice of 𝑙 so that the approximation

error can be bounded by 𝜖 with probability at least 1−𝛿 . To proceed,
we need the following .

Theorem 1 (Hoeffding’s ineqality). Let 𝑌1, . . . , 𝑌𝑛𝑟 be i.i.d.
random variables such that E[𝑌𝑖] = 𝜇 and 𝑎 ≤ 𝑌𝑖 ≤ 𝑏. Then, for any
𝜖 > 0,

P
{��� 1
𝑛𝑟

𝑛𝑟∑
𝑖=1

𝑌𝑖 − 𝜇
��� > 𝜖

}
≤ 2𝑒−2𝑛𝑟𝜖

2/(𝑏−𝑎)2 .

We below show that
ˆK𝑙 (𝑟) achieves an (𝜖, 𝛿)-approximation to

K in (13), when 𝑙 and 𝑟 are properly chosen.

Theorem 2. For any 𝜖 > 0 and 𝛿 ∈ (0, 1), choose 𝑙 such that

𝑙 ≥ log
𝜖
2𝑛
(1−𝜆∗)

log𝜆∗
− 1. If 𝑟 ≥ 2𝑛2𝑙2

𝜖2
log (2𝑙/𝛿), then we have

P
{�� ˆK𝑙 (𝑟) − K �� > 𝜖

}
≤ 𝛿. □

Proof. Fix 𝜖 > 0 and 𝛿 ∈ (0, 1). We observe that

P
{�� ˆK𝑙 (𝑟) − K �� > 𝜖

}
= P

{�� ˆK𝑙 (𝑟) − K𝑙 + K𝑙 − K �� > 𝜖

}
(𝑎)
≤ P

{�� ˆK𝑙 (𝑟) − K𝑙 �� + ��K𝑙 − K �� > 𝜖

}
(𝑏)
≤ P

{�� ˆK𝑙 (𝑟) − K𝑙 �� > 𝜖

2

}
+ P

{��K𝑙 − K �� > 𝜖

2

}
(𝑐)
= P

{�� ˆK𝑙 (𝑟) − K𝑙 �� > 𝜖

2

}
, (20)

where (𝑎) uses the triangle inequality, and (𝑏) follows from{�� ˆK𝑙 (𝑟) − K𝑙 �� + ��K𝑙 − K �� > 𝜖

}
⊆
{�� ˆK𝑙 (𝑟) − K𝑙 �� > 𝜖

2

} ⋃ {��K𝑙 − K �� > 𝜖

2

}

and the union bound. Also, (𝑐) holds since

K −K𝑙 =
∞∑

𝑘=𝑙+1
[ℎ𝑘 − 1] <

∞∑
𝑘=𝑙+1

𝑛𝜆𝑘∗ ≤
𝜖

2

,

where the first inequality is from

ℎ𝑘 =

𝑛∑
𝑖=1

𝜆𝑘𝑖 ≤ 1 + (𝑛 − 1)𝜆𝑘∗ < 1 + 𝑛𝜆𝑘∗ , (21)

and the last inequality is due to the choice of 𝑙 . Since 0 ≤ ˆℎ𝑘 (𝑟) ≤ 𝑛

and E{ ˆℎ𝑘 (𝑟)} = ℎ𝑘 for 𝑘 = 1, 2, . . . , 𝑙 , (20) is further bounded by

P
{�� ˆK𝑙 (𝑟) − K𝑙 �� > 𝜖

2

}
= P

{��� 𝑙∑
𝑘=1

ˆℎ𝑘 (𝑟) −
𝑙∑

𝑘=1

ℎ𝑘

��� > 𝜖

2

}
(𝑑)
≤ P

{ 𝑙∑
𝑘=1

�� ˆℎ𝑘 (𝑟) − ℎ𝑘 �� > 𝜖

2

} (𝑒)
≤

𝑙∑
𝑘=1

P

{�� ˆℎ𝑘 (𝑟) − ℎ𝑘 �� > 𝜖

2𝑙

}
(𝑓)
≤ 2𝑙 exp

(
− 𝑟

2

𝜖2

𝑛2𝑙2

)
, (22)

where (𝑑) uses the triangle inequality, (𝑒) can be shown as was done
to show (𝑏), and (𝑓) holds by Hoeffding’s inequality. Therefore,

with the given choice of 𝑟 , the result follows since the RHS of (22)

is less than or equal to 𝛿 . □

4.2 Algorithm and Parallel Implementation
The MC estimator

ˆK𝑙 (𝑟) in (19) is simply based on 𝑟 independent

realizations (or sample paths) of a givenMarkov chain with P and 𝝅 ,
each of which has a uniform start thanks to (15).When it comes to its

practical implementation, however, to better control ‘randomness’

we generate 𝑟 = 𝛼𝑛 independent realizations of the Markov chain,

among which each group of 𝛼 realizations start from each node 𝑖 ,

where 𝛼 is a positive integer value. To correctly indicate the initial

node 𝑖 , we write {𝑋 𝑗

𝑖,0
, 𝑋

𝑗

𝑖,1
, . . . , 𝑋

𝑗

𝑖,𝑙
} to denote the 𝑗-th realization of

length 𝑙 that starts from node 𝑖 , for 𝑗 = 1, 2, . . . , 𝛼 . Then we see that

each group of 𝛼 realizations, i.e., 𝑋 1

𝑖,𝑘
, 𝑋 2

𝑖,𝑘
, . . . , 𝑋𝛼

𝑖,𝑘
, individually

estimates each diagonal entry (P𝑘)𝑖,𝑖 in (14), and thus the estimator

ˆℎ𝑘 (𝑟) in (16) is now redefined to be

ˆℎ𝑘 (𝑟) =
𝑛∑
𝑖=1

1

𝛼

𝛼∑
𝑗=1

1{𝑋 𝑗

𝑖,𝑘
= 𝑋

𝑗

𝑖,0
}.

This is then used for the MC estimator
ˆK𝑙 (𝑟) in (19). Our MC

algorithm is summarized in Algorithm 1.

Theorem 3. The time complexity of Algorithm 1 is 𝑂 (𝑟 · 𝑙). The
space complexity of Algorithm 1 is 𝑂 (𝑚 + 𝑛).

Proof. The nested loop structure of Algorithm 1 makes the

overall time complexity𝑂 (𝑟 ·𝑙). For the space complexity, it requires

𝑂 (𝑚+𝑛) to store up to 2𝑚 non-zero transition probabilities and up to

𝑛 possible self-transition probabilities (along with their associated

‘directional’ edges), and 𝑂 (1) to keep track of the current position

of each realization of the chain to check the ‘if-condition’ in line 7,

together with a frequency counter. Thus, we have 𝑂 (𝑚 + 𝑛). □

Thanks to the inherent algorithmic parallelism of our MC algo-

rithm, we are able to leverage the power of parallel computing to

greatly reduce the runtime of Algorithm 1. Specifically, we develop

Algorithm 1: Monte Carlo Algorithm

Input: transition matrix P, chain length 𝑙 , the number of

realizations 𝑟 = 𝛼𝑛

1 𝐶 ← 0

2 for 𝑗 = 1, 2, . . . , 𝛼 do
3 for 𝑖 = 1, 2, . . . , 𝑛 do
4 𝑋0 ← 𝑖; 𝑋 ← 𝑋0

5 for 𝑘 = 1, 2, . . . , 𝑙 do

6 𝑋
P←− 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡 (𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑋))

7 if 𝑋 == 𝑋0 then
8 𝐶 ← 𝐶 + 1

9 K ← 𝐶/𝛼 + 𝑛 − 1 − 𝑙
10 return K

a parallel implementation of our MC algorithm on a GPU based

on the NVIDIA CUDA programming framework
2
, as described in

Algorithm 2. Note that accessing a GPU is no longer an expensive

option, since a modern computer is typically equipped with a GPU

and it can also be used via a free cloud service like Google Co-

lab
3
, which is the one used in this paper. Given a graph 𝐺 , chain

length 𝑙 , and the number of realizations 𝑟 , our GPU implementation

efficiently computes (approximates) the Kemeny’s constant K of

the Markov chain on 𝐺 . We first create a list of initial nodes 𝑽 , in
which each element is the initial starting node of each realization

of the Markov chain. Note that 𝛼 realizations start from the same

node. The GPU kernel parallels the operation of each realization by

assigning it to each thread, and simply counts howmany times each

realization hits its initial starting node. The hitting frequencies are

all added together to compute the Kemeny’s constant K . This GPU

implementation is illustrated in Figure 1. We refer to Appendix A

for more details on the GPU implementation.

Suppose that the number of threads that can be created and the

number of available GPU cores are both greater than the number

of realizations. Then we have the following.

Theorem 4. The time complexity of Algorithm 2 is 𝑂 (𝑙 + 𝑟). The
space complexity of Algorithm 2 is 𝑂 (𝑚 + 𝑛 + 𝑟).

Proof. Since each realization of the chain can be assigned to a

different thread running on a different GPU core, its time complexity

is bounded by the chain length 𝑙 , i.e., 𝑂 (𝑙). The ‘for-loop’ in lines 9

and 10 takes𝑂 (𝑟), which in turn makes the time complexity𝑂 (𝑙+𝑟).
For the space complexity, it requires storing 𝑟 frequency counters,

the initial and current positions of 𝑟 realizations, and up to 2𝑚

non-zero transition probabilities and up to 𝑛 possible self-transition

probabilities, which leads to a total of 𝑂 (𝑚 + 𝑛 + 𝑟). □

It is worth noting that the number of available GPU cores can be

smaller than the number of realizations in practice, although the

number of threads that can be created is generally large enough. In

such a case, the time complexity of Algorithm 2 becomes𝑂 (⌈𝑟/𝑇 ⌉ ·
𝑙 + 𝑟), where 𝑇 is the number of cores. We also emphasize that the

parallel implementation of our MC algorithm here is based on a

single GPU, but it can be readily extended to multiple GPUs to

realize ‘perfect’ parallelization in case the number of cores on a

single GPU is not enough to do so.

2
https://developer.nvidia.com/cuda-toolkit

3
https://colab.research.google.com/

Algorithm 2: Parallel Implementation on a GPU

Input: transition matrix P, chain length 𝑙 , the number of

realizations 𝑟 = 𝛼𝑛

1 Create a list of initial nodes 𝑽 = [𝑉1,𝑉2, . . . ,𝑉𝑟] =
[repeat each element in [1, 2, . . . , 𝑛] 𝛼 times]

2 𝑐𝑖 ← 0 for 𝑖 = 1, 2, . . . , 𝑟 ; 𝐶 ← 0

3 GPU kernel: Parallel for 𝑖 = (1, 2, . . . , 𝑟) do
4 𝑋0 ← 𝑉𝑖 ; 𝑋 ← 𝑋0

5 for 𝑘 = 1, 2, . . . , 𝑙 do

6 𝑋
P←− 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡 (𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑋))

7 if 𝑋 == 𝑋0 then
8 𝑐𝑖 ← 𝑐𝑖 + 1

9 for 𝑖 = 1, 2, . . . , 𝑟 do
10 𝐶 ← 𝐶 + 𝑐𝑖
11 K ← 𝐶/𝛼 + 𝑛 − 𝑙 − 1
12 return K

Block

…

Block

…

Block

……

Grid

Thread

realization1 realization2 realization3 … realizationr

c1 c2 c3 … cr

C = c1+ c2+ c3+ … + cr

Figure 1: An illustration of the GPU implementation.

5 EXPERIMENT RESULTS
In this section, we present extensive experiment results to demon-

strate the effectiveness of our MC algorithm on estimating the

Kemeny’s constant K , especially for large graphs.

Datasets.We consider 13 real-world undirected network datasets

from SNAP
4
and Network Repository

5
, which are listed in an as-

cending order of graph size 𝑛 in Table 1.
6
We classify four graphs

whose sizes are smaller than 50K as small graphs and the rest of

them as large graphs. In this experimental evaluation, we focus

on computing the Kemeny’s constant K of a simple random walk

on the largest strongly connected components (LSCC) of a graph,

as used in [28]. The statistics in Table 1 are for the LSCCs. The

datasets include infrastructure networks, online social networks,

collaboration networks, and communication networks, where the

largest one has about 1.7 million nodes.

Experiment setup.We implement two baseline methods, which

are to directly compute the eigenvalues of the transition matrix P
and those of its normalized Laplacian matrix L in order to compute

K . We refer to them as ‘Eigen-P’ and ‘Eigen-N’, respectively. Note

that they are only feasible for small graphs. We also implement

ApproxKemeny from scratch, as described in [28], since its imple-

mentation code is not publicly available. See Appendix A for more

details on the implementation. For ApproxKemeny, there is a pa-

rameter 𝜖𝐴 that controls the precision of its estimation of K and

4
http://snap.stanford.edu/data/

5
http://networkrepository.com/

6
We are not able to find all the datasets in [28] due to the policy change of KONECT,

where the datasets are no longer freely available. Nonetheless, we still have the six

datasets in common compared to the ones in [28].

Table 1: Graph statistics
Nodes (𝑛) # Edges (𝑚) Chain length 𝑙

HEP-TH 8638 24806 3566

Astro-ph 17903 196972 1640

CAIDA 26475 53381 869

EmailEnron 33696 180811 3124

Brightkite 56739 212945 25791

wiki-Talk 92117 360767 25791

Gowalla 196591 950327 25791

com-DBLP 317080 1049866 25791

Amazon 334863 925872 25791

soc-flickr 513969 3190452 25791

soc-digg 770799 5907132 25791

Youtube 1134890 2987624 25791

Skitter 1694616 11094209 25791

𝜖𝐴 is set to be from 0.05 to 0.3 in [28]. In this paper, we report the

results of ApproxKemeny when 𝜖𝐴 = 0.1, 0.2, 0.3. We observed that

the case with 𝜖𝐴 = 0.05 makes the runtime of ApproxKemeny way

too long without any benefit in the estimation accuracy.

For our MC algorithm, we use the parallel implementation in

Algorithm 2, whose details are provided in Appendix A. We first

need to determine the length 𝑙 of theMarkov chain, which requires a

choice of the value of 𝜖 and the value of 𝜆∗, as in Theorem 2. For the

former, we consider 𝜖 = 0.01𝑛, which is a function of the graph size

𝑛, since K increases linearly with 𝑛, as seen from (5). For the latter,

we use the exact value of 𝜆∗ for small graphs. When it comes to

large graphs, it can be expensive to compute 𝜆∗. Thus, we use a very
conservative estimate of 𝜆∗, i.e., 𝜆∗=0.9995, which could be much

larger than its actual value for some graphs. Their corresponding

lengths 𝑙 are reported in Table 1. Note that the exact value of 𝜆∗ may

not be readily available in practice and the conservative estimate

of 𝜆∗ could turn out to be an underestimated one. Thus, to cope

with this problem, we will present an updated version of our MC

algorithm that does not require the knowledge on 𝜆∗ in Section 6.

In addition to the length 𝑙 , we also need to determine the number of

realizations of the Markov chain, 𝑟 . In this experimental evaluation,

we consider 𝑟 = 𝑛, 10𝑛, 100𝑛 to demonstrate how effective our MC

algorithm can be in practice. We refer to Appendix B for more

details on the experiment setup.

Experiment results. We first demonstrate the efficiency and scal-

ability of our MC algorithm when compared with two baseline

methods and ApproxKemeny in terms of the runtime. We report

the detailed results in Table 3 in Appendix C. As shown in Figure 2,

the runtime of our MC algorithm remains almost the same for small

graphs, while it increases when the graph becomes larger and 𝑟

increases. The latter happens because all the realizations cannot be

executed in parallel concurrently, when the number of realizations

is greater than the number of available GPU cores, as explained

in Section 4. Nonetheless, our algorithm is far faster than Eigen-P,

Eigen-N, and ApproxKemeny. It only takes about one second to

compute the Kemeny’s constant for small graphs and a few minutes
for large graphs in the worst case, such as Youtube and Skitter,

each of which has more than a million nodes. Note that Eigen-P

and Eigen-N are only feasible for small graphs. Furthermore, the

improvement of our algorithm over ApproxKemeny becomes more

significant for large graphs.

HEP-TH Astro-ph CAIDA EmailEnron Brightkite wiki-Talk Gowalla com-DBLP Amazon soc-flickr soc-digg Youtube Skitter

0.1

1

10

100

1000

Ru
nt

im
e

[s
]

r=n
r=10n
r=100n

Figure 2: Runtimes of our MC algorithm on a log scale.

HEP-TH Astro-ph CAIDA EmailEnron Brightkite wiki-Talk Gowalla com-DBLP Amazon soc-flickr soc-digg Youtube Skitter1

100

200

300

400

500

Sp
ee

d-
up

MC r=100n vs. ApproxKemeny εA=0.3
MC r=100n vs. ApproxKemeny εA=0.2
MC r=100n vs. ApproxKemeny εA=0.1

Figure 3: Speed-up by our MC algorithm over ApproxKemeny.

Astro-ph CAIDA Brightkite Gowalla com-DBLP Amazon1

10

20

30

Sp
ee

d-
up

MC r=100n vs. ApproxKemeny εA=0.3
MC r=100n vs. ApproxKemeny εA=0.2
MC r=100n vs. ApproxKemeny εA=0.1

Figure 4: Speed-up by our MC algorithm over ApproxKe-
meny (based on the runtime results reported in [28]).

We also show the speed-up by our algorithm over ApproxKe-

meny (with three different choices of 𝜖𝐴) in Figure 3. Here, we use

the case with 𝑟 = 100𝑛, which is the slowest (but most accurate)

case. It is far faster than ApproxKemeny for all test cases and the

speed-up is up to 500×. It is worth noting that the runtimes of

ApproxKemeny (of our implementation) on our workstation is over

ten times longer than the ones reported in [28]. It may be because of

different computing environments and different levels of program-

ming optimization. Thus, we further compare the runtimes of our

MC algorithm under the six common datasets with the runtimes

of ApproxKemeny reported in [28], as depicted in Figure 4. We

observe that the MC algorithm is still faster than ApproxKemeny

and the speed-up is up to 30×.
We next demonstrate the accuracy of the MC algorithm for

computing the Kemeny’s constant. To this end, we measure the

relative error |K − K̃ |/K for each graph, where K̃ is our estimated

value and K is the reference value. For the reference value, we use

the value of K obtained by Eigen-P or Eigen-N (both return the

same value). Note that they are only feasible for small graphs. Thus,

for large graphs, we use the estimated value by ApproxKemeny

(with 𝜖𝐴 = 0.1) as the reference value. Table 2 presents the mean

relative errors along with their standard deviations of 100 runs. We

observe that the relative errors remain at a negligible level for all

test cases and the accuracy improves with the increase of 𝑟 . We also

find that the accuracy of our MC algorithm is comparable to that

of ApproxKemeny. See Table 5 in Appendix C for all the computed

values of Kemeny’s constant by all four methods.

6 DYNAMIC MONTE CARLO ALGORITHM
We turn our attention to a ‘dynamic’ version of our MC algorithm

to overcome the limitation of its plain ‘vanilla’ version that requires

Table 2: Relative error of the MC algorithm (×10−4)
r n 10n 100n

HEP-TH 93.53 ± 71.10 31.69 ± 22.27 9.84 ± 7.81

Astro-ph 42.46 ± 32.25 13.31 ± 9.97 4.08 ± 3.25

CAIDA 28.22 ± 19.83 9.26 ± 7.40 2.68 ± 2.05

EmailEnron 46.59 ± 36.87 13.13 ± 10.05 4.24 ± 3.14

Brightkite 29.55 ± 22.44 10.35 ± 7.03 3.19 ± 2.26

wiki-Talk 18.17 ± 13.57 5.93 ± 4.58 1.89 ± 1.40

Gowalla 13.39 ± 10.38 4.32 ± 3.52 1.45 ± 1.13

com-DBLP 14.66 ± 11.08 5.05 ± 3.38 1.42 ± 1.14

Amazon 22.80 ± 17.03 11.28 ± 6.99 10.78 ± 2.74

soc-flickr 11.79 ± 10.35 3.73 ± 3.00 1.36 ± 0.97

soc-digg 4.63 ± 3.68 1.49 ± 1.04 0.68 ± 0.45

Youtube 7.71 ± 5.62 2.81 ± 2.06 0.86 ± 0.62

Skitter 4.63 ± 4.22 1.80 ± 1.29 0.56 ± 0.38

the value of 𝜆∗. In particular, we empirically demonstrate that this

dynamic version not only eliminates the need for the value of 𝜆∗
but also further improves the runtime of our algorithm without

losing its estimation accuracy.

As mentioned in Section 5, despite its remarkable performance,

the plain vanilla version of our MC algorithm requires the value of

𝜆∗ to determine the length 𝑙 of the Markov chain. While it can be

just a rough and conservative estimate of 𝜆∗, it could possibly be an
underestimated one in fact and thus lead to an underestimate of the

Kemeny’s constantK . To resolve this problem, we first observe the

following. From (16) and (19), when increasing the length 𝑙 without

specifying its value, one can naturally expect that the estimated

value ofK by ourMC algorithm tends to increase and gets saturated

after a certain value of 𝑙 . This is indeed the case, as can be seen from

Figure 5, which is obtained by simply running our algorithm (its

parallel implementation in Algorithm 2) with varying chain length

𝑙 . In Figure 5, an ‘epoch’ refers to the time instance when K is

measured/estimated and its epoch length is Δ𝑙 . In other words, we

report the estimated value ofK by our algorithm every Δ𝑙 . We also

normalize the estimated value of K at each epoch by the largest

value for each graph. The number of realizations is 𝑟 =100𝑛.

Thus motivated, we develop a dynamic version of our MC al-

gorithm, as described in Algorithm 3, which does not require the

knowledge of 𝜆∗ nor its rough estimated value. It is still nothing but

Algorithm 1, except that each realization of the Markov chain runs

Algorithm 3: Dynamic Monte Carlo Algorithm

Input: transition matrix P, epoch length Δ𝑙 , the number of

realizations 𝑟 = 𝛼𝑛

1 𝐶 ← 0; K ← 0; K′ ←∞; 𝑙 ← 0

2 for 𝑗 = 1, 2, . . . , 𝛼 do
3 for 𝑖 = 1, 2, . . . , 𝑛 do
4 𝑋

𝑗

𝑖
← 𝑖

5 while |K − K′ | ≥ 𝜖𝑑 do
6 K′ ← K ; 𝑙 ← 𝑙 + Δ𝑙
7 for 𝑗 = 1, 2, . . . , 𝛼 do
8 for 𝑖 = 1, 2, . . . , 𝑛 do
9 𝑋0 ← 𝑖; 𝑋 ← 𝑋

𝑗

𝑖

10 for 𝑘 = 1, 2, . . . ,Δ𝑙 do

11 𝑋
P←− 𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑒𝑙𝑒𝑐𝑡 (𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑋))

12 if 𝑋 == 𝑋0 then
13 𝐶 ← 𝐶 + 1

14 𝑋
𝑗

𝑖
← 𝑋

15 K ← 𝐶/𝛼 + 𝑛 − 1 − 𝑙
16 return K

1 2 3 4 5 6 7 8 9 10
Number of Epochs

0.992

0.994

0.996

0.998

1.000

N
or

m
al

iz
ed

 K
em

en
y'

s
Co

ns
ta

nt

CAIDA
Astro-ph
EmailEnron

(a) Small graphs; Δ𝑙 = 200

1 2 3 4 5 6 7 8 9 10
Number of Epochs

0.9985

0.9990

0.9995

1.0000

N
or

m
al

iz
ed

 K
em

en
y'

s
Co

ns
ta

nt

com-DBLP
soc-flickr
Youtube

(b) Large graphs; Δ𝑙 = 600

Figure 5: (Normalized) Kemeny’s constant estimated by our
MC algorithm with varying chain length 𝑙 .

until a stopping criterion is met instead of running for a predefined

length 𝑙 . Specifically, the dynamic version of our MC algorithm re-

turns the estimated value of K every Δ𝑙 , as it runs. This operation
continues until the difference between two consecutive estimates

of K is less than a certain threshold, i.e., |K − K ′ | < 𝜖𝑑 , where K ′
is the previous estimate. In addition, since there is no change in

the core algorithm operation, the parallel implementation of the

dynamic version can be done in a similar way as in Algorithm 2.

See Appendix A for the implementation details.

Before showing the experiment results, we explain howwe select

the threshold 𝜖𝑑 for the stopping criterion and the epoch length

Δ𝑙 in Algorithm 3. First, we consider 𝜖𝑑 =0.0005𝑛 and 𝜖𝑑 =0.0001𝑛,

which are again a function of 𝑛, since K grows linearly with 𝑛, as

seen from (5). As shall be shown below, they are small enough for

our dynamic algorithm to obtain an accurate estimate ofK for each

graph. Next, to choose the value of Δ𝑙 , we evaluate its impact on

the performance of our dynamic algorithm. We consider different

values of Δ𝑙 and present the corresponding estimation results by our

dynamic algorithm on three small graphs and three large graphs as

representative results in Figure 6, where we normalize the estimated

value ofK with each value of Δ𝑙 by the largest value for each graph.

The number of realizations is 𝑟 = 100𝑛. We observe that the final

estimate ofK by our dynamic algorithm becomes saturated around

when Δ𝑙 =200 for small graphs and when Δ𝑙 =600 for large graphs,
respectively, while the runtime of our dynamic algorithm increases

50 100 200 300 400 500
Δl

0.9990

0.9995

1.0000

N
or

m
al

iz
ed

 K
em

en
y'

s
Co

ns
ta

nt

CAIDA
Astro-ph
EmailEnron

(a) Small graphs

100 200 400 600 800 1000
Δl

0.9990

0.9995

1.0000

N
or

m
al

iz
ed

 K
em

en
y'

s
Co

ns
ta

nt

com-DBLP
soc-flickr
Youtube

(b) Large graphs

Figure 6: Impact of Δ𝑙 when 𝜖𝑑 = 0.0001𝑛.

with the value of Δ𝑙 . Thus, we choose Δ𝑙 =200 for small graphs and

Δ𝑙 =600 for large graphs. It is still worth noting that even with a

small value of Δ𝑙 , e.g., Δ𝑙 =50 for small graphs and Δ𝑙 =100 for large
graphs, our dynamic algorithm still provides a reasonably accurate

estimate of K .
We evaluate the performance of our dynamic algorithm (with

the aforementioned values of 𝜖𝑑 and Δ𝑙) under the datasets used
in Section 5 and observe that it exhibits excellent performance in

terms of both computational efficiency and accuracy. Here we again

focus on the case with 𝑟 = 100𝑛. We report the detailed results in

Table 4 in Appendix C. As shown in Figure 7, we notice that the

runtime of our dynamic algorithm is more or less the same as that

of its plain vanilla version for small graphs and Amazon graph,

while it achieves up to 11× speed-up over the vanilla version for

the other eight graphs. Considering the fact that the plain vanilla

version of our algorithm is already faster than ApproxKemeny for

all the datasets, its dynamic version is far more computationally

efficient than ApproxKemeny. In addition, to show the estimation

accuracy of our dynamic algorithm, we compute the mean relative

errors, as was done for its vanilla version in Table 2. While we

provide the results in Table 6 in Appendix C, we observe that the

estimation errors are again at a negligible level. To summarize, our

dynamic algorithm not only resolves the issue with requiring the

value of 𝜆∗ but also further improves the runtime without losing

its estimation accuracy.

7 DISCUSSION
So far, we have assumed that the transition matrix P (or its Lapla-

cian matrix L) on a graph 𝐺 is known explicitly for computing

its corresponding Kemeny’s constant K by ApproxKemeny and

both vanilla and dynamic versions of our MC algorithm. One may

wonder what if the transition matrix P is not known explicitly, or

the graph 𝐺 needs to be crawled or explored to access nodes and

edges and to find their associated transition probabilities 𝑃𝑖 𝑗 . While

it is infeasible with ApproxKemeny that needs the entire Laplacian

matrix L and solves its Laplacian system of linear equations, the

dynamic version of our algorithm can still be used even in such a

case. We below elaborate on this extension.

Recall that our MC algorithm in both versions (Algorithms 1

and 3) requires a different group of 𝛼 realizations to start from each

node 𝑖 . While it was designed to better regulate the randomness in

practice, as explained in Section 4.1, each realization just needs to

start from an initial node that is chosen uniformly at random from

the node set 𝑉 . Thus, the dynamic version of our algorithm can be

viewed as just launching 𝑟 parallel random walks to move over the

graph𝐺 according to transition probabilities 𝑃𝑖 𝑗 until the stopping

criterion is met, as long as they independently start from initial

nodes that are chosen uniformly at random. Then, the question

HEP-TH Astro-ph CAIDA EmailEnron Brightkite wiki-Talk Gowalla com-DBLP Amazon soc-flickr soc-digg Youtube Skitter0
1

3

5

7

9

11
Sp

ee
d-

up
εd=0.0005n
εd=0.0001n

Figure 7: Speed-up by the dynamic version of our MC algorithm over its vanilla version when 𝑟 = 100𝑛.

boils down to how to achieve the latter, i.e., how to realize such a

uniform start from the node set 𝑉 of 𝐺 that is unknown but needs

to be discovered.

The famous Metropolis-Hastings (MH) algorithm [22] can come

to the rescue. Specifically, as used in [6, 11, 23], it allows us to

construct the following transition matrix P𝑚ℎ
:= [𝑃𝑚ℎ

𝑖 𝑗
] such that

its stationary distribution 𝝅𝑚ℎ
is a uniform distribution on 𝑉 .

𝑃𝑚ℎ
𝑖 𝑗 =

{
min

{
1

𝑑𝑖
, 1

𝑑 𝑗

}
if (𝑖, 𝑗) ∈ 𝐸

0 if (𝑖, 𝑗) ∉ 𝐸, 𝑖 ≠ 𝑗,
(23)

with 𝑃𝑚ℎ
𝑖𝑖

= 1 −∑𝑗≠𝑖 𝑃
𝑚ℎ
𝑖 𝑗

. The operation here can be made locally.
Assuming that the current node is 𝑖 , it can be interpreted as propos-

ing one of its neighbors as a next node with probability 1/𝑑𝑖 and
accepting the proposed move with probabilitymin{1, 𝑑𝑖/𝑑 𝑗 }. If this
proposed move is rejected, the next node remains the same as 𝑖 .

Therefore, we launch 𝑟 parallel random walks to initially move

over the graph 𝐺 according to P𝑚ℎ
until they get ‘mixed’ (or they

are in the stationary regime), and then execute our dynamic algo-

rithm based on the parallel random walks that now move over 𝐺

according to P. Note that transition probabilities 𝑃𝑖 𝑗 are still locally

available when vising node 𝑖 , although they are not available in

their entirety. We refer to [6, 23] for other methods, in addition to

the above MH algorithm, on generating a uniform node in a graph.

8 CONCLUSION
We have studied the problem of computing the Kemeny’s constant

of a Markov chain on large graphs, where its direct computation

is generally infeasible. We proposed a computationally efficient

and scalable Monte Carlo algorithm for estimating the Kemeny’s

constant and provided amathematical analysis on its approximation

accuracy. We presented its parallel implementation on a GPU and

demonstrated its superiority over the state-of-the-art algorithm

called ApproxKemeny based on a dozen real-world graphs. The

benefit of our algorithm over ApproxKemeny in the computational

efficiency remains significant even for large graphs and its speed-up

is up to 500×, while its estimation accuracy is comparable to that of

ApproxKemeny. In addition, we presented a ‘dynamic’ refinement

of our algorithm to make it work without the knowledge of 𝜆∗
and demonstrated that it even further speeds up the computation

without losing its estimation accuracy.We finally discussed how this

dynamic algorithm can be adopted in the case where the transition

matrix P is not known explicitly.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their constructive com-

ments. This work was supported in part by the National Science

Foundation under grants IIS-1908375 and CNS-2007828, and a gift

from NVIDIA Corporation. C. Lee is the corresponding author.

REFERENCES
[1] D. Aldous and J. Fill. 2002. Reversible Markov chains and random walks on

graphs.

[2] K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova. 2007. Monte Carlo

methods in PageRank computation: When one iteration is sufficient. SIAM J.
Numer. Anal. 45, 2 (2007), 890–904.

[3] H. Avron and S. Toledo. 2011. Randomized algorithms for estimating the trace of

an implicit symmetric positive semi-definite matrix. J. ACM 58, 2 (2011), 1–34.

[4] S. Boyd, P. Diaconis, and L. Xiao. 2004. Fastest mixing Markov chain on a graph.

SIAM Rev. 46, 4 (2004), 667–689.
[5] C.-K. Chau and P. Basu. 2009. Exact analysis of latency of stateless opportunistic

forwarding. In IEEE INFOCOM. 828–836.

[6] F. Chiericetti, A. Dasgupta, R. Kumar, S. Lattanzi, and T. Sarlós. 2016. On sampling

nodes in a network. InWWW. 471–481.

[7] V. Cholvi, P. Felber, and E. Biersack. 2004. Efficient search in unstructured

peer-to-peer networks. Eur. Trans. Telecommun. 15, 6 (2004), 535–548.
[8] F. R. Chung and F. C. Graham. 1997. Spectral graph theory. Number 92. American

Mathematical Soc.

[9] P. G. Doyle. 2009. The Kemeny constant of a Markov chain. arXiv preprint
arXiv:0909.2636 (2009).

[10] P. Drineas, R. Kannan, and M.W. Mahoney. 2006. Fast Monte Carlo algorithms for

matrices II: Computing a low-rank approximation to a matrix. SIAM J. Comput.
36, 1 (2006), 158–183.

[11] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou. 2011. Practical recom-

mendations on crawling online social networks. IEEE J. Sel. Areas Commun. 29, 9
(2011), 1872–1892.

[12] C. Gkantsidis, M. Mihail, and A. Saberi. 2004. Random walks in peer-to-peer

networks. In IEEE INFOCOM. 130.

[13] J. J. Hunter. 2014. The role of Kemeny’s constant in properties of Markov chains.

Communications in Statistics-Theory and Methods 43, 7 (2014), 1309–1321.
[14] M. F. Hutchinson. 1989. A stochastic estimator of the trace of the influence matrix

for Laplacian smoothing splines. Communications in Statistics-Simulation and
Computation 18, 3 (1989), 1059–1076.

[15] H. Ji, M. Mascagni, and Y. Li. 2013. Convergence Analysis of Markov Chain Monte

Carlo Linear Solvers Using Ulam–von Neumann Algorithm. SIAM J. Numer. Anal.
51, 4 (2013), 2107–2122.

[16] J. G. Kemeny and J. L. Snell. 1976. Markov chains. Springer-Verlag.
[17] R. E. Kooij and J. L. Dubbeldam. 2020. Kemeny’s constant for several families of

graphs and real-world networks. Discrete Appl. Math. 285 (2020), 96–107.
[18] R. Kyng and S. Sachdeva. 2016. Approximate gaussian elimination for laplacians-

fast, sparse, and simple. In IEEE FOCS. 573–582.
[19] C.-H. Lee and D. Y. Eun. 2015. On the efficiency-optimal Markov chains for

distributed networking applications. In IEEE INFOCOM. 1840–1848.

[20] M. Levene and G. Loizou. 2002. Kemeny’s constant and the random surfer. The
American Mathematical Monthly 109, 8 (2002), 741–745.

[21] L. Lovász. 1993. Random walks on graphs: A survey. Combinatorics, Paul Erdos is
Eighty 2, 1 (1993), 1–46.

[22] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller.

1953. Equation of state calculations by fast computing machines. J. Chem. Phys.
21, 6 (1953), 1087–1092.

[23] A. Nazi, Z. Zhou, S. Thirumuruganathan, N. Zhang, and G. Das. 2015. Walk, not

wait: Faster sampling over online social networks. VLDB Endowment 8, 6 (2015),
678–689.

[24] J. L. Palacios and J. M. Renom. 2010. Bounds for the Kirchhoff index of regular

graphs via the spectra of their random walks. IJQC 110, 9 (2010), 1637–1641.

[25] R. Patel, P. Agharkar, and F. Bullo. 2015. Robotic surveillance and Markov chains

with minimal weighted Kemeny constant. IEEE TAC 60, 12 (2015), 3156–3167.

[26] J. Risson and T. Moors. 2006. Survey of research towards robust peer-to-peer

networks: Search methods. Computer Networks 50, 17 (2006), 3485–3521.
[27] X. Wang, J. L. Dubbeldam, and P. Van Mieghem. 2017. Kemeny’s constant and

the effective graph resistance. Linear Algebra Appl. 535 (2017), 231–244.
[28] W. Xu, Y. Sheng, Z. Zhang, H. Kan, and Z. Zhang. 2020. Power-Law Graphs Have

Minimal Scaling of Kemeny Constant for Random Walks. InWWW. 46–56.

[29] Z. Zhang, W. Xu, and Z. Zhang. 2020. Nearly Linear Time Algorithm for Mean

Hitting Times of Random Walks on a Graph. InWSDM. 726–734.

[30] M. Zhong and K. Shen. 2006. Popularity-Biased Random Walks for Peer-to-Peer

Search under the Square-Root Principle. In IPTPS.

A IMPLEMENTATION DETAILS
We implement Eigen-P and Eigen-N in MATLAB. We implement

ApproxKemeny in Julia v1.5.2 and provide a code snippet in Figure 8.

We refer to Section 3 and [28] for more details on its algorithm

operation. It is worth noting that in our implementation of Ap-

proxKemeny, we utilize the Cholesky factorization algorithm to

solve the Laplacian system of linear equations. This algorithm is

named ‘chol-lap’ solver in the Julia library
7
, as shown in line 11

of Figure 8. However, as in [28], ApproxKemeny originally adopts

an approximation algorithm in [18], which is based on the sparse

Cholesky factorization. It is named ‘approxchol-lap’ solver in the

Julia library and is known to be the fastest one. While this solver

takes a ‘tolerance’ value as an (optional) input to control the level of

its approximation accuracy, we observe that it is fast at the sacrifice

of accuracy (with high tolerance values). We further observe that

the tolerance value used in [28] is generally smaller than 1.0×10−11
for all the datasets. The way of determining the tolerance value

in [28] is provided in line 12 of Figure 8. It turns out that such a

small tolerance value makes the ‘approxchol-lap’ solver even (about

three to five times) slower than the ‘chol-lap’ solver. Thus, instead

of using the ‘approxchol-lap’ solver, we use the ‘chol-lap’ solver in

our implementation of ApproxKemeny. We here omit the detailed

experiment results regarding the solvers due to space constraint.

We implement two versions of our MC algorithm (both vanilla

and dynamic versions) in Python and present a code snippet of

the GPU kernel in Figure 9, which is the common core routine for

both versions.
8
We here focus on the implementation of a simple

random walk, while it can be readily extended for any Markov

chains. We use the compressed sparse row (CSR) data structure to

store the transitionmatrix P of theMarkov chain on𝐺 . Note that the

random walk is implemented based on a random number generator

(RNG). We use Numba’s GPU RNG
9
to ensure independent parallel

generations, which adopts the xoroshiro128+ algorithm, as shown

in line 13 of Figure 9. Note also that the operation of adding the

hitting frequencies of all the realizations can be implemented by

an atomic addition on the GPU, as shown in line 20 of Figure 9.

B ADDITIONAL EXPERIMENT SETUP
We conduct the experiments of Eigen-P, Eigen-N and ApproxKe-

meny on a Linux workstation with two Intel Xeon 2.2-GHz CPUs

and 64-GB RAM. We run the vanilla and dynamic versions of our

MC algorithms on an NVIDIA Tesla V100 SXM2 GPU with CUDA

toolkit 10.1, which is available on Google Colab. We run both ver-

sions of our algorithm 100 times for all test cases and report their

average values along with the standard deviations. As was done

in [28], however, we run ApproxKemeny only once and report its

experiment results, although it is a randomized algorithm. Note that

we ran ApproxKemeny multiple times and observed that the results

remain quite consistent over different runs. In addition, we exclude

the time of loading and processing raw data, when we measure the

runtime of each method in this paper.

7
https://github.com/danspielman/Laplacians.jl

8
Our code is available at https://github.com/xhuang2016/Kemeny-computation.

9
https://numba.pydata.org/numba-doc/latest/cuda/random.html

1 using Laplacians , LinearAlgebra , Arpack
2 function lps(adj)
3 la = lap(adj)
4 n = size(adj)[1]
5 for i in 1:n
6 deg[i] = la[i,i]
7 degsq[i] = sqrt(deg[i])
8 end
9 m = 0.5* sum(deg)
10 epsilonA = 0.3
11 sol = chol_lap(adj)
12 # tol = epsilonA *(n^(-2.5))/(3* sqrt (2))
13 # sol = approxchol_lap(adj , tol=tol)
14 U = wtedEdgeVertexMat(adj)
15 M = ceil(Int ,48* log(2*n)*epsilonA ^(-2))
16 s = 0.0
17 for i in 1:M
18 dx = degsq .*(2.0* rand (0:1, n)-ones(n))
19 y = dx-deg*transpose(ones(n))*dx /(2.0*m)
20 z = sol(y)
21 s = s+(norm(U*z))^2
22 end
23 return s/M

Figure 8: Code snippet of ApproxKemeny.

1 from numba import cuda
2 from numba.cuda.random import

create_xoroshiro128p_states,
xoroshiro128p_uniform_float32

3 @cuda.jit
4 def GPU_MC(initial_start_nodes, start_nodes, indptr,

indices, hitting, sum_hitting, rng_states, r, l):
5 thread_id = cuda.grid(1)
6 if thread_id < r:
7 curr_node = start_nodes[thread_id]
8 hitting[thread_id] = 0
9 for i in range(0, l):
10 start_idx = indptr[curr_node]
11 end_idx = indptr[curr_node + 1]
12 neighbors = indices[start_idx: end_idx]
13 rand_float =

xoroshiro128p_uniform_float32(rng_states,
thread_id)

14 choice = int(rand_float * len(neighbors))
15 next_node = neighbors[choice]
16 if next_node == initial_start_nodes[thread_id]:
17 hitting[thread_id] += 1
18 curr_node = next_node
19 start_nodes[thread_id] = curr_node
20 cuda.atomic.add(sum_hitting,0,hitting[thread_id])

Figure 9: Code snippet of the GPU kernel for the parallel
implementation.

C DETAILED RESULTS
We provide the detailed results of Eigen-P, Eigen-N, ApproxKemeny

and our MC algorithm (its vanilla version) in Table 3 and Table 5.

We also provide the performance results of the dynamic version of

our algorithm in Table 4 and its relative error results in Table 6.

https://github.com/xhuang2016/Kemeny-computation

Table 3: Runtime [s]

Dataset

Eigen-P / ApproxKemeny MC algorithm

Eigen-N 𝜖𝐴 r Overall Kernel

HEP-TH

259.017 /

0.3 15.274 n 1.107 0.314

225.644

0.2 33.257 10n 1.134 0.326

0.1 147.626 100n 1.454 0.447

Astro-ph

1944.000 /

0.3 99.031 n 1.179 0.324

187.821

0.2 220.322 10n 1.226 0.340

0.1 926.875 100n 1.748 0.455

CAIDA

4247.000 /

0.3 59.849 n 1.142 0.312

1022.100

0.2 129.505 10n 1.225 0.328

0.1 512.460 100n 1.984 0.443

EmailEnron

15981.000 /

0.3 98.200 n 1.167 0.319

1095.700

0.2 226.992 10n 1.290 0.374

0.1 906.230 100n 2.533 0.815

Brightkite -

0.3 279.593 n 1.406 0.534

0.2 609.015 10n 2.242 1.241

0.1 2535.510 100n 9.991 7.672

wiki-Talk -

0.3 396.922 n 1.391 0.628

0.2 894.091 10n 2.523 1.636

0.1 3643.216 100n 14.732 11.857

Gowalla -

0.3 2465.796 n 1.859 0.843

0.2 5367.000 10n 5.722 4.290

0.1 21219.222 100n 46.030 40.515

com-DBLP -

0.3 2974.014 n 1.814 1.031

0.2 6596.251 10n 9.304 7.851

0.1 26133.130 100n 83.778 74.998

Amazon -

0.3 3175.491 n 1.946 1.187

0.2 6783.415 10n 9.626 7.966

0.1 27826.857 100n 85.368 75.907

soc-flickr -

0.3 9223.951 n 3.501 2.643

0.2 20092.785 10n 24.889 22.809

0.1 81039.405 100n 237.622 224.859

soc-digg -

0.3 16966.402 n 5.451 4.488

0.2 37898.909 10n 44.349 41.735

0.1 149844.868 100n 435.375 414.885

Youtube -

0.3 15625.003 n 7.412 6.348

0.2 34183.074 10n 64.188 60.648

0.1 140241.327 100n 632.674 605.491

Skitter -

0.3 16372.912 n 13.536 12.322

0.2 37786.870 10n 125.057 120.136

0.1 153644.728 100n 1240.976 1199.908

Table 4: Performance of our dynamic algorithm

Runtime [s]

Kemeny’s constant

𝜖𝑑 Overall Kernel

HEP-TH

0.0005n 1.325 0.412 16183.44 ± 16.89

0.0001n 1.354 0.441 16186.59 ± 18.50

Astro-ph

0.0005n 1.468 0.353 22935.96 ± 12.52

0.0001n 1.487 0.372 22937.73 ± 12.90

CAIDA

0.0005n 1.648 0.346 31928.86 ± 11.51

0.0001n 1.678 0.376 31931.71 ± 11.05

EmailEnron

0.0005n 1.923 0.448 45234.00 ± 18.52

0.0001n 1.991 0.517 45236.50 ± 21.50

Brightkite

0.0005n 2.797 0.764 80900.25 ± 24.07

0.0001n 2.993 0.953 80910.83 ± 27.29

wiki-Talk

0.0005n 3.718 0.983 102480.77 ± 14.63

0.0001n 3.709 0.982 102478.26 ± 11.73

Gowalla

0.0005n 7.452 2.150 271688.15 ± 45.23

0.0001n 7.463 2.150 271694.83 ± 44.15

com-DBLP

0.0005n 13.292 5.497 581181.99 ± 95.09

0.0001n 15.039 7.235 581167.76 ± 103.76

Amazon

0.0005n 53.715 45.577 882944.21 ± 267.78

0.0001n 98.816 90.697 884973.02 ± 249.79

soc-flickr

0.0005n 26.652 12.785 801000.18 ± 113.64

0.0001n 29.778 15.912 800990.47 ± 102.18

soc-digg

0.0005n 39.638 19.549 858209.23 ± 44.56

0.0001n 39.603 19.546 858200.12 ± 49.05

Youtube

0.0005n 71.798 42.232 1754463.35 ± 179.51

0.0001n 85.817 56.251 1754526.35 ± 172.83

Skitter

0.0005n 181.943 138.512 2085191.05 ± 121.76

0.0001n 321.462 278.046 2086621.88 ± 126.97

Table 5: Kemeny’s constant (± shows standard deviation)

Eigen-P/ ApproxKemeny MC algorithm

Eigen-N 𝜖𝐴 r

HEP-TH 16185.03

0.3 16182.32 n 16186.02 ± 190.15

0.2 16185.48 10n 16185.14 ± 62.69

0.1 16185.39 100n 16185.13 ± 20.33

Astro-ph 22937.00

0.3 22937.71 n 22937.55 ± 122.30

0.2 22937.42 10n 22937.31 ± 38.15

0.1 22936.88 100n 22937.09 ± 11.96

CAIDA 31931.00

0.3 31931.53 n 31930.41 ± 110.13

0.2 31930.84 10n 31930.33 ± 37.85

0.1 31931.34 100n 31930.18 ± 10.73

EmailEnron 45236.00

0.3 45234.74 n 45236.51 ± 268.76

0.2 45236.17 10n 45236.31 ± 74.81

0.1 45236.46 100n 45236.24 ± 23.87

Brightkite -

0.3 80915.60 n 80885.67 ± 299.62

0.2 80911.99 10n 80909.19 ± 101.09

0.1 80904.26 100n 80906.74 ± 31.53

wiki-Talk -

0.3 102480.96 n 102498.29 ± 231.75

0.2 102479.73 10n 102486.18 ± 76.62

0.1 102481.04 100n 102480.41 ± 24.15

Gowalla -

0.3 271688.97 n 271702.26 ± 460.20

0.2 271700.54 10n 271700.13 ± 151.02

0.1 271690.07 100n 271695.75 ± 49.55

com-DBLP -

0.3 581140.76 n 581209.07 ± 1067.52

0.2 581099.40 10n 581175.35 ± 353.09

0.1 581185.13 100n 581195.61 ± 104.95

Amazon -

0.3 885417.75 n 884561.00 ± 2318.19

0.2 885629.18 10n 884606.34 ± 701.29

0.1 885549.04 100n 884594.18 ± 242.75

soc-flickr -

0.3 801046.77 n 801146.45 ± 1249.07

0.2 801043.69 10n 801057.63 ± 379.94

0.1 801005.04 100n 801010.20 ± 133.46

soc-digg -

0.3 858137.83 n 858233.50 ± 499.82

0.2 858147.77 10n 858210.82 ± 141.17

0.1 858144.32 100n 858196.93 ± 46.60

Youtube -

0.3 1754534.05 n 1754516.49 ± 1671.88

0.2 1754523.47 10n 1754522.61 ± 604.74

0.1 1754433.25 100n 1754506.14 ± 170.62

Skitter -

0.3 2087138.18 n 2087146.76 ± 1306.91

0.2 2087110.36 10n 2087031.49 ± 454.86

0.1 2087093.20 100n 2087091.08 ± 139.75

Table 6: Relative error of our dynamic algorithm (×10−4)

𝜖𝑑 0.0005n 0.0001n

HEP-TH 9.97 ± 7.00 9.43 ± 6.53

Astro-ph 4.42 ± 3.23 4.37 ± 3.56

CAIDA 2.96 ± 2.17 2.73 ± 2.14

EmailEnron 3.44 ± 2.26 3.79 ± 2.88

Brightkite 2.52 ± 1.66 2.75 ± 2.11

wiki-Talk 1.16 ± 0.83 0.94 ± 0.70

Gowalla 1.41 ± 0.89 1.33 ± 0.95

com-DBLP 1.31 ± 0.98 1.47 ± 1.06

Amazon 29.41 ± 3.02 6.50 ± 2.82

soc-flickr 1.15 ± 0.83 1.05 ± 0.74

soc-digg 0.79 ± 0.47 0.72 ± 0.48

Youtube 0.82 ± 0.63 0.86 ± 0.72

Skitter 9.20 ± 0.58 2.34 ± 0.61

	Abstract
	1 Introduction
	2 Preliminaries
	3 The State-of-The-Art Algorithm
	4 Monte Carlo Algorithm
	4.1 Mathematical Framework
	4.2 Algorithm and Parallel Implementation

	5 Experiment Results
	6 Dynamic Monte Carlo Algorithm
	7 Discussion
	8 Conclusion
	Acknowledgments
	References
	A Implementation Details
	B Additional Experiment Setup
	C Detailed Results

