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ABSTRACT

The mean hitting time of a Markov chain on a graph from an ar-
bitrary node to a target node randomly chosen according to its
stationary distribution is called Kemeny’s constant, which is an
important metric for network analysis and has a wide range of
applications. It is, however, still computationally expensive to eval-
uate the Kemeny’s constant, especially when it comes to a large
graph, since it requires the computation of the spectrum of the
corresponding transition matrix or its normalized Laplacian matrix.
In this paper, we propose a simple yet computationally efficient
Monte Carlo algorithm to approximate the Kemeny’s constant,
which is equipped with an (e, §)-approximation estimator. Thanks
to its inherent algorithmic parallelism, we are able to develop its
parallel implementation on a GPU to speed up the computation.
We provide extensive experiment results on 13 real-world graphs
to demonstrate the computational efficiency and scalability of our
algorithm, which achieves up to 500X speed-up over the state-of-
the-art algorithm. We further present its practical enhancements to
make our algorithm ready for practical use in real-world settings.
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1 INTRODUCTION

Kemeny’s constant is a graph/network metric first introduced by
Kemeny and Snell [16], where it was originally defined based on
the fundamental matrix of a Markov chain on a graph. It has a
natural interpretation as the mean hitting time from an arbitrary
initial node to a target node randomly chosen according to the
stationary distribution of the Markov chain [20]. It has found a
wide range of applications in many different areas. For example, it
is used to evaluate and improve user navigation efficiency through
web graphs [20], and also for search and discovery in peer-to-peer
networks by interpreting the Kemeny’s constant as the search time
of a random search method [7, 26, 30]. It is recently used as an indi-
cator of network robustness to design surveillance policies for the
quickest detection of intruders and anomalies in the network [25].

It has also been extensively studied in the literature. It is well
known that the Kemeny’s constant of a Markov chain on a graph
can be expressed by the spectrum (or eigenvalues) of its transi-
tion matrix or its normalized Laplacian matrix [9, 13, 20]. It is also
shown in [24] that there is a linear relationship between the Ke-
meny’s constant and effective resistance on regular graphs. Wang
et al. [27] recently show a new closed-form expression of the Ke-
meny’s constant based on the pseudoinverse (or Moore-Penrose
inverse) of the Laplacian matrix and establish its upper and lower
bounds. Very recently, Kooij et al. [17] provide two approximations
for the Kemeny’s constant on non-regular graphs and use their
approximations along with the closed-form expression obtained
in [27] to evaluate the Kemeny’s constant on several families of
structured networks, which are limited to small graphs.

However, it still remains a challenge to compute the Kemeny’s
constant in practice, especially when it comes to large graphs. It is
often infeasible to directly compute the Kemeny’s constant based
on the spectrum of the transition matrix or its normalized Lapla-
cian matrix, since computing the spectrum of a square matrix is
computationally expensive and it requires O(n?) in practice. Thus,
there is a need for a computationally efficient algorithm to com-
pute the Kemeny’s constant for large graphs. To fill this gap, very
recently, Xu et al. [28] propose a randomized algorithm named
ApproxKemeny for approximating the Kemeny’s constant. They
show that estimating the Kemeny’s constant boils down to approx-
imating a quadratic form that involves the pseudoinverse of the
Laplacian matrix, which is then obtained as a solution of its cor-
responding Laplacian system of linear equations by employing a
nearly linear-time Laplacian solver in [18]. This framework with
the pseudoinverse of the Laplacian matrix is also similarly adopted
for computing the so-called absorbing random-walk centrality [29].

In this paper, we propose a simple yet computationally efficient
Monte Carlo algorithm, which is scalable and amenable to parallel
implementation, for estimating the Kemeny’s constant, especially
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for large graphs. While Monte Carlo-type methods or algorithms

have been proposed in the literature, their focus has been limited

to computing PageRank [2] and solving a large system of linear
equations [10, 15]. To the best of our knowledge, our algorithm is
the first algorithm of its kind to approximate the Kemeny’s constant.

We summarize the contributions of this paper as follows.

o First, we establish an (¢, §)-approximation Monte Carlo estimator
to approximate the Kemeny’s constant.

e Second, we present its practical algorithm and by leveraging its
algorithmic parallelism, we develop its parallel implementation
on a GPU. We also characterize their time and space complexity.

e Third, we empirically demonstrate the superiority of our algo-
rithm over ApproxKemeny (the state-of-the-art algorithm) in
terms of the computational efficiency based on 13 real-world
graphs. In particular, we show that the speed-up by our algo-
rithm is up to 500, while its estimation accuracy is comparable
to that of ApproxKemeny.

e Fourth, we present a ‘dynamic’ refinement of our algorithm to
make it work without requiring a possibly impractical parameter,
which is an estimate on the second largest eigenvalue modulus
of the transition matrix P. We demonstrate that the dynamic
refinement not only resolves this issue but also further speeds
up the computation without losing its estimation accuracy.

Finally, we discuss how the dynamic algorithm can be adopted
for estimating the Kemeny’s constant, even when the transition
matrix P is not known explicitly.

2 PRELIMINARIES

In this section, we collect definitions and relevant results to set the
stage for the development of our Monte Carlo algorithm to estimate
the Kemeny’s constant of a Markov chain on a graph.

Consider a connected, undirected, non-bipartite graph G=(V, E),
where V := {1,2,...,n} is the set of nodes with |V| = n and E is the
set of edges with |E| = m. The graph G is characterized by ann X n
adjacency matrix A = [A;;] with elements A;; = 1 if there is an
edge between nodes i and j, i.e, (i, j) € E, and A;; = 0 if otherwise.
Let d; be the degree of node i € V, ie, d;j = 3 Ajj.

Define a (time-homogeneous) Markov chain {X;};>0 on the
graph G, where X; denotes the location of the Markov chain at time
t. Its transition matrix is given by P = [P;;], where the ij-th entry
represents the transition probability P;; := P{Xz41 = j|X; = i}.
For example, the simple random walk on G is a random walk on
G where the next node is chosen uniformly at random from the
set of neighbors of the current node, and it is characterized by
P;j = A;j/d;. It is well known that the resulting Markov chain {X;}
is an ergodic Markov chain, which is irreducible and aperiodic, and
it has a unique stationary distribution 7 := [y, 72, . .., 71,], where
7; = di/(2m) for all i. It is also time-reversible, i.e., m;P;; = m;Pj;
fori,jeV.

Consider a Markov chain {X; } on G that is ergodic and reversible.
We define the hitting time of the Markov chain {X;} on node i,
which is given by T; := min{t > 0 : X; = i}. The mean hitting time
from node i to node j can also be defined by E;[T;] := E[T;|Xo = i],
i.e., the expected number of steps to ‘hit’ node j for the first time,
when the Markov chain starts from i. Then, we can define the mean
hitting time of {X;} from a given node i to a ‘random’ destination

that is a randomly chosen node according to 7 as follows:

Ei{T:;} := Z E{Tj|X() = i}?‘[j, ieV. (1)
JjEV
This quantity is called Kemeny’s constant, and it can be viewed as a
‘weighted’ mean hitting time [16, 21]. It is also known that this quan-
tity does not depend on the initial node i. In other words, E;{T, }
remains the same, no matter where the Markov chain {X;} initially
starts from. This result is often called ‘random target lemma’. For
notational simplicity, we use K to denote the Kemeny’s constant
in (1) throughout the paper.
We note that the Kemeny’s constant K can be interpreted from a
viewpoint of a ‘random surfer’ [20]. From the random target lemma
and }; 7r; = 1, we can write

K = Z miBi{T,} = Z i Z E{Tj|X0 = i}ll'j. (2)
ieV ieV  jev
Thus, the Kemeny’s constant can be viewed as the mean hitting
time from an ‘unknown’ (or randomly chosen) initial node to an
unknown destination. Suppose that there is a random surfer moving
over G according to P for a while. At some stage the surfer is in
the stationary regime, which can be thought of as if it gets ‘lost’
without knowing its position and whereabouts. The random surfer
then randomly goes through K steps on average before it reaches
its destination. In other words, it is the expected number of steps
required for the surfer to reach the destination after getting lost.
In a similar vein, K can be considered as the search time of a
random search method and thus it has been used for search and
discovery in peer-to-peer networks [7, 26, 30]. It is also often used
to measure how long it takes for a random walk having a desired
stationary distribution to reach a random destination in various
applications [5, 12, 19, 21].
Let A1, A2, ..., A be the eigenvalues of the transition matrix P.
Since the Markov chain {X;} is ergodic and reversible, they are real
and can be rearranged as

1=M>h 243224, > -1 (3)
We also define the second largest eigenvalue modulus (SLEM) of
the transition matrix P as
Ay = max{|A;| : A; is eigenvalue of P, A; # 1},
which characterizes the mixing rate of the Markov chain, i.e., the as-
ymptotic rate of convergence of the Markov chain to the stationary

distribution s [4]. Then, it is known that the Kemeny’s constant
can be written in terms of the eigenvalues of P and is given by

o1
%:él_—AZ (4)

It is also known that % is bounded below and above as follows [13,
20, 24].
(n—1)2 n-1

<K< s
n 1-21

®)

which implies that K increases linearly with the size of the graph.

It is worth noting that there is another version of Kemeny’s
constant in the literature. For example, as recently used in [28], it is
the one given by K=1+ X7, 1_—1/11 It is, in fact, the case when the
hitting time of {X;} on node i is defined as TiJr :=min{t > 1:X; =



i}. Note that T} = T;, unless Xo = i in which case T;" is the first
return time to i with E[T;"|Xo = i] = 1/z;. Thus, if E;{T; } and K
are defined in (1) and (2), respectively, with T; replaced by T;', the
Kemeny’s constant becomes K=1+ X1, 1+)LL-’ and the difference
with (4) is only 1.

In addition, the Kemeny’s constant can be represented in terms
of the eigenvalues of the normalized Laplacian matrix. Consider
a simple random walk on G for now, which corresponds to the
normalized Laplacian matrix of the graph G. It will be generalized
for any ergodic, reversible Markov chain on G below. Define the
Laplacian matrix £ and its normalized Laplacian matrix L by L :=
D-AandL:=D"'/2£D"1/2, respectively, where D is the diagonal
matrix of degrees, i.e., the i-th diagonal entry of D is d; [8]. Letting

o := [0y, 02,. .., 0p] be the vector of eigenvalues of L, which satisfy
0=01 <0y <03 <--- < oy, we have
n
1
K=) — (6)
o

which is the Kemeny’s constant of a simple random walk on G.

The Kemeny’s constant of any given ergodic, reversible Markov
chain on G can also be obtained using the identity in (6), as long
as the eigenvalues o; are the ones of the normalized Laplacian
matrix of a properly defined ‘weighted’ graph. Observe that any
ergodic, reversible Markov chain on G can be regarded as a random
walk on a weighted graph [1]. For a given Markov chain with P
and 7, we can define a weighted graph, say G’, characterized by a
weight matrix W := [W;;] with elements W;; := ;P;; for (i, j) € E,
Wi := m;P;; for node i with P;; > 0, and W;; = 0 if otherwise. The
degree d; of G’ is now defined to be d; := Zj Wjj = mj, and thus
D is the diagonal matrix of elements 7;. We can then generalize
the normalized Laplacian matrix L for the weighted graph G’ as
L =D V/2(D - W)D~1/2 [8]. Thus, we see that (6) holds with the
eigenvalues of this normalized Laplacian matrix L, by observing
that L = I - DY/2PD~1/2 and thus o;j = 1— A; for all i, where I is
the identity matrix.

We note that it is generally faster to compute the spectrum (or
eigenvalues) of L than that of P when they are feasible to compute
(or when the graphs are small), since L is a symmetric matrix but P is
not. Similar to the matrix multiplication, however, the computation
of the spectrum of a square matrix is computationally expensive and
it requires O(n?) in practice [28]. Thus, it is often difficult or even
infeasible to directly compute the Kemeny’s constant based on (4) or
(6) for large graphs. Therefore, there is a need for a computationally
efficient and scalable algorithm to estimate the Kemeny’s constant
for large graphs.

3 THE STATE-OF-THE-ART ALGORITHM

In this section, we provide an overview of ApproxKemeny pro-
posed by Xu et al. in [28], which is the state-of-the-art randomized
algorithm for approximating the Kemeny’s constant K of a Markov
chain on a graph G.! We here focus on a simple random walk on G
for the Markov chain on G, as assumed in [28].

!Note that ApproxHK is proposed by the same group of authors in [29] for estimating
the so-called absorbing random-walk centrality, from which the Kemeny’s constant
can also be computed. Note that ApproxHK and ApproxKemeny share the common
framework that involves the pseudoinverse of the Laplacian matrix and its Laplacian
solver. However, in [29], they do not provide any theoretical results nor experiment

ApproxKemeny is based on Hutchinson’s estimator [3, 14] to
approximate the trace of the pseudoinverse (or Moore-Penrose in-
verse) of the normalized Laplacian matrix L, since computing K
is equivalent to computing the trace of the pseudoinverse of L. By
leveraging the relationship between the pseudoinverse of L and
that of the (original) Laplacian matrix £, estimating the trace of
the pseudoinverse of L boils down to approximating a quadratic
form that involves the pseudoinverse of L. Here, instead of directly
computing this pseudoinverse, they employ a nearly linear-time
Laplacian solver in [18] to solve its corresponding Laplacian system
of linear equations. They empirically demonstrate that ApproxKe-
meny exhibits state-of-the-art performance in terms of the runtime.

We below explain the mathematical framework of ApproxKe-
meny for the sake of completeness. Since the normalized Laplacian
matrix L is a symmetric matrix, by spectral decomposition, we can
write L = USU7, where U is an orthogonal matrix and 3. is a diago-
nal matrix with the eigenvalues of L on its diagonal. Although L is
not invertible due o1 = 0, it has a pseudoinverse LT, which is also
symmetric. Thus, we have Lt = UE_lUT, where X lisa diagonal

matrix whose elements are the eigenvalues of LT, ie., 0'1* =0 and

o;‘ =1/0j fori=2,3,...,n. Therefore, from (6), we have
n
K=Y of =tr(LT). )
i=2

Let x be a n-dimensional random vector whose elements are
i.i.d. Rademacher random variables, i.e., P{x; = +1} =1/2 for i =
1,2,...,n It is known from [3, 14] that E{xLx} = tr(LT) and
thus the following estimator called Hutchinson’s estimator can be
constructed to approximate the trace of the pseudoinverse L:

M
- 1
tr(L") = i inTLTxi (8)
i=1

for some sufficiently large M, where x; are i.i.d copies of x. In
addition, by noting that £ = DY/21DY/ 2 we can write

L' = (1- —Di11'DHDI LD (1- ——D?117DF),  (9)
2m 2m
where m is the number of edges and 1 is the n-dimensional column
vector whose ﬁ:lements are all ones.

Lety; =Dz (I—- ﬁDE 117D 2)x;. Observe that £ can be writ-
ten as £ = BTB, where B is the m x n edge-node oriented incidence
matrix of the graph G, i.e., its (i, j) entry is —1 if the i-th node is
the source node of the j-th edge, 1 if it is the target node and zero
otherwise (the edge orientation can be arbitrary but fixed). Thus,
from (7)—(9), we have

R 1 g tpopt
K~ sziz y,—zM;yiL LLTy;

i=1
1M 1 M
_ T pi\TRT Tay. — Ta.112
= 31 2 (LDBTBL = D B o

where the third equality is from that £7 is a symmetric matrix.
Finally, approximating K boils down to evaluating the quadratic
form in (10) that involves £, the pseudoinverse of the Laplacian

results under real-world network datasets for estimating the Kemeny’s constant. Thus,
we do not include ApproxHK for performance comparison in this paper.



matrix L. Here, instead of directly computing this pseudoinverse,
letting z; := L y;, ApproxKemeny employs a nearly linear-time
Laplacian solver in [18] to solve a Laplacian system Lz; = y; for
zi,i=1,2,..., M. We refer to [28] for more details.

4 MONTE CARLO ALGORITHM

In this section, we present a novel Monte Carlo (MC) algorithm that
is computationally efficient and amenable to parallel implementa-
tion, to approximate the Kemeny’s constant K of a Markov chain
on a graph G. We first provide its mathematical framework that
leads to an (e, §)-approximation MC estimator, and then present
the MC algorithm and its parallel implementation on a GPU.

4.1 Mathematical Framework

Observe that (4) can be written as

n (o)
42+ )=n-1+3 326 ()

i=2 i=2 k=1

n
7(‘ =
from |A;| < 1for all i # 1. Since the trace of a matrix is the sum of
its diagonal elements and is also the sum of its eigenvalues, we see
that

DA = u(PF) - AF = e(PF) 1. (12)
i=2

From (11) and (12), we have
‘K:n—1+Z[tr(Pk)—l]. (13)
k=1

We also observe that

() = > (PR =n Y PG = ilX = }PU =1} (19)
i=1 i=1
=n-P{Xy = Xo|Xo = U}, (15)

where U is a uniform random variable on V and (P* )i.i is the i-th
diagonal entry of P¥, which is the k-step transition probability from
node i to itself, i.e., the probability of returning to i after k steps.

We then have two important observations that become the basis
for our proposed MC algorithm. First, from (15), we see that the
trace tr(P¥) can be readily estimated by r independent realizations of
a Markov chain, which moves on G according to P for k steps, given
that their initial positions are chosen uniformly at random from V.
Second, by noting that 37> | /1{? in (11) can be well approximated by
its partial sum (recall that |A;| < 1 for all i # 1), from (11) and (13),
we can approximate the Kemeny’s constant K based on a partial
sum of [tr(PK) — 1]. Note that each trace tr(P¥) is estimated by the
r independent realizations.

We present our MC estimator as follows. For a given Markov
chain with P and s, we generate its r independent sample paths of
length I, each of which starts from a node that is chosen uniformly
at random from V. Let {XJ,X{, .. ,le} be the trajectory of the j-th
realization for j = 1,2,...,r. Note that Xll,Xi, . ,X]: are indepen-
dent for each k = 1,2, ..., 1, so we can use them to estimate tr(P]f)
for different k values. Specifically, we define lec = ]l{X]i = Xg }
for the j-th realization and for each k. For brevity, we also define

hy = tr(P¥). Then, from (15), we can build the following MC esti-
mator for hy:

. 1 1 < . .
he(r)=n-=> Z/ =n-- ) 1{X/ = X/}. 16
k<r>nr;knr;{k 2} (16)

By the strong law of large numbers, we have
ﬁk(r) 25, hy, asr — oo, (17)
Furthermore, from (13), we define

l

Kp=n—1+ [h - 1], (18)
k=1
and construct its corresponding MC estimator as

1
Ki(r)=n-1+) [ﬁk(r) - 1]. (19)
k=1

By (17) and the linearity of almost sure convergence, we have
Ky (r) 2, K, asr — oo.

In other words, V%I(r) is an asymptotically consistent estimator of
XK in (18).

We below demonstrate that the estimator in (19), with a proper
choice of /, can also be used to approximate the Kemeny’s constant
K in (13). Specifically, we establish an (e, §)-approximation of this
estimator, which implies, for any small €, > 0, how many realiza-
tions r are necessary with a choice of [ so that the approximation
error can be bounded by e with probability at least 1—§. To proceed,
we need the following .

THEOREM 1 (HOEFFDING’S INEQUALITY). LetYy,...,Y,, beiid
random variables such that E[Y;] = p and a < Y; < b. Then, for any

€>0,
7|

We below show that V%I(r) achieves an (¢, §)-approximation to
K in (13), when [ and r are properly chosen.

ny
1 2 2
—Nvy- )> e} < 2¢72nre’/(b=a)",

TreorEM 2. For any e > 0 and 8 € (0,1), choose I such that
12 a0y gpr > 20 log (21/6), then we have
P{|7%l(r)—7<|>e} <. O
Proor. Fix € > 0 and § € (0,1). We observe that
PR - K] > e} = P{Ii() - K + K - K] > ]
‘@ P{|7%,(r) — 5G| + |7 - K] > e}
® {i%0r) - 7| > g} +B % - %] > g}
(i)P{|7%,(r)-7(l| > 5h, (20)
where (a) uses the triangle inequality, and (b) follows from
{1 = 96 + |7 - %] > ]

c {|7%l(r) — %G| > g} U {|7<, —K| > g}



and the union bound. Also, (¢) holds since
K-Ki= Y [he-1< ) naf < o,
k=I+1 k=1+1
where the first inequality is from

n
hkzz/l531+(n—1)/1’:<1+n)t’,f, 1)
i=1

and the last inequality is due to the choice of I. Since 0 < ﬁk(r) <n
and E{hy(r)} = h for k = 1,2,...,1, (20) is further bounded by

! I
P“%(r) - %G| > g} - p{‘zgk(r) _th| . g}
k=1 k=1
@ [y el © G| .
SIF”{Z"l’%(r)-hkl > 5} < ZP{lhk(r>—hk| > Z}
k=1 k=1

) r e
where (d) uses the triangle inequality, (e) can be shown as was done
to show (b), and (f) holds by Hoeffding’s inequality. Therefore,
with the given choice of r, the result follows since the RHS of (22)
is less than or equal to §. O

4.2 Algorithm and Parallel Implementation

The MC estimator (f(l (r) in (19) is simply based on r independent
realizations (or sample paths) of a given Markov chain with P and s,
each of which has a uniform start thanks to (15). When it comes to its
practical implementation, however, to better control ‘randomness’
we generate r = an independent realizations of the Markov chain,
among which each group of « realizations start from each node i,
where « is a positive integer value. To correctly indicate the initial
node i, we write {XiJ,O’Xij,l’ .
length [ that starts from node i, for j = 1,2,..., a. Then we see that

o s . 1 2 AT T
each group of a realizations, i.e., Xi,k’Xi,k’ .. ’Xi,k’ individually

estimates each diagonal entry (Pk),-, i in (14), and thus the estimator
hi(r) in (16) is now redefined to be

. & . .
MOEDY - Z]l{xi{k =X/}
i=1 = j=1

.. ,Xl.] l} to denote the j-th realization of

i=

This is then used for the MC estimator 7%l(r) in (19). Our MC
algorithm is summarized in Algorithm 1.

THEOREM 3. The time complexity of Algorithm 1is O(r - I). The
space complexity of Algorithm 1is O(m + n).

Proor. The nested loop structure of Algorithm 1 makes the
overall time complexity O(r-1). For the space complexity, it requires
O(m-+n) to store up to 2m non-zero transition probabilities and up to
n possible self-transition probabilities (along with their associated
‘directional’ edges), and O(1) to keep track of the current position
of each realization of the chain to check the ‘if-condition’ in line 7,
together with a frequency counter. Thus, we have O(m +n). O

Thanks to the inherent algorithmic parallelism of our MC algo-
rithm, we are able to leverage the power of parallel computing to
greatly reduce the runtime of Algorithm 1. Specifically, we develop

Algorithm 1: Monte Carlo Algorithm

Input: transition matrix P, chain length I, the number of
realizations r = an

1 C«0

2 forj=1,2,..., a do

3 fori=1,2,...,ndo

4 Xy — i; X «— Xy

5 fork=1,2,...,1do

6 XiRandomSelect(Neighbor(X))
7 if X == X, then

8 L C—CH+1

9 Ke—Cla+n—-1-1
10 return K

a parallel implementation of our MC algorithm on a GPU based
on the NVIDIA CUDA programming framework?, as described in
Algorithm 2. Note that accessing a GPU is no longer an expensive
option, since a modern computer is typically equipped with a GPU
and it can also be used via a free cloud service like Google Co-
lab3, which is the one used in this paper. Given a graph G, chain
length [, and the number of realizations r, our GPU implementation
efficiently computes (approximates) the Kemeny’s constant K of
the Markov chain on G. We first create a list of initial nodes V, in
which each element is the initial starting node of each realization
of the Markov chain. Note that o realizations start from the same
node. The GPU kernel parallels the operation of each realization by
assigning it to each thread, and simply counts how many times each
realization hits its initial starting node. The hitting frequencies are
all added together to compute the Kemeny’s constant K. This GPU
implementation is illustrated in Figure 1. We refer to Appendix A
for more details on the GPU implementation.

Suppose that the number of threads that can be created and the
number of available GPU cores are both greater than the number
of realizations. Then we have the following.

THEOREM 4. The time complexity of Algorithm 2 is O(l +r). The
space complexity of Algorithm 2 isO(m+n+r).

Proor. Since each realization of the chain can be assigned to a
different thread running on a different GPU core, its time complexity
is bounded by the chain length [, i.e., O(I). The ‘for-loop’ in lines 9
and 10 takes O(r), which in turn makes the time complexity O(I+r).
For the space complexity, it requires storing r frequency counters,
the initial and current positions of r realizations, and up to 2m
non-zero transition probabilities and up to n possible self-transition
probabilities, which leads to a total of O(m + n +r). O

It is worth noting that the number of available GPU cores can be
smaller than the number of realizations in practice, although the
number of threads that can be created is generally large enough. In
such a case, the time complexity of Algorithm 2 becomes O([r/T] -
I +r), where T is the number of cores. We also emphasize that the
parallel implementation of our MC algorithm here is based on a
single GPU, but it can be readily extended to multiple GPUs to
realize ‘perfect’ parallelization in case the number of cores on a
single GPU is not enough to do so.

Zhttps://developer.nvidia.com/cuda-toolkit

3https://colab.research.google.com/



Algorithm 2: Parallel Implementation on a GPU

Input: transition matrix P, chain length /, the number of
realizations r = an
1 Create a list of initial nodes V = [V, V,,...,V,] =
[repeat each element in [1,2,...,n] « times]
2 ci—0fori=1,2,...,r; C—0
3 GPU kernel: Parallel for i = (1,2,...,r) do
4 Xo — Vi; X < Xo
5 fork=1,2,...,1do

6 X L RandomSelect(Neighbor(X))
7 if X == X, then
8 L ci<—ci+1

9 fori=1,2,...,rdo
10 L Ce—CH+cj

1 Ke—Cla+n-1-1
12 return K

realization; realization, realization; ... realization,

C=ctctest... e,

Figure 1: An illustration of the GPU implementation.

5 EXPERIMENT RESULTS

In this section, we present extensive experiment results to demon-
strate the effectiveness of our MC algorithm on estimating the
Kemeny’s constant K, especially for large graphs.

Datasets. We consider 13 real-world undirected network datasets
from SNAP* and Network Repository®, which are listed in an as-
cending order of graph size n in Table 1.° We classify four graphs
whose sizes are smaller than 50K as small graphs and the rest of
them as large graphs. In this experimental evaluation, we focus
on computing the Kemeny’s constant K of a simple random walk
on the largest strongly connected components (LSCC) of a graph,
as used in [28]. The statistics in Table 1 are for the LSCCs. The
datasets include infrastructure networks, online social networks,
collaboration networks, and communication networks, where the
largest one has about 1.7 million nodes.

Experiment setup. We implement two baseline methods, which
are to directly compute the eigenvalues of the transition matrix P
and those of its normalized Laplacian matrix L in order to compute
K. We refer to them as ‘Eigen-P’ and ‘Eigen-N’, respectively. Note
that they are only feasible for small graphs. We also implement
ApproxKemeny from scratch, as described in [28], since its imple-
mentation code is not publicly available. See Appendix A for more
details on the implementation. For ApproxKemeny, there is a pa-
rameter €4 that controls the precision of its estimation of K and

“http://snap.stanford.edu/data/

Shttp://networkrepository.com/

SWe are not able to find all the datasets in [28] due to the policy change of KONECT,
where the datasets are no longer freely available. Nonetheless, we still have the six
datasets in common compared to the ones in [28].

Table 1: Graph statistics
[ # Nodes (n) [ # Edges (m) [ Chain length / ]

HEP-TH 8638 24806 3566
Astro-ph 17903 196972 1640
CAIDA 26475 53381 869
EmailEnron 33696 180811 3124
Brightkite 56739 212945 25791
wiki-Talk 92117 360767 25791
Gowalla 196591 950327 25791
com-DBLP 317080 1049866 25791
Amazon 334863 925872 25791
soc-flickr 513969 3190452 25791
soc-digg 770799 5907132 25791
Youtube 1134890 2987624 25791
Skitter 1694616 11094209 25791

€4 is set to be from 0.05 to 0.3 in [28]. In this paper, we report the
results of ApproxKemeny when €4 = 0.1,0.2, 0.3. We observed that
the case with €4 = 0.05 makes the runtime of ApproxKemeny way
too long without any benefit in the estimation accuracy.

For our MC algorithm, we use the parallel implementation in
Algorithm 2, whose details are provided in Appendix A. We first
need to determine the length [ of the Markov chain, which requires a
choice of the value of € and the value of A, as in Theorem 2. For the
former, we consider € = 0.01n, which is a function of the graph size
n, since K increases linearly with n, as seen from (5). For the latter,
we use the exact value of A, for small graphs. When it comes to
large graphs, it can be expensive to compute .. Thus, we use a very
conservative estimate of A, i.e., A1+ =0.9995, which could be much
larger than its actual value for some graphs. Their corresponding
lengths [ are reported in Table 1. Note that the exact value of 1. may
not be readily available in practice and the conservative estimate
of A could turn out to be an underestimated one. Thus, to cope
with this problem, we will present an updated version of our MC
algorithm that does not require the knowledge on A in Section 6.
In addition to the length [, we also need to determine the number of
realizations of the Markov chain, r. In this experimental evaluation,
we consider r = n, 101, 1001 to demonstrate how effective our MC
algorithm can be in practice. We refer to Appendix B for more
details on the experiment setup.

Experiment results. We first demonstrate the efficiency and scal-
ability of our MC algorithm when compared with two baseline
methods and ApproxKemeny in terms of the runtime. We report
the detailed results in Table 3 in Appendix C. As shown in Figure 2,
the runtime of our MC algorithm remains almost the same for small
graphs, while it increases when the graph becomes larger and r
increases. The latter happens because all the realizations cannot be
executed in parallel concurrently, when the number of realizations
is greater than the number of available GPU cores, as explained
in Section 4. Nonetheless, our algorithm is far faster than Eigen-P,
Eigen-N, and ApproxKemeny. It only takes about one second to
compute the Kemeny’s constant for small graphs and a few minutes
for large graphs in the worst case, such as Youtube and Skitter,
each of which has more than a million nodes. Note that Eigen-P
and Eigen-N are only feasible for small graphs. Furthermore, the
improvement of our algorithm over ApproxKemeny becomes more
significant for large graphs.
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Figure 4: Speed-up by our MC algorithm over ApproxKe-
meny (based on the runtime results reported in [28]).

We also show the speed-up by our algorithm over ApproxKe-
meny (with three different choices of €4) in Figure 3. Here, we use
the case with r = 100n, which is the slowest (but most accurate)
case. It is far faster than ApproxKemeny for all test cases and the
speed-up is up to 500x. It is worth noting that the runtimes of
ApproxKemeny (of our implementation) on our workstation is over
ten times longer than the ones reported in [28]. It may be because of
different computing environments and different levels of program-
ming optimization. Thus, we further compare the runtimes of our
MC algorithm under the six common datasets with the runtimes
of ApproxKemeny reported in [28], as depicted in Figure 4. We
observe that the MC algorithm is still faster than ApproxKemeny
and the speed-up is up to 30x.

We next demonstrate the accuracy of the MC algorithm for
computing the Kemeny’s constant. To this end, we measure the
relative error |K — 7?| /K for each graph, where % is our estimated
value and K is the reference value. For the reference value, we use
the value of K obtained by Eigen-P or Eigen-N (both return the
same value). Note that they are only feasible for small graphs. Thus,
for large graphs, we use the estimated value by ApproxKemeny
(with e4 =0.1) as the reference value. Table 2 presents the mean
relative errors along with their standard deviations of 100 runs. We
observe that the relative errors remain at a negligible level for all
test cases and the accuracy improves with the increase of r. We also
find that the accuracy of our MC algorithm is comparable to that
of ApproxKemeny. See Table 5 in Appendix C for all the computed
values of Kemeny’s constant by all four methods.

6 DYNAMIC MONTE CARLO ALGORITHM

We turn our attention to a ‘dynamic’ version of our MC algorithm
to overcome the limitation of its plain ‘vanilla’ version that requires

Table 2: Relative error of the MC algorithm (x10™%)

Youtube

Skitter

[ r [ n [ 10n [ 100n l
HEP-TH 93.53 +71.10 | 31.69 +22.27 | 9.84 +7.81
Astro-ph 42.46 + 32.25 13.31 £ 9.97 4.08 + 3.25
CAIDA 28.22 + 19.83 9.26 + 7.40 2.68 £ 2.05

EmailEnron | 46.59 + 36.87 | 13.13 + 10.05 | 4.24 +3.14
Brightkite 29.55 +22.44 | 10.35+7.03 3.19 £ 2.26
wiki-Talk 18.17 £ 13.57 5.93 + 4.58 1.89 + 1.40

Gowalla 13.39 + 10.38 4.32 +3.52 1.45 +1.13
com-DBLP | 14.66 + 11.08 5.05 + 3.38 1.42 +1.14
Amazon 22.80 + 17.03 11.28 £ 6.99 | 10.78 + 2.74
soc-flickr 11.79 + 10.35 3.73 + 3.00 1.36 £ 0.97
soc-digg 4.63 + 3.68 1.49 £ 1.04 0.68 + 0.45
Youtube 7.71 £ 5.62 2.81 + 2.06 0.86 + 0.62
Skitter 4.63 + 4.22 1.80 + 1.29 0.56 + 0.38

the value of A,. In particular, we empirically demonstrate that this
dynamic version not only eliminates the need for the value of A,
but also further improves the runtime of our algorithm without
losing its estimation accuracy.

As mentioned in Section 5, despite its remarkable performance,
the plain vanilla version of our MC algorithm requires the value of
A« to determine the length [ of the Markov chain. While it can be
just a rough and conservative estimate of A, it could possibly be an
underestimated one in fact and thus lead to an underestimate of the
Kemeny’s constant K. To resolve this problem, we first observe the
following. From (16) and (19), when increasing the length I without
specifying its value, one can naturally expect that the estimated
value of K by our MC algorithm tends to increase and gets saturated
after a certain value of [. This is indeed the case, as can be seen from
Figure 5, which is obtained by simply running our algorithm (its
parallel implementation in Algorithm 2) with varying chain length
1. In Figure 5, an ‘epoch’ refers to the time instance when X is
measured/estimated and its epoch length is Al. In other words, we
report the estimated value of K by our algorithm every Al. We also
normalize the estimated value of K at each epoch by the largest
value for each graph. The number of realizations is r=100n.

Thus motivated, we develop a dynamic version of our MC al-
gorithm, as described in Algorithm 3, which does not require the
knowledge of A, nor its rough estimated value. It is still nothing but
Algorithm 1, except that each realization of the Markov chain runs



Algorithm 3: Dynamic Monte Carlo Algorithm

Input: transition matrix P, epoch length Al, the number of
realizations r = an
1C—0, K0, K e—o0;10
2 forj=1,2,...,ado
3 fori=1,2,...,ndo
4 L Xl.j — i

5 while |K - K'| > ¢; do
6 K — K; | —1+Al
7 forj=12...,ado

8 fori=1,2,l..,ndo_
9 Xo i3 X « Xij
10 fork=1,2,...,Aldo
P
1 X < RandomSelect(Neighbor (X))
12 if X == X then
13 L C—C+1
14 L Xij — X

15 | KeClatn-1-1

16 return K
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Figure 5: (Normalized) Kemeny’s constant estimated by our
MC algorithm with varying chain length [.

until a stopping criterion is met instead of running for a predefined
length [. Specifically, the dynamic version of our MC algorithm re-
turns the estimated value of K every Al, as it runs. This operation
continues until the difference between two consecutive estimates
of K is less than a certain threshold, i.e., |K — K’| < €4, where K’
is the previous estimate. In addition, since there is no change in
the core algorithm operation, the parallel implementation of the
dynamic version can be done in a similar way as in Algorithm 2.
See Appendix A for the implementation details.

Before showing the experiment results, we explain how we select
the threshold €4 for the stopping criterion and the epoch length
Al in Algorithm 3. First, we consider €;=0.0005n and €;=0.0001n,
which are again a function of n, since K grows linearly with n, as
seen from (5). As shall be shown below, they are small enough for
our dynamic algorithm to obtain an accurate estimate of K for each
graph. Next, to choose the value of Al, we evaluate its impact on
the performance of our dynamic algorithm. We consider different
values of Al and present the corresponding estimation results by our
dynamic algorithm on three small graphs and three large graphs as
representative results in Figure 6, where we normalize the estimated
value of K with each value of Al by the largest value for each graph.
The number of realizations is r = 100n. We observe that the final
estimate of K by our dynamic algorithm becomes saturated around
when Al=200 for small graphs and when Al=600 for large graphs,
respectively, while the runtime of our dynamic algorithm increases
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Figure 6: Impact of Al when €; = 0.0001n.

with the value of Al. Thus, we choose Al=200 for small graphs and
Al=600 for large graphs. It is still worth noting that even with a
small value of Al, e.g., Al=50 for small graphs and Al=100 for large
graphs, our dynamic algorithm still provides a reasonably accurate
estimate of K.

We evaluate the performance of our dynamic algorithm (with
the aforementioned values of ¢; and Al) under the datasets used
in Section 5 and observe that it exhibits excellent performance in
terms of both computational efficiency and accuracy. Here we again
focus on the case with r =100n. We report the detailed results in
Table 4 in Appendix C. As shown in Figure 7, we notice that the
runtime of our dynamic algorithm is more or less the same as that
of its plain vanilla version for small graphs and Amazon graph,
while it achieves up to 11X speed-up over the vanilla version for
the other eight graphs. Considering the fact that the plain vanilla
version of our algorithm is already faster than ApproxKemeny for
all the datasets, its dynamic version is far more computationally
efficient than ApproxKemeny. In addition, to show the estimation
accuracy of our dynamic algorithm, we compute the mean relative
errors, as was done for its vanilla version in Table 2. While we
provide the results in Table 6 in Appendix C, we observe that the
estimation errors are again at a negligible level. To summarize, our
dynamic algorithm not only resolves the issue with requiring the
value of A, but also further improves the runtime without losing
its estimation accuracy.

7 DISCUSSION

So far, we have assumed that the transition matrix P (or its Lapla-
cian matrix £) on a graph G is known explicitly for computing
its corresponding Kemeny’s constant K by ApproxKemeny and
both vanilla and dynamic versions of our MC algorithm. One may
wonder what if the transition matrix P is not known explicitly, or
the graph G needs to be crawled or explored to access nodes and
edges and to find their associated transition probabilities P;;. While
it is infeasible with ApproxKemeny that needs the entire Laplacian
matrix £ and solves its Laplacian system of linear equations, the
dynamic version of our algorithm can still be used even in such a
case. We below elaborate on this extension.

Recall that our MC algorithm in both versions (Algorithms 1
and 3) requires a different group of & realizations to start from each
node i. While it was designed to better regulate the randomness in
practice, as explained in Section 4.1, each realization just needs to
start from an initial node that is chosen uniformly at random from
the node set V. Thus, the dynamic version of our algorithm can be
viewed as just launching r parallel random walks to move over the
graph G according to transition probabilities P;; until the stopping
criterion is met, as long as they independently start from initial
nodes that are chosen uniformly at random. Then, the question
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Figure 7: Speed-up by the dynamic version of our MC algorithm over its vanilla version when r = 100n.

boils down to how to achieve the latter, i.e., how to realize such a
uniform start from the node set V of G that is unknown but needs
to be discovered.

The famous Metropolis-Hastings (MH) algorithm [22] can come
to the rescue. Specifically, as used in [6, 11, 23], it allows us to
construct the following transition matrix pmh = [PZ?h] such that

h

its stationary distribution 7" is a uniform distribution on V.

min{%,%} if(i,j) €E
i dj
0 if (i, j) ¢ E,i # J,

Pt = (23)

with Pi’?h =1-2Yjsi Pi”j‘h. The operation here can be made locally.
Assuming that the current node is i, it can be interpreted as propos-
ing one of its neighbors as a next node with probability 1/d; and
accepting the proposed move with probability min{1, d;/d;}. If this
proposed move is rejected, the next node remains the same as i.
Therefore, we launch r parallel random walks to initially move
over the graph G according to P™" until they get ‘mixed’ (or they
are in the stationary regime), and then execute our dynamic algo-
rithm based on the parallel random walks that now move over G
according to P. Note that transition probabilities P;; are still locally
available when vising node i, although they are not available in
their entirety. We refer to [6, 23] for other methods, in addition to
the above MH algorithm, on generating a uniform node in a graph.

8 CONCLUSION

We have studied the problem of computing the Kemeny’s constant
of a Markov chain on large graphs, where its direct computation
is generally infeasible. We proposed a computationally efficient
and scalable Monte Carlo algorithm for estimating the Kemeny’s
constant and provided a mathematical analysis on its approximation
accuracy. We presented its parallel implementation on a GPU and
demonstrated its superiority over the state-of-the-art algorithm
called ApproxKemeny based on a dozen real-world graphs. The
benefit of our algorithm over ApproxKemeny in the computational
efficiency remains significant even for large graphs and its speed-up
is up to 500X, while its estimation accuracy is comparable to that of
ApproxKemeny. In addition, we presented a ‘dynamic’ refinement
of our algorithm to make it work without the knowledge of A.
and demonstrated that it even further speeds up the computation
without losing its estimation accuracy. We finally discussed how this
dynamic algorithm can be adopted in the case where the transition
matrix P is not known explicitly.
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A IMPLEMENTATION DETAILS

We implement Eigen-P and Eigen-N in MATLAB. We implement
ApproxKemeny in Julia v1.5.2 and provide a code snippet in Figure 8.
We refer to Section 3 and [28] for more details on its algorithm
operation. It is worth noting that in our implementation of Ap-
proxKemeny, we utilize the Cholesky factorization algorithm to
solve the Laplacian system of linear equations. This algorithm is
named ‘chol-lap’ solver in the Julia library’, as shown in line 11
of Figure 8. However, as in [28], ApproxKemeny originally adopts
an approximation algorithm in [18], which is based on the sparse
Cholesky factorization. It is named ‘approxchol-lap’ solver in the
Julia library and is known to be the fastest one. While this solver
takes a ‘tolerance’ value as an (optional) input to control the level of
its approximation accuracy, we observe that it is fast at the sacrifice
of accuracy (with high tolerance values). We further observe that
the tolerance value used in [28] is generally smaller than 1.0 x 10711
for all the datasets. The way of determining the tolerance value
in [28] is provided in line 12 of Figure 8. It turns out that such a
small tolerance value makes the ‘approxchol-lap’ solver even (about
three to five times) slower than the ‘chol-lap’ solver. Thus, instead
of using the ‘approxchol-lap’ solver, we use the ‘chol-lap’ solver in
our implementation of ApproxKemeny. We here omit the detailed
experiment results regarding the solvers due to space constraint.
We implement two versions of our MC algorithm (both vanilla
and dynamic versions) in Python and present a code snippet of
the GPU kernel in Figure 9, which is the common core routine for
both versions.® We here focus on the implementation of a simple
random walk, while it can be readily extended for any Markov
chains. We use the compressed sparse row (CSR) data structure to
store the transition matrix P of the Markov chain on G. Note that the
random walk is implemented based on a random number generator
(RNG). We use Numba’s GPU RNG’ to ensure independent parallel
generations, which adopts the xoroshiro128+ algorithm, as shown
in line 13 of Figure 9. Note also that the operation of adding the
hitting frequencies of all the realizations can be implemented by
an atomic addition on the GPU, as shown in line 20 of Figure 9.

B ADDITIONAL EXPERIMENT SETUP

We conduct the experiments of Eigen-P, Eigen-N and ApproxKe-
meny on a Linux workstation with two Intel Xeon 2.2-GHz CPUs
and 64-GB RAM. We run the vanilla and dynamic versions of our
MC algorithms on an NVIDIA Tesla V100 SXM2 GPU with CUDA
toolkit 10.1, which is available on Google Colab. We run both ver-
sions of our algorithm 100 times for all test cases and report their
average values along with the standard deviations. As was done
in [28], however, we run ApproxKemeny only once and report its
experiment results, although it is a randomized algorithm. Note that
we ran ApproxKemeny multiple times and observed that the results
remain quite consistent over different runs. In addition, we exclude
the time of loading and processing raw data, when we measure the
runtime of each method in this paper.

"https://github.com/danspielman/Laplacians.jl
80ur code is available at https://github.com/xhuang2016/Kemeny-computation.
“https://numba.pydata.org/numba-doc/latest/cuda/random.html

1 using Laplacians, LinearAlgebra, Arpack
2 function 1lps(adj)

3 la = lap(adj)

4 n = size(adj)[1]

5 for i in 1:n

6 degli] = lali,il]

7 degsqli] = sqrt(deglil)

8

9

end
m = @.5xsum(deg)
10 epsilonA = 0.3
11 sol = chol_lap(adj)
12 # tol = epsilonA*x(n*(-2.5))/(3*sqrt(2))
13 # sol = approxchol_lap(adj, tol=tol)
14 U = wtedEdgeVertexMat (adj)
15 M = ceil(Int,48xlog(2*xn)*epsilonA*(-2))
16 s = 0.0
17 for i in 1:M
18 dx = degsq.*(2.0*rand(@:1, n)-ones(n))
19 y = dx-degxtranspose(ones(n))*dx/(2.0xm)
20 z = sol(y)
21 s = s+(norm(Uxz)) "2
22 end
23 return s/M

Figure 8: Code snippet of ApproxKemeny.

1 from numba import cuda
2 from numba.cuda.random import
create_xoroshiro128p_states,
xoroshiro128p_uniform_float32
3 @cuda.jit
def GPU_MC(initial_start_nodes, start_nodes, indptr,
indices, hitting, sum_hitting, rng_states, r, 1):

=

5 thread_id = cuda.grid(1)

6 if thread_id < r:

7 curr_node = start_nodes[thread_id]

8 hitting[thread_id] = @

9 for i in range(0, 1):

10 start_idx = indptr[curr_node]

11 end_idx = indptr[curr_node + 1]

12 neighbors = indices[start_idx: end_idx]

13 rand_float =
xoroshiro128p_uniform_float32(rng_states,
thread_id)

14 choice = int(rand_float x len(neighbors))

15 next_node = neighbors[choice]

16 if next_node == initial_start_nodes[thread_id]:

17 hitting[thread_id] += 1

18 curr_node = next_node

19 start_nodes[thread_id] = curr_node

20 cuda.atomic.add(sum_hitting,@,hitting[thread_id])

Figure 9: Code snippet of the GPU kernel for the parallel
implementation.

C DETAILED RESULTS

We provide the detailed results of Eigen-P, Eigen-N, ApproxKemeny
and our MC algorithm (its vanilla version) in Table 3 and Table 5.
We also provide the performance results of the dynamic version of
our algorithm in Table 4 and its relative error results in Table 6.


https://github.com/xhuang2016/Kemeny-computation

Table 3: Runtime [s]

Table 5: Kemeny’s constant (+ shows standard deviation)

D Eigen-P / [ ApproxKemeny [ MC algorithm ] Eigen-P/ { ApproxKemeny [ MC algorithm ]
ataset : .
Eigen-N [ ea | [ r [ Overall T Kernel | Eigen-N [ €a | [ |
259.017 / 0.3 15.274 n 1.107 0.314 0.3 16182.32 n 16186.02 = 190.15
HEP-TH 295 644 0.2 33.257 10n 1.134 0.326 HEP-TH 16185.03 | 0.2 16185.48 10n 16185.14 + 62.69
: 0.1 147.626 100n 1.454 0.447 0.1 16185.39 100n 16185.13 + 20.33
1944.000 / 0.3 99.031 n 1.179 0.324 0.3 22937.71 n 22937.55 + 122.30
Astro-ph 187.821 0.2 220.322 10n 1.226 0.340 Astro-ph 22937.00 | 0.2 22937.42 10n 22937.31 + 38.15
: 0.1 926.875 100n 1.748 0.455 0.1 22936.88 100n 22937.09 £ 11.96
4247.000 / 0.3 59.849 n 1.142 0.312 0.3 31931.53 n 31930.41 + 110.13
CAIDA 1022.100 0.2 129.505 10n 1.225 0.328 CAIDA 31931.00 | 0.2 31930.84 10n 31930.33 + 37.85
: 0.1 512.460 100n 1.984 0.443 0.1 31931.34 100n 31930.18 + 10.73
15981.000 / 0.3 98.200 n 1.167 0.319 0.3 45234.74 n 45236.51 + 268.76
EmailEnron 1095.700 0.2 226.992 10n 1.290 0.374 EmailEnron | 45236.00 | 0.2 45236.17 10n 45236.31 + 74.81
: 0.1 906.230 100n 2.533 0.815 0.1 45236.46 100n 45236.24 + 23.87
0.3 279.593 n 1.406 0.534 0.3 80915.60 n 80885.67 + 299.62
Brightkite - 0.2 609.015 10n 2.242 1.241 Brightkite - 0.2 80911.99 10n 80909.19 + 101.09
0.1 2535.510 100n 9.991 7.672 0.1 80904.26 100n 80906.74 + 31.53
0.3 396.922 n 1.391 0.628 0.3 102480.96 n 102498.29 + 231.75
wiki-Talk - 0.2 894.091 10n 2.523 1.636 wiki-Talk - 0.2 102479.73 10n 102486.18 + 76.62
0.1 3643.216 100n 14.732 11.857 0.1 102481.04 100n 102480.41 + 24.15
0.3 2465.796 n 1.859 0.843 0.3 271688.97 n 271702.26 + 460.20
Gowalla - 0.2 5367.000 10n 5.722 4.290 Gowalla - 0.2 271700.54 10n 271700.13 + 151.02
0.1 21219.222 100n 46.030 40.515 0.1 271690.07 100n 271695.75 + 49.55
0.3 2974.014 n 1.814 1.031 0.3 581140.76 n 581209.07 + 1067.52
com-DBLP - 0.2 6596.251 10n 9.304 7.851 com-DBLP - 0.2 581099.40 10n 581175.35 + 353.09
0.1 26133.130 100n 83.778 74.998 0.1 581185.13 100n 581195.61 + 104.95
0.3 3175.491 n 1.946 1.187 0.3 885417.75 n 884561.00 + 2318.19
Amazon - 0.2 6783.415 10n 9.626 7.966 Amazon - 0.2 885629.18 10n 884606.34 + 701.29
0.1 27826.857 100n 85.368 75.907 0.1 885549.04 100n 884594.18 + 242.75
0.3 9223.951 n 3.501 2.643 0.3 801046.77 n 801146.45 + 1249.07
soc-flickr - 0.2 20092.785 10n 24.889 22.809 soc-flickr - 0.2 801043.69 10n 801057.63 + 379.94
0.1 81039.405 100n 237.622 224.859 0.1 801005.04 100n 801010.20 + 133.46
0.3 16966.402 n 5.451 4.488 0.3 858137.83 n 858233.50 + 499.82
soc-digg - 0.2 37898.909 10n 44.349 41.735 soc-digg - 0.2 858147.77 10n 858210.82 + 141.17
0.1 149844.868 100n 435.375 414.885 0.1 858144.32 100n 858196.93 + 46.60
0.3 15625.003 n 7.412 6.348 0.3 1754534.05 n 1754516.49 + 1671.88
Youtube - 0.2 34183.074 10n 64.188 60.648 Youtube - 0.2 1754523.47 10n 1754522.61 + 604.74
0.1 140241.327 100n 632.674 605.491 0.1 1754433.25 100n 1754506.14 + 170.62
0.3 16372.912 n 13.536 12.322 0.3 | 2087138.18 n 2087146.76 + 1306.91
Skitter - 0.2 37786.870 10n 125.057 120.136 Skitter - 0.2 | 2087110.36 10n 2087031.49 + 454.86
0.1 153644.728 100n 1240.976 1199.908 0.1 2087093.20 100n 2087091.08 + 139.75

Table 4: Performance of our dynamic algorithm

[ Runtime [s]

{ Kemeny’s constant

[ €4 | Overall | Kernel
0.0005n 1.325 0.412 16183.44 + 16.89
HEP-TH 0.0001n 1.354 0.441 16186.59 + 18.50
Astro-ph 0.0005n 1.468 0.353 22935.96 + 12.52
0.0001n 1.487 0.372 22937.73 £ 12.90
0.0005n 1.648 0.346 31928.86 + 11.51
CAIDA 0.0001n 1.678 0.376 31931.71 + 11.05
EmailEnron 0.0005n 1.923 0.448 45234.00 + 18.52
0.0001n 1.991 0.517 45236.50 + 21.50
Brightkite 0.0005n 2.797 0.764 80900.25 + 24.07
0.000in | 2993 | 0953 | 80910.83 % 27.29
wiki-Talk 0.0005n 3.718 0.983 102480.77 + 14.63
0.0001n 3.709 0.982 102478.26 £ 11.73
Gowalla 0.0005n 7.452 2.150 271688.15 + 45.23
0.0001n 7.463 2.150 271694.83 + 44.15
com-DBLP 0.0005n 13.292 5.497 581181.99 + 95.09
0.0001n 15.039 7.235 581167.76 + 103.76
Amazon 0.0005n 53.715 45.577 882944.21 + 267.78
0.0001n 98.816 90.697 884973.02 + 249.79
soc-flickr 0.0005n 26.652 12.785 801000.18 + 113.64
0.0001n 29.778 15.912 800990.47 + 102.18
soc-digg 0.0005n 39.638 19.549 858209.23 + 44.56
0.0001n 39.603 19.546 858200.12 + 49.05
Youtube 0.0005n 71.798 42.232 1754463.35 £ 179.51
0.0001n 85.817 56.251 1754526.35 + 172.83
Skitter 0.0005n 181.943 138.512 2085191.05 + 121.76
0.0001n 321.462 278.046 2086621.88 + 126.97

Table 6: Relative error of our dynamic algorithm (x10™%)

[ €4 [ 0.0005n | 0.0001n |
HEP-TH 9.97 £ 7.00 9.43 + 6.53
Astro-ph 4.42 +£3.23 4.37 £ 3.56
CAIDA 2.96 + 2.17 2.73 £2.14

EmailEnron | 3.44 +2.26 | 3.79 + 2.88
Brightkite 2.52 £ 1.66 2.75 £ 2.11
wiki-Talk 1.16 +£ 0.83 0.94 £ 0.70

Gowalla 1.41 = 0.89 1.33 £ 0.95
com-DBLP 1.31 £ 0.98 1.47 + 1.06
Amazon 29.41 +3.02 | 6.50 + 2.82
soc-flickr 1.15+0.83 | 1.05+0.74
soc-digg | 0.79 =047 | 0.72 + 0.48
Youtube 0.82 £ 0.63 0.86 £ 0.72
Skitter 9.20 £ 0.58 2.34 £ 0.61
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