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Assume ZF + ADT +V = L(Z2(R)). Let E be a =1 equivalence relation coded in HOD.
E has an ordinal definable equivalence class without any ordinal definable elements if
and only if HOD [ F is unpinned.

ZF + ADT + V = L(Z(R)) proves E-class section uniformization when E is a X1
equivalence relation on R which is pinned in every transitive model of ZFC containing
the real which codes E: Suppose R is a relation on R such that each section Rz = {y :
(z,y) € R} is an E-class, then there is a function f : R — R such that for all z € R,

R(z, f(x)).

ZF + AD proves that R X k is Jonsson whenever « is an ordinal: For every function
f:[Rx k]S¥ — R x kK, there is an A C R x k with A in bijection with R x x and
FIIAISS] # R X .

Keywords: Determinacy; ordinal definability; equivalence relations; uniformization;
Jénsson property.
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1. Introduction

The questions of concern here are problems of independent interests that appeared
during the study of the Jénsson property for nonwellorderable sets under the axiom
of determinacy.

Let N € wU{w} and X be some set. Define [X]Y = {z € N X : (Vi,j < N)(i #
J = (i) # z(j))} and [X]=¥ = [, ¢, [X]2. Let ~ denote the relation of being in
bijection. Define Zn(X) ={Y C X :Y = N} and P, (X) = U, c., Zn(X).

An N-Jonsson function for X is a function f : [X]¥ — X so that forall Y C X
with Y =~ X, f[[Y]¥] = X. A function f: [X]=¥ — X is a Jénsson function if and
only ifforall Y C X with Y = X, f[[Y]=¥] = X. A set X has the J6nsson property
if and only if there are no Jénsson functions for X.
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The classical study of the Jdénsson property involved wellordered sets. For
wellordered sets X, Jénsson functions for X are formulated using & (X) rather
than [X]Y. Under AC, the following results are known: [4] showed that every infi-
nite set has an w-Jénsson function. The existence of such a function is also where
Kunen’s proof of the Kunen’s inconsistency uses AC. The existence of a cardinal
with the Jénsson property implies 0 exists. Results of Erdés and Hajnal (see [3, 4])
imply that under CH, 2%¢ is not Jénsson. Hence, R is not Jénsson under CH. On the
other hand, real valued measurable cardinals are Jénsson (see [3, Corollary 11.1]).
Solovay showed it is consistent relative to a measurable cardinal that 2%0 is real
valued measurable. Hence, it is consistent relative to a measurable cardinal that R
is Jénsson.

Using the axiom of determinacy AD, [15] showed that X,, is Jénsson for each
n € w. [7] showed that every cardinal x < © is Jénsson under ZF + AD +V = L(R).
In fact, Woodin showed that ZF +AD™ can prove every cardinal x < © is Jénsson.

Under AD, there are sets which cannot be wellordered. Some important exam-
ples are quotients of A} equivalence relations such as =, Ey, Ey, Es, and E3 (see
Definition 2.15). Holshouser and Jackson (see [5, 6]) showed that R has the Jénsson
property and there are no 2-Jénsson functions for R/Ey under AD. [2] showed that
under AD, there is a 3-J6nsson function for R/Ey. Results from [2] seem to suggest
that R/E;, R/E5, and R/FE3 do not have that Jénsson property, but no Jénsson
functions for these quotients have yet to be constructed.

For the A} equivalence relations mentioned above, various dichotomy theorems
assert the significance of these equivalence relations in the degree structure of A}
equivalence relations under A} reducibility. The proofs of these dichotomy results
give specific combinatorial structures to sets A such that E < ar E [ A, when E is
one of the A% equivalence relations above. For example, if A C R is 2% and Ep <A1
Ey A, then A contains an FEp-tree (a perfect tree with very specific symmetry
conditions; see [2, Definition 5.2]). Similarly, if A C R is ] and F, <a! Ex A,
then A contains an Fs-tree (a perfect tree with certain summability conditions; see
(2, Fact 14.14]).

The following describes the techniques from [2] for investigating the Jénsson
property for R/Eg: To study functions f : [R/Eg]2 — R/Ep, one would like to
lift f to a function F' : R? — R with the property that for all (z1,22) € R2
[F(z1,22)]E, = f([21] By, [22]E,)- Such a function F is called a lift of f. Then one
tries to produce an Fy-tree on which the collapse of F misses elements of R/Ej.
On the other hand, using the specific combinatorial structure of Fy-trees, one can
define a map F : R? — R which is Ey-invariant and given any real z, there is a
triple (z1,z2,z3) of Ep-unrelated reals so that F(x1,x2,x3) Ey x. The collapse of
F would then be a 3-Jénsson map.

As described in the above example, the existence of lifts of functions from R/
E — R/FE’, where E and E’ are equivalence relations on R, seems to be useful in
the study of functions on quotients. The existence of a lift is an immediate conse-
quence of uniformization. ADg has full uniformization. Moreover, a lift of a function
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f : R/E — R/E’ requires only uniformization for relations whose sections are
E'-classes. Woodin showed that countable section uniformization holds in ADT.
Thus lifts exist for functions into R/Ey under AD™. Moreover, for the purpose of
showing that there are no 2-Jénsson functions for R/Ey, AD alone has a sufficient
uniformization: Let f : [R/Ep]2 — R/Ey. One can apply comeager uniformization
(which holds in just AD) to find a function F' : C — R, where C' C R? is comeager,
which lifts f on C. Then the 2-Mycielski property for Ey shows that there is a set
A such that Eg <a1 Eo [ A and {(21,22) € A% —(z1 Ey 22)} C C. (see [2, Defi-
nition 2.11] for the definition of the Mycielski property.) This roughly implies that
F lifts f on a set whose quotient by Fy has cardinality R/Ey. However, [2] showed
that except for = which has the full Mycielski property, a very limited amount of
the Mycielski property holds for the other equivalence relations of interest.
Motivated by this question of FE-class section uniformization, Zapletal asked
a related question: Does every ordinal definable E5 equivalence class contain an
ordinal definable real, under ZF + AD +V = L(R)? He informed the author that the
equivalence relation =T, defined on “R as equality of range, has ordinal definable
classes with no ordinal definable elements assuming AD +V = L(R), and that this
phenomenon can be viewed as a consequence of the unpinnedness of =+. He asked
then whether pinnedness can be used to characterize those A] equivalence relations
with ordinal definable equivalence classes without any ordinal definable elements.
For countable equivalence relations, Zapletal’s question has a positive answer
under AD™: Under AD™, every ordinal definable countable set of reals contains
only ordinal definable elements. The proof of this can be found within the proof
of Woodin’s countable section enumeration under AD™, which states that for every
relation R with countable sections there is a function that takes = to a wellordering
of the section R,. The main idea is to consider the canonical wellordering of R, in
HODg[S’x’z] as z ranges over a Turing cone of reals and S is some set of ordinals
from an co-Borel code for R. (see [14] for the proof.) This implies that under AD™,
every ordinal definable E class contains only ordinal definable elements if F is an
equivalence relation with all countable classes defined using only ordinal parameters.
The determinacy assumptions are important for these questions since [11]
showed that in a forcing extension of the constructible universe L, there is an
ordinal definable Ey equivalence class with no ordinal definable elements. Similar
examples are given in [12] which showed that in a forcing extension of L, there are
definable relations with each section an Ey-class but have no uniformizations which
are ordinal definable in a real.
Section 2 will show roughly, that in L(R) = AD, if a ¥} equivalence relation E
has an OD equivalence class without any OD elements, then HOD must think that
F is unpinned:

Theorem 2.12. Assume ZF +AD' +V = L(Z(R)). Let T be a set of ordinals.
Let E be an equivalence relation which is X1(s) for some s € HODz and let A be
an ODp E-class. If A has no ODp elements, then HODp |= E is unpinned.
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Models of ZF + AD" 4V = L(Z(R)) are considered natural models of ADT. If
L(R) = AD, then L(R) satisfies this theory. Woodin, [1] Corollary 3.2, has shown
that if ZF + ADT 4V = L(Z(R)) holds, then either there is a set of ordinals J so
that V = L(J,R) or else V = ADg.

The proof of this theorem uses the idea of taking ultraproducts of HODg[S’Z],
(where the Turing degree of z serves as the index and S is a set of ordinals) using
Martin’s Turing cone measure. This technique appears in Woodin’s proof that sets of
reals have oo-Borel codes in L(R) when L(R) = AD as exposited in [16, Claim 1.6].

Theorem 2.13 (ZF+AD™). Let E be a 37 equivalence relation defined in HODg,
where R is some set. Suppose HODpg = E is unpinned. Then, there is an ODg E-
class with no ODpg elements.

These two results together give a very succient answer to Zapletal’s question in
natural models of AD*:

Corollary 2.14. Assume ZF +AD" +V = L(Z(R)). Let E be a T} equivalence
relation coded in HOD. E has an OD E-class with no OD elements if and only if
HOD k= E is unpinned.

Many important examples of pinned A} equivalence relations include =, Ej,
FE4, Es, smooth, hyperfinite, and hypersmooth equivalence relations.

Using the previous theorem, one obtains F-class section uniformization for
equivalence relations satisfying some definable pinnedness condition. This is partic-
ular useful when the equivalence relations are provably pinned:

Theorem 3.1. Assume ZF+ADT+V = L(Z(R)). If E is a ] equivalence relation
which is pinned in every transitive model of ZFC containing the real that codes E,
then every relation R whose sections are all E-classes can be uniformized.

As a consequence, every function f : R/E — R/F has a lift under AD"T +V =
L(Z(R)) when F is =, Ey, F1, Es, smooth, hyperfinite, essentially countable, or
hypersmooth.

Section 4.1 will study the Jénsson property of some nonwellorderable sets. Hol-
shouser and Jackson have shown that R x k for any x < © has the Jénsson property.
They use that R and all ordinals x < © have the Jénsson property. A natural ques-
tion would be whether R x k is Jonsson for all ordinals x. The proof that R is
Jénsson has a clear flavor of classical descriptive set theory since it uses comea-
gerness, continuity, the Mycielski property, and fusions of perfect trees. The proof
that ordinals k < © is Jonsson have a somewhat different flavor. A related ques-
tion would be whether the Jonsson property for x is relevant to showing R x & is
Jénsson. Does there exists a more classical proof that R x k is Jonsson? It will be
shown that:

Theorem 4.15 (ZF 4+ AD). For any ordinal k, R X k has the Jonsson property.
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Whether or not x is Jénsson does not appear in the proof of the above theorem.
This result is proved while investigating the Jénsson property for wellordered dis-
joint unions | |, _, R/E,, where each E, is an equivalence relation with all classes
countable and R/FE,, ~ R. The techniques have a very classical flavor using results
about lengths of wellordered sequences of reals, additivity of the meager ideal,
comeager uniformization, and fusions of perfect trees. There are also some dis-

cussions about the cardinality of | | R/E,. However, it remains open whether

a<k
| ocr R/Eq has the Jonsson property.
This section concludes by producing a 6-Jénsson function for (R/Ep) X & for any

k < © under AD. This shows that (R/Ep) X k for k < © is not Jénsson under AD.

2. Ordinal Definable Equivalence Classes

V' will denote the universe of set theory in consideration. If M is a model of set
theory and A is some concept given by some formula, then AM will denote the
relativization of that formula inside M. If a concept A is unrelativized, then it is
assumed to mean A", although it may be written A" for emphasis. R will denote
“w, the Baire space, consisting of functions from w to w with its usual metric.
(Although it may sometimes denote “2, the Cantor space.) The elements of R will
be called reals.

If X is a set, then ODx denotes the class of sets which are ordinal definable
using X as a parameter. HODx is the collection of sets which are hereditarily
ordinal definable from X. HODx = ZFC and has a canonical global wellordering
definable using X.

Fact 2.1 (Vopénka). Suppose S is a set of ordinals. Let = € R.

In L[S, z], let P denote the forcing of nonempty ODg subsets of R ordered by C.
Using the canonical S-definable bijection of ODg subsets onto ON; let Og € HODg
be the forcing that results by transferring P onto ON using this map.

Then there is a G € L[S, ], which is Og-generic over HODg, so that L[S, z] =
HODs[G] = HODs[.%'].

Proof. See [8, Theorem 15.46]. O

Definition 2.2. Let X C R, S be a set of ordinals, and ¢ be a formula in the
language of set theory. (S, ) is an co-Borel code for X if and only if for all z € R,
xeX < LS, z] E ¢(S, ).

Definition 2.3 ([18, Sec. 9.1]). AD™ consists of the following:

(1) DCkg.

(2) Every A C R has an oo-Borel code.

(3) For all A < ©, A C R, and continuous function m : YA — R, 771[A4] is
determined.
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(X is given the discrete topology. © is the supremum of the ordinals which are
surjective images of R. Games with moves from A are defined the same way as the
more familiar games on w.)

Definition 2.4 ([19]). Let E be an equivalence relation on R. Let P be a forcing.
Let 7 be a P-name.

Let Tiett, Tright be the canonical P xP-names with the property that meg and Trighe
are evaluated according to 7 using the left and right P-generic filters, respectively,
coming from a P x P-generic filter.

7 is an F-pinned name if and only if 1pxp IFpxp Tiert & Tright-

An E-pinned name 7 is an E-trivial name if and only if there is some x € R so
that 1]p> “—]p T FE %

FE is a pinned equivalence relation if and only if all forcings P, every E-pinned
P-names is E-trivial.

Pinnedness is more accurately a property of a fixed definition for the equivalence
relation E (which is to be used to interpret E in generic extensions). This paper
is concern only with E} equivalence relations and such equivalence relations are
always defined as the projection of certains trees on w X w X w.

Definition 2.5. Let <p denote the Turing reducibility relation on “w. For x,y €
“w, let x =7 y if and only if z <pr y and y <7 x. A Turing degree is a =
equivalence class. If z,y € “w, then define [x]=, <r [y]=, if and only if z <p y.

Let D denote the set of Turing degrees. A Turing cone with base C' € D is the
set {D € D : C <r D}. Define Martin’s measure U by: for A € (D), A € U if
and only if A contains a Turing cone.

Under AD, the Martin’s measure is a countably complete ultrafilter on D.

Definition 2.6 (ZF + AD). Let T be some set. Let H be a (usually proper class)
function on D which is definable using only 7" and ordinals as parameters and takes
each X to some transitive class. Assume that there is some (usually proper class)
function R definable using only 7" and ordinals as parameters so that for each
X € D, R(X) is a wellordering of H(X).

Let M,:QR denote the collection of ODp functions on D taking each X € D to
an element in H(X). For F,G € M%;R, let ' ~Gifand only if {X € D: F(X) =

G(X)}eu.

Let MH = denote the collection of equivalence classes of MH = under ~. Define

[F]~ € |G]~ ifand only if {X € D: F(X) e G(X)} e U.

Fact 2.7 (ZF + AD). MH’R is a T-definable class consisting of ODr elements.
Using the T-definable bijection of OD7 and ON, M%,R is isomorphic to a class
inside HOD. M%,R is wellfounded; hence, it can be considered as a transitive
structure inside HOD.

The Lo$’s theorem holds for M%R: Suppose Fy, ..., Fr_1 € M%R and ¢ is a
formula of {€}, then M7,  |= ©([Fol~, ..., [Fi]~) if and only {X € D : H(X) |=
P(Fo(X), ..., Fr1 (X))} €U.
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For each a < wy, let ¢ : D — {a} be the constant function taking value «. The
class [ca]~ represents the ordinal o in M3, 1.

For each r € R which is ODr and belongs to H(X) for a cone of X € D, define
the function ¢, : D — {0, 7} by ¢.(X) =r if r € H(X) and ¢,(X) = 0 if otherwise.
Then, [¢,]~ represents r in M7, .

Proof. M%,R is a structure in OD7t since M%R C OD7. Note the € relation of
M%,R is definable from T'. Using the canonical bijection of ODp and ON, one can
transfer M7,  and its €-relation onto ON. This new isomorphic structure consists
entirely of ordinals and hence elements of HOD.

Let F' € M}, 5. Suppose [F]. is not wellfounded. There is some set X C {[G]~ :

[G]~ € [F]~} without an M= -minimal element. Let L(0) be the ODyp-least func-
tion G so that [G].~ € X. Suppose L(n) has been defined. Let L(n + 1) be the
ODy-least function G so that [G]~ € X and [G]~ € [L(n)]~. Let 4, = {z € D :
L(n+1)(x) € L(n)(x)}. Each A, € U. Since U is countably complete, (), ., An # 0.
Let 2 € (¢, An. Then, (L(n)(z) : n € w) is an €-decreasing sequence in V. Con-
tradiction. M%R is wellfounded. Using the Mostowski collapse, one may consider
M%,R as a transitive structure inside of HODp.

The proof of Los§’s theorem is by induction on formula complexity: The result
holds for the atomic formulas by definition. Assume the result holds for ¢ and
v, then the result holds for —¢ and ¢ A 1 by the usual arguments. (Note the
case involving — requires that I/ is an ultrafilter.) Suppose the result has been
shown for ¢. If M}, » = (3r)e(z,[Fo]~, ..., [Fr-1]~), then there exists some
G € M}, so that M}, » = @©([G]~, [Fol~, - .-, [Fr-1]~). Using the induction
hypothesis, {X € D : H(X) E (3z)p(z, Fo(X),...,Fr_1(X))} € U. Suppose
{X € D: (I)o(x, Fy(X),...,Fr_1(X))} € U. Define G on D by letting G(X)
be the R(X)-least element z of H(X) such that H(X) | p(z, Fo(X),..., Fr—1(X))
if such an element exists and () otherwise. G is ODzy and so belongs to
M}, . By the induction hypothesis, M7, » = ©([G]~, [Fo]~, - .., [Fr-1]~). There-
fore, M7, » = (3x)p(x, [Fol~, ..., [Fx—1]~). This completes the sketch of Lo$’s
theorem.

Suppose [Fl € [ca]n- Let A={X e€D:F(X)€ea}. AcU. Let Ag={X €
D:F(X)=p}. A= Uz, As. Since U is countably complete and « is countable,
there is some § < o so that Ag € U. Then cg ~ F'. This shows that, [c, ]~ represents
« in M%’;R when a < wy. O

Fact 2.8 (Woodin, [1, Theorem 3.4]). Assume ZF +AD' +V = L(Z(R)). Let
T be a set of ordinals. A set X C R which is OD7 has an oco-Borel code (.5, ¢)
which is OD.

Fact 2.9 (Woodin, [1, Theorem 2.18]). Assume ZF + ADT +V = L(Z(R)).
Let T be a set of ordinals. There is some set of ordinals X so that HODy = L[X].
(Note that X is ODr.)
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In the case of L(R) and T' = (), the set X can be taken to be P* which is
the direct limit indexed by n € w of Vopénka forcing on R™. This follows from
Woodin’s result that L(R) is a symmetric collapse extension of its HOD. One can
find an exposition of this result in [16].

Fact 2.10 (Woodin, [1, Sec. 2.2]). Assuming ZF + AD™, [] ., ON/U is well-
founded.

Assume AD™T, the wellfoundedness of M%,R can also be proved from Fact 2.10.
For the question of Zapletal, one will need to form an ultraproduct of the form
M%R so that all the reals of HOD belong to this ultraproduct.

Fact 2.11. Assume ZF + AD" +V = L(Z2(R)). Let T be a set of ordinals. Let X
be a set of ordinals as given by Fact 2.9, so that HODy = L[X]. For each X € D, let
H(X) = HODSLg[X’X] and R(X) be the canonical wellordering of HODSLg[X’X]. Then
M%R is wellfounded, M%R C HOD7, and RHODPT C M%H.

Proof. Note that, X is ODy. Observe that for all X € D, HODy = L[X] C
HODFLg[X’X]. So if r € HOD7, then r € HODFLg[X’X]. The function ¢, is ODx and
belongs to M;.%R. This result now follows from Fact 2.7. O

Theorem 2.12. Assume ZF + AD" +V = L(Z(R)). Let T be a set of ordinals.
Let E be an equivalence relation which is %1(s) for some s € HOD7 and let A be
an ODp E-class. If A has no ODyp elements, then HODp |= E is unpinned.

Proof. For simplicity, let T' = ). By Fact 2.9, let X be a set of ordinals so that
HOD = L[X]. By Fact 2.8, A has an oo-Borel code in HOD = L[X]. Modifying X
by including an ordinal if necessary, one may as well assume that there is some
formula ¢ so that (X, ¢) forms an co-Borel code for A.

Recall that E is ¥1(s) means there is some s-recursive tree T' on w X w X w
so that z E y if and only if L[s,z,y] = T%Y is illfounded, where T%¥ = {u :
(x Tul,y '|ul,w) € T}. In this way, E is co-Borel with a code that is a subset of w.

Suppose y >7 = for some x € A. By Fact 2.1, there is some @é[x’y]—name TE
HODE Y and some OL% Y- generic over HODL™ ! filter G € L[X, y] so that 7[G] =
z and L[X,y] = HODE®Y[@]. Since V = LIX, 2] = o(X,z), L[X,y] & LX,2] =
o(X, z). Since L[X,y] = HODFLg[X’y] [G], one has HODFLg[X’y] Gl E LX, 2] E (X, z).
There is some g € @é[x,y} so that HODSLg[X’y} E q ko, LIX, 7] | o(X, 7). Let g,
and 7, be the HODSLg[X’y]—least such ¢ and 7 with the above properties. In order to,
satisfy the technical requirement of using the largest condition of the forcing in the
definition of pinnedness, let U, = {p € @é[x’y} ) §©§[x,y] Qy}s gUyzg(@é[x,y] I Uy,
and ly, = gy. If y does not Turing compute any element of A, then one can just
let U, and 7, be 0.

If 2 =1 v, HODBIQ[X’””} = HOD;g[X’y} and their canonical global wellorderings
are the same. This shows that U, = Uy and 7, = 7. If X € D and z € X,
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let HODEF*! — HODL®" Uy = U,, and 7x = 7. For X € D, let H(X) =
HODE™ ™1 and R(X) be the canonical global wellordering of HODX* ™ For X €
D, define ®y(X) = Ux and &,(X) = 7x. Let M = M, ». Note that dy, &, €
M3, . Let U= [®p]. and 7 = [®,]~. Let cx be the constant function taking value
X. Note that c¢x € My . Let X = [ex]~. As in Fact 2.7, M will be identified as
a transitive class in HODY. Thus U, 7, and X belong to HODV.

By Lo$’s theorem, M is a model of ZFC, U is some forcing, 7 is some U-name

adding a real, X*° is a set of ordinals, and M |= 1y Iky L[X*, 7] = (X, 7).

Claim 1.

M E lyxu Fuxu (Vo) (V) (LIX>2, 2] E (X, z)
ALX®,yl = o(X>,y) =z E y).

(Note that the ultraproduct moves X to X>°. However, E as a ¥1(s) equivalence
relation has the real s as its co-Borel code. The constant function c¢s taking value
s belongs to Mf_gmz. In M, [cs]~ represents s. That is, s is not moved by the
ultraproduct. Hence, it is appropriate to continue to denote £ by E in M as it is
still the same 37 equivalence relation.)

To see the claim: Fix some z € A. By Lo$’s theorem, it suffices to prove that
for all r > z:

HOD;™" = 1y, xu, Iy, xw, (V&) (Vy)(LIX, 2] | (X, )
NLEK yl EeX,y) =z E y)

Fix some (p,q) € U, x U,. Since L[X,7] = AC and V |= AD, w} is inaccessible
in HODQX’T}. Hence, U, x U, and its power set in HOD;;[X’T] are countable in V.

There exists G x H € V containing (p, ¢) which is U,. x U,.-generic over HODBIQ Xr]
Since G x H € V, all sets of HOD;Lg[X’T] [G x H] belong to V. Let  and y be reals of
HODL™ MG x H] so that HODEF G x H] = LIX, 2] | (X, 2) ALK, y] E o(X, y).
Then, V E LX,z] E oX,2) A LIX,y] E ©(X,y). Since (X,¢) is an co-Borel
code for Ain V, x € A and y € A. Since A is an E-class, z F y. By Mostowski
absoluteness, HODX* " [Gx H] l= « E y. This shows that HODE™ " [G x H] satisfies
the formula behind the above forcing relation. Since G x H is generic, there is some
®',4q") <u,.xu, (p,q) so that in HODSLg[X’T], (p',q") forces that formula. Since (p, q)

was arbitrary, this establishes the claim.
Claim 2.
M E lyxu Fuxu (Vo) (Vy) ((LX™, 2] | o(X>, z)
ANz E y) = LIX™,y] | (X, y))
The proof essentially uses the same idea as Claim 1.
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Now to show that U and 7 witness that E is unpinned in HODV :

First to show that 7 is an E-pinned name in HODY: Let G x H be any U x U-
generic filter over HODV . Since M C HODY | if G and H are generic over HODV
then G and H are generic over M. By the forcing theorem, M[G] = L[IX*, 7[G]] =
©(X*, 7[G]) and M[H] = LIX*°,7[H]] E ¢(X*°,7[H]). By Claim 1, M[G x H] |=
7[G] E 7[H]. By Mostowski absoluteness, HODY [G x H] |= 7[G] E 7[H]. Since
G x H was arbitrary, HODVY E luxu lFuxu Tets B Tright- Lhis shows that 7 is an
E-pinned U-name in HODY .

Finally, to show that 7 is not E-trivial: Suppose there is some 2z € HODV so
that HODY Elylky 7 E &. Let G C U be a U-generic over HODV filter. Then
HODY [G] = 7[G] E z. By Mostowski absoluteness, M[G] = 7[G] E z. G is also
generic over M. By the forcing theorem, M[G] E L[X*,7[G]] E ¢(X*>,7[G)).
Since z € HODY, Facts 2.11 and 2.7 imply that [c,]. represents z in M.
By Claim 2 applied in M[G x H| where H is any U-generic filter over M[G],
M(G] - LEE®,a] b p(X%.2). This M £ Ll [eal] | gllex]-. leg).): By
Lo§’s theorem, for a Turing cone of X’s (such that z € HODBLg[ -~ ) HODQX’X] =
LIX,z] E ¢(X,x). This implies V = L[X,z] E o(X,z). V E z € A since (X, p) is
the co-Borel code for A in V. This contradicts the assumption that A has no OD
elements.

This completes the proof. O

Theorem 2.13 (ZF + AD). Let E be a 1 equivalence relation defined in HODpg,
where R is some set. Suppose HODg |= E is unpinned. Then there is an ODpg
E-class with no ODg elements.

Proof. Since HODg = E is unpinned, there exists some forcing P € HODpg and
P-name 0 € HODg so that within HODpg, P and o witness that E is not pinned.

Inside HODp (which models AC), let N be an elementary substructure of some
large enough rank initial segment of HOD g with the property that (1) N contains
the code for E, (2) R C N, (3) P,o € N, and (4) N has cardinality |R|. Let M
be the Mostowski collapse of N. Let Q and 7 be the image of P and ¢ under the
Mostowski collapse map. As FE is 2%7 the code for F is a tree on w X w X w whose
projection is E. So a code for F is merely a subset of w. Hence, the Mostowski
collapse map does not move the code for E. Note that [M|V = [RHOPR|V = N,
since AD holds. Hence, there are generics for Q over M that lie in V.

Suppose G and H are two generic filters for Q over M which belong to V. Since
M[G] and M[H] are countable in V', one can construct a generic filter J € V so that
G x J and H x J are generic filters for Q x Q. By elementarity, M = 7 is E-pinned.
Thus, M[G x J] = 7[G] E 7][J] and M[H x J]| = 7[H] E 7[J]. By Mostowski
absoluteness, 7[G] E 7[J] and 7[H] E 7[J] holds in V. Since E is an equivalence
relation, 7[G] E 7[H]. This shows that, whenever G and H are Q-generic filters
over M that belong to V' (but may not be mutually generic), 7[G] E T[H].
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M |= 7 is not E-trivial by elementarity. Since REOP= C M| for any G C Q which
is Q-generic over M and any x € RHOPr M[G] |= —(7][G] E z). By absoluteness,
if G € V, then —~(7[G] E z).

In V, let A be the set of x € R so that there exists some G C Q which is
Q-generic over M and x E 7[G]. Since Q,7 € M and M € HODg, A is ODg.
By the discussion of the above two paragraphs, A is a single F-class and has no
elements of ODg.

Note that the only consequence of AD that is used is that there is no uncountable
wellordered set of reals. O

The following answers the question of Zapletal.

Corollary 2.14. Assume ZF + ADT +V = L(Z(R)). Let E be a 1 equivalence
relation coded in HOD. E has an OD E-class with no OD elements if and only if
HOD = E is unpinned.

The rest of this section will give some examples.

Definition 2.15. The following are some important A% equivalence relations:

Let = denote the identity equivalence relation on R.

Let =" denote the Friedman-Stanley jump of = which is defined on “R by x =T y
if and only if {z(n) : n € w} = {y(n) : n € w}. (=1 is equality of range.)

Let Ey be the equivalence relation on R (or “2) defined by = Ey y if and only if
@R)(n = k)(a(n) = y(n).

Let E; be the equivalence relation on “R defined by = F; y if and only (3k)(Vn >
B)((n) = y(n)).

Let E5 be the equivalence relation on “2 defined by x F» y if and only if Z{% :
n € Ay} < oo, where A denotes the symmetric difference operation.

Fact 2.16. The equivalence relations =, Ey, F1, and F> are pinned A} equivalence
relations. Every Al equivalence relation with countable classes is pinned. Every
smooth, hyperfinite, essentially countable, or hypersmooth equivalence relation is
pinned.

The equivalence relation =" is unpinned.

Proof. See [10, Chapter 11].

The Solovay product lemma states: Let P and Q be two forcings. Suppose G x H
is P x Q-generic over V. Then V[G|NV[H]|=V.

From the Solovay product lemma, it follows that =, Ey, and F; are pinned
equivalence relations.

IfE<L ar F and F is pinned, then FE is also pinned. This implies that smooth,
hyperfinite, and hypersmooth equivalence relations are pinned.

[10, Theorem 17.1.3(iii)] states that A} equivalence relations with all classes 39
are pinned. This implies that Fy and every A} equivalence relation with countable
classes are pinned. Therefore, essentially countable equivalence relations are pinned.
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Let Q@ = Coll(w, R). Let 7 be the name for the generic surjection of w onto R.
Q and 7 witness that =" is unpinned since if 7 was forced to be =7 related to a
ground model element, then R would be countable in the ground model. O

Example 2.17. The proof above that =T is unpinned can be used to produce an
OD ="-class with no OD elements assuming (Z(R))H°P is countable.

Let Q = Coll(w, R) and 7 be the generic surjection of w onto R as defined inside
of HOD. (Note that 7 is an =*-pinned name.) By the assumption, there exists
Q-generics over HOD in V. Let A be the collection of x € “R such that there
exist some G C Q which is Q-generic over HOD and x =" 7[G]. A is an OD ="
equivalence class. A cannot contain any OD elements for otherwise HOD would
think RHOP is countable.

3. Equivalence Class Section Uniformization and Lifting

Theorem 3.1. Assume ZF + ADT +V = L(P(R)). Let T be a set of ordinals. Let
FE be a E} equivalence relation coded in HOD7. Suppose E is pinned in HOD7 ,
for all x € R. Let R C R x R be ODr and have the property that for all x € R,
R, = {y : R(x,y)} is an E-class. Then there is a function F : R — R which is
OD7 and uniformizes R: that is, for all x € R, R(x, F(x)).

If Fis a E% equivalence relation which is pinned in every transitive model of
ZFC containing the real that codes E, then every relation R whose sections are E-
classes can be uniformized. (For example, E could be any of the pinned equivalence
relations from Fact 2.16.)

Proof. Under these assumptions, for each z € R, R, is an OD7, E-class. Since
HODr = E is unpinned, Theorem 2.12 implies that R, must have an ODr , ele-
ment. For each z € R, let F(x) be the least element of HOD7 ,, under the canonical
global wellordering of HOD7 , which belongs to R,. F' is an OD7 uniformization
of R.

For the second statement, under AD™, any such relation R has an oo-Borel code
(S, ). By modifying S if necessary, one may assume that HODg contains a code
for E as a E} set. By the hypothesis, F is pinned in every HODg ., where z € R.
The second statement follows from the first statement. O

Zapletal [19] has shown that if F is a A equivalence relation coded in some
transitive model M and N is some transitive model with M C N, then E is pinned
in M if and only if F is pinned in N. Therefore, in the first statement of Theorem 3.1,
it suffices just to have HODy |= F is pinned, when F is a A} equivalence relation.

However [19] also shows that, in general, pinnedness for E} equivalence rela-
tion is not absolute by producing a pinned E% equivalence relation in L which
is unpinned in a forcing extension of L. However, in the present situation, one is
concerned with models of the form HODY. and HOD%QE, where V is a model of
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determinacy. Possible more can be said in such settings. This suggests the following
question.

Question 3.2. In the first statement of Theorem 3.1, can the condition that F is
pinned in HOD7, for all x € R be replace by just E is pinned in HOD7 when E
is a X1 equivalence relation coded in HOD7?

Regardless, most natural examples are A%. Moreover, for most of the natural
examples, pinnedness is provable in ZFC.

Definition 3.3. Let E be an equivalence relation on some set X. Let F' be an
equivalence relation on some set Y. Let n € w. Let f : (X/E)" — (Y/F) be some
function. A function F': X™ — Y is alift of f if and only if for all zg, ..., z,_1 € X,

[F(Jio, e ,xn_l)]p = f([],‘o]E, ceey [Z‘n_l]E).

Corollary 3.4. Assume ZF + ADT +V = L(Z(R)). Suppose E is an equivalence
relation on R. Suppose F is a E} equivalence relation on R which is pinned in
every transitive models of ZFC containing the real that codes F. For all n € w,
every function f: (R/E)" — (R/F) has a lift.

In particular, this lifting property holds when F is Ey, FEi, FEs, smooth,
hyperfinite, essentially countable, or hypersmooth.

Proof. Define the relation R(xo,...,Tn—1,y) if and only if y € f([zo]g,-..,
[n-1]E). For each (xo,...,2n—1) € R", Ry . 2,y = f([o]lE;s- .-, [Tn-1]E),
which is an F-class. By assumption, F' is pinned in every model of ZFC containing
the real that codes F'. Theorem 3.1 implies that R has a uniformizing function G.
G is a lift of f. O

Example 3.5. Under ZF + ADg, every relation can be uniformized. Hence, F-class
section uniformization and lifting for E holds for every equivalence relation E on
R. However ZF + AD™ is not able to prove E-class section uniformization when E
is an unpinned equivalence relation. The following is an example.

Assume ZF + AD +V = L(R).

Define R(z,y) if and only if y is not OD,. R has no uniformizing function:
Suppose f : R — R uniformized R. Since V = L(R), every set of reals is ordinal
definable from some real. Thus f is OD, for some z € R. Hence f(z) is OD,.
However, R(z, f(z)) implies that f(z) is not OD,. Contradiction.

Define S(z,y) if and only if {y, : n € w} = RHOP= where y,, € R denotes the
nth section of y under some coding of pairs of integers by integers. If S(z,y), then
y ¢ OD, for otherwise RHOP= would be countable in HOD,.. Since S C R and R
has no uniformization, S also has no uniformization.

Every instance of F-class section uniformization gives a lift of a function from
f R — (R/F). Therefore, failure of F-class section uniformization is a failure of
lifting for F'. However, the more interesting instance of the lifting property involving
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function of the form f : (R/F) — (R/F). Zapletal informed the author of an
example:

Example 3.6 (Zapletal). Assume ZF + AD +V = L(R). There is a f : (“R/
=%) — (“R/ =7) which does not have a lift.

Define f as follows: Let b € “R be such that for all n € w, b(n) is the constant
0 function. Let C' € (*R/ ="). If there is some 2z € R so that C' is the =*
equivalence class of enumerations of [x]r (the Turing degree of z), then f(C) is
the =T equivalence class of enumerations of RHOP=. Note that, f(C) does not
depend on z. If C is the not the =" equivalence class of enumerations of any
Turing degree, then let f(C) = [b]_+ = {b}.

Now suppose that f has a lift F' : “R — “R. Since V = L(R), F is OD, for
some z € R. Since [z]r € HOD, and HOD, thinks [z]r is countable, there is a
c € (“R)HOP= guch that ¢ enumerates [z]7. Thus F(c) € HOD,. Since F is a lift of
f, F(c) € f([J=+). By definition, F(c) € “R is an enumeration of REOP=. Then,
HOD, would think its own set of reals are countable. Contradiction.

4. Jénsson Property

Definition 4.1. Let X be a set and n € w. Let F¥ be an equivalance relation on
X. Let [X]% = {(z0,...,&n-1) € "X : Vi< n)(Vj <n)i #j=—(z; Ez;))}
Let [X]5* = Uy c,[XT3.

A set X has the Jénsson property if and only if for all functions f : [X]=% — X,
there is some Y C X with Y ~ X and f[[Y]=¥] # X. (The symbol = is the relation
of being in bijection.)

For n < w, an n-Jénsson function for X is a map f : [X]|2 — X so that for all
Y C X with Y ~ X, f][X]"] = X.

Fact 4.2. Under ZF + AD,

([5, 6]) R has the Jénsson property.

([2]) There is a 3-J6nsson function for R/Ey. Hence R/Ey does not have the
Jénsson property.

For the rest of this section, R will refer to “2, the set of infinite binary sequences.

Definition 4.3. A nonempty subset p of <“2 is a tree if and only if for all s € p
and t C s, t € p. A tree p is a perfect tree if and only if for all s € p, thereisat D s
so that t°0,¢"1 € p.

Let S be the set of all perfect trees. Let <g=C.

Let p € S. A node s € p is a split node if and only if s°0,s"1 € p. A node s € p
is a split of p if and only if s [ (|s| — 1) is a split node of p. For n € w, s is an n-split
of p if and only if s is a C-minimal element of p with exactly n-many proper initial
segments which are split nodes of p.

Let split”(p) denote the set of n-splits of p. Note that, |split"(p)| = 2" and

split’ (p) = {0}.
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If p,g €S, define p <¥ ¢ if and only if p <g ¢ and split"(p) = split”(q).
If peSand s € p, then define p; ={t €p:t CsVsCt}.
Let p € S. Let A be defined as follows:

(i) Ap,0) =0.
(ii) Suppose A(p, s) has been defined for all s € "2. Fix an s € "2 and i € 2. Let
t O A(p, s) be the minimal split node of p extending A(p, s). Let A(p, s™1) = t7i.

Let E‘(pv S) = pA(p,s)~

Fact 4.4. A fusion sequence is a sequence (p, : n € w) in S so that for all n € w,
Prt1 <& Pn- Let p, =), e, Pn- Then, p, € S and is called the fusion of the above
fusion sequence.

Fact 4.5. Suppose p € S. Let (r, : n € w) be a sequence of positive integers.
Let (fn : n € w) be a sequence such that for all n € w, f, : [[p]|=* — “Ris a
continuous function. Then, there is some ¢ <g p and z € R so that for all m,n € w

and y € fu[[lq]]Z], 2z # y(m).

Proof. Let B : w — w X w be a surjection with the property that the inverse image
of any (e, g) is infinite.
Objects (z, : n € w) and (g, : n € w) will be built with the following properties:

(I) For each n € w, 2, € <“2 and z,, C zp41. Foreachn € w, ¢, €S, ¢, <s p, and
dn+1 Sg dn-
(II) For each n € w, suppose B(n) = (e, g). Then for each sequence (o1, ...,0.,) of
pairwise distinct strings in ™2, there is some 7 € <“2 so that for all y with
Y € fel[E(an+1,01)] x -+ X [E(gnt1, 07, )]]
y(g) € N; and z,41 and 7 are incompatible.

Suppose these objects can be constructed. Then, (g, : n € w) forms a fusion
sequence. By Fact 4.4, ¢ = gn is a perfect tree. Let z = zn. Let e, g € w.

new new
Suppose (21,...,%r,) € [[g]]c. By the assumption on B, there is some n large
enough so that B(n) = (e, g) and there are pairwise distinct strings o1, ..., 0, € "2

with A(q,01) C z1,...,A(q,0r,) C zp, . Then, by (II), 2,41 is not an initial segment
of y(g). Hence, y(g) # =.

It remains to construct these objects.

Let 29 = 0 and qo = p.

Suppose ¢, and z, have been constructed. Suppose that B(n) = (e, g). Enumer-
ate all the r.-tuples of distincts strings in "2 as (0?,...,0° ),...,(c{!,...,c}) for
some M € w.

Let sg = qn. Let £y = z,. Suppose s, and ¢ have been defined for some fixed
k < M. For each 1 < i < re, let ¢; = 070. Let d; = {J,,., A(rk,c; [ n). By the
continuity of f. on [[p]]Z¢, there is some N > n so that for all

y € fel[E(sk, cr [ N)] X - x [E(sk, er. [N,

1950009-15



J. Math. Log. 2019.19. Downloaded from www.worldscientific.com

by CARNEGIE MELLON UNIVERSITY on 10/29/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

W. Chan

feldi, ..., dr)(g) T|0k + 1] € y(g). Define lyi1 = £ (1 — fe(dr, ..., dr.)(9)([¢k])),
that is fx41 extends /¢ by one wusing the opposite of the value of
fe(di,...,dr)(9)(|€k]). Let spt1 <2 si be such that for all o € "2, if 0 = oF

(2

—_

for some 1 < i < r¢, then =(sky1,0) = E(sk,¢; [ N) and if o is otherwise, then
E(Sk+17 U) = E(Sk, U).
Finally, let ¢,+1 = sar+1 and zp+1 = €pr41. This completes the construction. O

Fact 4.6. Let § be an ordinal. Let (A, : @ < d) be a sequence of meager subsets

of R. Define a prewellordering on |J,_5 Ao by * < y if and only if the least ordinal

€ such that x € A is less or equal to the least ordinal £ such that y € A¢. Assume

that < as a subset of R x R has the Baire property. Then | J,_ 5 Aa is meager.
(ZF + AD) Every wellordered union of meager sets is meager.

Proof. See [13]. The second statement follows from the fact that every subset of
R x R has the Baire property under AD. O

Fact 4.7 (Mycielski). Suppose (C,, : n € w) is a sequence so that each C,, is
a comeager subset of R™. Then, there is a perfect tree p so that for all n € w,
([p]]~ C Ch.

Fact 4.8 (ZF+ AD) (Comeager uniformization). Let R C R xR be a relation.
Then, there is a comeager set C' C R and a function f : C' — R so that for all z € C,

R(z, f(x)).
Fact 4.9 (ZF + AD). Let E be an equivalence relation on R with all classes
countable and R/F ~ R. Let p be perfect tree. Then, [p]/E ~ R.

Proof. Note that [p]/E injects into R/ E by inclusion. Composing with the bijection
then shows that [p]/E injects into R. Let ® : R/E — R be a bijection. Since E has
only countable classes and countable unions of countable sets are countable under
AD, [p]/E is an uncountable set. Hence, ®[[p]/E] is an uncountable subset of R. By
the perfect set property, there is some perfect tree ¢ so that [q] C ®[[p]/E]. &1
injects [¢] into [p]/E. Hence, R injects into [p|/E. By Cantor-Schréder-Bernstein,
[p]/E ~R. O

Fact 4.10 (ZF + AD). Let A C R. Let < be a prewellordering on A. For each
zeAlet z]x={y:z<yAy 2z} Iffor all x € A, [z]< is countable, then A is
countable.

Proof. If A is not countable, then by the perfect set property, there is some perfect
tree p so that [p] C A. Using the notation from Definition 4.3, define z C y if and
only if (J,c, A0, [ n) = U,e, A@,y [ 7). Then C is a prewellordering on R so
that for each z € R, [z]c is countable. Let § be the length of C. For each o < 3,
let A, be the prewellordering class of T with rank a. J,, <5 A, =R and each A,
is countable (and hence meager). This is not possible by Fact 4.6. O
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Question 4.11 (Holshouser-Jackson) (ZF + AD). Let x be an ordinal. Let
(Eqs : @ < k) be a sequence of equivalence relations on R with all classes countable
so that R/E, ~ R. Does the disjoint union | | R/E, have the J6nsson property?

a<k

Note that one is not given a sequence of bijections (P, : a < k) witnessing R/
E, ~ R. With such a sequence of bijections, one can construct a bijection witnessing
acr R/Eq = R x k. In this case, Theorem 4.15 below would imply | |,_.R/Eq
has the Jénsson property. The following is an interesting question.

a<lk

Question 4.12 (Holshouser-Jackson) (ZF + AD). Let k£ be an ordinal. Let
(Eqs : @ < k) be a sequence of equivalence relations on R with all classes countable
so that R/E, =~ R. Is | | R/E, ~ R x x?

a<k

The following theorem gives some information concerning the Jénsson property.

Theorem 4.13 (ZF + AD). Let x be an ordinal. Let (E, : o < K) be a
sequence of equivalence relation on R with all classes countable. Let f : [ |, . R/
E.)=Y — ycnR/Eq. Then, there is some perfect tree p so that f[[||,..[pl/

Ea]=*] # Uacn R/ Ea

Proof. Let E be the equivalence relation on R X k defined by: (z,a) E (y, Q) if
and only if « = 8 and # E, y. Then | |, R/E, is in bijection with the quotient
(R x k)/E. In the following f will be considered as a function taking values in
(R x k)/E.

Let X be the collection of surjections o : {1,...,n} — {1,...,m} where 1 <
m < n are integers. For all ¢ € X, let n(c) =n and m(o) = m, i.e. n(o) and m(o)
indicate the domain and range of o, respectively.

For each 0 € X, define A7 C R™) x R by

(T15 s Tin(o), y) € A7 & (Fan) ... B ane)) B8 ([(y, B)lE

= f([(xa(1)7 al)]Ea ceey [(xa(n(a))7an(o‘))]E))

In the following, fix a wellordering of n(o)-tuples of ordinals. For each

(T1,...,Tp(r)), the elements of A?wl,...,xmm) can be prewellordered as follows:
yo T w1 if and only if the least (ai,..., () such that there exists (a unique)
B with

(y17 ﬂ) € f([(xa(1)7 al)]Ea ceey [(xo‘(n(a))7an(o‘))]E)
is less than or equal to the least (au, ..., ay(s)) such that there exists (a unique) 3
with

(2, 8) € f([(To1), 1)|Es -+ [(To(n(0))s Un(o))]E)-
Let y € A? o) Let (a1,...,0()) be the least n(o)-tuple of ordinals such

(ml,..
that for some (unique) 0, (y, ﬂ) S f([(l‘g(l),al)]E, ceey [(acg(n(g)),an(g))]E). Then,
[lc € mlf([(To), @)]Es -5 [(To(n(o)), n(o))]E)], where 71 1 R X £ — R is the
projection onto the first coordinate. Note f([(75(1), 1), [(To(n(o)), Un(o))]E)
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is contained inside of R x {#} for some (. Since Ej is an equivalence relation

with countable classes, 71[f([(To(1), @1); -+, [(To(n(o)), ¥n(o))]E)] is countable. Tt
has been shown that each C-prewellordering class is countable. By Fact 4.10,
A‘(’Zh___ o) is countable for all (21, ..., Ty ()

Fix 0 € X. Let R7 C R™?) x “R be defined by (z,h) € R if and only if
h:w — AJ is a surjection. For all z € R7("™) | R? +£ () since AZ is countable. By
comeager uniformization (Fact 4.8), there is some comeager set C7 C R™) and
some function H? : C? — “R so that R?(z, H(x)) for all x € C?. Using AD, one
may assume that H? is continuous on C° by choosing a smaller comeager set if
necessary.

By the results of Mycielski, Fact 4.7, there is some perfect tree p so that
[[p]|™(2) C C° for all ¢ € X. Note that for all ¢ € X, H? [ [[p]]™(?) is a continuous
function with the property that for all z € [[p]]™(?), H? (x) € “R enumerates AZ.
By Fact 4.5, there is some ¢ <g p and some z € R so that for all 0 € X, j € w, and

(xla s axm(a)) € [[q]]z(g)7 Hg(x)(]) 7é Z.

Now suppose (r1,a1),...,(Tn,an) € [q] X k are such that ([(r1,01)lg,. .-,
[(rn,an)lE) € [Upcrld]/Ea]Z. There is some m < n, (z1,...,2,) € [[¢]]Z, and
surjection o : {1,...,n} — {1,...,m} so that (r1,...,r) = (Zo1),---sTo(n))-

Then, z ¢ A7, . . implies that (z,8) ¢ f([(r1,en)]E, ..., [(rn,on)]E) for all
0 < K.
This shows that f[[| |, .,.[a]/Ea]l=*] # Up<r R/Eq. O

Let p be the perfect tree given by Theorem 4.13. Assume that each R/E, ~ R.
By Fact 4.9, each [p]/Eo = R. If | |, ,.[pl/Ea = | |y<,. R/Eq, then Theorem 4.13
would imply | |, R/E, has the Jénsson property. This suggests the following
natural question.

Question 4.14 (ZF + AD). Let s be an ordinal. Let (E, : a < k) be a sequence
of equivalence relations on R with all classes countable and R/E, ~ R for each
a < k. Let p be a perfect tree. Is | |, ., R/Eq ~ ||, ,.[p]/Ea?

When all the F,’s are the identity equivalence relation, =, then one can exhibit
the desired bijection. This gives the following result.

Theorem 4.15 (ZF 4+ AD). For any ordinal k, R X k has the Jonsson property.

Proof. Let (E, : a < w) be a sequence, where each F, is the identity equivalence
relation, =, on R. Note that, | |, , R/E, =~ R x x. Apply Theorem 4.13 to this
sequence. For any perfect tree p, | |, ,.[p]/Ea = | |ycn[p] ® R X k. |

Many of the results above are trivial if the sequence (E, : a < k) is accom-
panied by a sequence (P, : a < k), where each ¢, : R/E, — R is a bijection.
A natural question would be to construct an example (F, : a < k) such that for
each a < Kk, R/E, = R but there does not exists a sequence (®,, : a < k) which
uniformly witnesses these bijections exist. Also, is the condition that each E, be an
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equivalence relation with all classes countable necessary in Questions 4.12 and 4.147
The following example of Holshouser-Jackson answers these questions.

Example 4.16. Fix some recursive coding of binary relations on w by reals. Let
WO denote the collection of reals that code wellorderings on w. For a < wy, let
WO, denote the reals coding wellorderings of ordertype a. For a < wq, let E,
be the equivalence relation on R defined by = E, y if and only if (z = y) V (z ¢
WO, Ay ¢ WO,,). For each a < wy, E, is A% bireducible to =. Hence, R = R/E,.

For each o < wn, if & € WO,, identify [z]g, = {z} with z. For each o < wy,
R\WO,, is a single E,, equivalence class. Identify it with a.. Under this identification,
one has a bijection of |_|a<w1 R/E, with WO Uw; = R U w;.

R L w; is not in bijection with R X wi: Suppose ® : RUw; — R X w; is a
bijection. m1[®[w1]] can be wellordered using ® and the wellordering on wy. (7 :
R X w; — R is the projection onto the first coordinate.) Under AD, there is no
uncountable sequence of distinct reals; hence, m[®[wq]] is countable. Let » € R
such that r ¢ m1[®[w1]]. @71[{r} x w1] C R. But ®~1[{r} x w;] can be wellordered.
This would give an uncountable sequence of distinct reals in R. Contradiction.

As mentioned above, if (F, : @ < wy) was accompanied by a sequence of bijec-
tions (@, : a < wi), then one can construction a bijection between | |, R/Eq
and R x wy. Thus, there cannot be such a sequence of bijections under AD.

Note that, F, has exactly one uncountable class. This example shows Question
4.12 has a negative answer without the condition that each E, has all countable
classes.

Let p be a perfect tree such that [p] C R\ WO. Then, | |, [pl/Ea = w1. w1 is
not in bijection with [ |,_, R/E, ~ RUw;. Hence, Question 4.14 has a negative
answer if all the equivalence relations do not have all classes countable.

If all the equivalence relations in (E, : o < ) have all classes countable and
R ~ R/E,, then | |, . R/E, contains a subset which is in bijection with R U w;
but itself is not in bijection with R U w;.

Fact 4.17 (ZF 4+ AD). Let x be an uncountable ordinal. Let (E, : o < k) be a
sequence of equivalence relations on R so that for each o < k, E, has all classes
countable and R =~ R/E,. Then, RUk injects into | | ,_,. R/FE,, but RUk is not in
bijection with | |, _, R/E,.

a<k
a<k
Proof. Let 0:w — {0}, be the constant 0 function. For each a < k, identify [0] g,
with a. Let ® : R — (R/Ep)\[0] g, be a bijection. Identify ®(r) with r. Using this
identification, there is a subset of | |, R/E, which is in bijection with R LI .
Suppose there is a bijection ® : RUx — ||, . R/Eqs. Uye, () can be
prewellordered by « C y if and only if the least o such that z € ®(a) is less
than or equal to the least a such that y € ®(«a). Each C-class is countable.
Fact 4.10 implies that |J,_,, ®(a) is countable. Let » € R with » ¢ |J, ., ®(a).
Let X = {[r]g, : @ < k}. ®71[X] is an uncountable sequence of distinct reals in R.
Contradiction. |
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[17] Theorem 2 shows that under ZF+DC+ ADg, the only uncountable cardinals
below R x w; are wy, R, R U wj, and R x w;. Thus under these assumptions,
if | |y, R/Eq is not in bijection with R x wi, then | |, R/FE, cannot inject
into R x wy. Moreover, [17] Theorem 2 shows that under ZF + DC + ADg, the
only uncountable cardinals below [w1]“ are w1, R, RUwi, R X wq, and [w1]¥. An
interesting question would be to compare the cardinality of [w;]* and | |, ., R/Eq
when each E, is an equivalence relation with all classes countable.

Fact 4.18 (ZF 4+ AD). Let (E, : @ < w1) be a sequence of equivalence relations
on R such that each E, has all classes IT{. There is no injection of [wi]* into

|_|a<w1 R/Eo‘

Proof. Recall that U is Martin’s cone measure on D, the set of Turing degrees.
For each z € D, let A(z) denote the collection of countable z-admissible ordinals.
For each = € D, let I'(x) € [w1]“ be the increasing sequence of the first w-many
x-admissible ordinals.

Suppose ® : [w1]¥ — ||, R/Eq is an injection.

A sequence of Turing degrees (z, : n € w) and a sequence (o, : n € w) in <¥2
will be constructed by recursion with the property that for all n € w, |o,| = n,
On C Ont1, and whenever f € [A(z,)]*, there is some r € ®(f) so that o, C 7.

Let x¢ = [0]7, where 0 is the constant 0 function. Let oo = 0.

Suppose z,, and o, have been defined with the desired properties. Let ESLH =
{zeD:3rcdT(2)(0,"0C 7))} and E™ ={z cD:(3rc &I (zx)))(0,"1C
r)}. Note that the cone above z, is contained in Ej™' U E}*!. Since U is an
ultrafilter, there is some ¢ € 2 and z,41 >7 x, so that Ei"+1 contains the cone
above x,,41. Let 0,41 = 0,71, for this ¢ € 2.

Let f € [A(zn+1)]“. A result of Jensen ([9]) shows that, for every increasing w-
sequence of x,1-admissible ordinals f, there is some y > x,41 so that I'(y) = f.
Then, y € E"**. Hence, there is some 7 € ®(I'(y)) = ®(f) so that o,+1 C 7.

Let r = U, cp, 0n- Let z be the join @, . x,. Suppose f € [A(2)]. For all
n € w, there is some 1 € ®(f) so that o,, C rf. ®(f) is an E, class for some a < w
so ®(f) is IIY. Since r is the limit of {rf : n € w} C ®(f), r € ®(f). It has been
shown that for all f € [A(2)]“, ®(f) € {[r]e, : @ < w1} =~ wi1. Then ® induces an
injection of [A(2)]* into w;. This is impossible since such an injection would yield
a wellordering of R since R injects into [A(2)]“. |

The above argument incorporates Martin’s proof of the partition relation w; —
(w1)4. The following result captures the essential idea of the above argument.

Fact 4.19 (ZF 4+ AD). Let x € ON. Let (E, : a < k) be a sequence of equivalence
relations on R. Let ® : [w1]* — ||, R/Eq. Let R C [w1]¥ x R be defined by
R(f,z) & x € ®(f). If R has a uniformizing function then ® is not an injection.

Proof. Let ¥ be a uniformizing function for R.
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For each n € w, let E = {zx € D : U(I'(z))(n) = i}. Since U is an ultrafilter,
there is some a, € 2 such that £} € U. Let x, € D be such that the cone above
x, lies inside of EJ . Now suppose that f € [A(z,)]“. A result of Jensen ([9])
states that for any such f, there is some y >7 x, so that I'(y) = f. As y € E ,
U(D(y))(n) = U(f)(n) = an.

Let 7 € R be such that for all n, r(n) = a,. Let x = @x,,. If f € [A(z)]"™, then
w(f) =7,

It has been shown that there is an uncountable set X C w; and some real r so
that U[[X]¥] = {r}. By definition of R, ®[[X]*] C {[r]g, : @ < k}. The latter set
is in bijection with x. [X]“ = [w1]*. Therefore, ® induces an injection of [w1]* into
the ordinal k. As R injects into [w1]*, this would imply that one could wellorder R.

O

Note that, in Fact 4.19, R only needs to be uniformized on a set of cardinality
[w1]“. To see this, suppose R is uniformized on Z C [wq]“ of cardinality [w1]“. Let
L : [w1]¥ — Z be a bijection. Let ® = ® o L. The relation R’ associated to &’
can be uniformized. Hence, @' is not injective by Fact 4.19. This implies ® is not
injective.

The class of equivalence relations with TI{ classes is very restrictive. However,
it does include equivalence relations with all finite classes. However, in such cases,
there is a more natural argument: Fix some linear ordering < of R. For f € [w;]¥,
let L(z) denote the <-least element of ®(x) (which exists since ®(x) is finite). Now
apply Fact 4.19.

Fact 4.20 (With Jackson). Assume ZF + AD*. Let K € ON and (E, : a < k) be
a sequence of equivalence relations on R such that each E,, has all classes countable.
Then, there is no injection ® : [w1]* — | |, . R/E,.

Proof. This is proved by verifying the uniformization condition of Fact 4.19. Note
that, if (E, : o < k) is a sequence so that each E, is an equivalence relation with all
classes countable, then for any ®, the associated relation has all countable sections.

Woodin’s countable section uniformization states that every relation on R x R
with countable section can be uniformized under ADT. In the present situation,
the relations are on [w1]* x R. Some modification of Woodin’s ideas can be used
to show countable section uniformization holds for such relations under AD™.
The main ideas of Woodin’s countable section uniformization on R can be found
in [1, 14]. |

Originally, Theorem 4.13 was proved under AD" using Woodin’s countable sec-
tion uniformization. However, it was observed that for the purpose of the Jénsson
property, one did not need total uniformization provided by Woodin’s countable
section uniformization but rather partial uniformization on a set of cardinality
R (as provided by comeager uniformization) was adequate. As mentioned above,
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w

partial uniformization on a set of cardinality [w1]“ is adequate for the conclusion

of Fact 4.19. This suggests the following:

Question 4.21. Using just AD, is it provable that for all relations R C [w1]¥ x R
with countable sections, there is some Z C [w;]¥ and ® : Z — R such that |Z| =
[[w1]¥| and for all z € Z, R(z, ®(z))?

The rest of this section will show the failure of the Jénsson property for
(R/Ey) x K, where Ej is the equivalence relation from Definition 2.15 and k < ©.

Fact 4.22 (ZF + AD). Suppose A C (R/Ey) X £ and A =~ R/Ey, where k is an
ordinal. Let m; : (R/Ep) x kK — R/Ej be the projection onto the first coordinate.
Then, T [A] ~ R/Eo

Proof. Note that A injects into m[A4] X k. Hence, R/ Ey injects into m1[A] X k. Let
f : R/Ey — m]A] x k denote this injection. For each o < k, let 4, = {z € R :
w2 (f([z]g,)) = a}, where 3 : (R/Ep) X & — & is the projection onto the second
coordinate. Then | J, ., Ao = R. By Fact 4.6, there must be some o < & so that A,
is nonmeager. Using the Baire property, A, is comeager in some basic open set O.
(Actually since A, is Ep-invariant, it can be shown that A, is comeager.) Hence,
Ao 2 Nhew Dy where (D, : n € w) is a sequence of topologically dense open sets
relative to O. One can build an Ey-tree inside of A,. (See [2] Definition 5.2.) This
implies that there is a continuous reduction of Ey into Ey | A,. Hence R/ Ey injects
into An/Ey. Using f, Ao/Ey injects into m1[A] X {a} ~ m1[A]. It has been shown
that R/Ey injects into m1[A]. Thus m[A4] = R/Ej. O

Fact 4.23. Let k < ©. There is a 6-Jénsson function for (R/Ep) X k.
(R/Ep) X k is not Jénsson.

Proof. By Fact 4.2, let ® : [R/Ey]2 — R/Ey be a 3-Jénsson map for R/Ey. Let
¥ : R — k be a surjection. Since = reduces into Ey, there is an injection I' : R — R/
Ey. Let A : [R/Ep)2 — k be defined by

{0 (V7 € R)(®(z) #T(r)),
U(r) @(x)=T(r).
Finally, let T : [(R/Ep) x x]& — (R/Ep) x k be defined by

Alx) =

(1, 01), (22, @2), (3, a3), (w4, a), (5, 5), (w6, 6))
= (®(21, 22, 23), A4, 75, T6))

Suppose B C (R/Ey) x  is in bijection with (R/Ey) x k. Let f : (R/Ey)xx — B
be a bijection. Let A = f[(R/Ep) x {0}]. Then, A ~ R/Ey. By Fact 4.22, m[4] ~
R/ E,.

Suppose that (y,8) € (R/Ey) x k. Suppose ¥(r) = (. Since ® is a
3-Jénsson map and mi[A] = R/Ey, one can find ((z1,01), (22, a2), (z3,a3),
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(74, 04), (z5,05), (z6,06)) € [A]S C [B]S so that ®(z1,29,73) = y and ®(ay,
z5,76) = I'(r). Then, Y((z1,q1), (x2, 2), (x3, a3), (x4, ), (w5, a5), (w6, ) =
(y,0). T is a 6-Jénsson function for (R/Ey) X &. m|

Question 4.24 ([2]). Showed that R/E; has no 2-Jénsson map but has a
3-Jénsson map. What is the least n so that (R/Ep) x  has a n-Jénsson map,
where K < ©7

If k is any ordinal, is (R/Ep) x & also not Jénsson?
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