
September 13, 2019 11:1 WSPC/S0219-0613 153-JML 1950009

Journal of Mathematical Logic
Vol. 19, No. 2 (2019) 1950009 (24 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0219061319500090

Ordinal definability and combinatorics
of equivalence relations

William Chan

Department of Mathematics
University of North Texas, Denton, 76203 TX, USA

William.Chan@unt.edu

Received 12 November 2017
Accepted 19 February 2019

Published 10 April 2019

Assume ZF + AD+ + V = L(P(R)). Let E be a Σ1
1 equivalence relation coded in HOD.

E has an ordinal definable equivalence class without any ordinal definable elements if
and only if HOD |= E is unpinned.

ZF + AD+ + V = L(P(R)) proves E-class section uniformization when E is a Σ1
1

equivalence relation on R which is pinned in every transitive model of ZFC containing
the real which codes E: Suppose R is a relation on R such that each section Rx = {y :
(x, y) ∈ R} is an E-class, then there is a function f : R → R such that for all x ∈ R,
R(x, f(x)).

ZF + AD proves that R × κ is Jónsson whenever κ is an ordinal: For every function
f : [R × κ]<ω

= → R × κ, there is an A ⊆ R × κ with A in bijection with R × κ and
f [[A]<ω

= ] �= R × κ.

Keywords: Determinacy; ordinal definability; equivalence relations; uniformization;
Jónsson property.
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1. Introduction

The questions of concern here are problems of independent interests that appeared
during the study of the Jónsson property for nonwellorderable sets under the axiom
of determinacy.

Let N ∈ ω ∪ {ω} and X be some set. Define [X ]N= = {x ∈ NX : (∀ i, j < N)(i �=
j ⇒ x(i) �= x(j))} and [X ]<ω

= =
⋃

n∈ω[X ]n=. Let ≈ denote the relation of being in
bijection. Define PN (X) = {Y ⊆ X : Y ≈ N} and P<ω(X) =

⋃
n∈ω Pn(X).

An N -Jonsson function for X is a function f : [X ]N= → X so that for all Y ⊆ X

with Y ≈ X , f [[Y ]N= ] = X . A function f : [X ]<ω
= → X is a Jónsson function if and

only if for all Y ⊆ X with Y ≈ X , f [[Y ]<ω
= ] = X . A set X has the Jónsson property

if and only if there are no Jónsson functions for X .

1950009-1

J.
 M

at
h.

 L
og

. 2
01

9.
19

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
A

R
N

E
G

IE
 M

E
L

L
O

N
 U

N
IV

E
R

SI
T

Y
 o

n 
10

/2
9/

21
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.

http://dx.doi.org/10.1142/S0219061319500090


September 13, 2019 11:1 WSPC/S0219-0613 153-JML 1950009

W. Chan

The classical study of the Jónsson property involved wellordered sets. For
wellordered sets X , Jónsson functions for X are formulated using PN (X) rather
than [X ]N= . Under AC, the following results are known: [4] showed that every infi-
nite set has an ω-Jónsson function. The existence of such a function is also where
Kunen’s proof of the Kunen’s inconsistency uses AC. The existence of a cardinal
with the Jónsson property implies 0� exists. Results of Erdős and Hajnal (see [3, 4])
imply that under CH, 2ℵ0 is not Jónsson. Hence, R is not Jónsson under CH. On the
other hand, real valued measurable cardinals are Jónsson (see [3, Corollary 11.1]).
Solovay showed it is consistent relative to a measurable cardinal that 2ℵ0 is real
valued measurable. Hence, it is consistent relative to a measurable cardinal that R

is Jónsson.
Using the axiom of determinacy AD, [15] showed that ℵn is Jónsson for each

n ∈ ω. [7] showed that every cardinal κ < Θ is Jónsson under ZF + AD + V = L(R).
In fact, Woodin showed that ZF + AD+ can prove every cardinal κ < Θ is Jónsson.

Under AD, there are sets which cannot be wellordered. Some important exam-
ples are quotients of ∆1

1 equivalence relations such as =, E0, E1, E2, and E3 (see
Definition 2.15). Holshouser and Jackson (see [5, 6]) showed that R has the Jónsson
property and there are no 2-Jónsson functions for R/E0 under AD. [2] showed that
under AD, there is a 3-Jónsson function for R/E0. Results from [2] seem to suggest
that R/E1, R/E2, and R/E3 do not have that Jónsson property, but no Jónsson
functions for these quotients have yet to be constructed.

For the ∆1
1 equivalence relations mentioned above, various dichotomy theorems

assert the significance of these equivalence relations in the degree structure of ∆1
1

equivalence relations under ∆1
1 reducibility. The proofs of these dichotomy results

give specific combinatorial structures to sets A such that E ≤∆1
1
E �A, when E is

one of the ∆1
1 equivalence relations above. For example, if A ⊆ R is Σ1

1 and E0 ≤∆1
1

E0 �A, then A contains an E0-tree (a perfect tree with very specific symmetry
conditions; see [2, Definition 5.2]). Similarly, if A ⊆ R is Σ1

1 and E2 ≤∆1
1
E2 �A,

then A contains an E2-tree (a perfect tree with certain summability conditions; see
[2, Fact 14.14]).

The following describes the techniques from [2] for investigating the Jónsson
property for R/E0: To study functions f : [R/E0]2= → R/E0, one would like to
lift f to a function F : R2 → R with the property that for all (x1, x2) ∈ R2,
[F (x1, x2)]E0 = f([x1]E0 , [x2]E0). Such a function F is called a lift of f . Then one
tries to produce an E0-tree on which the collapse of F misses elements of R/E0.
On the other hand, using the specific combinatorial structure of E0-trees, one can
define a map F : R3 → R which is E0-invariant and given any real x, there is a
triple (x1, x2, x3) of E0-unrelated reals so that F (x1, x2, x3) E0 x. The collapse of
F would then be a 3-Jónsson map.

As described in the above example, the existence of lifts of functions from R/

E → R/E′, where E and E′ are equivalence relations on R, seems to be useful in
the study of functions on quotients. The existence of a lift is an immediate conse-
quence of uniformization. ADR has full uniformization. Moreover, a lift of a function
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f : R/E → R/E′ requires only uniformization for relations whose sections are
E′-classes. Woodin showed that countable section uniformization holds in AD+.
Thus lifts exist for functions into R/E0 under AD+. Moreover, for the purpose of
showing that there are no 2-Jónsson functions for R/E0, AD alone has a sufficient
uniformization: Let f : [R/E0]2= → R/E0. One can apply comeager uniformization
(which holds in just AD) to find a function F : C → R, where C ⊆ R2 is comeager,
which lifts f on C. Then the 2-Mycielski property for E0 shows that there is a set
A such that E0 ≤∆1

1
E0 �A and {(x1, x2) ∈ A2 : ¬(x1 E0 x2)} ⊆ C. (see [2, Defi-

nition 2.11] for the definition of the Mycielski property.) This roughly implies that
F lifts f on a set whose quotient by E0 has cardinality R/E0. However, [2] showed
that except for = which has the full Mycielski property, a very limited amount of
the Mycielski property holds for the other equivalence relations of interest.

Motivated by this question of E-class section uniformization, Zapletal asked
a related question: Does every ordinal definable E2 equivalence class contain an
ordinal definable real, under ZF+AD+V = L(R)? He informed the author that the
equivalence relation =+, defined on ωR as equality of range, has ordinal definable
classes with no ordinal definable elements assuming AD + V = L(R), and that this
phenomenon can be viewed as a consequence of the unpinnedness of =+. He asked
then whether pinnedness can be used to characterize those ∆1

1 equivalence relations
with ordinal definable equivalence classes without any ordinal definable elements.

For countable equivalence relations, Zapletal’s question has a positive answer
under AD+: Under AD+, every ordinal definable countable set of reals contains
only ordinal definable elements. The proof of this can be found within the proof
of Woodin’s countable section enumeration under AD+, which states that for every
relation R with countable sections there is a function that takes x to a wellordering
of the section Rx. The main idea is to consider the canonical wellordering of Rx in
HODL[S,x,z]

S as z ranges over a Turing cone of reals and S is some set of ordinals
from an ∞-Borel code for R. (see [14] for the proof.) This implies that under AD+,
every ordinal definable E class contains only ordinal definable elements if E is an
equivalence relation with all countable classes defined using only ordinal parameters.

The determinacy assumptions are important for these questions since [11]
showed that in a forcing extension of the constructible universe L, there is an
ordinal definable E0 equivalence class with no ordinal definable elements. Similar
examples are given in [12] which showed that in a forcing extension of L, there are
definable relations with each section an E0-class but have no uniformizations which
are ordinal definable in a real.

Section 2 will show roughly, that in L(R) |= AD, if a Σ1
1 equivalence relation E

has an OD equivalence class without any OD elements, then HOD must think that
E is unpinned:

Theorem 2.12. Assume ZF + AD+ + V = L(P(R)). Let T be a set of ordinals.
Let E be an equivalence relation which is Σ1

1(s) for some s ∈ HODT and let A be
an ODT E-class. If A has no ODT elements, then HODT |= E is unpinned.
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Models of ZF + AD+ + V = L(P(R)) are considered natural models of AD+. If
L(R) |= AD, then L(R) satisfies this theory. Woodin, [1] Corollary 3.2, has shown
that if ZF + AD+ + V = L(P(R)) holds, then either there is a set of ordinals J so
that V = L(J,R) or else V |= ADR.

The proof of this theorem uses the idea of taking ultraproducts of HODL[S,z]
S ,

(where the Turing degree of z serves as the index and S is a set of ordinals) using
Martin’s Turing cone measure. This technique appears in Woodin’s proof that sets of
reals have ∞-Borel codes in L(R) when L(R) |= AD as exposited in [16, Claim 1.6].

Theorem 2.13 (ZF+AD+). Let E be a Σ1
1 equivalence relation defined in HODR,

where R is some set. Suppose HODR |= E is unpinned. Then, there is an ODR E-
class with no ODR elements.

These two results together give a very succient answer to Zapletal’s question in
natural models of AD+:

Corollary 2.14. Assume ZF + AD+ + V = L(P(R)). Let E be a Σ1
1 equivalence

relation coded in HOD. E has an OD E-class with no OD elements if and only if
HOD |= E is unpinned.

Many important examples of pinned ∆1
1 equivalence relations include =, E0,

E1, E2, smooth, hyperfinite, and hypersmooth equivalence relations.
Using the previous theorem, one obtains E-class section uniformization for

equivalence relations satisfying some definable pinnedness condition. This is partic-
ular useful when the equivalence relations are provably pinned:

Theorem 3.1. Assume ZF+AD++V = L(P(R)). If E is a Σ1
1 equivalence relation

which is pinned in every transitive model of ZFC containing the real that codes E,
then every relation R whose sections are all E-classes can be uniformized.

As a consequence, every function f : R/E → R/F has a lift under AD+ + V =
L(P(R)) when F is =, E0, E1, E2, smooth, hyperfinite, essentially countable, or
hypersmooth.

Section 4.1 will study the Jónsson property of some nonwellorderable sets. Hol-
shouser and Jackson have shown that R×κ for any κ < Θ has the Jónsson property.
They use that R and all ordinals κ < Θ have the Jónsson property. A natural ques-
tion would be whether R × κ is Jónsson for all ordinals κ. The proof that R is
Jónsson has a clear flavor of classical descriptive set theory since it uses comea-
gerness, continuity, the Mycielski property, and fusions of perfect trees. The proof
that ordinals κ < Θ is Jónsson have a somewhat different flavor. A related ques-
tion would be whether the Jónsson property for κ is relevant to showing R × κ is
Jónsson. Does there exists a more classical proof that R × κ is Jónsson? It will be
shown that:

Theorem 4.15 (ZF + AD). For any ordinal κ, R × κ has the Jónsson property.
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Whether or not κ is Jónsson does not appear in the proof of the above theorem.
This result is proved while investigating the Jónsson property for wellordered dis-
joint unions

⊔
α<κ R/Eα, where each Eα is an equivalence relation with all classes

countable and R/Eα ≈ R. The techniques have a very classical flavor using results
about lengths of wellordered sequences of reals, additivity of the meager ideal,
comeager uniformization, and fusions of perfect trees. There are also some dis-
cussions about the cardinality of

⊔
α<κ R/Eα. However, it remains open whether⊔

α<κ R/Eα has the Jónsson property.
This section concludes by producing a 6-Jónsson function for (R/E0)×κ for any

κ < Θ under AD. This shows that (R/E0) × κ for κ < Θ is not Jónsson under AD.

2. Ordinal Definable Equivalence Classes

V will denote the universe of set theory in consideration. If M is a model of set
theory and A is some concept given by some formula, then AM will denote the
relativization of that formula inside M . If a concept A is unrelativized, then it is
assumed to mean AV , although it may be written AV for emphasis. R will denote
ωω, the Baire space, consisting of functions from ω to ω with its usual metric.
(Although it may sometimes denote ω2, the Cantor space.) The elements of R will
be called reals.

If X is a set, then ODX denotes the class of sets which are ordinal definable
using X as a parameter. HODX is the collection of sets which are hereditarily
ordinal definable from X . HODX |= ZFC and has a canonical global wellordering
definable using X .

Fact 2.1 (Vopěnka). Suppose S is a set of ordinals. Let x ∈ R.
In L[S, x], let P denote the forcing of nonempty ODS subsets of R ordered by ⊆.

Using the canonical S-definable bijection of ODS subsets onto ON, let OS ∈ HODS

be the forcing that results by transferring P onto ON using this map.
Then there is a G ∈ L[S, x], which is OS-generic over HODS , so that L[S, x] =

HODS [G] = HODS [x].

Proof. See [8, Theorem 15.46].

Definition 2.2. Let X ⊆ R, S be a set of ordinals, and ϕ be a formula in the
language of set theory. (S, ϕ) is an ∞-Borel code for X if and only if for all x ∈ R,
x ∈ X ⇔ L[S, x] |= ϕ(S, x).

Definition 2.3 ([18, Sec. 9.1]). AD+ consists of the following:

(1) DCR.
(2) Every A ⊆ R has an ∞-Borel code.
(3) For all λ < Θ, A ⊆ R, and continuous function π : ωλ → R, π−1[A] is

determined.
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(λ is given the discrete topology. Θ is the supremum of the ordinals which are
surjective images of R. Games with moves from λ are defined the same way as the
more familiar games on ω.)

Definition 2.4 ([19]). Let E be an equivalence relation on R. Let P be a forcing.
Let τ be a P-name.

Let τleft, τright be the canonical P×P-names with the property that τleft and τright

are evaluated according to τ using the left and right P-generic filters, respectively,
coming from a P × P-generic filter.

τ is an E-pinned name if and only if 1P×P �P×P τleft E τright.
An E-pinned name τ is an E-trivial name if and only if there is some x ∈ R so

that 1P �P τ E x̌.
E is a pinned equivalence relation if and only if all forcings P, every E-pinned

P-names is E-trivial.

Pinnedness is more accurately a property of a fixed definition for the equivalence
relation E (which is to be used to interpret E in generic extensions). This paper
is concern only with Σ1

1 equivalence relations and such equivalence relations are
always defined as the projection of certains trees on ω × ω × ω.

Definition 2.5. Let ≤T denote the Turing reducibility relation on ωω. For x, y ∈
ωω, let x ≡T y if and only if x ≤T y and y ≤T x. A Turing degree is a ≡T

equivalence class. If x, y ∈ ωω, then define [x]≡T ≤T [y]≡T if and only if x ≤T y.
Let D denote the set of Turing degrees. A Turing cone with base C ∈ D is the

set {D ∈ D : C ≤T D}. Define Martin’s measure U by: for A ∈ P(D), A ∈ U if
and only if A contains a Turing cone.

Under AD, the Martin’s measure is a countably complete ultrafilter on D.

Definition 2.6 (ZF + AD). Let T be some set. Let H be a (usually proper class)
function on D which is definable using only T and ordinals as parameters and takes
each X to some transitive class. Assume that there is some (usually proper class)
function R definable using only T and ordinals as parameters so that for each
X ∈ D, R(X) is a wellordering of H(X).

Let MT
H,R denote the collection of ODT functions on D taking each X ∈ D to

an element in H(X). For F,G ∈MT
H,R, let F ∼ G if and only if {X ∈ D : F (X) =

G(X)} ∈ U .
Let MT

H,R denote the collection of equivalence classes of MT
H,R under ∼. Define

[F ]∼ ∈ [G]∼ if and only if {X ∈ D : F (X) ∈ G(X)} ∈ U .

Fact 2.7 (ZF + AD). MT
H,R is a T -definable class consisting of ODT elements.

Using the T -definable bijection of ODT and ON, MT
H,R is isomorphic to a class

inside HODT . MT
H,R is wellfounded; hence, it can be considered as a transitive

structure inside HODT .
The �Loś’s theorem holds for MT

H,R: Suppose F0, . . . , Fk−1 ∈ MT
H,R and ϕ is a

formula of {∈̇}, then MT
H,R |= ϕ([F0]∼, . . . , [Fk]∼) if and only {X ∈ D : H(X) |=

ϕ(F0(X), . . . , Fk−1(X))} ∈ U .
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For each α < ω1, let cα : D → {α} be the constant function taking value α. The
class [cα]∼ represents the ordinal α in MT

H,R.
For each r ∈ R which is ODT and belongs to H(X) for a cone of X ∈ D, define

the function cr : D → {∅, r} by cr(X) = r if r ∈ H(X) and cr(X) = ∅ if otherwise.
Then, [cr]∼ represents r in MT

H,R.

Proof. MT
H,R is a structure in ODT since MT

H,R ⊆ ODT . Note the ∈ relation of
MT

H,R is definable from T . Using the canonical bijection of ODT and ON, one can
transfer MT

H,R and its ∈-relation onto ON. This new isomorphic structure consists
entirely of ordinals and hence elements of HODT .

Let F ∈MT
H,R. Suppose [F ]∼ is not wellfounded. There is some set X ⊆ {[G]∼ :

[G]∼ ∈ [F ]∼} without an ∈MT
H,R -minimal element. Let L(0) be the ODT -least func-

tion G so that [G]∼ ∈ X . Suppose L(n) has been defined. Let L(n + 1) be the
ODT -least function G so that [G]∼ ∈ X and [G]∼ ∈ [L(n)]∼. Let An = {x ∈ D :
L(n+1)(x) ∈ L(n)(x)}. Each An ∈ U . Since U is countably complete,

⋂
n∈ω An �= ∅.

Let x ∈ ⋂
n∈ω An. Then, 〈L(n)(x) : n ∈ ω〉 is an ∈-decreasing sequence in V . Con-

tradiction. MT
H,R is wellfounded. Using the Mostowski collapse, one may consider

MT
H,R as a transitive structure inside of HODT .
The proof of �Loś’s theorem is by induction on formula complexity: The result

holds for the atomic formulas by definition. Assume the result holds for ϕ and
ψ, then the result holds for ¬ϕ and ϕ ∧ ψ by the usual arguments. (Note the
case involving ¬ requires that U is an ultrafilter.) Suppose the result has been
shown for ϕ. If MT

H,R |= (∃x)ϕ(x, [F0]∼, . . . , [Fk−1]∼), then there exists some
G ∈ MT

H,R so that MT
H,R |= ϕ([G]∼, [F0]∼, . . . , [Fk−1]∼). Using the induction

hypothesis, {X ∈ D : H(X) |= (∃x)ϕ(x, F0(X), . . . , Fk−1(X))} ∈ U . Suppose
{X ∈ D : (∃x)ϕ(x, F0(X), . . . , Fk−1(X))} ∈ U . Define G on D by letting G(X)
be the R(X)-least element z of H(X) such that H(X) |= ϕ(z, F0(X), . . . , Fk−1(X))
if such an element exists and ∅ otherwise. G is ODT and so belongs to
MT

H,R. By the induction hypothesis, MT
H,R |= ϕ([G]∼, [F0]∼, . . . , [Fk−1]∼). There-

fore, MT
H,R |= (∃x)ϕ(x, [F0 ]∼, . . . , [Fk−1]∼). This completes the sketch of �Loś’s

theorem.
Suppose [F ]∼ ∈ [cα]∼. Let A = {X ∈ D : F (X) ∈ α}. A ∈ U . Let Aβ = {X ∈

D : F (X) = β}. A =
⋃

β<αAβ . Since U is countably complete and α is countable,
there is some β < α so that Aβ ∈ U . Then cβ ∼ F . This shows that, [cα]∼ represents
α in MT

H,R when α < ω1.

Fact 2.8 (Woodin, [1, Theorem 3.4]). Assume ZF + AD+ + V = L(P(R)). Let
T be a set of ordinals. A set X ⊆ R which is ODT has an ∞-Borel code (S, ϕ)
which is ODT .

Fact 2.9 (Woodin, [1, Theorem 2.18]). Assume ZF + AD+ + V = L(P(R)).
Let T be a set of ordinals. There is some set of ordinals X so that HODT = L[X].
(Note that X is ODT .)
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In the case of L(R) and T = ∅, the set X can be taken to be Pω which is
the direct limit indexed by n ∈ ω of Vopěnka forcing on Rn. This follows from
Woodin’s result that L(R) is a symmetric collapse extension of its HOD. One can
find an exposition of this result in [16].

Fact 2.10 (Woodin, [1, Sec. 2.2]). Assuming ZF + AD+,
∏

X∈D ON/U is well-
founded.

Assume AD+, the wellfoundedness of MT
H,R can also be proved from Fact 2.10.

For the question of Zapletal, one will need to form an ultraproduct of the form
MT

H,R so that all the reals of HOD belong to this ultraproduct.

Fact 2.11. Assume ZF + AD+ + V = L(P(R)). Let T be a set of ordinals. Let X

be a set of ordinals as given by Fact 2.9, so that HODT = L[X]. For each X ∈ D, let
H(X) = HODL[X,X]

X
and R(X) be the canonical wellordering of HODL[X,X]

X
. Then

MX

H,R is wellfounded, MX

H,R ⊆ HODT , and RHODT ⊆ MT
R,H.

Proof. Note that, X is ODT . Observe that for all X ∈ D, HODT = L[X] ⊆
HODL[X,X]

X
. So if r ∈ HODT , then r ∈ HODL[X,X]

X
. The function cr is ODX and

belongs to MX

H,R. This result now follows from Fact 2.7.

Theorem 2.12. Assume ZF + AD+ + V = L(P(R)). Let T be a set of ordinals.
Let E be an equivalence relation which is Σ1

1(s) for some s ∈ HODT and let A be
an ODT E-class. If A has no ODT elements, then HODT |= E is unpinned.

Proof. For simplicity, let T = ∅. By Fact 2.9, let X be a set of ordinals so that
HOD = L[X]. By Fact 2.8, A has an ∞-Borel code in HOD = L[X]. Modifying X

by including an ordinal if necessary, one may as well assume that there is some
formula ϕ so that (X, ϕ) forms an ∞-Borel code for A.

Recall that E is Σ1
1(s) means there is some s-recursive tree T on ω × ω × ω

so that x E y if and only if L[s, x, y] |= T x,y is illfounded, where T x,y = {u :
(x � |u|, y � |u|, u) ∈ T }. In this way, E is ∞-Borel with a code that is a subset of ω.

Suppose y ≥T x for some x ∈ A. By Fact 2.1, there is some O
L[X,y]
X

-name τ ∈
HODL[X,y]

X
and some O

L[X,y]
X

-generic over HODL[X,y]
X

filter G ∈ L[X, y] so that τ [G] =
x and L[X, y] = HODL[X,y]

X
[G]. Since V |= L[X, x] |= ϕ(X, x), L[X, y] |= L[X, x] |=

ϕ(X, x). Since L[X, y] = HODL[X,y]
X

[G], one has HODL[X,y]
X

[G] |= L[X, x] |= ϕ(X, x).
There is some q ∈ O

L[X,y]
X

so that HODL[X,y]
X

|= q �OX
L[X̌, τ ] |= ϕ(X̌, τ). Let qy

and τy be the HODL[X,y]
X

-least such q and τ with the above properties. In order to,
satisfy the technical requirement of using the largest condition of the forcing in the
definition of pinnedness, let Uy = {p ∈ O

L[X,y]
X

: p ≤
O

L[X,y]
X

qy}, ≤Uy=≤
O

L[X,y]
X

� Uy,
and 1Uy = qy. If y does not Turing compute any element of A, then one can just
let Uy and τy be ∅.

If x ≡T y, HODL[X,x]
X

= HODL[X,y]
X

and their canonical global wellorderings
are the same. This shows that Ux = Uy and τx = τy. If X ∈ D and x ∈ X ,
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let HODL[X,X]
X

= HODL[X,x]
X

, UX = Ux, and τX = τx. For X ∈ D, let H(X) =
HODL[X,X]

X
and R(X) be the canonical global wellordering of HODL[X,X]

X
. For X ∈

D, define ΦU(X) = UX and Φτ (X) = τX . Let M = MX

H,R. Note that ΦU,Φτ ∈
MX

H,R. Let U = [ΦU]∼ and τ = [Φτ ]∼. Let cX be the constant function taking value
X. Note that cX ∈ MX

H,R. Let X∞ = [cX]∼. As in Fact 2.7, M will be identified as
a transitive class in HODV . Thus U, τ , and X∞ belong to HODV .

By �Loś’s theorem, M is a model of ZFC, U is some forcing, τ is some U-name
adding a real, X∞ is a set of ordinals, and M |= 1U �U L[X∞, τ ] |= ϕ(X∞, τ).

Claim 1.

M |= 1U×U �U×U (∀x)(∀ y)((L[X∞, x] |= ϕ(X∞, x)

∧L[X∞, y] |= ϕ(X∞, y)) ⇒ x E y).

(Note that the ultraproduct moves X to X∞. However, E as a Σ1
1(s) equivalence

relation has the real s as its ∞-Borel code. The constant function cs taking value
s belongs to MX

H,R. In M, [cs]∼ represents s. That is, s is not moved by the
ultraproduct. Hence, it is appropriate to continue to denote E by E in M as it is
still the same Σ1

1 equivalence relation.)
To see the claim: Fix some z ∈ A. By �Loś’s theorem, it suffices to prove that

for all r ≥T z:

HODL[X,r]
X

|= 1Ur×Ur �Ur×Ur (∀x)(∀ y)((L[X, x] |= ϕ(X, x)

∧L[X, y] |= ϕ(X, y)) ⇒ x E y)

Fix some (p, q) ∈ Ur × Ur. Since L[X, r] |= AC and V |= AD, ωV
1 is inaccessible

in HODL[X,r]
X

. Hence, Ur × Ur and its power set in HODL[X,r]
X

are countable in V .
There exists G×H ∈ V containing (p, q) which is Ur ×Ur-generic over HODL[X,r]

X
.

Since G×H ∈ V , all sets of HODL[X,r]
X

[G×H ] belong to V . Let x and y be reals of
HODL[X,r]

X
[G×H ] so that HODL[X,r]

X
[G×H ] |= L[X, x] |= ϕ(X, x)∧L[X, y] |= ϕ(X, y).

Then, V |= L[X, x] |= ϕ(X, x) ∧ L[X, y] |= ϕ(X, y). Since (X, ϕ) is an ∞-Borel
code for A in V , x ∈ A and y ∈ A. Since A is an E-class, x E y. By Mostowski
absoluteness, HODL[X,r]

X
[G×H ] |= x E y. This shows that HODL[X,r]

X
[G×H ] satisfies

the formula behind the above forcing relation. Since G×H is generic, there is some
(p′, q′) ≤Ur×Ur (p, q) so that in HODL[X,r]

X
, (p′, q′) forces that formula. Since (p, q)

was arbitrary, this establishes the claim.

Claim 2.

M |= 1U×U �U×U (∀x)(∀ y)((L[X∞, x] |= ϕ(X∞, x)

∧x E y) ⇒ L[X∞, y] |= ϕ(X∞, y))

The proof essentially uses the same idea as Claim 1.
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Now to show that U and τ witness that E is unpinned in HODV :

First to show that τ is an E-pinned name in HODV : Let G×H be any U ×U-
generic filter over HODV . Since M ⊆ HODV , if G and H are generic over HODV ,
then G and H are generic over M. By the forcing theorem, M[G] |= L[X∞, τ [G]] |=
ϕ(X∞, τ [G]) and M[H ] |= L[X∞, τ [H ]] |= ϕ(X∞, τ [H ]). By Claim 1, M[G×H ] |=
τ [G] E τ [H ]. By Mostowski absoluteness, HODV [G × H ] |= τ [G] E τ [H ]. Since
G ×H was arbitrary, HODV |= 1U×U �U×U τleft E τright. This shows that τ is an
E-pinned U-name in HODV .

Finally, to show that τ is not E-trivial: Suppose there is some x ∈ HODV so
that HODV |= 1U �U τ E x̌. Let G ⊆ U be a U-generic over HODV filter. Then
HODV [G] |= τ [G] E x. By Mostowski absoluteness, M[G] |= τ [G] E x. G is also
generic over M. By the forcing theorem, M[G] |= L[X∞, τ [G]] |= ϕ(X∞, τ [G]).
Since x ∈ HODV , Facts 2.11 and 2.7 imply that [cx]∼ represents x in M.
By Claim 2 applied in M[G × H ] where H is any U-generic filter over M[G],
M[G] |= L[X∞, x] |= ϕ(X∞, x). Thus M |= L[[cX]∼, [cx]∼] |= ϕ([cX]∼, [cx]∼). By
�Loś’s theorem, for a Turing cone of X ’s (such that x ∈ HODL[X,X]

X
), HODL[X,X]

X
|=

L[X, x] |= ϕ(X, x). This implies V |= L[X, x] |= ϕ(X, x). V |= x ∈ A since (X, ϕ) is
the ∞-Borel code for A in V . This contradicts the assumption that A has no OD
elements.

This completes the proof.

Theorem 2.13 (ZF+AD). Let E be a Σ1
1 equivalence relation defined in HODR,

where R is some set. Suppose HODR |= E is unpinned. Then there is an ODR

E-class with no ODR elements.

Proof. Since HODR |= E is unpinned, there exists some forcing P ∈ HODR and
P-name σ ∈ HODR so that within HODR, P and σ witness that E is not pinned.

Inside HODR (which models AC), let N be an elementary substructure of some
large enough rank initial segment of HODR with the property that (1) N contains
the code for E, (2) R ⊆ N , (3) P, σ ∈ N , and (4) N has cardinality |R|. Let M
be the Mostowski collapse of N . Let Q and τ be the image of P and σ under the
Mostowski collapse map. As E is Σ1

1, the code for E is a tree on ω × ω × ω whose
projection is E. So a code for E is merely a subset of ω. Hence, the Mostowski
collapse map does not move the code for E. Note that |M |V = |RHODV

R |V = ℵ0

since AD holds. Hence, there are generics for Q over M that lie in V .
Suppose G and H are two generic filters for Q over M which belong to V . Since

M [G] and M [H ] are countable in V , one can construct a generic filter J ∈ V so that
G×J and H×J are generic filters for Q×Q. By elementarity, M |= τ is E-pinned.
Thus, M [G × J ] |= τ [G] E τ [J ] and M [H × J ] |= τ [H ] E τ [J ]. By Mostowski
absoluteness, τ [G] E τ [J ] and τ [H ] E τ [J ] holds in V . Since E is an equivalence
relation, τ [G] E τ [H ]. This shows that, whenever G and H are Q-generic filters
over M that belong to V (but may not be mutually generic), τ [G] E τ [H ].
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M |= τ is not E-trivial by elementarity. Since RHODR ⊆M , for anyG ⊆ Q which
is Q-generic over M and any x ∈ RHODR , M [G] |= ¬(τ [G] E x). By absoluteness,
if G ∈ V , then ¬(τ [G] E x).

In V , let A be the set of x ∈ R so that there exists some G ⊆ Q which is
Q-generic over M and x E τ [G]. Since Q, τ ∈ M and M ∈ HODR, A is ODR.
By the discussion of the above two paragraphs, A is a single E-class and has no
elements of ODR.

Note that the only consequence of AD that is used is that there is no uncountable
wellordered set of reals.

The following answers the question of Zapletal.

Corollary 2.14. Assume ZF + AD+ + V = L(P(R)). Let E be a Σ1
1 equivalence

relation coded in HOD. E has an OD E-class with no OD elements if and only if
HOD |= E is unpinned.

The rest of this section will give some examples.

Definition 2.15. The following are some important ∆1
1 equivalence relations:

Let = denote the identity equivalence relation on R.
Let =+ denote the Friedman-Stanley jump of = which is defined on ωR by x =+ y

if and only if {x(n) : n ∈ ω} = {y(n) : n ∈ ω}. (=+ is equality of range.)
Let E0 be the equivalence relation on R (or ω2) defined by x E0 y if and only if

(∃ k)(∀n ≥ k)(x(n) = y(n)).
Let E1 be the equivalence relation on ωR defined by x E1 y if and only (∃ k)(∀n ≥

k)(x(n) = y(n)).
Let E2 be the equivalence relation on ω2 defined by x E2 y if and only if

∑{ 1
n :

n ∈ x�y} <∞, where � denotes the symmetric difference operation.

Fact 2.16. The equivalence relations =, E0, E1, and E2 are pinned ∆1
1 equivalence

relations. Every ∆1
1 equivalence relation with countable classes is pinned. Every

smooth, hyperfinite, essentially countable, or hypersmooth equivalence relation is
pinned.

The equivalence relation =+ is unpinned.

Proof. See [10, Chapter 11].
The Solovay product lemma states: Let P and Q be two forcings. Suppose G×H

is P × Q-generic over V . Then V [G] ∩ V [H ] = V .
From the Solovay product lemma, it follows that =, E0, and E1 are pinned

equivalence relations.
If E ≤∆1

1
F and F is pinned, then E is also pinned. This implies that smooth,

hyperfinite, and hypersmooth equivalence relations are pinned.
[10, Theorem 17.1.3(iii)] states that ∆1

1 equivalence relations with all classes Σ0
3

are pinned. This implies that E2 and every ∆1
1 equivalence relation with countable

classes are pinned. Therefore, essentially countable equivalence relations are pinned.
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Let Q = Coll(ω,R). Let τ be the name for the generic surjection of ω onto R.
Q and τ witness that =+ is unpinned since if τ was forced to be =+ related to a
ground model element, then R would be countable in the ground model.

Example 2.17. The proof above that =+ is unpinned can be used to produce an
OD =+-class with no OD elements assuming (P(R))HOD is countable.

Let Q = Coll(ω,R) and τ be the generic surjection of ω onto R as defined inside
of HOD. (Note that τ is an =+-pinned name.) By the assumption, there exists
Q-generics over HOD in V . Let A be the collection of x ∈ ωR such that there
exist some G ⊆ Q which is Q-generic over HOD and x =+ τ [G]. A is an OD =+

equivalence class. A cannot contain any OD elements for otherwise HOD would
think RHOD is countable.

3. Equivalence Class Section Uniformization and Lifting

Theorem 3.1. Assume ZF + AD+ + V = L(P(R)). Let T be a set of ordinals. Let
E be a Σ1

1 equivalence relation coded in HODT . Suppose E is pinned in HODT,x

for all x ∈ R. Let R ⊆ R × R be ODT and have the property that for all x ∈ R,

Rx = {y : R(x, y)} is an E-class. Then there is a function F : R → R which is
ODT and uniformizes R: that is, for all x ∈ R, R(x, F (x)).

If E is a Σ1
1 equivalence relation which is pinned in every transitive model of

ZFC containing the real that codes E, then every relation R whose sections are E-
classes can be uniformized. (For example, E could be any of the pinned equivalence
relations from Fact 2.16.)

Proof. Under these assumptions, for each x ∈ R, Rx is an ODT,x E-class. Since
HODT,x |= E is unpinned, Theorem 2.12 implies that Rx must have an ODT,x ele-
ment. For each x ∈ R, let F (x) be the least element of HODT,x under the canonical
global wellordering of HODT,x which belongs to Rx. F is an ODT uniformization
of R.

For the second statement, under AD+, any such relation R has an ∞-Borel code
(S, ϕ). By modifying S if necessary, one may assume that HODS contains a code
for E as a Σ1

1 set. By the hypothesis, E is pinned in every HODS,x, where x ∈ R.
The second statement follows from the first statement.

Zapletal [19] has shown that if E is a ∆1
1 equivalence relation coded in some

transitive model M and N is some transitive model with M ⊆ N , then E is pinned
inM if and only ifE is pinned inN . Therefore, in the first statement of Theorem 3.1,
it suffices just to have HODT |= E is pinned, when E is a ∆1

1 equivalence relation.
However [19] also shows that, in general, pinnedness for Σ1

1 equivalence rela-
tion is not absolute by producing a pinned Σ1

1 equivalence relation in L which
is unpinned in a forcing extension of L. However, in the present situation, one is
concerned with models of the form HODV

T and HODV
T,x, where V is a model of
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determinacy. Possible more can be said in such settings. This suggests the following
question.

Question 3.2. In the first statement of Theorem 3.1, can the condition that E is
pinned in HODT,x for all x ∈ R be replace by just E is pinned in HODT when E

is a Σ1
1 equivalence relation coded in HODT ?

Regardless, most natural examples are ∆1
1. Moreover, for most of the natural

examples, pinnedness is provable in ZFC.

Definition 3.3. Let E be an equivalence relation on some set X . Let F be an
equivalence relation on some set Y . Let n ∈ ω. Let f : (X/E)n → (Y/F ) be some
function. A function F : Xn → Y is a lift of f if and only if for all x0, . . . , xn−1 ∈ X ,
[F (x0, . . . , xn−1)]F = f([x0]E , . . . , [xn−1]E).

Corollary 3.4. Assume ZF + AD+ + V = L(P(R)). Suppose E is an equivalence
relation on R. Suppose F is a Σ1

1 equivalence relation on R which is pinned in
every transitive models of ZFC containing the real that codes F . For all n ∈ ω,

every function f : (R/E)n → (R/F ) has a lift.
In particular, this lifting property holds when F is E0, E1, E2, smooth,

hyperfinite, essentially countable, or hypersmooth.

Proof. Define the relation R(x0, . . . , xn−1, y) if and only if y ∈ f([x0]E , . . . ,
[xn−1]E). For each (x0, . . . , xn−1) ∈ Rn, R(x0,...,xn−1) = f([x0]E , . . . , [xn−1]E),
which is an F -class. By assumption, F is pinned in every model of ZFC containing
the real that codes F . Theorem 3.1 implies that R has a uniformizing function G.
G is a lift of f .

Example 3.5. Under ZF+ADR, every relation can be uniformized. Hence, E-class
section uniformization and lifting for E holds for every equivalence relation E on
R. However ZF + AD+ is not able to prove E-class section uniformization when E

is an unpinned equivalence relation. The following is an example.
Assume ZF + AD + V = L(R).
Define R(x, y) if and only if y is not ODx. R has no uniformizing function:

Suppose f : R → R uniformized R. Since V = L(R), every set of reals is ordinal
definable from some real. Thus f is ODz for some z ∈ R. Hence f(z) is ODz.
However, R(z, f(z)) implies that f(z) is not ODz. Contradiction.

Define S(x, y) if and only if {yn : n ∈ ω} = RHODx , where yn ∈ R denotes the
nth section of y under some coding of pairs of integers by integers. If S(x, y), then
y /∈ ODx for otherwise RHODx would be countable in HODx. Since S ⊆ R and R

has no uniformization, S also has no uniformization.

Every instance of F -class section uniformization gives a lift of a function from
f : R → (R/F ). Therefore, failure of F -class section uniformization is a failure of
lifting for F . However, the more interesting instance of the lifting property involving
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function of the form f : (R/F ) → (R/F ). Zapletal informed the author of an
example:

Example 3.6 (Zapletal). Assume ZF + AD + V = L(R). There is a f : (ωR/

=+) → (ωR/ =+) which does not have a lift.
Define f as follows: Let b ∈ ωR be such that for all n ∈ ω, b(n) is the constant

0 function. Let C ∈ (ωR/ =+). If there is some x ∈ R so that C is the =+

equivalence class of enumerations of [x]T (the Turing degree of x), then f(C) is
the =+ equivalence class of enumerations of RHODx . Note that, f(C) does not
depend on x. If C is the not the =+ equivalence class of enumerations of any
Turing degree, then let f(C) = [b]=+ = {b}.

Now suppose that f has a lift F : ωR → ωR. Since V = L(R), F is ODz for
some z ∈ R. Since [z]T ⊆ HODz and HODz thinks [z]T is countable, there is a
c ∈ (ωR)HODz such that c enumerates [z]T . Thus F (c) ∈ HODz . Since F is a lift of
f , F (c) ∈ f([c]=+). By definition, F (c) ∈ ωR is an enumeration of RHODz . Then,
HODz would think its own set of reals are countable. Contradiction.

4. Jónsson Property

Definition 4.1. Let X be a set and n ∈ ω. Let E be an equivalance relation on
X . Let [X ]nE = {(x0, . . . , xn−1) ∈ nX : (∀ i < n)(∀ j < n)(i �= j ⇒ ¬(xi E xj))}.
Let [X ]<ω

E =
⋃

n∈ω[X ]nE.
A set X has the Jónsson property if and only if for all functions f : [X ]<ω

= → X ,
there is some Y ⊆ X with Y ≈ X and f [[Y ]<ω

= ] �= X . (The symbol ≈ is the relation
of being in bijection.)

For n < ω, an n-Jónsson function for X is a map f : [X ]n= → X so that for all
Y ⊆ X with Y ≈ X , f [[X ]n=] = X .

Fact 4.2. Under ZF + AD,
([5, 6]) R has the Jónsson property.
([2]) There is a 3-Jónsson function for R/E0. Hence R/E0 does not have the

Jónsson property.

For the rest of this section, R will refer to ω2, the set of infinite binary sequences.

Definition 4.3. A nonempty subset p of <ω2 is a tree if and only if for all s ∈ p

and t ⊆ s, t ∈ p. A tree p is a perfect tree if and only if for all s ∈ p, there is a t ⊇ s

so that t̂ 0, t̂ 1 ∈ p.
Let S be the set of all perfect trees. Let ≤S=⊆.
Let p ∈ S. A node s ∈ p is a split node if and only if ŝ 0, ŝ 1 ∈ p. A node s ∈ p

is a split of p if and only if s � (|s| − 1) is a split node of p. For n ∈ ω, s is an n-split
of p if and only if s is a ⊆-minimal element of p with exactly n-many proper initial
segments which are split nodes of p.

Let splitn(p) denote the set of n-splits of p. Note that, |splitn(p)| = 2n and
split0(p) = {∅}.
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If p, q ∈ S, define p ≤n
S
q if and only if p ≤S q and splitn(p) = splitn(q).

If p ∈ S and s ∈ p, then define ps = {t ∈ p : t ⊆ s ∨ s ⊆ t}.
Let p ∈ S. Let Λ be defined as follows:

(i) Λ(p, ∅) = ∅.
(ii) Suppose Λ(p, s) has been defined for all s ∈ n2. Fix an s ∈ n2 and i ∈ 2. Let

t ⊇ Λ(p, s) be the minimal split node of p extending Λ(p, s). Let Λ(p, ŝ i) = t̂ i.

Let Ξ(p, s) = pΛ(p,s).

Fact 4.4. A fusion sequence is a sequence 〈pn : n ∈ ω〉 in S so that for all n ∈ ω,
pn+1 ≤n

S
pn. Let pω =

⋂
n∈ω pn. Then, pω ∈ S and is called the fusion of the above

fusion sequence.

Fact 4.5. Suppose p ∈ S. Let 〈rn : n ∈ ω〉 be a sequence of positive integers.
Let 〈fn : n ∈ ω〉 be a sequence such that for all n ∈ ω, fn : [[p]]rn

= → ωR is a
continuous function. Then, there is some q ≤S p and z ∈ R so that for all m,n ∈ ω

and y ∈ fn[[[q]]rn
= ], z �= y(m).

Proof. Let B : ω → ω×ω be a surjection with the property that the inverse image
of any (e, g) is infinite.

Objects 〈zn : n ∈ ω〉 and 〈qn : n ∈ ω〉 will be built with the following properties:

(I) For each n ∈ ω, zn ∈ <ω2 and zn � zn+1. For each n ∈ ω, qn ∈ S, qn ≤S p, and
qn+1 ≤n

S
qn.

(II) For each n ∈ ω, suppose B(n) = (e, g). Then for each sequence (σ1, . . . , σre) of
pairwise distinct strings in n2, there is some τ ∈ <ω2 so that for all y with

y ∈ fe[[Ξ(qn+1, σ1)] × · · · × [Ξ(qn+1, σre)]]

y(g) ∈ Nτ and zn+1 and τ are incompatible.

Suppose these objects can be constructed. Then, 〈qn : n ∈ ω〉 forms a fusion
sequence. By Fact 4.4, q =

⋂
n∈ω qn is a perfect tree. Let z =

⋃
n∈ω zn. Let e, g ∈ ω.

Suppose (x1, . . . , xre) ∈ [[q]]re
= . By the assumption on B, there is some n large

enough so that B(n) = (e, g) and there are pairwise distinct strings σ1, . . . , σre ∈ n2
with Λ(q, σ1) ⊂ x1, . . . ,Λ(q, σre) ⊂ xre . Then, by (II), zn+1 is not an initial segment
of y(g). Hence, y(g) �= z.

It remains to construct these objects.
Let z0 = ∅ and q0 = p.
Suppose qn and zn have been constructed. Suppose that B(n) = (e, g). Enumer-

ate all the re-tuples of distincts strings in n2 as (σ0
1 , . . . , σ

0
re

), . . . , (σM
1 , . . . , σM

re
) for

some M ∈ ω.
Let s0 = qn. Let �0 = zn. Suppose sk and �k have been defined for some fixed

k ≤ M . For each 1 ≤ i ≤ re, let ci = σk
i ˆ̄0. Let di =

⋃
n<ω Λ(rk, ci �n). By the

continuity of fe on [[p]]re
= , there is some N > n so that for all

y ∈ fe[[Ξ(sk, c1 �N)] × · · · × [Ξ(sk, cre �N)]],
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fe(d1, . . . , dre)(g) � |�k + 1| ⊆ y(g). Define �k+1 = �k (̂1 − fe(d1, . . . , dre)(g)(|�k|)),
that is �k+1 extends �k by one using the opposite of the value of
fe(d1, . . . , dre)(g)(|�k|). Let sk+1 ≤n

S
sk be such that for all σ ∈ n2, if σ = σk

i

for some 1 ≤ i ≤ re, then Ξ(sk+1, σ) = Ξ(sk, ci �N) and if σ is otherwise, then
Ξ(sk+1, σ) = Ξ(sk, σ).

Finally, let qn+1 = sM+1 and zn+1 = �M+1. This completes the construction.

Fact 4.6. Let δ be an ordinal. Let 〈Aα : α < δ〉 be a sequence of meager subsets
of R. Define a prewellordering on

⋃
α<δ Aα by x � y if and only if the least ordinal

ξ such that x ∈ Aξ is less or equal to the least ordinal ξ such that y ∈ Aξ. Assume
that � as a subset of R × R has the Baire property. Then

⋃
α<δ Aα is meager.

(ZF + AD) Every wellordered union of meager sets is meager.

Proof. See [13]. The second statement follows from the fact that every subset of
R × R has the Baire property under AD.

Fact 4.7 (Mycielski). Suppose 〈Cn : n ∈ ω〉 is a sequence so that each Cn is
a comeager subset of Rn. Then, there is a perfect tree p so that for all n ∈ ω,
[[p]]n= ⊆ Cn.

Fact 4.8 (ZF+AD) (Comeager uniformization). Let R ⊆ R×R be a relation.
Then, there is a comeager set C ⊆ R and a function f : C → R so that for all x ∈ C,
R(x, f(x)).

Fact 4.9 (ZF + AD). Let E be an equivalence relation on R with all classes
countable and R/E ≈ R. Let p be perfect tree. Then, [p]/E ≈ R.

Proof. Note that [p]/E injects into R/E by inclusion. Composing with the bijection
then shows that [p]/E injects into R. Let Φ : R/E → R be a bijection. Since E has
only countable classes and countable unions of countable sets are countable under
AD, [p]/E is an uncountable set. Hence, Φ[[p]/E] is an uncountable subset of R. By
the perfect set property, there is some perfect tree q so that [q] ⊆ Φ[[p]/E]. Φ−1

injects [q] into [p]/E. Hence, R injects into [p]/E. By Cantor-Schröder-Bernstein,
[p]/E ≈ R.

Fact 4.10 (ZF + AD). Let A ⊆ R. Let � be a prewellordering on A. For each
x ∈ A, let [x]� = {y : x � y ∧ y � x}. If for all x ∈ A, [x]� is countable, then A is
countable.

Proof. If A is not countable, then by the perfect set property, there is some perfect
tree p so that [p] ⊆ A. Using the notation from Definition 4.3, define x � y if and
only if

⋃
n∈ω Λ(p, x � n) � ⋃

n∈ω Λ(p, y � n). Then � is a prewellordering on R so
that for each x ∈ R, [x]� is countable. Let β be the length of �. For each α < β,
let Aα be the prewellordering class of � with rank α.

⋃
α<β Aα = R and each Aα

is countable (and hence meager). This is not possible by Fact 4.6.
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Question 4.11 (Holshouser-Jackson) (ZF + AD). Let κ be an ordinal. Let
〈Eα : α < κ〉 be a sequence of equivalence relations on R with all classes countable
so that R/Eα ≈ R. Does the disjoint union

⊔
α<κ R/Eα have the Jónsson property?

Note that one is not given a sequence of bijections 〈Φα : α < κ〉 witnessing R/

Eα ≈ R. With such a sequence of bijections, one can construct a bijection witnessing⊔
α<κ R/Eα ≈ R × κ. In this case, Theorem 4.15 below would imply

⊔
α<κ R/Eα

has the Jónsson property. The following is an interesting question.

Question 4.12 (Holshouser-Jackson) (ZF + AD). Let κ be an ordinal. Let
〈Eα : α < κ〉 be a sequence of equivalence relations on R with all classes countable
so that R/Eα ≈ R. Is

⊔
α<κ R/Eα ≈ R × κ?

The following theorem gives some information concerning the Jónsson property.

Theorem 4.13 (ZF + AD). Let κ be an ordinal. Let 〈Eα : α < κ〉 be a
sequence of equivalence relation on R with all classes countable. Let f : [

⊔
α<κ R/

Eα]<ω
= → ⊔

α<κ R/Eα. Then, there is some perfect tree p so that f [[
⊔

α<κ[p]/
Eα]<ω

= ] �= ⊔
α<κ R/Eα.

Proof. Let E be the equivalence relation on R × κ defined by: (x, α) E (y, β) if
and only if α = β and x Eα y. Then

⊔
α<κ R/Eα is in bijection with the quotient

(R × κ)/E. In the following f will be considered as a function taking values in
(R × κ)/E.

Let X be the collection of surjections σ : {1, . . . , n} → {1, . . . ,m} where 1 ≤
m ≤ n are integers. For all σ ∈ X , let n(σ) = n and m(σ) = m, i.e. n(σ) and m(σ)
indicate the domain and range of σ, respectively.

For each σ ∈ X , define Aσ ⊆ Rm(σ) × R by

(x1, . . . , xm(σ), y) ∈ Aσ ⇔ (∃α1) . . . (∃αn(σ))(∃β)([(y, β)]E

= f([(xσ(1), α1)]E , . . . , [(xσ(n(σ)), αn(σ))]E))

In the following, fix a wellordering of n(σ)-tuples of ordinals. For each
(x1, . . . , xm(σ)), the elements of Aσ

(x1,...,xm(σ))
can be prewellordered as follows:

y0 � y1 if and only if the least (α1, . . . , αn(σ)) such that there exists (a unique)
β with

(y1, β) ∈ f([(xσ(1), α1)]E , . . . , [(xσ(n(σ)), αn(σ))]E)

is less than or equal to the least (α1, . . . , αn(σ)) such that there exists (a unique) β
with

(y2, β) ∈ f([(xσ(1), α1)]E , . . . , [(xσ(n(σ)), αn(σ))]E).

Let y ∈ Aσ
(x1,...,xm(σ))

. Let (α1, . . . , αn(σ)) be the least n(σ)-tuple of ordinals such
that for some (unique) β, (y, β) ∈ f([(xσ(1), α1)]E , . . . , [(xσ(n(σ)), αn(σ))]E). Then,
[y]� ⊆ π1[f([(xσ(1), α1)]E , . . . , [(xσ(n(σ)), αn(σ))]E)], where π1 : R × κ → R is the
projection onto the first coordinate. Note f([(xσ(1), α1), . . . , [(xσ(n(σ)), αn(σ))]E)
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is contained inside of R × {β} for some β. Since Eβ is an equivalence relation
with countable classes, π1[f([(xσ(1), α1), . . . , [(xσ(n(σ)), αn(σ))]E)] is countable. It
has been shown that each �-prewellordering class is countable. By Fact 4.10,
Aσ

(x1,...,xm(σ))
is countable for all (x1, . . . , xm(σ)).

Fix σ ∈ X . Let Rσ ⊆ Rm(σ) × ωR be defined by (x, h) ∈ Rσ if and only if
h : ω → Aσ

x is a surjection. For all x ∈ Rσ(m), Rσ
x �= ∅ since Aσ

x is countable. By
comeager uniformization (Fact 4.8), there is some comeager set Cσ ⊆ Rm(σ) and
some function Hσ : Cσ → ωR so that Rσ(x,Hσ(x)) for all x ∈ Cσ. Using AD, one
may assume that Hσ is continuous on Cσ by choosing a smaller comeager set if
necessary.

By the results of Mycielski, Fact 4.7, there is some perfect tree p so that
[[p]]m(σ)

= ⊆ Cσ for all σ ∈ X . Note that for all σ ∈ X , Hσ � [[p]]m(σ)
= is a continuous

function with the property that for all x ∈ [[p]]m(σ)
= , Hσ(x) ∈ ωR enumerates Aσ

x .
By Fact 4.5, there is some q ≤S p and some z ∈ R so that for all σ ∈ X , j ∈ ω, and
(x1, . . . , xm(σ)) ∈ [[q]]m(σ)

= , Hσ(x)(j) �= z.
Now suppose (r1, α1), . . . , (rn, αn) ∈ [q] × κ are such that ([(r1, α1)]E , . . . ,

[(rn, αn)]E) ∈ [
⊔

α<κ[q]/Eα]n=. There is some m ≤ n, (x1, . . . , xm) ∈ [[q]]m= , and
surjection σ : {1, . . . , n} → {1, . . . ,m} so that (r1, . . . , rn) = (xσ(1), . . . , xσ(n)).
Then, z /∈ Aσ

(x1,...,xm) implies that (z, β) /∈ f([(r1, α1)]E , . . . , [(rn, αn)]E) for all
β < κ.

This shows that f [[
⊔

α<κ[q]/Eα]<ω
= ] �= ⊔

α<κ R/Eα.

Let p be the perfect tree given by Theorem 4.13. Assume that each R/Eα ≈ R.
By Fact 4.9, each [p]/Eα

∼= R. If
⊔

α<κ[p]/Eα ≈ ⊔
α<κ R/Eα, then Theorem 4.13

would imply
⊔

α<κ R/Eα has the Jónsson property. This suggests the following
natural question.

Question 4.14 (ZF + AD). Let κ be an ordinal. Let 〈Eα : α < κ〉 be a sequence
of equivalence relations on R with all classes countable and R/Eα ≈ R for each
α < κ. Let p be a perfect tree. Is

⊔
α<κ R/Eα ≈ ⊔

α<κ[p]/Eα?

When all the Eα’s are the identity equivalence relation, =, then one can exhibit
the desired bijection. This gives the following result.

Theorem 4.15 (ZF + AD). For any ordinal κ, R × κ has the Jónsson property.

Proof. Let 〈Eα : α < ω〉 be a sequence, where each Eα is the identity equivalence
relation, =, on R. Note that,

⊔
α<κ R/Eα ≈ R × κ. Apply Theorem 4.13 to this

sequence. For any perfect tree p,
⊔

α<κ[p]/Eα ≈ ⊔
α<κ[p] ≈ R × κ.

Many of the results above are trivial if the sequence 〈Eα : α < κ〉 is accom-
panied by a sequence 〈Φα : α < κ〉, where each Φα : R/Eα → R is a bijection.
A natural question would be to construct an example 〈Eα : α < κ〉 such that for
each α < κ, R/Eα ≈ R but there does not exists a sequence 〈Φα : α < κ〉 which
uniformly witnesses these bijections exist. Also, is the condition that each Eα be an
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equivalence relation with all classes countable necessary in Questions 4.12 and 4.14?
The following example of Holshouser-Jackson answers these questions.

Example 4.16. Fix some recursive coding of binary relations on ω by reals. Let
WO denote the collection of reals that code wellorderings on ω. For α < ω1, let
WOα denote the reals coding wellorderings of ordertype α. For α < ω1, let Eα

be the equivalence relation on R defined by x Eα y if and only if (x = y) ∨ (x /∈
WOα ∧ y /∈ WOα). For each α < ω1, Eα is ∆1

1 bireducible to =. Hence, R ≈ R/Eα.
For each α < ω1, if x ∈ WOα, identify [x]Eα = {x} with x. For each α < ω1,

R\WOα is a single Eα equivalence class. Identify it with α. Under this identification,
one has a bijection of

⊔
α<ω1

R/Eα with WO � ω1 ≈ R � ω1.
R � ω1 is not in bijection with R × ω1: Suppose Φ : R � ω1 → R × ω1 is a

bijection. π1[Φ[ω1]] can be wellordered using Φ and the wellordering on ω1. (π1 :
R × ω1 → R is the projection onto the first coordinate.) Under AD, there is no
uncountable sequence of distinct reals; hence, π1[Φ[ω1]] is countable. Let r ∈ R

such that r /∈ π1[Φ[ω1]]. Φ−1[{r}×ω1] ⊆ R. But Φ−1[{r}×ω1] can be wellordered.
This would give an uncountable sequence of distinct reals in R. Contradiction.

As mentioned above, if 〈Eα : α < ω1〉 was accompanied by a sequence of bijec-
tions 〈Φα : α < ω1〉, then one can construction a bijection between

⊔
α<ω1

R/Eα

and R × ω1. Thus, there cannot be such a sequence of bijections under AD.
Note that, Eα has exactly one uncountable class. This example shows Question

4.12 has a negative answer without the condition that each Eα has all countable
classes.

Let p be a perfect tree such that [p] ⊆ R \WO. Then,
⊔

α<ω1
[p]/Eα ≈ ω1. ω1 is

not in bijection with
⊔

α<ω1
R/Eα ≈ R � ω1. Hence, Question 4.14 has a negative

answer if all the equivalence relations do not have all classes countable.

If all the equivalence relations in 〈Eα : α < κ〉 have all classes countable and
R ≈ R/Eα, then

⊔
α<κ R/Eα contains a subset which is in bijection with R � ω1

but itself is not in bijection with R � ω1.

Fact 4.17 (ZF + AD). Let κ be an uncountable ordinal. Let 〈Eα : α < κ〉 be a
sequence of equivalence relations on R so that for each α < κ, Eα has all classes
countable and R ≈ R/Eα. Then, R� κ injects into

⊔
α<κ R/Eα, but R� κ is not in

bijection with
⊔

α<κ R/Eα.

Proof. Let 0̄ : ω → {0}, be the constant 0 function. For each α < κ, identify [0̄]Eα

with α. Let Φ : R → (R/E0)\[0̄]E0 be a bijection. Identify Φ(r) with r. Using this
identification, there is a subset of

⊔
α<κ R/Eα which is in bijection with R � κ.

Suppose there is a bijection Φ : R � κ → ⊔
α<κ R/Eα.

⋃
α<κ Φ(α) can be

prewellordered by x � y if and only if the least α such that x ∈ Φ(α) is less
than or equal to the least α such that y ∈ Φ(α). Each �-class is countable.
Fact 4.10 implies that

⋃
α<κ Φ(α) is countable. Let r ∈ R with r /∈ ⋃

α<κ Φ(α).
Let X = {[r]Eα : α < κ}. Φ−1[X ] is an uncountable sequence of distinct reals in R.
Contradiction.
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[17] Theorem 2 shows that under ZF+DC+ADR, the only uncountable cardinals
below R × ω1 are ω1, R, R � ω1, and R × ω1. Thus under these assumptions,
if

⊔
α<ω1

R/Eα is not in bijection with R × ω1, then
⊔

α<ω1
R/Eα cannot inject

into R × ω1. Moreover, [17] Theorem 2 shows that under ZF + DC + ADR, the
only uncountable cardinals below [ω1]ω are ω1, R, R � ω1, R × ω1, and [ω1]ω. An
interesting question would be to compare the cardinality of [ω1]ω and

⊔
α<ω1

R/Eα

when each Eα is an equivalence relation with all classes countable.

Fact 4.18 (ZF + AD). Let 〈Eα : α < ω1〉 be a sequence of equivalence relations
on R such that each Eα has all classes Π0

1. There is no injection of [ω1]ω into⊔
α<ω1

R/Eα.

Proof. Recall that U is Martin’s cone measure on D, the set of Turing degrees.
For each x ∈ D, let Λ(x) denote the collection of countable x-admissible ordinals.
For each x ∈ D, let Γ(x) ∈ [ω1]ω be the increasing sequence of the first ω-many
x-admissible ordinals.

Suppose Φ : [ω1]ω → ⊔
α<ω1

R/Eα is an injection.
A sequence of Turing degrees (xn : n ∈ ω) and a sequence (σn : n ∈ ω) in <ω2

will be constructed by recursion with the property that for all n ∈ ω, |σn| = n,
σn ⊂ σn+1, and whenever f ∈ [Λ(xn)]ω, there is some r ∈ Φ(f) so that σn ⊂ r.

Let x0 = [0̄]T , where 0̄ is the constant 0 function. Let σ0 = ∅.
Suppose xn and σn have been defined with the desired properties. Let En+1

0 =
{x ∈ D : (∃ r ∈ Φ(Γ(x)))(σn 0̂ ⊆ r)} and En+1

1 = {x ∈ D : (∃ r ∈ Φ(Γ(x)))(σn 1̂ ⊆
r)}. Note that the cone above xn is contained in En+1

0 ∪ En+1
1 . Since U is an

ultrafilter, there is some i ∈ 2 and xn+1 ≥T xn so that En+1
i contains the cone

above xn+1. Let σn+1 = σn î, for this i ∈ 2.
Let f ∈ [Λ(xn+1)]ω. A result of Jensen ([9]) shows that, for every increasing ω-

sequence of xn+1-admissible ordinals f , there is some y ≥T xn+1 so that Γ(y) = f .
Then, y ∈ En+1

i . Hence, there is some r ∈ Φ(Γ(y)) = Φ(f) so that σn+1 ⊆ r.
Let r =

⋃
n∈ω σn. Let z be the join

⊕
n∈ω xn. Suppose f ∈ [Λ(z)]ω. For all

n ∈ ω, there is some rf
n ∈ Φ(f) so that σn ⊆ rf

n. Φ(f) is an Eα class for some α < ω

so Φ(f) is Π0
1. Since r is the limit of {rf

n : n ∈ ω} ⊆ Φ(f), r ∈ Φ(f). It has been
shown that for all f ∈ [Λ(z)]ω, Φ(f) ∈ {[r]Eα : α < ω1} ≈ ω1. Then Φ induces an
injection of [Λ(z)]ω into ω1. This is impossible since such an injection would yield
a wellordering of R since R injects into [Λ(z)]ω.

The above argument incorporates Martin’s proof of the partition relation ω1 →
(ω1)ω

2 . The following result captures the essential idea of the above argument.

Fact 4.19 (ZF+AD). Let κ ∈ ON. Let 〈Eα : α < κ〉 be a sequence of equivalence
relations on R. Let Φ : [ω1]ω → ⊔

α<κ R/Eα. Let R ⊆ [ω1]ω × R be defined by
R(f, x) ⇔ x ∈ Φ(f). If R has a uniformizing function then Φ is not an injection.

Proof. Let Ψ be a uniformizing function for R.
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For each n ∈ ω, let En
i = {x ∈ D : Ψ(Γ(x))(n) = i}. Since U is an ultrafilter,

there is some an ∈ 2 such that En
an

∈ U . Let xn ∈ D be such that the cone above
xn lies inside of En

an
. Now suppose that f ∈ [Λ(xn)]ω. A result of Jensen ([9])

states that for any such f , there is some y ≥T xn so that Γ(y) = f . As y ∈ En
an

,
Ψ(Γ(y))(n) = Ψ(f)(n) = an.

Let r ∈ R be such that for all n, r(n) = an. Let x = ⊕xn. If f ∈ [Λ(x)]n, then
Ψ(f) = r.

It has been shown that there is an uncountable set X ⊆ ω1 and some real r so
that Ψ[[X ]ω] = {r}. By definition of R, Φ[[X ]ω] ⊆ {[r]Eα : α < κ}. The latter set
is in bijection with κ. [X ]ω ≈ [ω1]ω. Therefore, Φ induces an injection of [ω1]ω into
the ordinal κ. As R injects into [ω1]ω, this would imply that one could wellorder R.

Note that, in Fact 4.19, R only needs to be uniformized on a set of cardinality
[ω1]ω. To see this, suppose R is uniformized on Z ⊆ [ω1]ω of cardinality [ω1]ω . Let
L : [ω1]ω → Z be a bijection. Let Φ′ = Φ ◦ L. The relation R′ associated to Φ′

can be uniformized. Hence, Φ′ is not injective by Fact 4.19. This implies Φ is not
injective.

The class of equivalence relations with Π0
1 classes is very restrictive. However,

it does include equivalence relations with all finite classes. However, in such cases,
there is a more natural argument: Fix some linear ordering < of R. For f ∈ [ω1]ω,
let L(x) denote the <-least element of Φ(x) (which exists since Φ(x) is finite). Now
apply Fact 4.19.

Fact 4.20 (With Jackson). Assume ZF + AD+. Let κ ∈ ON and 〈Eα : α < κ〉 be
a sequence of equivalence relations on R such that each Eα has all classes countable.
Then, there is no injection Φ : [ω1]ω → ⊔

α<κ R/Eα.

Proof. This is proved by verifying the uniformization condition of Fact 4.19. Note
that, if 〈Eα : α < κ〉 is a sequence so that each Eα is an equivalence relation with all
classes countable, then for any Φ, the associated relation has all countable sections.

Woodin’s countable section uniformization states that every relation on R × R

with countable section can be uniformized under AD+. In the present situation,
the relations are on [ω1]ω × R. Some modification of Woodin’s ideas can be used
to show countable section uniformization holds for such relations under AD+.
The main ideas of Woodin’s countable section uniformization on R can be found
in [1, 14].

Originally, Theorem 4.13 was proved under AD+ using Woodin’s countable sec-
tion uniformization. However, it was observed that for the purpose of the Jónsson
property, one did not need total uniformization provided by Woodin’s countable
section uniformization but rather partial uniformization on a set of cardinality
R (as provided by comeager uniformization) was adequate. As mentioned above,
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partial uniformization on a set of cardinality [ω1]ω is adequate for the conclusion
of Fact 4.19. This suggests the following:

Question 4.21. Using just AD, is it provable that for all relations R ⊆ [ω1]ω × R

with countable sections, there is some Z ⊆ [ω1]ω and Φ : Z → R such that |Z| =
|[ω1]ω| and for all z ∈ Z, R(z,Φ(z))?

The rest of this section will show the failure of the Jónsson property for
(R/E0) × κ, where E0 is the equivalence relation from Definition 2.15 and κ < Θ.

Fact 4.22 (ZF + AD). Suppose A ⊆ (R/E0) × κ and A ≈ R/E0, where κ is an
ordinal. Let π1 : (R/E0) × κ → R/E0 be the projection onto the first coordinate.
Then, π1[A] ≈ R/E0.

Proof. Note that A injects into π1[A]× κ. Hence, R/E0 injects into π1[A]× κ. Let
f : R/E0 → π1[A] × κ denote this injection. For each α < κ, let Aα = {x ∈ R :
π2(f([x]E0)) = α}, where π2 : (R/E0) × κ → κ is the projection onto the second
coordinate. Then

⋃
α<κAα = R. By Fact 4.6, there must be some α < κ so that Aα

is nonmeager. Using the Baire property, Aα is comeager in some basic open set O.
(Actually since Aα is E0-invariant, it can be shown that Aα is comeager.) Hence,
Aα ⊇ ⋂

n∈ω Dn, where 〈Dn : n ∈ ω〉 is a sequence of topologically dense open sets
relative to O. One can build an E0-tree inside of Aα. (See [2] Definition 5.2.) This
implies that there is a continuous reduction of E0 into E0 �Aα. Hence R/E0 injects
into Aα/E0. Using f , Aα/E0 injects into π1[A] × {α} ≈ π1[A]. It has been shown
that R/E0 injects into π1[A]. Thus π1[A] ≈ R/E0.

Fact 4.23. Let κ < Θ. There is a 6-Jónsson function for (R/E0) × κ.
(R/E0) × κ is not Jónsson.

Proof. By Fact 4.2, let Φ : [R/E0]3= → R/E0 be a 3-Jónsson map for R/E0. Let
Ψ : R → κ be a surjection. Since = reduces into E0, there is an injection Γ : R → R/

E0. Let Λ : [R/E0]3= → κ be defined by

Λ(x) =

{
0 (∀ r ∈ R)(Φ(x) �= Γ(r)),

Ψ(r) Φ(x) = Γ(r).

Finally, let Υ : [(R/E0) × κ]6= → (R/E0) × κ be defined by

((x1, α1), (x2, α2), (x3, α3), (x4, α4), (x5, α5), (x6, α6))

�→ (Φ(x1, x2, x3),Λ(x4, x5, x6))

Suppose B ⊆ (R/E0)×κ is in bijection with (R/E0)×κ. Let f : (R/E0)×κ → B

be a bijection. Let A = f [(R/E0) × {0}]. Then, A ≈ R/E0. By Fact 4.22, π1[A] ≈
R/E0.

Suppose that (y, β) ∈ (R/E0) × κ. Suppose Ψ(r) = β. Since Φ is a
3-Jónsson map and π1[A] ≈ R/E0, one can find ((x1, α1), (x2, α2), (x3, α3),
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(x4, α4), (x5, α5), (x6, α6)) ∈ [A]6= ⊆ [B]6= so that Φ(x1, x2, x3) = y and Φ(x4,

x5, x6) = Γ(r). Then, Υ((x1, α1), (x2, α2), (x3, α3), (x4, α4), (x5, α5), (x6, α6)) =
(y, β). Υ is a 6-Jónsson function for (R/E0) × κ.

Question 4.24 ([2]). Showed that R/E0 has no 2-Jónsson map but has a
3-Jónsson map. What is the least n so that (R/E0) × κ has a n-Jónsson map,
where κ < Θ?

If κ is any ordinal, is (R/E0) × κ also not Jónsson?
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