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Abstract Web-based interactions enable agents to co-
ordinate and generate collective action. Coordination

can facilitate the spread of contagion to large groups
within networked populations. In game theoretic con-
texts, coordination requires that agents share common

knowledge about each other. Common knowledge emerges
within a group when each member knows the states
and the thresholds (preferences) of the other members,
and critically, each member knows that everyone else

has this information. Hence, these models of common
knowledge and coordination on communication networks
are fundamentally different from influence-based uni-

lateral contagion models, such as those devised by Gra-
novetter and Centola. Moreover, these models utilize
different mechanisms for driving contagion. We evaluate

three mechanisms of a common knowledge model that
can represent web-based communication among groups
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of people on Facebook, using nine social (media) net-
works. We provide theoretical results indicating the in-

tractability in identifying all node-maximal bicliques in
a network, which is the characterizing network struc-
ture that produces common knowledge. Bicliques are

required for model execution. We also show that one
of the mechanisms (named PD2) dominates another
mechanism (named ND2). Using simulations, we com-

pute the spread of contagion on these networks in the
Facebook model and demonstrate that different mech-
anisms can produce widely varying behaviors in terms
of the extent of the spread and the speed of contagion

transmission. We also quantify, through the fraction of
nodes acquiring contagion, differences in the effects of
the ND2 and PD2 mechanisms, which depend on net-

work structure and other simulation inputs.

1 Introduction

1.1 Background and Motivation

Contemporary waves of uprisings (e.g., Black Lives Mat-
ter, Women’s March, Occupy Wall Street) are com-

monly characterized by significant use of social media
to share information prior to, as well as during, protests
to reach a critical number of participants. The purpose
of this information is often to convince or influence oth-
ers to support a cause (see Related Work, Section 2).
The goal of understanding how local online interactions
through social networks can facilitate information shar-
ing in a way that generates common knowledge and co-
ordination within large groups has motivated the con-
struction of models of mobilization. While the exemplar

in this work is protests, other applications of mobiliza-
tion are family decisions to evacuate in the face of hurri-
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canes and forest fires, and to participate in demonstra-
tions for equality. Our work applies to these examples
as well.

There are many social influence-based models that
have been proposed and evaluated, e.g., Schelling (1960,
1971, 1978); Granovetter (1978); Oliver (1993); Watts
(2002); Kempe et al. (2003); Dodds and Watts (2005);
Centola et al. (2006); Centola and Macy (2007); Siegel
(2009, 2010); Gonzalez-Bailon et al. (2011); Romero
et al. (2011); Aral et al. (2013); He and Liu (2017).
These references cover a range of topics; specifically, the
spread of segregation, fads, revolts, protests, informa-
tion on Twitter, and product marketing. Watts (2002)
argues for the use of social influence models in a wide
range of scenarios.

In many models, including those mentioned above,
an agent is assigned a threshold that quantifies the
amount of influence needed for it to mobilize or ac-
tivate. In a networked population, an agent or network

node i transitions from an inactive state (state 0) to
an active state (state 1) if at least a threshold θi
number of its neighbors (connections) are already in

state 1. Once in state 1, a node remains in that state;
this is called a progressive model (Kempe et al., 2003).
In the above models, agents make individual decisions
to change state based on their own thresholds and the

states of their neighbors, irrespective of the decisions
of their neighbors at the current time, and hence are
referred to as unilateral models.

In contrast, in game-theoretic models of collective
action, agents’ decisions to transition to state 1 depend
on their expectations of what others will do (and each

agent’s utility generated from her decision is based not
only on what she does, but also on what decisions her
neighbors make). That is, agents need to know each

others’ willingness to participate (defined by the thresh-
old θ) and this information needs to be common knowl-
edge among a group of agents (Korkmaz et al., 2014).
A threshold is also called a preference, i.e., as a per-
son’s threshold decreases, her preference to participate
increases. Common knowledge (CK) emerges within
a group, if the members have communication channels
to other members such that they form a particular net-
work structure (e.g., cliques or bicliques, depending on
model), and when each member knows the states and
attributes (e.g., preference) of the other members, and
critically, each member knows that everyone else knows
her attributes. Common knowledge enables a group of
agents to coordinate their actions, thus enabling them

to transition state simultaneously and cooperatively, if
it is mutually beneficial to do so.

In the context of collective action (e.g., protests),
two CK models (Chwe (2000) and Korkmaz et al. (2014))

combine social structure and individual incentives to-
gether in a coordination game of incomplete informa-
tion. Each provides a rigorous formalization of common
knowledge. The authors study which network structures
are conducive to coordination, and the local spread of
knowledge and collective action.

CK models are fundamentally different from unilat-
eral models as (i) contagion can initiate in CK models—
that is, contagion can be generated when no conta-
gion previously existed—whereas it does not in uni-
lateral models (unless an agent’s threshold is zero);
(ii) CK models may utilize multiple mechanisms at
graph geodesic distances of 1 and 2, whereas unilateral
models often use influence from distance-1 neighbors,
and (iii) the characterizing (social) network substruc-
ture for threshold-based models is a star subgraph cen-
tered at the ego node making a decision, while those
for CK models include distance-2 based stars and other
substructures such as cliques (Chwe, 1999) and bicliques1

(i.e., complete bipartite graphs) (Korkmaz et al., 2014).
Nodes in the biclique jointly change states if their thresh-

olds are all less than the size of the CK set.

1.2 Overview of Common Knowledge on Facebook

Here, we provide the key concepts of Facebook commu-

nications on a social network, in the context of common
knowledge. This accomplishes several things. First, it
illuminates the fundamental differences between infor-

mation sharing in the Common Knowledge on Face-
book (CKF) model and the unilateral contagion mod-
els mentioned above. Two examples of the dynamics of
the CKF model are presented: one to describe infor-
mally (to build intuition) the different mechanisms of
the CKF model; one to compare CKF dynamics with
those of the Granovetter (1978) type. Second, it pro-

vides the ideas that are the foundation of the opera-
tionalized CKF model formally presented in Section 3.
Third, it enables us to summarize our contributions in
Section 1.4 and to set up related work in Sectioni 2.

1.2.1 Conceptual Model of Facebook With Common
Knowledge

In this work, we evaluate the Common Knowledge on
Facebook (CKF) model (Korkmaz et al., 2014); see Fig-
ure 1. CKF models communication on Facebook (through

1 A biclique contains two disjoint sets of nodes, where each
node in one set has an edge to every node in the other set,
while there are no edges between nodes in the same set. Ex-
amples include a cycle with 4 nodes (where each of the two
disjoint sets has two nodes) and a star graph of size n where
the center node (hub) is in one set, and the remaining n − 1
nodes (spokes) are in the other set.
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Fig. 1: Concepts for a social network representing Face-
book. Top: three nodes, i, j, and k of a larger social net-
work, connected by two edges. The network edges are
for communication, so the social network is a communi-
cation network, e.g., among friends. Middle: The Face-

book structure represented by a social network. Each
node represents a person and that person’s Facebook
wall or timeline. As in Facebook, a person can post in-
formation to, and read information from, their own wall

and their friends’ walls. Here, the information is each
node `’s threshold θ` and state (or action) a`. There-
fore, i and k can each write on, and read from, their

own walls and that of j. Node j can write to and read
from all three walls. Bottom: the information that can
be posted to, and read from, each wall. By interacting
through the wall of j, i and k—at distance-2 in the

social network—can communicate.

a “wall” or “timeline”) as a means to generate CK and
facilitate coordination. Geodesic distance-2 communi-
cation is achieved as follows: two individuals i and k
do not directly communicate, but each communicates
with person j. This means that if, for example, i writes
information about herself on j’s wall, then k knows i’s

information by reading j’s wall, without directly com-
municating with i. The information thus travels two
hops in a social network, that is, from i to j to k. These
ideas lead to different mechanisms for driving contagion
through a social network.

As indicated in Figure 1, the information shared
among nodes are thresholds (preferences) θ and states
or actions a. These assumptions are also in Chwe’s face-
to-face model of CK (Chwe, 1999, 2000). However, these
conditions are not sufficient to form CK among nodes.
An additional necessary condition in the CKF model is
that the members have communication channels such

that they form a biclique in the communication net-
work (Korkmaz et al., 2014). If these conditions are
met, CK—common knowledge of thresholds and states
of group members—can form within a group. Further-
more, initial experiments on human subjects (Korkmaz
et al., 2018a) indicate that individuals do behave in ac-
cordance with our model when they know their neigh-
bors’ thresholds and states, and are situated within bi-
clique substructures.

In the CKF model, stochasticity is introduced using
a parameter called online probability p which is the
probability that an agent is online (available) during
a time step to communicate with other agents. If the
node is offline, then the agent cannot participate in the
collective action; however, the graph structure is pre-
served. In other words, a person’s Facebook wall exists
and can be used (by others) whether or not the person
is online. For example, in Figure 1, even if agent j is
offline at time t, agents i and k can write on j’s wall
and learn about each other’s thresholds and states, and
can coordinate.

1.2.2 Common Knowledge Communication
Mechanisms

Multiple mechanisms are operative in the CKF model,
including CK itself, network dynamics, and local and
global interactions. Hence, it is of interest to under-

stand the effects of mechanisms on the spread of conta-
gions. We aim to develop computational models of the
CKF mechanisms to study these mechanisms individ-

ually and in combination, to quantify their effects on
the spread of collective action. Table 1 describes these
mechanisms, which are formalized in Section 3. These
mechanisms are explained using examples below.

1.2.3 Illustration of Common Knowledge Contagion
Dynamics

Figure 2 provides an example illustrating all three mech-
anisms summarized in Table 1. In this network, there
are 7 people with different thresholds. Based on the
CKF model (Korkmaz et al., 2014) summarized in Sec-
tion 3, for agents to participate (i.e., transition to state 1),
they need to share common knowledge with a group of

people (they need to form a complete bipartite graph),
and their thresholds should be less than the size of the
common knowledge set (i.e., the group they share com-
mon knowledge with). In this example, agents 1, 2, 3,
and 4 each have a threshold of 3, indicating that each
needs to have at least 3 other people to participate (i.e.,
transition to state 1) for them to participate. These

four people form a complete bipartite graph (a 4-cycle)
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Fig. 2: Spread of contagion on a 7-node graph illustrating the mechanisms of Table 1. Each operative mechanism
is evaluated independently, at each time step t. At t = 3, the spread size is 6 (6 nodes in green), and the spread
fraction is 6/7. The dynamics resulting from the different mechanisms are discussed in the text.

Table 1: Communication mechanisms of the CKF model evaluated in this work. These mechanisms may be operative
in contagion initiation, propagation, or both. Mechanism abbreviations are shown within square brackets (i.e., [·]).
They are studied individually and in combination. Each of these is different from classic diffusion mechanisms,
e.g., Granovetter (1978); Watts (2002); Centola and Macy (2007); Gonzalez-Bailon et al. (2011).

Mechanism Description

Common
knowledge
[CK]

This is a common knowledge mechanism characterized by bicliques in
social networks. This mechanism can initiate contagion, and can drive
contagion propagation. No seeded nodes with contagion are required. It
is a coordination mechanism where agents make joint decisions.

Neighborhood
dynamics
[ND2]

This is influence (communication) produced by neighbors within
distance-2 of an ego node. This mechanism, also referred to as distance-2
mechanism, propagates contagion. This is a unilateral mechanism.

Population
dynamics
[PD2]

Since agents (nodes) know both state and thresholds of agents within
distance-2, an agent can infer information about the numbers of agents
currently in state 1, even when these other agents are at geodesic dis-
tances of 4 or more. This mechanism, also referred to as threshold infer-
ence mechanism, propagates contagion. This is a unilateral mechanism.

that allows them to generate common knowledge about

their willingness to participate. They know each others’
thresholds and know that they are sufficiently low for
them to jointly participate and achieve mutual bene-

fits. Hence, they transition to state 1 at t = 1. This is
referred to as the common knowledge [CK] mechanism.
On the other hand, agent 5, who shares common knowl-
edge of thresholds with agents 1, 2, and 4 (through the

4-node star network centered at agent 2), has threshold
of 6 which is not low enough for him to participate with
the other 3 players that he shares CK with. Agent 5
also is part of CK node sets {2, 5, 6} (a 3-node star cen-
tered at agent 5) and {5, 6, 7} (a 3-node star centered at
agent 6), but cannot transition to state 1 for the same
reason. Similarly, persons 6 and 7 do not transition to
state 1 at t = 1.

Since agent 2 is within distance-2 of agent 6 (friend-
of-friend), agent 6 knows agent 2’s threshold and state
(action) through the Facebook wall or timeline of agent 5.
At t = 2, agent 2’s state is 1 and her fixed threshold

is 3. Thus, agent 6 knows that at least four agents are
in state 1. Agent 6’s threshold is satisfied (i.e., θ6 ≤ 4)

and she transitions to state 1. This is the population

dynamics [PD2] mechanism.

Finally, at t = 3, person 7 will transition to state 1
as a result of the neighborhood dynamics [ND2] mech-
anism: it has one activated neighbor (agent 6) within

distance-2 to meet its threshold of 1. (Agent 7 can also
transition due to the [PD2] mechanism, which illus-
trates that a node may transition to state 1 at one time
due to multiple mechanisms.) All of the state transi-
tions in this example are made formal in Section 3.

We note that applying a Granovetter (1978) type
threshold model, zero nodes would transition to state 1,
given the setup in Figure 2.

1.2.4 Comparison Between Granovetter Threshold
Contagion Dynamics and Those from Common
Knowledge

Figure 3 shows two cases of contagion dynamics pro-
duced on the same network, where thresholds of nodes
are the same, but where the contagion model is differ-
ent. At the top, the dynamics are for the CKF model.
At the bottom, Granovetter (1978) threshold model dy-
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Fig. 3: Comparison of contagion spreading for the CKF model (Korkmaz et al., 2014) (top) and the Granovetter
threshold model (Granovetter, 1978) (bottom). The networks and threshold assignments are the same in both
cases. The seeding of nodes in the active state are different: there are no seed nodes for the CKF model, while

there are two seed nodes (namely, v1 and v2) for the Granovetter threshold model. The CKF model shows greater
diffusion, even without seeding. The final spread fractions are 1.0 (CKF) and 0.67 (Granovetter threshold).

namics are provided. The initial conditions are also dif-
ferent: all nodes are in the inactive state (red color) for
the CKF model, whereas two nodes (v1 and v2) are in

the active state 1 (green) at time t = 0 for the Granovet-
ter model. At the end of t = 1, all six nodes are active
in the CKF model, while only three nodes are for the

Granovetter model, i.e., the fraction of nodes activated
are 1.0 versus 0.50, respectively, for the two models. At
t = 1, the CKF model produces a fixed point, mean-
ing that no more node state transitions are possible. At
t = 2, v4 transitions in the Granovetter model, and this
system now reaches a fixed point. Consequently, the fi-
nal spread fractions are 1.0 and 0.67 for the CKF and
Granovetter threshold models, respectively.

We explore the mechanisms for these state changes.
In the top graphics in Figure 3 for the CKF model, all
nodes transition at t = 1 because a star subgraph ex-

ists with the hub node v3. Since this is a biclique and
all nodes have θi ≤ 5, 1 ≤ i ≤ 6, which is less than
the number of nodes in the biclique (6), all nodes tran-
sition state, as described in the previous example. In
contrast, the Granovetter model uses distance-1 influ-
ence to change the states of two nodes (v3 and v4) over
two time steps. These differences give insights into the
two models. Moreover, the same dynamics in the CKF
model would occur if all thresholds were increased to

five; but if this was the case, then no nodes would tran-
sition state in the Granovetter threshold model. Formal
models are presented in Section 3.

1.3 Goals of Our Work

We demonstrated through two examples in the previous

subsections that (i) there are multiple mechanisms by
which vertices (or agents, nodes) can transition state
in the CKF model, and (ii) contagion can spread more
rapidly and more extensively in the CKF model com-
pared to that for unilateral threshold-based models such
as the Granovetter (1978) model. The goals of this work
are to understand and quantify, both theoretically and

through computational experiments, the contributions
of these mechanisms to CKF contagion dynamics.

1.4 Contributions of This Work

We divide our contributions into two parts: theoretical
results and computational results. The computational
results helped facilitate the formulation of questions for

our theoretical study.
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A. Theoretical characterizations of the CKF
model dynamics. Our results are as follows; see Sec-
tion 4 for details.

1. All bicliques in a network must be enumerated be-
cause they are inputs to the CKF model. The prob-
lem of listing all of the bicliques in a graph takes
exponential time in the worst-case.

2. Given a social network G under the CKF model
where all nodes have the same threshold θ ≥ 0 and
the model is deterministic (i.e., the online probabil-
ity p = 1 for all nodes), the population dynamics
(threshold inference) mechanism [PD2] dominates
the neighborhood dynamics (distance-2) mechanism
[ND2]. However, the converse may not hold.

3. For a social network G under the deterministic CKF
model where all nodes have the same threshold θ
with θ being either 0 or 1, the threshold inference
mechanism [PD2] is equivalent to the distance-2 mech-
anism [ND2].

4. The previous two results may not hold when all

nodes do not have the same threshold. This em-
phasizes the importance of the uniform threshold
assumption.

5. For the stochastic version of the CKF model (i.e.,
for at least one node, the online probability p < 1)
where all nodes have the same threshold θ ≥ 1, the
[PD2] mechanism dominates the [ND2] mechanism.

B. Computational results for the CKF model.
We quantify contagion dynamics on nine web-based so-
cial networks (presented in Section 5) that range over
three orders of magnitude in numbers of nodes and of

edges, 5× in average degree (i.e., over a factor of 5),
three orders of magnitude in maximum degree, 80× in
average clustering coefficient, and 3× in graph diam-
eter. Based on simulations on these networks (in Sec-
tion 6), our results are presented below. In this discus-
sion, we use dave and dmax to denote respectively the

average and maximum node degrees of a network. We
provide a qualitative summary of several computationally-
driven observations; a more detailed listing is given in
Section 6.2.

1. The [PD2] mechanism is a more dominant mech-
anism in driving contagion in networks than the
[ND2] mechanism. Over all the networks, once the

two mechanisms [CK]+[PD2] are active, there is no
benefit (i.e., there is no further increase in conta-
gion spreading) by adding the [ND2] mechanism.
In some cases, the contribution to contagion of the
[ND2] mechanism rivals that of the [PD2] mecha-
nism.

2. The [PD2] mechanism always increases the conta-
gion spread over that of the [CK] only mechanism.

The [ND2] mechanism sometimes increases the con-
tagion spread over that of the [CK] only mechanism.
The amounts of these contributions vary widely across
networks, for different conditions.

3. As p increases from 0.03 to 0.4 for a single network,
the differences between the [CK]-generated spread
fractions and the [CK]+[PD2]-generated spread frac-
tions (over the population) decrease. Lesser online
probabilities favor a mechanism whereby a node can
transition to state 1 via influence of a single neigh-
bor, as is the case for [PD2]. As p increases, more
nodes are online and conditions are more conducive
for the CK mechanism, resulting in [CK]-driven con-
tagion spread catching up.

4. The ranking of networks, from least able to spread
contagion to most able (for threshold θ = ddavee),
is characterized by the increasing order of the ratio
dmax/dave. See Section 6.3.4 for details.

1.5 Extensions from Preliminary Version

A preliminary version of this paper appeared as Kuhlman
et al. (2020). This version contains a number of exten-

sions to the previous version, including the following:
(i) expansion of Introduction and Related Work; (ii) all
theoretical results are new (Section 4); (iii) four new
networks are analyzed in Section 5, in addition to the

original five; and (iv) new simulation results in Sec-
tion 6 (the number of results plots in the paper has
increased from eight to 43).

1.6 Paper Organization

The paper is organized as follows. Section 2 contains
related work. Formal definitions concerning the model
are presented in Section 3. Theoretical results are pro-
vided in Section 4. Section 5 contains the social net-
works that we study using computational experiments.
The agent-based simulation (ABS) process and results

are presented in Section 6. Section 7 presents some con-
cluding remarks.

2 Related Work

Many unilateral models and applications discussed in
Section 1 are not repeated here. Here, we focus on mod-
els and data from social media and game-theoretic com-
mon knowledge models. See Oliver (1993) for a review

of coordination and collective action.
There are several studies that model web-based so-

cial media interactions. The spread of hashtags on Twit-
ter is studied using a threshold model in Romero et al.
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(2011). Diffusion on Facebook is modeled in Sun et al.
(2009), and a similar type of mechanism on Facebook
is used to study the resharing of photographs in Cheng
et al. (2014). None of these works uses the “wall” or
“timeline” mechanism of Facebook that is considered
here under the CKF model.

A couple of data mining studies have used Facebook
walls, including an experimental study (Devineni et al.,
2015). Features of cascades on Facebook are studied
using user wall posts (Huang et al., 2013), but again,
these are cascades of the conventional social influence
type; there is no assessment of CK-based coordination.

Most experimental studies of social influence involve
unilateral interactions, where one user sends messages
to influence one or more others. Web-based experimen-
tal studies of unilateral influence phenomena include
those on Twitter (Gonzalez-Bailon et al., 2011), Face-
book (Bakshy et al., 2012; Dow et al., 2013; Kramer
et al., 2014; Cheng et al., 2014; Adamic et al., 2016),
LinkedIn (Chen et al., 2017), Digg (Hodas and Ler-

man, 2014), Doodle (Romero et al., 2017), Stack Over-
flow (Upadhyay et al., 2017), and Wikipedia (Back-
strom et al., 2013), among others (e.g., Centola (2010,
2011)). We argue that our work on CK is valuable in

complementing the large number of studies, such as
those cited here, on unilateral models and mechanisms.

A study of the spread of videos on YouTube (Susarla
et al., 2012) finds four mechanisms of social influence

operative: awareness, attention, homophily, and infor-
mation. They find significant influence (contagion) ef-
fects and network structure effects in determining whether
videos are successful and to what degree. Our study also

seeks to understand individual mechanisms.

The Chwe common knowledge model was introduced
in Chwe (1999, 2000); it was conceived for face-to-face
or in-person interactions that produce common knowl-
edge. Several situations in which common knowledge
may be produced are given in Chwe (1998). Korkmaz
et al. (2018a) conducts an online experimental study
testing the Chwe common knowledge model.

There have been a few works on the CKF model in-
troduced in Korkmaz et al. (2014). Details of the game-
theoretic formulation are provided there. For example,
simulations of the CKF model cannot be carried out
efficiently; we point out in Section 4 that listing all
bicliques in a network takes exponential time in the
worst-case. This makes studying CKF on very large
networks (e.g., with 1 million or more nodes) extremely

difficult. See Section 5 for computational details. An ap-
proximate and computationally efficient CKF model is
specified in Korkmaz et al. (2016a). Studies involving
both Chwe and CKF models include basic simulation
results (Korkmaz et al., 2014). CK dynamics on net-

works without key players is studied in Korkmaz et al.
(2016b, 2018b). None of these works investigates the
individual and combinations of mechanisms shown in
Table 1.

3 Model

3.1 Preliminaries

This section provides a formal description of the Com-
mon Knowledge on Facebook (CKF) model (Korkmaz
et al., 2014) studied in this paper. The population is
represented by a communication network G(V,E). There
is a set V = {1, 2, . . . , n} of n nodes (people) and an
edge set E where an undirected edge {i, j} ∈ E means
that nodes i, j ∈ V can communicate with each other.
Each person i ∈ V at time t is in a state ait ∈ {0, 1}:
if ait = 1, person i is in the active state (e.g., joining a
protest), and ait = 0 otherwise (e.g., staying at home).

We use progressive dynamics (Kempe et al., 2003), such
that once in state 1, nodes do not transition back to 0.
Each node i has a threshold θi that indicates its incli-

nation/resistance to activate.

3.2 Common Knowledge Formalism

Given person i’s threshold θi and the system state at
t, denoted by the n-vector at = (a1t, a2t, . . . , ant), her

utility is given by

Uit =


0 if ait = 0
1 if ait = 1 ∧ |{j ∈ V : ajt = 1}| ≥ θi
−z if ait = 1 ∧ |{j ∈ V : ajt = 1}| < θi

(1)

where −z < 0 is the penalty a person gets if she acti-
vates and not enough people join her. Thus, a person
will activate as long as she is sure that there is a suffi-

cient number of people (in the population) in state 1 at
t. A person always gets utility 0 by staying in state 0
regardless of what others do since we do not consider
free-riding problems. When she transitions to the active
state, she gets utility 1 if the total number of other peo-
ple activating is at least θi. (Note that these “others”
need not be neighbors of i, as in unilateral models.)

The CKF model describes Facebook-type (friend-
of-friend) communication in which friends write to and

read from each others’ Facebook walls. This informa-
tion is also available to their friends of friends. An
overview of the Facebook setup was provided in Sec-
tion 1.2 and Figure 1. The mechanisms and their impli-
cations are described below. The communication net-
work indicates that if undirected edge {i, j} ∈ E, then
node i (resp., j) communicates (θi, ait) (resp., (θj , ajt))
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to node j (resp., i) over edge {i, j} at time t. This in-
formation is available to j’s (resp., i’s) neighbors. The
communication network helps agents to coordinate by
creating common knowledge at each t.

3.3 Facebook Common Knowledge Model Mechanisms

Here we describe the three mechanisms in this model
(cf. Table 1), and their implications. (Figure 2 of Sec-
tion 1 illustrates these mechanisms.)

The CKF model describes a Facebook type com-
munication which allows for distance-2 communication:
two nodes, i and j, with {i, j} /∈ E can communicate
by posting to and reading from the wall of a common
neighbor k, provided {i, k}, {j, k} ∈ E. Thus, all i ∈ V
can communicate with all nodes j ∈ V if their geodesic
distance δ(i, j) is at most 2. All three mechanisms make
use of this Facebook communication structure.

For the common knowledge [CK] mechanism of
Table 1, the biclique subgraph is the structure neces-
sary for creation of CK among a group of people (Ko-

rkmaz et al., 2014), and allows them to jointly acti-
vate. We first compute all node-maximal bicliques in G.
Let M biclique denote the set of nodes of G that forms
a biclique. Then, V in Equation (1) is replaced with

M biclique. At each t, Equation (1) is computed for each
i ∈ V in each CK set M biclique for which i ∈M biclique.

The neighborhood dynamics [ND2] mechanism
(Table 1) is similar to the Granovetter (1978) unilateral

contagion model, but with interaction at both distance-
1 and distance-2. Let the neighbors j of i within distance-
2 be defined by N2

i = {j : δ(i, j) ≤ 2}. The [ND2]

mechanism is given by

ait =

{
1 if ai,t−1 = 1 or |{j ∈ N2

i : aj,t−1 = 1}| ≥ θi
0 otherwise.

(2)

Finally, the population dynamics [PD2] mecha-

nism indicates that a node i that is in state 0 can infer
a minimum number of nodes already in state 1 if a node
j in N2

i is already in state 1, by knowing θj . Formally,

ait =


1 if ai,t−1 = 1 or

(max θj : j ∈ N2
i , aj,t−1 = 1) + 1 ≥ θi

0 otherwise.

(3)

Assume ai,t−1 = 0. If j ∈ N2
i and aj,t−1 = 1, with θj ,

then i can infer that at least θj +1 nodes are in state 1.
Now, if θi ≤ θj +1, then i will transition to state 1; i.e.,
ait = 1.

At each time t−1, all operative mechanisms are eval-
uated, independently, for each i ∈ V in which ai,t−1 =
0. If any of the three mechanisms causes i to transition,
then ait = 1.

3.4 Online Probability

Each agent i’s presence or absence on the social net-
work (i.e., online or offline) is captured by the online
probability 0 ≤ pi ≤ 1. This node probability is the
probability that a node is online (i.e., is available for
communication on Facebook) or the contagion dynam-
ics at each t. A node i that is online at t, and in state 0,
can possibly transition state 0→ 1 and, if ait = 1, then
i can influence other nodes to transition state 0→ 1. A
node that is offline at any t cannot transition state nor
influence others to transition due to absence of commu-
nication. Note that the graph structure in Figure 1 is
preserved irrespective of whether a node is online.

In computing contagion dynamics at each time t,
each node i first conducts a Bernoulli trial with proba-
bility pi. After all nodes have completed this step, the

nodes that are online at this time step are known. Only
these nodes that are considered in the mechanisms of
Section 3.3.

4 Theoretical Results

4.1 Overview

In this section, we present theoretical results for the
CKF model. First, we observe that a core problem in
the simulation of the CKF model, namely the gener-

ation of all the bicliques in a graph, is intractable in
general. We then present several results that point out
dominance relationships between the threshold infer-
ence ([PD2]) and distance-2 ([ND2]) mechanisms for
propagating a contagion. We also examine the effect of
the online probability on the dominance relationships.

4.2 Intractability of Listing all the Bicliques

Proposition 1 The problem of listing all the bicliques
in a graph takes exponential time in the worst-case.

Proof As proven by Prissner (2000), there are graphs

on n nodes where the number of bicliques is exponen-
tial in n. In particular, Prissner presents a class C of
graphs where each graph has n nodes and the number
of bicliques in the graph is 3n/3. Thus, any algorithm
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that lists each of the bicliques in a graph must use ex-
ponential time when the input to the algorithm is from
the class C of graphs identified in Prissner (2000).

4.3 Relationships between Threshold-Inference and
Distance-2 Mechanisms

Proposition 2 Given a social network G under the
CKF model where all nodes have the same threshold
θ ≥ 0 and the model is deterministic (i.e., the online
probability p = 1 for all nodes), the threshold inference
mechanism [PD2] dominates the distance-2 mechanism
[ND2]; that is, if [ND2] causes nodes to transition state,
then [PD2] will also cause these same nodes to transi-
tion state. However, the converse may not hold.

Proof We first show that whenever [ND2] causes a node
to transition state, so does [PD2]. If the threshold value

θ = 0 for all the nodes, then the result is trivial since
all the nodes will transition to 1 in the very first time
step. So, assume that θ ≥ 1. We first note that both
mechanisms require the existence of at least one node

in state 1 for causing a node state transition. Suppose
the [ND2] mechanism is operative at a node j and it
causes the node j to transition from 0 to 1. Then, by

definition of the [ND2] mechanism, there are at least θ
nodes within a distance of 2 from j which are in state 1
during the time instant before j transitions to 1. Since

θ ≥ 1, we conclude that there is at least one node i
which is in state 1 before j’s transition and which is
within a distance of 2 from j. Since the state of i is 1,
and θj = θi, the conditions are met for j to transition to

state 1 by [PD2]. Thus, whenever [ND2] causes a node
state transition, so does [PD2].

To prove that the converse does not hold, consider
the following example. Suppose the graph is a tree with
five nodes as shown in Figure 4 and all the nodes have
the same threshold θ = 2. Suppose at time 0, nodes
c, d and e are in state 1 while nodes a and b are in
state 0. Under [ND2] mechanism, node a has only one
node (namely, node c) which is within a distance of

2 from a and which is in state 1. Since the threshold
of node a is 2, a cannot transition from 0 to 1 using
the [ND2] mechanism. However, since node a has one
node c which is in state 1 and c is within a distance
of 2 from a, the [PD2] mechanism is operational at a,
and consequently, a can transition to 1. Hence, even
though the [ND2] mechanism does not cause node a to
transition, the [PD2] mechanism does cause node a to
transition to state 1.

We now consider a special case where all the nodes
have the same threshold which is either 0 or 1.

Proposition 3 Given a social network G under the de-
terministic CKF model where all nodes have the same
threshold θ and θ is either 0 or 1. Then the threshold in-
ference mechanism [PD2] is equivalent to the distance-2
mechanism [ND2]. In other words, if one of these mech-
anisms causes a node to transition to state 1, then so
does the other.

Proof When all the nodes have the same threshold θ =
0, the proposition is trivially true since each node changes
to 1 in the first time step. So, assume that for all the
nodes, the threshold θ = 1. In this case, from Propo-
sition 2, it follows that whenever [ND2] causes a node
state transition, so does [PD2]. Thus, we only need to
prove the converse. Assume that some node i changes
from 0 to 1 through the [PD2] mechanism. Thus, there
is at least one node j within distance 2 of i whose state
is 1. When θ = 1, this is exactly the condition needed
under [ND2] for node i to change from 0 to 1. Thus,
[ND2] is also causes transition at i, and this completes

our proof of Proposition 3.

a

b

c

d e

Fig. 4: Example tree used in proving Proposition 2.

In the above proposition, the proof of dominance of
the [PD2] mechanism over the [ND2] mechanism relies
on the assumption that all nodes have the same thresh-
old θ. Our next result points out that the assumption
of uniform thresholds is essential.

Proposition 4 There exists a social network G under
the deterministic CKF model where not all the nodes
have the same thresholds such that the [PD2] mecha-
nism does not dominate the [ND2] mechanism; that is,
for some node u of G, the [ND2] mechanism causes u

to transition to state 1, but the [PD2] mechanism does
not cause transition.
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Proof Let G be the star graph with n ≥ 4 nodes where
the center node u has degree n − 1 while each of the
other nodes is adjacent only to u; thus, the nodes other
than u are leaves with degree 1. Suppose u is in state
0 and its threshold θu = n − 1. Let W denote the set
consisting of all the n − 1 leaf nodes. Let each node
w ∈ W be in state 1 and have a threshold of 1; note
that |W | = θu = n−1 ≥ 3. In this example, the thresh-
old inference mechanism [PD2] will not be activated for
node u because all nodes in W have a threshold of 1
which is less than θu. However, the distance-2 mecha-
nism [ND2] will be activated because of the following:
(i) all nodes w ∈W are within distance-2 of u (in fact,
they are at distance-1 from u); and (ii) |W | = θu. Thus,
node u’s threshold is met by the [ND2] mechanism, and
it will transition to state 1.

For uniform thresholds, the dominance of the [PD2]
mechanism over the [ND2] mechanism indicated in Propo-
sition 2 also holds under the stochastic version of the
CKF model (i.e., for at least one node p < 1), as shown

below.

Corollary 1 Given a social network G, and the CKF
model where all nodes have the same threshold θ ≥ 1

and the model is stochastic (i.e., for at least one node,
the online probability p < 1). Then, the [PD2] mecha-
nism dominates the [ND2] mechanism.

Proof The proof is similar to the one presented for
Proposition 2. Suppose all the nodes have threshold
θ ≥ 1 and a node i changes from 0 to 1 using the [ND2]

mechanism. We will show that the [PD2] mechanism is
also operational at i.

Since the [ND2] mechanism is operational at i, there
are at least θ ≥ 1 nodes which satisfy all of the following
properties: (i) these nodes are all in state 1, (ii) they
are all within distance 2 of i and (iii) these nodes are all

online during the time step when i changes from 0 to
1. These conditions readily imply that there is at least
one node j satisfying all the following properties: (i) j
is in state 1, (ii) θj = θi, (iii) j is within distance 2 of i,
and (iv) j is online during the time step when i changes
from 0 to 1. These are exactly the conditions needed for
the [PD2] mechanism to cause node i to transition. The

corollary follows.

4.4 Sensitivity of [ND2] and [PD2] Mechanisms to
Online Probability

Here, we consider systems under the stochastic CKF
where all nodes have the same threshold θ ≥ 1 and

each node decides to be online with probability p inde-
pendently of other nodes. We will explain through an
example that the chances of a node transitioning to 1
through the [PD2] mechanism is at least as large as the
transition through the [ND2] mechanism.

The example is again a star graph similar to the
one considered in the proof of Proposition 4. Let u be
the center node of a star graph and let θ (which is the
threshold of each node) be the number of leaves in the
star graph. Assume that at a certain time t, u is in
state 0 and is online. For each leaf node w, let the state
and online probability be 1 and p respectively. In this
situation, both [ND2] and [PD2] mechanisms may apply
depending on how many nodes are online.

For the [ND2] mechanism to apply, since the thresh-
old of u is θ, all the θ leaf nodes must be online at time
t; since each node decides to be online independently,
the probability of that event is pθ. For the [PD2] mech-
anism to apply, it is enough to have at least one of
the leaf nodes online. To compute this probability, note

that the probability that none of the θ leaf nodes is on-
line is (1 − p)θ; therefore, the probability that at least
one node is online at time t is 1 − (1 − p)θ. To see the

relationship between the probability expressions pθ and
1− (1−p)θ, first note that since p > 0, 1−p < 1. Thus,
for any θ ≥ 1, we have

(1− p) ≥ (1− p)θ.

Therefore,

1− (1− p)θ ≥ p ≥ pθ,

where the last inequality follows from the fact that

p ≤ 1. In the final inequality above, the left and right
sides represent respectively the transition probabilities
for u due to the [PD2] and [ND2] mechanisms. We thus

conclude that in the above example, transition due to
[PD2] is at least as likely as that due to [ND2].

Finally, we relate these theoretical results to the
forthcoming simulation results in Section 6. In simu-
lations, we always include the [CK] mechanism because
this is the only mechanism that does not require seed-
ing of nodes in state 1 in order for contagion to appear
(i.e., to initiate) and to spread. Hence, including the

[CK] mechanism obviates the need for seeding. The re-
sults of this section apply to the simulations in Section 6
because our results here do not depend on how nodes
reach state 1; only that at least one node is in state 1
so that [PD2] and [ND2] mechanisms can operate.
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Table 2: Characteristics of web-based social networks analyzed. If there are multiple connected components in a
graph, we use only the giant component. Here, n and m are numbers of nodes and edges, respectively; dave and
dmax are average and maximum degrees; cave is average clustering coefficient; ∆ is graph diameter; nbbc is the
number of non-star bicliques; sbbc is the average size of the non-star bicliques; and smaxbc is the maximum size of
any biclique. Several properties are computed with the codes in the net.science cyberinfrastructure (Ahmed et al.,
2020), using methods in SNAP (Leskovec and Sosič, 2016) and NetworkX (Hagberg et al., 2008).

Network Type n m dave dmax dmax/dave cave ∆ nbbc sbbc smax
bc

Jazz Musicians 198 2,742 27.7 100 3.61 0.617 6 22,228 16.7 101
SF1 Stylized 4,956 45,031 18.2 270 14.84 0.0780 8 833,918 10.8 271
Wiki Online Voting 7,115 100,762 28.3 1,065 37.63 0.141 7 355,012,343 17.5 1,066
Ca-Hepth Co-authorship 8,638 24,806 5.74 65 11.32 0.482 18 207 8.8 65
FHS Human Health 10,430 37,103 7.11 78 10.97 0.530 18 1,688 13.0 79
P2P Peer Comms. 10,876 39,940 7.34 103 14.03 0.00622 10 5,663 5.9 104
Astroph Co-authorship 17,903 196,972 22.0 504 22.91 0.633 14 82,795 27.0 505
Enron Email 33,696 180,811 10.7 1,383 129.3 0.509 17 22,264,629 18.1 1,384
FB Facebook 43,953 182,384 8.30 223 26.87 0.115 18 258,668 7.1 224

5 Social Networks Used and Their Structural

Properties

In this study, we use nine web-based social networks
summarized in Table 2. For example, FB is a Face-

book user network (Viswanath et al., 2009), P2PG is a
peer-to-peer network, Wiki is a Wikipedia network of
voting for administrators, and Enron is an Enron email
network (Leskovec and Krevl, 2014). All but the SF1

network are real (i.e., mined) networks. SF1 is a scale
free (SF) network generated by a standard preferential
attachment method (Barabasi and Albert, 1999) to fill

in gaps of the real networks. Most networks come from
Leskovec and Krevl (2014).

Structural properties were generated with SNAP
(Leskovec and Sosič, 2016) and NetworkX (Hagberg
et al., 2008) with their implementations in the net.science
cyberinfrastructure for network science (Ahmed et al.,
2020). Structural properties are presented in columns

labeled n (number of nodes in network) through ∆
(graph diameter). The last three columns provide data
on bicliques found in networks; see the Table 2 caption
for property definitions.

For networks possessing multiple components, we
use the giant component of that network for all of our
work. These networks have wide-ranging structural prop-
erties: over three orders of magnitude in numbers of
nodes and of edges, 5× in average degree (i.e., over a
factor of 5), three orders of magnitude in maximum de-
gree, 80× in average clustering coefficient, and 3× in
graph diameter. Hence, they represent a broad sam-
pling of web-based mined network features.

Figure 5 shows the average degrees for selected net-
works in the original graphs G, corresponding to geodesic
distance of 1, and in the square of the graphs G2. These

increases are an order of magnitude or more, and are

important for the [ND2] and [PD2] mechanisms that
operate over distance-2.
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Fig. 5: Average vertex degree for geodesic distances 1
and 2 (i.e., for G1 and G2), illustrating the large
increase in node degree that occurs in going from
distance-1 neighborhoods to distance-2 neighborhoods.

Per Section 3, the biclique is the network substruc-
ture that is required to form CK in the CKF model.

Therefore, the simulations in Section 6 require as in-
put the bicliques for each network. As discussed in Sec-
tion 4, the number of bicliques in a graph can be ex-
ponential in the graph size. This means that it is com-
putationally intensive to identify all bicliques in a net-
work. Here, we use the method and code from Liu et al.
(2006). We ran the serial code on Dell PowerEdge C6420
2.666 GHz hardware nodes, with 384 GB RAM and 40
cores per node. We ran the code on each network for up
to seven days of wall-clock time. (For a shared network

servicing over 100 users, this is a large amount of time.)
Results are printed out as computations proceed, and
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computations for a few networks (Astroph and FHS)
did not finish in seven days, and so we use the results
generated up to that point.

To give an idea of the size of these computations,
the Enron and Wiki networks produced biclique files of
sizes 18 GB and 129 GB (gigabyte), respectively. The
Astroph and FHS networks each produced output files
of bicliques between 1 and 2.5 TB (terabytes) in size.
Even the smallest network, Jazz, produced a biclique
output file of size 115 GB. These results are not sur-
prising in light of the theoretical result in Section 4.2.
So, in this sense, the graphs in Table 2 are large. The
number of unique bicliques determined with the cited
code is in column nbbc of the table. Specifically, the Liu
et al. (2006) code iterates through a graph such that the
same biclique can be identified multiple times, which is
largely responsible for the large file sizes. We iterate
through the resulting output file of bicliques, keeping
only unique bicliques.

6 Simulations and Results

In this section, we describe the process, parameters and
results of our agent-based simulations.

6.1 Agent-Based Simulation Process and Parameters

We conduct discrete time agent-based simulations using
the CKF model described in Section 3, the web-based

networks given in Table 2, and the bicliques determined
as part of structural characterization of the networks.
Table 3 summarizes the parameters and their values

used in simulations. A simulation consists of a set of
30 runs, where a run consists of the spread of contagion
from an initial configuration (or state) with all nodes
in state 0 at time t = 0, to a specified maximum time
tmax. Differences among runs are due to the stochas-
ticity in models. Note that the process simulated on
these networks is conceptually the same as the conta-

gion dynamics in Figure 2 and in the upper graphic of
Figure 3.

In the results below, we report the average of all
runs of a simulation. In some plots, we provide error
bars to demonstrate that variability across runs of a
simulation is quite small. In many of the plots with mul-
tiple curves, error bars are not shown since they make
the results more cluttered with no additional insights
because curves can be very close together.

Seed nodes are nodes that are assigned state 1
at time t = 0. We have no seed nodes in simulation
instances (i.e., runs), for all simulations in this work.
Thus, at t = 0, all agents are in state 0, and the only

Table 3: Summary of contagion study parameters.

Parameter Description

Networks See networks in Table 2.
Agent thresholds θ Uniform threshold values for each

simulation: all nodes in a network
have the same value. Values range
from θ = 6 through θ = 29 across
simulations and networks.

Online probabili-
ties p

Uniform value for all nodes in a simu-
lation. Values are in the range of 0.03
to 0.4.

Model mecha-
nisms

[CK], [ND2], and [PD2] mechanisms
described in Table 1. [CK] is always
operative to initiate contagion.

Seed vertices No specified seed vertices; all vertices
initially in state 0. CK model initi-
ates contagion without seeds.

Simulation dura-
tion tmax

30 and 90 time steps.

mechanism by which nodes can transition 0 → 1 is
[CK]. In fact, [CK] is the only mechanism that can re-
sult in a state transition when all nodes are in state 0,

regardless of t. Once at least one node is in state 1, all
three mechanisms may be operative.

6.2 Summary of Findings

Our findings are summarized as follows.

1. The [PD2] mechanism is a more dominant mech-
anism in driving contagion in networks than the

[ND2] mechanism. Over all the networks, once the
two mechanisms [CK]+[PD2] are active, there is no
benefit (i.e., there is no further increase in contagion

spreading) by adding the [ND2] mechanism.
2. The [PD2] mechanism always increases the conta-

gion spread over that of the [CK] only mechanism;
amounts vary from a roughly 25% increase (for the

Enron network) to a 900% increase (for the P2P
network).

3. The [ND2] mechanism sometimes increases the con-
tagion spread over that of the [CK] only mechanism;
amounts vary from a roughly no increase (for Enron,
Wiki) to a 100% increase (for P2P).

4. Recall that online probability p is the probability
that an agent is online during a time step to com-
municate with other agents. Over all the networks,
online probability values as low as 0.03 can produce
some level of contagion spread in seven of nine net-
works. Contagion spread for all mechanisms asymp-
totically reach their upper bounds for p = 0.4.

5. As p increases from 0.03 to 0.4 for a single network,
the differences between the [CK]-generated spread
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fractions and the [CK]+[PD2]-generated spread frac-
tions (over the population) decrease. Lesser online
probabilities favor a mechanism whereby a node can
transition to state 1 via influence of a single neigh-
bor, as is the case for [PD2]. As p increases, more
nodes are online and conditions are more conducive
for the CK mechanism, resulting in [CK]-driven con-
tagion spread catching up.

6. The ranking of networks, from least able to spread
contagion to most able (for threshold θ = ddavee),
is characterized by the increasing order of the ratio
dmax/dave. See Section 6.3.4 for details.

7. Explaining CKF model contagion dynamics is com-
plex. The previous point explains the behaviors of
all networks, except the FB network. Also, the Jazz
network shows virtually no contagion spread, for
θ = ddavee, up through p ≤ 0.1, whereas FB shows
significant spreading for p = 0.1. Yet, with further
increase in online probability to p = 0.4, the rank-
ing switches: the spread of contagion is far more on
Jazz than on FB network.

8. Average degree is a key parameter in understand-
ing contagion dynamics. Four networks have dave ≤
8.3. Each of these networks generates no contagion

spreading for the [CK]-only mechanism for θ = 8.
The remaining five networks with greater dave gen-
erate significant contagion. Adding [PD2] to the [CK]

mechanism generates contagion in three of the four
networks that generate no contagion with only the
[CK] mechanism.

6.3 Results

This section presents results from our simulation ex-
periments. These results are broken down by topics as
indicated in Table 4. We also discuss the links between

simulation results and the theoretical results in Sec-
tion 4.

6.3.1 Effects of CKF model mechanisms on contagion
dynamics for the Wiki network

Figures 6g through 6i—the last row of plots in Fig-
ure 6—show cumulative fractions of agents in state 1
in the Wiki network as a function of simulation time.

The threshold of all nodes is θ = ddavee = 29. There
are four curves in each of the three plots in each row
of Figure 6. The [CK] mechanism is the blue curve;
the [CK]+[ND2] mechanisms is the magenta curve; the
[CK]+[PD2] mechanisms is the green curve; and the
[ALL] mechanisms is the orange curve. The three plots
correspond to different online probabilities p, increasing
from 0.03 to 0.05 and 0.1. In each plot, the [CK] and

Table 4: Results are grouped into the following subsec-
tions.

Results
Section

Results Description

6.3.1 Effects of CKF model mechanisms on con-
tagion dynamics for Wiki network.

6.3.2 Effects of online probability p on contagion
dynamics for Wiki network.

6.3.3 Effects of CKF model mechanisms on con-
tagion dynamics across all networks.

6.3.4 Explaining CKF contagion spreading
across networks with network structure.

6.3.5 Saturated behavior governed by online
probability p.

6.3.6 Strength of CKF mechanisms with changes
in online probabilities p.

6.3.7 The effect of CK-only mechanism on con-
tagion dynamics compared to the full
model across networks.

6.3.8 Comparisons of final contagion spread at
time t = 30 across networks and mecha-
nisms.

[CK]+[ND2] curves are close, and the [CK]+[PD2] and

[ALL] curves are close. These curves suggest that, as a
first broad conclusion for Wiki, the [PD2] mechanism
makes a significant difference when added to the [CK]

mechanism (i.e., the green and orange curves are higher
in the plots than are the blue and magenta curves). The
second broad conclusion for Wiki is that the [ND2] has

a lesser effect when added to the [CK] mechanism (i.e.,
the magenta curve is only slightly higher in the plots
than the blue curve).

6.3.2 Effects of online probability p on contagion
dynamics for Wiki network

Staying with Figures 6g through 6i, as we move left to
right in the plots where online probability p increases
from 0.03 to 0.1, the curves rise, as expected. The in-

tuition is straight-forward: as p increases, the expecta-
tion is that more agents (nodes) are online on Facebook
and hence each engaged agent has more neighbors with
whom to generate CK. Thus, each agent has a better
chance of transitioning state to 1, and this results in
greater fractions of agents in state 1.

6.3.3 Effects of CKF model mechanisms on contagion
dynamics across all networks

Figures 6 through 8 contain time histories for the cu-
mulative fractions of nodes in state 1 over time. Each
row in each figure corresponds to results for one net-
work, and the three columns in each figure correspond
to p = 0.03, 0.05, and 0.1. The threshold is constant for
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(b) Jazz, p = 0.05

0 20 40 60 80 100
Time

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

. o
f A

ge
nt

s

(c) Jazz, p = 0.1
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(d) SF1, p = 0.03
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(e) SF1, p = 0.05
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(f) SF1, p = 0.1
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(g) Wiki, p = 0.03
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(h) Wiki, p = 0.05
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Fig. 6: Cumulative fraction of agents in state 1 plotted as a function of time in simulations, for combinations of
different mechanisms (from Table 1). The threshold value is constant for each network, where θ = ddavee. Each
propagation mechanism is isolated for different simulations and is represented by a different curve; however, [CK]
(labeled CK) is always operative. Online probability is p = 0.03, 0.05, and 0.1 in each of the three columns. The

legend in plot (f) applies to all plots. The magenta and orange curves are purposely thinner than the blue and
green curves, in order to compare curves when they overlay.

each network, but differs across networks; specifically,
for each network, we let θ = ddavee.

There is significant variation across networks. Some
plots, like those for Jazz in Figures 6a through 6c, and
those for FB in Figures 8g through 8i, show very little
contagion spreading over 90 time steps. Other networks,

like Wiki and Enron in Figures 6g through 6i and in
Figures 8d through 8f, show large spread fractions.

Several networks show no spreading for p = 0.03
but show contagion spreading for p ≥ 0.05. All three
networks in Figure 7 demonstrate that p = 0.05 is
sufficiently large to produce contagion spreading for
[CK]+[PD2], but not for either [CK] or [CK]+[ND2].

In all of these plots, there is close association be-
tween the [CK] and [CK]+[ND2] curves, and between
the [CK]+[PD2] and [ALL] curves. These support the
conclusions in Section 6.3.1: the [PD2] mechanism con-
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(a) Ca-Hepth, p = 0.03
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(b) Ca-Hepth, p = 0.05
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(c) Ca-Hepth, p = 0.1
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(d) FHS, p = 0.03
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(e) FHS, p = 0.05
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(f) FHS, p = 0.1

0 20 40 60 80 100
Time

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

. o
f A

ge
nt

s

(g) P2P, p = 0.03
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(h) P2P, p = 0.05
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(i) P2P, p = 0.1

Fig. 7: Cumulative fraction of agents in state 1 plotted as a function of time in simulations, for combinations of
different mechanisms (from Table 1). The threshold value is constant for each network, where θ = ddavee. Each
propagation mechanism is isolated for different simulations and is represented by a different curve; however, [CK]
(labeled CK) is always operative. Online probability p = 0.03, 0.05, and 0.1. The legend in plot (f) applies to all

plots. The magenta and orange curves are purposely thinner than the blue and green curves, in order to compare
curves when they overlay.

tributes more to the [CK] mechanism than does the
[ND2] mechanism.

Results in this section and Section 6.3.1 informed
the theoretical results in Section 4.3.

6.3.4 Explaining the behavior of CKF contagion
spreading across networks

The issue is how to reason about ordering the net-
works from least to most with respect to the amount of
contagion spread. A qualitative ordering, based on the
amount of spreading and on spreading at lower p, is pro-

vided in Table 5. That is, these two criteria, over Fig-
ures 6 through 8, are used to rank and group networks
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Table 5: Ranking of networks by amount of contagion
spreading into four categories, in increasing order, and
the corresponding value of dmax/dave.

Spreading Category Networks dmax/dave

Least spreading Jazz, FB 3.61, 26.87
Intermediate spreading FHS, Ca-Hepth,

P2P
10.97, 11.32,
14.03

Greater spreading SF1 14.84
Greatest spreading Astroph,

Wiki, Enron
22.91, 37.63,
129.3

into the four categories in the first column of Table 5.
For example, the “least spreading” category contains
the two networks with very little contagion spread for
p ≤ 0.05. The networks in the “greatest spreading” cat-
egory are those with significant contagion spreading for
p = 0.03. For each network, dmax/dave is provided.

The dmax/dave ratio does a good job of reproducing
this ranking, meaning that contagion spreading corre-
lates with this ratio. The greater the value of dmax/dave,
the greater the amount of contagion spreading.

The motivation for this ratio is the following. The
denominator is the threshold in Figures 6 through 8.
This is because a CK set size must be at least θ + 1,

so that the threshold of each node in a CK set can
be satisfied. The numerator is one less than the size
of the largest CK set in a network. That is, in these
networks, the largest biclique is the star subgraph where

the hub node is the node with greatest degree (compare
columns dmax and smaxbc in Table 2). This is determined
by data analysis. For a given p and network, the CK

set that has the best opportunity to initiate contagion,
in expectation, is the largest biclique. So the larger the
value of dmax/dave, the more likely the contagion is to
start spreading. The same basic results in Table 5 are
obtained when using the difference (dmax−dave) rather
than the ratio (dmax/dave).

The exception to this observation is FB. It has a
large dmax/dave = 26.87, but it has the second smallest
spreading among all networks in Figures 6 through 8.
So this exception is a big one. We conjecture that the
reason the spreading is so small in FB is that the av-
erage size of a biclique (that is not a star subgraph) is
sbbc = 7.1 < dave = 8.3, per Table 2. There are a lot
of these bicliques (see column nbbc) in FB. Thus, there

are a lot of bicliques that are too small to initiate and
propagate contagion, leading to smaller spread sizes.

An interesting outcome of this set of results is how
for the CKF model, one may reason about simpler net-

work structural quantities like dmax/dave in order to
explain contagion dynamics.

6.3.5 Saturated behavior governed by online probability

Figures 6 through 8 provide the curves for cumulative
fractions of nodes in state 1 for all networks up through
p = 0.1. Not all networks exhibited saturated fractions
of nodes in state 1, so the issue is to understand satu-
ration behavior.

Figure 9 shows three plots that provide the three
categories of behavior, all at p = 0.4. Thresholds are
still θ = ddavee. Most networks show the behavior dis-
played in Figure 9a. These networks show saturation for
all curves, and as stated earlier, the curves with [PD2]
attain greater saturation levels than curves with [ND2].

Figure 9b presents behavior that applies to Jazz,
P2P, and Astroph. In these results, the [ND2] mecha-
nism does provide additional contagion spread, beyond
that produced by [CK] alone, which is not the case in
Figure 9a. Admittedly, the amount of additional spread
is not large, but it does contribute to contagion spread.

Figure 9c applies only to FB, which has the second-
to-least spreading of any network (Jazz has the least
spreading for p ≤ 0.1). In fact, this behavior is some-

what surprising. Comparing Jazz and FB in Figures 6a
through 6c and in Figures 8g through 8i, we see that
Jazz has less spreading. So, Figure 9 demonstrates that

the spreading in Jazz overtakes that of FB as p increases
from 0.1 to 0.4.

6.3.6 Strength of CKF mechanisms with changes in

online probabilities p.

In Figures 6 through 8, and in Figure 9, it is clearly
observed that as p increases from 0.03 to 0.4, the dif-

ferences between the [CK] curves and the [CK]+[PD2]
curves decrease. This is explained formally Section 4.4.
When p is smaller, e.g., p ≈ 0.05, few nodes are online.
Accordingly, the [PD2] mechanism has the advantage
in that a node u needs only one node v that is online
and in state 1 for u to transition to state 1. However, as
p increases to 0.4, there are many more nodes that are
online, and so conditions are conducive for these many
nodes of CK sets to be online and thereby transition
via the [CK] mechanism.

6.3.7 The effect of CK-only mechanism on contagion
dynamics compared to the full model across networks

We analyze the fraction of activated nodes over time

under the [CK]-only mechanism and under the [ALL]
mechanisms of the CKF model combined. We use a
smaller threshold, θ = 8, for all networks. This fixed
threshold is used in order to compare behaviors of dif-
ferent networks with different dave values. Five of the
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(a) Astroph, p = 0.03
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(b) Astroph, p = 0.05
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(c) Astroph, p = 0.1

0 20 40 60 80 100
Time

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

. o
f A

ge
nt

s

(d) Enron, p = 0.03
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(e) Enron, p = 0.05
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(f) Enron, p = 0.1
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(g) FB, p = 0.03
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(h) FB, p = 0.05
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(i) FB, p = 0.1

Fig. 8: Cumulative fraction of agents in state 1 plotted as a function of time in simulations, for combinations of
different mechanisms (from Table 1). The threshold value is constant for each network, where θ = ddavee. Each
propagation mechanism is isolated for different simulations and is represented by a different curve; however, [CK]
(labeled CK) is always operative. The four largest networks from Table 2 are shown in rows and different p are in

columns. The legend in plot (f) applies to all plots. The magenta and orange curves are purposely thinner than
the blue and green curves, in order to compare curves when they overlap.

nine networks have dave values near or less than θ = 8;
the other four networks have dave > θ. Figure 10 pro-

vides results for all networks.

The four networks with the smallest dave all have
flat curves (i.e., little spreading) for the [CK] mecha-
nism (see the plots in the first column). Enron, with

dave = 10.7, has much greater spreading for [CK] than
does Jazz with a much greater dave = 27.7; but Enron

has a much greater dmax. This behavior is thus consis-
tent with the explanation offered above.

The plots of the second column of Figure 10 illus-

trate that adding the [PD2] and [ND2] mechanisms to
the [CK] mechanism generates contagion in three of
the four networks that showed no contagion with [CK]
alone: FHS, Ca-Hepth, and P2P. But the spreading in
FB remains minimal.
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(a) Ca-Hepth, p = 0.4
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(b) Jazz, p = 0.4
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(c) FB, p = 0.4

Fig. 9: Cumulative fraction of agents in state 1 plotted as a function of time in simulations, for combinations of
different mechanisms (from Table 1). The threshold value is constant for each network, where θ = ddavee. Results
are for three representative behaviors for p = 0.4, which is greater than the p values in Figures 6, 7, and 8 (values
of 0.03, 0.05, and 0.1). These curves demonstrate saturation in the fraction of activated agents. Each propagation
mechanism is isolated for different simulations and is represented by a different curve; however, [CK] (labeled CK)
is always operative. (a) all networks show this behavior, with the following exceptions. (b) Jazz, P2P, and Astroph
show this behavior where the [CK+ND2] is slightly above the [CK] curve. (c) FB is alone in showing such a large
discrepancy between curves with and without the [PD2] mechanism. The legend in plot (a) applies to all plots.

6.3.8 Comparisons of final contagion spread at time

t = 30 across networks and mechanisms

Figure 11 provides spread fractions at t = 30 for all
nine networks under different combinations of mech-

anisms (specified on x-axis): from left to right, [CK]
only, [CK]+[ND2], [CK]+[PD2], and [ALL]. The uni-
form threshold θ for each network is given by θ =

ddavee. So, θ is different across networks. In each plot,
curves are for p = 0.05, 0.1, 0.2 and 0.4.

Error bars are shown in each plot, and the Jazz net-
work shows large variations in Figure 11a. This is be-
cause the combination of θ = 28 and p = 0.2 for Jazz
are such that contagion is just on the cusp of spread-
ing. So, some runs produce contagion, and others do

not, leading to significant standard deviation in results.
The error bars for all conditions for all other networks
show very little variance.

FB of Figure 11i has the smallest spread sizes. The
[CK] mechanism in isolation can drive contagion through
appreciable fractions of the other networks, depend-
ing on p. The largest effects of the [ND2] mechanism
on spread fractions occur for Astroph, FHS, P2P, and
Wiki, but only for particular p. In all the nine plots
of Figure 11, the [PD2] mechanism contributes signif-

icantly to the driving force for contagion spread (the
positive slopes of curves from “+ND2” to “+PD2” on
the x-axis), except perhaps when [CK] or [CK]+[ND2]
produce very large spread fractions. Finally, we observe
that the curves are flat in going from “+PD2” to “All”

on the x-axis, where the difference is the addition of the

[ND2] mechanism.

Results in this section informed the theoretical re-
sults in Sections 4.3 and 4.4.

7 Conclusions

In this paper, we evaluate the Common Knowledge
on Facebook (CKF) contagion model on a set of nine

networks with wide ranging properties, for a range of
thresholds and online probabilities. We model and in-
vestigate multiple mechanisms of contagion spread (ini-
tiation and propagation), as well as the full model. We
find evidence that the [CK] and [PD2] mechanisms are
the major driving forces for contagion initiation and
spread, compared to the [ND2] mechanism. These types

of results are being used to specify conditions for im-
pending human subject experiments that will evaluate
CK and its mechanisms (e.g., Korkmaz et al. (2018a)),
and will be used to assess the predictive ability of the
models.

The theoretical results in Section 4 were guided by

the simulation results of Section 6. For example, the ob-
servations of the role of the [ND2] mechanism directed
us to conjecture that this mechanism was weaker than
the [PD2] mechanism, and in fact that it may be dom-
inated by [PD2]. Section 4 shows that this is indeed
the case. Thus, the theoretical results provide rigorous
proofs of observed behaviors, and the simulation results
of Section 6 provide examples, across a wide range of
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(c) CK mechanism only
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(d) All three mechanisms

Fig. 10: Cumulative fraction of agents in state 1 as a function of simulation time, for p = 0.05 and for θ = 8.
The nine networks are arbitrarily broken up such that each network occurs in plots on either the first row or the

second row (9 curves on one plot is too cumbersome). In the first column, curves are for the CK mechanism only.
In the second column, curves are for [ALL] mechanisms of the model. The results show the sensitivity of outbreak
size on average degree dave. The average degrees for FHS, Ca-Hepth, FB and P2P have dave ≤ θ (dave for FB is
slightly greater than θ = 8); these networks have small outbreaks due to CK only. The remaining networks all

have dave > θ, and these networks have larger spread fractions. The legend in plot (a) applies to plot (b). The
legend in plot (c) applies to plot (d).

networks, of the particulars of spread fractions for dif-
ferent mechanisms and simulation conditions.

Ongoing work includes extending the model to di-
rected networks and to other media platforms.
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(g) Astroph network
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Fig. 11: CKF model results. Cumulative fraction of agents in state 1 at time t = 30 as a function of mechanisms
and p (same legend for all plots) for θ = ddavee: (a) Jazz, θ = 28. (b) SF1, θ = 19; (c) Wiki, θ = 29. (d) Ca-Hepth,
θ = 6; (e) FHS, θ = 8; (f) P2P, θ = 8; (g) Astroph, θ = 22; (h) Enron, θ = 11; and (i) FB, θ = 9; The mechanisms

on the x-axis always includes [CK] over all 30 time steps, where “0” corresponds to only the [CK] mechanism;
“+ND2” means [CK]+[ND2]; “+PD2” means [CK]+[PD2]; and “All” means the [ALL] (full) model. The legend
in plot (h) applies to all plots. The error bars for y-axis values represent one stdev. The data illustrate that [PD2]
provides a much greater driving force for contagion spread than does [ND2]. Although [PD2] often generates a
greater contribution to driving force than does [ND2], the latter can generate significant additional contagion. See
for example the curve for P2P and p = 0.2.
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