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Equivalence of codes for countable
sets of reals

William Chan

Abstract. A set U ¢ R x R is universal for countable subsets of R if and only if for all x € R, the
section Uy = {y e R: U(x, y)} is countable and for all countable sets A € R, there is an x € R so that
U, = A. Define the equivalence relation Ey on R by x¢ Ey x; if and only if Uy, = Uy,, which is the
equivalence of codes for countable sets of reals according to U. The Friedman-Stanley jump, =*, of
the equality relation takes the form Ey+ where U™ is the most natural Borel set that is universal for
countable sets. The main result is that =* and Ey for any U that is Borel and universal for countable
sets are equivalent up to Borel bireducibility. For all U that are Borel and universal for countable sets,
Ey is Borel bireducible to =*. If one assumes a particular instance of £}-generic absoluteness, then
forall U ¢ R x R that are 2] (continuous images of Borel sets) and universal for countable sets, there
is a Borel reduction of =* into Ey.

1 Equivalence of Codes for Countable Sets of Reals

Let “2 be the collection of functions f : w — 2. The elements of “2 are called reals.
(Sometimes “2 will be denoted by R especially when typographically convenient.) Let
pair : @ x @ — w be a recursive bijection. If x € “2 and n € w, let X, € “2 be defined
by %, (k) = x(pair(n, k)). So a single real x naturally gives a countable set of reals
{Zp:new}

Suppose U € “2 x “2. For x € “2,let U, = {y € “2: U(x, y)}. Define an equiva-
lence relation Ey on “2 by x Ey y if and only if U, = U,. U € “2 x “2 is universal
for countable sets if and only if for all x € “2, U, is countable and for all countable
A € “2, there exists an x € “2 so that U, = A. If U, = A, then x is said to be a code for
A according to U. Ey is essentially the equivalence relation stating two reals code the
same countable set according to U.

Suppose A € “2 is a countable set. Let (x,:n € w) be an enumeration of A.
Then A = Upeo{xn}. Since singletons are IT) subsets of “2, this shows that every
countable subset of “2is 9. Let U* € “2 x “2 be defined by (x, y) € U* ifand only if
(3n)(%, = y) ifand only if (In)(Vm)(x(pair(n, m)) = y(m)). Note that U* is =)
and universal for countable sets of reals. U* is the most natural coding of countable
sets. (The enumeration of a countable set is a code for that countable set.) Let =* be
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Equivalence of codes for countablesets of reals 581

the equivalence relation on “2 defined to be Ey+. Note that for any x, y € “2,x =* yif
and only if x Ey+ yifand onlyif {X, : n € w} = {J, : n € w}. The latter is the familiar
definition of =* as the Friedman-Stanley jump of =. (See [5] and [6, Section 8.3]
for more information concerning the Friedman-Stanley jump of a Borel equivalence
relation.)

Equivalence relations on “2 are compared by Borel reductions. That is, if E and F
are two equivalence relations on “2, one writes E <1 F if and only if there is a Borel
function @ : “2 - “2so thatforall x,y € “2,x E y if and only if ®(x) F ®(y). One
writes E =p1 F if and only if E <w F and F <a E. (For example, [6, Theorem 8.3.6]
shows that =<,1="but —(="<1= ) In fact, this relation holds more generally between
a Borel equlvalence relation E with more than one class and its Friedman- Stanley
jump E*.) Since =* is Eyy« where U* is the most natural X9 set universal for countable
subsets of “2, a natural question ([4, Question 2.5] ) asked by Ding and Yu is whether
for any Borel set U ¢ “2 x “2 that is universal for countable sets, is Ey =51="? They
showed that if U is Borel and universal for countable sets, then Ey < A}:+. Thus, the
question becomes whether ="<,1 Ey when U is Borel and universal for countable

sets. They also asked if =*< a Eu when U is 2] (a continuous image of a Borel set)
and universal for countable sets.

This article will answer these questions. It will be shown that if U c “2x “2
is Borel and universal for countable subsets of “2, then =" is Borel bireducible
to Ey. Intuitively, this means that every coding of countable sets via a Borel U
that is universal for countable sets is indistinguishable from the natural coding of
countable sets given by U* via Borel procedures. The argument uses forcing ideas
and absoluteness. Granting sufficient absoluteness of certain statements between the
ground model and certain forcing extensions, the method in the Borel case can be
extended to produce a Borel reduction from =" into Ey when U € “2x “2 is a ¥
set that is universal for countable sets. The end of the article has a broad overview of
why forcing produces certain countable sets of reals for which one can easily search
for the code for these countable sets according to the Borel set U that is universal for
countable sets. In general, the search for a code for a countable set of reals seems quite
complex.

Let V¢ and 3¢ refer to universal and existential quantification over w. Let V¥ and
3 refer to universal and existential quantification over R (or “2). Often, it is clear in
context what type of objects are being quantified, and one will simply write V or 3.

A tree T on 2 x w (or 2 or w) is a subset of <“(2 x w) (or <“2 or ““w, respec-
tively), which is c-downward closed ( here C refers to string extension). Note that
such trees are coded by reals. If T is a tree on 2x w, then [T]={fe“(2xw):
(Vn)(f  neT)}, where f | n refers to the length # initial segment of f. Let 7y :
“2 x ©@ — “2 be the projection onto the first coordinate. A set B is 2j(z) if and
only if there is an z-recursive tree T in 2 x w so that B = m;[ T]. It is important to
note that whenever one writes B in any universe of set theory containing T, it will
always refer to the interpretation of m[T]. A set B is A}(z) if and only if there
are z-recursive trees T and S so that 7;[ T] = B and m[S] = “2 \ B. Note that the
statement “(3x) (T and S, are ill-founded)” is 2} (z). By Mostowski absoluteness, in
any transitive set or class M satisfying an adequate amount of ZF with {z} U w ¢ M,
M m[T] nm[S] = @. Also, (Vx)(Ty or T, is ill-founded) is IT} (z). By Shoenfield
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absoluteness, in any transitive set or class M satisfying adequate amount of ZF with
{z}uw, € M,ME m[T] =2~ m[S]. Thus, if trees T and S define a A{(z) subset
of “2, then in any transitive set or class model M such that {z} U w; € M, T and S will
continue to represent a A}(z) set. In this way, when one speaks of this Al(z) set, one
implicitly means ;[ T'], and its complement is ;[ S].

Fact1.1 Suppose U € “2 x “2is 21(z). Then the statement “ (¥ x) (U, is countable)”
is T} (2).

Proof For all x € “2, if U, is countable, then U, is a countable Z%(x, z) set. The
effective perfect set theorem of Mansfield ([11, 4E1]) implies that U, consists only of
Al(x,z) reals. By [11, 4D.2], there is a T} relation H € R x R such that H(x, y) if and
only if y € Al(x). Thus, the statement “ (Vx) (U, is countable)” is equivalent to

(¥x)(V9)(U(x,y) = H(x @ 2,)),

where (x @ z) € “2 is the recursive join defined by (x @ z)(2n) = x(n) and (x @
z)(2n +1) = z(n) for all n € w. The latter statement is IT}(z). |

Fact1.2  (Ding-Yu, [4, Theorem 2.4]) If U is Al(z) and universal for countable sets,
then there is a A{(z) reduction ® : “2 — “2 witnessing Ey <a=". In particular, this

implies that Ey is a A}(z) equivalence relation.

Proof  First, one will show that dom(U) = {x € “2: (3y)U(x, y)} is A{(z). (See
[9, Lemma 18.12] for another argument.) It is clearly £i(z). By [11, 4D.2], there
is a IIj-recursive partial function d: w x R - R so that y € Al(x) if and only if
(3°n)((n,x) e dom(d) Ad(n,x) = y).Since U is countable, the effective perfect set
theorem implies U, € A}(x @ z). Thus, x € dom(U) if and only if (3°n)((n,x) €
dom(d) A U(x,d(n,x @ z))). By [11, 4D.1(ii)], the latter expression is IT}(z).

If 0 € <“2, thenlet N, = {f € “2: 0 € f} be the basic neighborhood determined
by o. Let W :“2 — N be a recursive bijection. By the Lusin-Novikov theorem
([11, 4F17] ), there is a A}(z) relation P € w x “2 x “2 so that U(x, y) if and only if
(3°n)P(n,x, y), and for each n € w, P, = {(x, y) : P(n, x, y)} uniformizes U.

Define @ : “2 - “2 by ®(x) = w if and only if the disjunction of the following
holds:

o x edom(U) A (V°n)(3%y)[P(n,x,y) A (Vk) (w(pair(n, k)) = ¥(y)(k))],

o x ¢ dom(U) A (Vn)(V¥k)(w(pair(n, k)) =1)

if and only if the disjunction of the following holds:

« x edom(U) A (Vn)(V*y)[P(n,x, ) = (¥k)(w(pair(n, k)) = ¥ (y)(K))],

o x ¢ dom(U) A (V9n)(V?k)(w(pair(n, k)) =1).

By the properties of P stated above, these two definitions are equivalent. Since the
first definition is £}(z) and the second definition is ITj(z), ® is A{(z). Intuitively,
if U, # @, ®(x) has the property that {CI—;(_\JC),1 new={¥Y(y): U(x,y)}.lf U, =
@, then ®©(x) has the property that {CIT(x\)n :n € w} = {1}, where 1 is the constant
function taking value 1. Since ¥ : “2 — No), one has that ® isa A}(z) reduction of Ey
into =". |
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Lemma 1.3 Suppose U C “2x “2 is 21(2); then the statement “U is universal for
countable sets” is T13(z). If U € “2 x “2 is A}(z), then the statement “U is universal
for countable sets” is 115 (z).

Proof  Suppose U is 2}(z). Then U is universal for countable set if and only if the
conjunction of the following holds:

« (V®x)(U, is countable),

o« (Vi) F)[(Ym)U(x, 20) A (V) (U(x, y) = (3°n) (20 = )]

The first condition is IT}(z) by Fact 1.1. The second condition is IT}(z). The entire
expression is I13(z).

Now suppose that U is Al(z). If for all x € “2, U, is countable, then the Lusin-
Novikov theorem ([11, 4F17]) states that there is a A](z) relation P € w x “2 x “2 so
that U(x, y) ifand only (3“n)P(n, x, y),andforalln € w, P, = {(x,y) : P(n,x,y)}
is a uniformization for U. U is universal for countable sets if and only if the conjunc-
tion of the following holds:

+ (V®x)(U, is countable),
o« (V)Y U(x, 20) A (F9m)(37y) (3n) (P(m, x, y) A2y = y)].

Note that the second condition is IT} (z). Thus, the entire expression is IT5(z). [ ]

Next, one will produce a Borel reduction of =" into Ey using a technique involving
countable models of set theory and forcing that is similar to those used in [10, Section
2.8] to prove the unpinnedness dichotomy in the Solovay model. Rather than using the
Lévy collapse of a measurable, these reductions will be created using the finite support
product of Cohen forcing. See the end for further discussions of these methods.

Definition1.4  Let C be the set of finite partial functions p : w — 2. Let <¢ be reverse
inclusion. The largest condition is 1p = @. The forcing C = (C, <¢, 1¢) is called Cohen
forcing.

For any € € ON, let C, = [] ., C be the finite support product of C. The conditions
are p: ¢ - C so that supp(p) = {a < e: p(a) #1c} is finite. If p,q € C,, p <c, q if
and only if for all a <, p(a) <c q(a). 1¢, is the constant function on ¢ taking
value 1.

Let Coll(w,R) be the forcing consisting of finite partial functions p: w - R.
Let <coli(w,r) be reverse inclusion and 1¢oii(w,r) = @. Note that if G ¢ Coll(w, R) is
Coll(w, R)-generic over the ground model, then the extension by G adds a surjection
g from w onto the reals of the ground model. Therefore, the set of ground model reals
are countable in this forcing extension.

Throughout the article, one will need several effectiveness or uniformity observa-
tions concerning the forcing construction on countable models coded as reals. Some
details will be provided without including too many burdensome coding notations.
The authors of [10, Section 2.8a] also develop a framework for some of these coding
results and observed the effectiveness of various forcing constructions.

Definition 1.5 If x € “2,1let R (m, n) if and only if x(pair(m, n)) = 1. Then R, is
the binary relation on w coded by x.
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Let WO be the collection of x € “2 so that R, is a well-ordering. If x € WO, then
let ot(x) be the ordertype (w, Ry ).

If R, is a set-like, extensional, and well-founded relation, then let the transitive set
(M, €) denote the Mostowski collapse of (w, R ). Let most, : (w, Ry) = (M, €)
be the Mostowski collapse function.

Recall that the satisfaction relation Sat is defined by (x, ¢, (i1, ..., ix)) € Satifand
only if (w,Ry) E ¢(i1,...,ix) and is A]. (Formulas are coded by integers in some
recursive manner.) The fact that Sat is A} will often be implicitly used.

Let AC® denote countable choice for the reals, which is the statement that if
R c w xR, then there is a function @ : dom(R) - R so that for all n € dom(R),
R(n,®(n)). An important consequence of AC: is that w, is a regular cardinal which
will be used later in the argument.

Lemma 1.6  Suppose m € “2 is such that (w, Ry ) is a set-like, well-founded, and
extensional structure satisfying some adequate amount of ZF + AC~. Let mosty, :
(w0, Rm) = (M, €) be the Mostowski collapse map. For notational simplicity, let
N'= M. Then there are A{ functions Geng, GenMod, : “2 — “2 so that the following

hold:

(i) Forallx eR, let G, = mosty[{n € w: Geng(x)(n) =1}]. G, is C-generic over
N.

(ii) For any k € w and injective sequence £ : k — “2, TT;cx Go(ky is T1i<x C-generic
over N.

(iil) (@, RGenmodo(x)) is @ set-like, well-founded, and extensional structure whose
Mostowski collapse, M Genmods (x)> i N1Gx |-

Proof  Using the fact that the satisfaction relation is A{, one can obtain from m in a
A} manner a function d : w x @ — w with the following properties: For 1 < k < w and
i € w,let D¥ = most,, (9(i, k)). Foreach 1 < k < w, {D¥ : i € w} enumerates all of the
dense open subsets of [T, C in the countable transitive set V.

Next, one will sketch the standard construction of a perfect set of mutually C-
generics filters over V. One will build a perfect tree (p, : 0 € <“2) of C-conditions so
that each path generates a C-generic filter over .

Let py = 1c. Suppose for some # € w, p, has been defined for all ¢ € "2. For each
0 € "2, let n be least so that n ¢ dom(p,). Let go; = po U {(n,i)} for i € {0,1}. By
repeatedly extending g for all 7 € "*'2 as necessary to meet all the requisite dense
open sets, one can find a collection {p, : T € "*'2} such that:

e Forall 7€ "2, p, <c q..

« Forall k < 2"*1, for all injections B : k — "*12, and any dense open set D for i < n,
(PB(0)> -+ +> PB(k-1)) € D}

This completes the construction. For each x € 2, let G, be the <¢-upward closure

of {pxtn : 1 € w}. One can check that each G, is C-generic over N, and any finite

collection has the mutual genericity property.

The reader can check that by coding using m and 0 (which is obtained from m),
one can find a A} (m) function Geng so that Geng (x) is a real that codes most;,![G, .
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By the uniformity of the forcing construction, one can also find a A{(m) function
GenMody so that for all x € “2, GenMody(x) codes a structure whose Mostowski
collapse is MG, . |

Fact 1.7 Suppose € < w;. Then the Cohen forcing C and the e-length finite support
product of Cohen forcing C, are isomorphic.

Proof  The following is a sketch of this well known basic fact: Let € < w; and B:
& x w - w be a bijection. Let @ : C — C, be defined by ®(p)(«)(n) = p(B(a, n))
whenever B(a, 1) is in the domain of p. So for each & < &, ®(p)(«) € C, and for only
finitely many o, ®(p)(«) # 1c = @. Recall that elements of C, are functions from ¢
into C with finite support. Thus, ® is well defined and is an isomorphism. ]

Lemma 1.8  Assume the notation of Lemma 1.6. There is a uniform procedure that
takes an injective sequence (G, : n € w) of C-generic filters over N with the property
that any finite collection is mutually generic to a C, x-generic filter G* over N so that

RMG*] = U{R-’V[Hi<k Gil. ke w}.

Proof (A similar property is obtained in [10, Lemma 2.8.12(1)] and [8, Claim 6.29].)
Recall that \'= M,,. Using the fact that the satisfaction relation is A{, one can define,
ina A] manner usingm, a sequence E : @ — w by induction as follows: Z(0) is the least
element k of w so that A= mosty, (k) < w;. Suppose E(n) has been defined; let E(n +
1) be the least integer k > E(#) so that A= mosty, (k) < w;. NotethatE[w] ={necw:
NE mosty, (1) € w; }; that is, E enumerates all the integers 7 so that (w, Ry ) E “nis
a countable ordinal”. Let p(n) = sup{most,(E(k)) : k < n}. Note that p : w - w¥
is a cofinal increasing sequence. Let Ip = {a € w¥: 0 < & < p(0)} and for n > 0, I,, =
{acw]N:p(n-1)<a<p(n)} Note that forall n € w, I, € Nand Nk |I,| < Ro. As
before in a A] manner from m, one can define Y : @ — w by Y(n) is the least integer
k so that N'i= “ mosty, (k) is a bijection from I,, x w - w”. Let B, = mosty, (Y (n)).
Thus, for each 1 € w, By, : I,, x w — w is a bijection and B, € ' (however, the entire
sequence (B, : n € w) does not belong to ).

Next, the idea is to create a C,x-generic filter by “transferring” each G, onto
the interval I,, via isomorphisms @, : C —» []; C created from B, as in the proof
of Fact 1.7. More precisely, let ®,:C - []; C be defined by ®,(p)(a)(k) =
p(By(a,k)) whenever a €I, and p(B,(a,k)) is defined. Since B, € N, ®, e N
as well. For each n € w, let ¥, : [1;,, C = C, ) by ¥, (q) () (k) = @;(q(j))(a)(k)
where g€ [];.,C and j<n is the unique j so that a €I;. Note that ¥, e N/
for each ne w and ¥, : [1;c, C > C,(,) is an isomorphism. For each n € w, let
Jn : Cp(ny = C,a be the canonical order preserving injection defined by

O N,

Observe that for each n € w, J, € V. Let ¥, : [];, C — (Cw{\f be defined by 3, o ¥,
Note also that for all n € w, ¥,, € N. Define G* = U{¥,[[1;<, Gi] : n € w}. Then G* ¢
C is a filter.
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It remains to show that G* is C, a-generic over \V. Recall that V' C,, satisfies the
w;-chain condition. Let A € A'be such that N thinks A is a maximal antichain of C o

Since the w;-chain condition holds, w?" is regular in A'= ACE, and each ¥, is an
isomorphism, one has that there is an 7 € w so that ¥, ![A] is a maximal antichain
of [1;, C. Since [1;., G; is [1;, C-generic over N, ¥;'[A] N [1;<, Gi #+ @. Hence,
AN G* # @. This shows that G* is C ,x-generic over N

Since all ¥, €N and are isomorphisms, one has that N[[].,Gi]=
MY, [ITicn Gi]]. Since MITic, Gi] SMG*], one has that U{RMIsiGil: py ¢
w} € RMS] Now suppose that x € RVS'] There is a nice name 7€ A of the
form 7= Uy, {7} x Ay (Where A, is an antichain of C,v) such that 7[G*] = x.

Since N believes that C o has the wy N-chain condition and w} is regular, there
is an n € w so that all condltlons mentioned in the name 7 occurs in C,,). Thus,
= 1[G*] = 7[¥u[[1icn Gi]], where one considers 7 as a C,(,)-name in the natural
way. Since MT;c, Gi] = M¥a[ITicn Gi]], x € RM iz G"]. It has been shown that
RME™] ¢ Y{RMTis Gi1 - 1y € w}. Hence, these two sets are equal.
It is important to note that there is an explicit and uniform method to obtain G*
from (G, : n € ). One can check this procedure is A}(m) as a function in the codes
in the sense of Lemma 1.9. |

Lemma 1.9  Assume the setting from Lemma 1.6. Then there are Aj(m) function
Gen;, GenMod; : “2 — “2 with the following properties. Let H, = mostu[{n:
Geny (x)(n) = 1}].

(i)  Suppose {x,:n € w} is finite. Let E(x) : N — “2 be the enumeration of {%, :
n € w} that removes the duplicates from (%, : n € w) where N € w. Then H, is
[Ti<n C-generic over N'and N{H.] = NI1;<n Ge(x) (i) )-

(ii) Now suppose x € “2is such that {%, : n € w} is infinite. Let E(x) : 0 - “2 be the
enumeration of {%, : n € w} that removes the duplicate from (%, : n € ). Then
H is C-generic over N and RMHx] = J{RMTian Ge0 0] 2 1 € ).

(iii)  RgenMod;(x) s a set-like, well-founded, and extensional relation on w whose
Mostowski collapse MGenmod, (x) is equal to N[H.].

Proof In case (ii), the existence of the A{(m) function Gen, follows from the uni-
formity of the argument in the proof of Lemma 1.8. Case (i) is similar and somewhat
easier. GenMod; again comes from the uniformity of the forcing construction. =

Lemma 110  Assume the setting of Lemma 1.9. For all x, y € “2, x =" y if and only if
RM%X] = ]R-N‘[Hy].

Proof Without loss of generality (since the arguments are similar), assume
that {®,:n€w} and {J,:n€w} are infinite. Let E(x) and E(y) enumerate
without repetition (%,:n€w) and (§,:n¢€ w), respectively. Since RM™] =
U{RMILi<w Gern] : € 0} and RVH] = Y{RMIi<o 950 2 1 € w}, it is clear that
ifx =" y, then RMHx] = RMHM,],

Now suppose that —=(x = y). Without loss of generality, there is an n* so that
E(x)(n*) ¢ {Jn:n € w}. Let g € “2 denote the C-generic real associated with the C-
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generic filter Gg () (+). Suppose for the sake of contradiction that RMH:] = RMH],
Since N © C,p has the w]V-chain condition”, there is some m € @ so that g e

RMIi<n 92)@], as argued in the proof Lemma 1.8. This is impossible, since by
Lemma 1.6, {GE(x)(n*)} Y {GE(y)(i) : i <m} is a collection of mutually C-generic
filters. u

Lemma 111  There are A}(m) functions Gen,, GenMod, : “2 — “2 with the follow-

ing properties:

(i) Let Ky = mOstGenmod, (x)[ {7 : Gena(x)(n) =1}]. Ky is a Coll(w, RMH:1).
generic filter over N[ H. .

(i) RgenMmod,(x) is a set-like, well-founded, and extensional relation on w whose
Mostowski collapse MGenmod, (x) i N Hx][Kx].

Proof The main ideas are the following: Fix x € “2. Using that the satisfaction
relation is A], one can obtain in a A] manner from the real GenMod;(x) an
enumeration of all the Coll(w, RN*+])-dense open subsets that belong to N[H,].
From this enumeration of dense open sets, one can construct the code Gen,(x) for
Ky, a Coll(w, RMH+])_generic filter over N[H,] and the code GenMod,(x) for
a structure on w whose Mostowski collapse is N[H,|[K,]. (The construction is a
simplified version of the argument in Lemma 1.6.) |

Lemma 112 Assume ZF + ACE. Let U € “2x “2 be a Al(z) set that is universal
for countable subsets of “2. Let V denote the real world. Let m € “2 be such that the
Mostowski collapse N'= My, of (w, R ) is an elementary substructure of V,, (for some
cardinal k) satisfying adequate amount of ZF + ACY and z € N. Then there is a Al (m)
function @ : “2 - “2 50 that Ug(y) = RN,

Assume ZF + ACk and 3}(2)-generic absoluteness holds (specifically for the two
step iteration C,, * Coll(w,R)). Let U C“2x“2 be a 2(z) set that is universal
for countable subsets of “2. Let m € “2 be such that Mostowski collapse N'= My,
of (w,Rw) is an elementary substructure of V,, (for some cardinal k) satisfying an
adequate amount of ZF + ACY + ) (z)-generic absoluteness and z € N Then there is a
A} (m) function @ : “2 > “2 50 that Ug(y) = RMH:],

Proof  Fixx € “2.Since K, is Coll(w, RN 1) -generic over N[H., |, M[H. |[Kx] =
RMH+1 is countable.

If Uis A}(z), then Lemma 1.3 and the fact that Ais an elementary substructure of
V. imply that “U is universal for countable sets” holds in \/, and is a IT} (z) statement.
By Schoenfield absoluteness, N[H,][KC,] continues to believe that U is universal
fo/rv[cou]ntable sets. Thus, there is an e € RN N[H,][K,] so that N[H, |[K] E U, =
RN,

If U is 2{(z), then Lemma 1.3 and the fact that A/ is an elementary substructure
of V,, imply that N believes that U is universal for countable sets and that this
statement is Z}(z). Since N satisfies =}(z)-generic absoluteness (for the forcing
Cypy * Coll(w, R)), M[H. ][K.] continues to believe that U is universal for countable

sets. Thus, there is an e € R 0 NV[H, |[Kx] so that N[H, |[K,] £ U, = RN,
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Thus, in either the A}(z) or 2}(z) case, let n* € w be least so that N[H, ][K,] F
Unnostaenmiody sy (1) = RMH:]| Let ®(x) = MOStGenmod, (x) (). Since the satisfaction
relation is A], @ is a Aj(m) function.

It has only been shown that N[#,][K.] £ Ug(y) = RM? =1, One needs to show
that this holds in the real world V. Note that since U is Al(z) or 21(2), the effective
perfect set theorem of Mansfield implies that Ug, consists only of Aj(z, ®(x))
reals. Since the reals in Aj(z, ®(x)) are exactly the reals that belong to every
z ® O(x)-admissible set (transitive model of Kripke-Platek set theory, KP), and
MH][K«] is admissible (since admissibility is preserved by forcing and A is an
elementary substructure of the admissible set V,;), one has that Aj(z, ®(x)) SRn
N H,][K«]- Thus, by Mostowski absoluteness between N[, ][K,] and V, one has
that RVHx] = (Uq,(x))N[H"][’C"] = (Ug(x))". (Recall the Mostowski absoluteness
states that 3! statements are absolute between two transitive models with the same
w, and N[H,][K,] and V both have the same w although they share very few other
ordinals.) This completes the proof. [ ]

Theorem 113 Assume ZF + ACE. Let U € “2 x “2 be Al universal for countable sets.
Then ="=,1 Ey.

Assume ZF + ACE + 31 _generic absoluteness for the two step iteration C,,
Coll(w,R). Let U € “2 x “2 be 3} universal for countable sets. Then ="<a1 Ey.

Proof  Assume the setting of Lemma 1.12. Let @ : “2 — “2 be the function given by
Lemma 1.12. By Lemma 1.10, for any x, y € “2, x =¥ yifand only if Ugy) = RMH:] =
RN = Ua(y) if and only if ®(x) Ey ®(y). Thus @ is a reduction witnessing
="<a1 Ey. In the case where U is A}, Fact 1.2 gives that Ey <a1=", and therefore
Ey EA}:+‘ ]

Finally, some comments on the arguments used in this article. Suppose X : “2 —
P, (“2) isamap from “2 to &, (“2), the collection of countable subsets of “2, with
the property that x =* y ifand only 2(x) = Z(y). Since U is assumed to be universal
for countable sets, for each x € “2, there is an e such that U, = Z(x). Without any
concrete knowledge of the definition of U, it seems that a function @ : “2 —» “2 so
that Ug () = Z(x) could be quite complex. Forcing and absoluteness allow for the
simultaneous construction (for each for x € “2) of a countable set of reals (x) and
another countable set of reals C, so that one can successfully search within C, to find
an esuch that U, = 2(x). Specifically in the above argument, = (x) = RM*+land C, =
RN Since the search has been restricted to a countable set, one can produce
a A} function @ that essentially selects the least e € C, so that U, = Z(x).

The use of forcing to study =* is quite natural in results involving producing =*
reductions into other equivalence relations such as the following two examples: [8,
Theorem 6.24] implies that if B € “2 is nonmeager, then =* Borel reduces into =* | B;
[10, Theorem 2.8.11] showed a dichotomy result that states that in the Solovay model
of a measurable cardinal, a =} equivalence relation E is unpinned (in the sense of [7]
or [10]) ifand only if =*< ar Eor there is an almost Borel reduction of E,, into E. ( E,,,
is isomorphisms of wellordering on w with non-wellorderings put into a single class.
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An almost Borel reduction is a Borel function that fails to be a reduction on at most
one class.)

Countable models of set theory are commonly used to produce Borel objects. The
set of generics over a countable model for a forcing in that countable model is a
Borel set. For instance, the set of Cohen generic reals over a countable model is a
Borel comeager set. If the forcing is proper coming from a o-ideal, then the set of
generics has many interesting canonization properties for equivalence relations; see,
for instance, [8, Theorem 6.24]. (See [12, 8, 1, 3] for other examples.) Variations of
the idea of producing coherent families of mutual generics over a countable model
and the Borelness of evaluating names by such generics over countable models are
used to produce perfect sets and prove various dichotomy results for equivalence
relations.

A common approach to creating a Borel reduction from =* into another equiva-
lence relation involves defining a map X that assigns reals to countable sets of reals.
In this situation for the equivalence relation Ey; where U is A} universal for countable
sets, the requirements are that there is a function 2 : “2 - &, (“2) and a function
assigning x — M, where M, is a countable transitive model of some adequate
fragment of ZFC, which is A{ in a suitable coding and satisfy the following two key
properties.

(1) Forallx,ye®2 x="yifand onlyif Z(x) = Z(y).
(2) Z(x) e My, and M, = Z(x) is countable.

For the purpose of this article, this can be done within ZFC using simple forcings such
as C, C,,, and Coll(w, R). The following is a summary of this method used above to
produce =" Borel reductions.

First, one creates a A} assignment of reals to generics for a countable model that
satisfy a mutual genericity condition, which is accomplished here in Lemma 1.6 by
Cohen forcing and the function Geng. (For the unpinnedness dichotomy ([10, Theo-
rem 2.8.11]) in the Solovay model from a measurable cardinal &, the suitable forcing is
naturally Coll(w, < k).) Then X is defined to be the reals that can appear in any finite
product of mutual generics from certain countable collections of the assigned mutual
generics. Here, 2(x) = U{RMILi<s 950 : 11 € 0} in the notation of Lemma 1.9. The
mutual genericity property of the assignment plays an essentially role in establishing
the first key property as argued in Lemma 1.10. One needs Z(x) to be a countable set
in an appropriate countable model. Here, one arranges that £(x) is, uniformly ina A}-
manner, the set of reals of a generic extension of the original countable model, which is
done in Lemma 1.9, which arranges X (x) = RGe"Modi(*) — RM™+] Then Lemma 1.1
uses a further forcing by Coll(w, R) to make Z(x) countable in GenMod, (x), which
Mostowski collapses to N[H, ][K]. This creates the necessary objects with the two
key properties.

By the absoluteness observations, U remains universal for countable sets of reals
in N[H,][K,]. Thus, one can search in this model for a real e so that U, = (x)
holds in M[H,][K]. Using some further absoluteness arguments, it is shown that
U, = Z(x) holds in the real world V. The map @ taking x to this e is the desired
reduction.

Downloaded from https://www.cambridge.org/core. 30 Oct 2021 at 01:46:52, subject to the Cambridge Core terms of use.


https://www.cambridge.org/core

590 W. Chan

As observed by the referee, since the collection of Cohen generic reals over a
countable model M is comeager, one can apply [8, Theorem 6.24] and use the
absoluteness argument of Lemma 1.12 to search for a real e in M[x] such that
U, = {%, : n € w}. This will avoid directly constructing the reduction of =* into Ey,
although [8, Theorem 6.24] is proved using argument similar to what is outlined
above.

Here, the forcing Coll(w,R) is important for obtaining a set of reals that is
countable in the desired countable model. The use of this forcing is quite common
in the study of =*. The forcing Coll(w, R) and the canonical Coll(w, R)-name for the
generic surjection witness that =* is an unpinned equivalence relation in the sense
of [7] or [10]. The unpinnedness of =" is often used in the study of this equivalence
relation. For instance, the witness to the unpinnedness of =* is used in [2, Example
2.17] to showin L(R) = AD that =* has an OD equivalence class with no OD member.
Under ZF + AD" +V = L(Z(R)), unpinnedness of ¥} equivalence relations is in
some sense the main obstacle to making definable selections from equivalence classes.
(See [2, Corollary 2.14, Theorem 3.1, Example 3.5, and Example 3.6.].)
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