

Metabolic engineering of *Escherichia coli* for quinolinic acid production by assembling L-aspartate oxidase and quinolinate synthase as an enzyme complex

Fayin Zhu ^{a,1}, Matthew Peña ^a, George N. Bennett ^{a,b,*}

^a Department of BioSciences, Rice University, Houston, TX, 77005, USA

^b Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, USA

ARTICLE INFO

Keywords:

Quinolinic acid
Peptide-peptide interaction
Enzyme complex
Metabolon
Metabolite channeling
Metabolic engineering

ABSTRACT

Quinolinic acid (QA) is a key intermediate of nicotinic acid (Niacin) which is an essential human nutrient and widely used in food and pharmaceutical industries. In this study, a quinolinic acid producer was constructed by employing comprehensive engineering strategies. Firstly, the quinolinic acid production was improved by deactivation of NadC (to block the consumption pathway), NadR (to eliminate the repression of L-aspartate oxidase and quinolinate synthase), and PtsG (to slow the glucose utilization rate and achieve a more balanced metabolism, and also to increase the availability of the precursor phosphoenolpyruvate). Further modifications to enhance quinolinic acid production were investigated by increasing the oxaloacetate pool through over-production of phosphoenolpyruvate carboxylase and deactivation of acetate-producing pathway enzymes. Moreover, quinolinic acid production was accelerated by assembling NadB and NadA as an enzyme complex with the help of peptide-peptide interaction peptides RIAD and RIDD, which resulted in up to 3.7 g/L quinolinic acid being produced from 40 g/L glucose in shake-flask cultures. A quinolinic acid producer was constructed in this study, and these results lay a foundation for further engineering of microbial cell factories to efficiently produce quinolinic acid and subsequently convert this product to nicotinic acid for industrial applications.

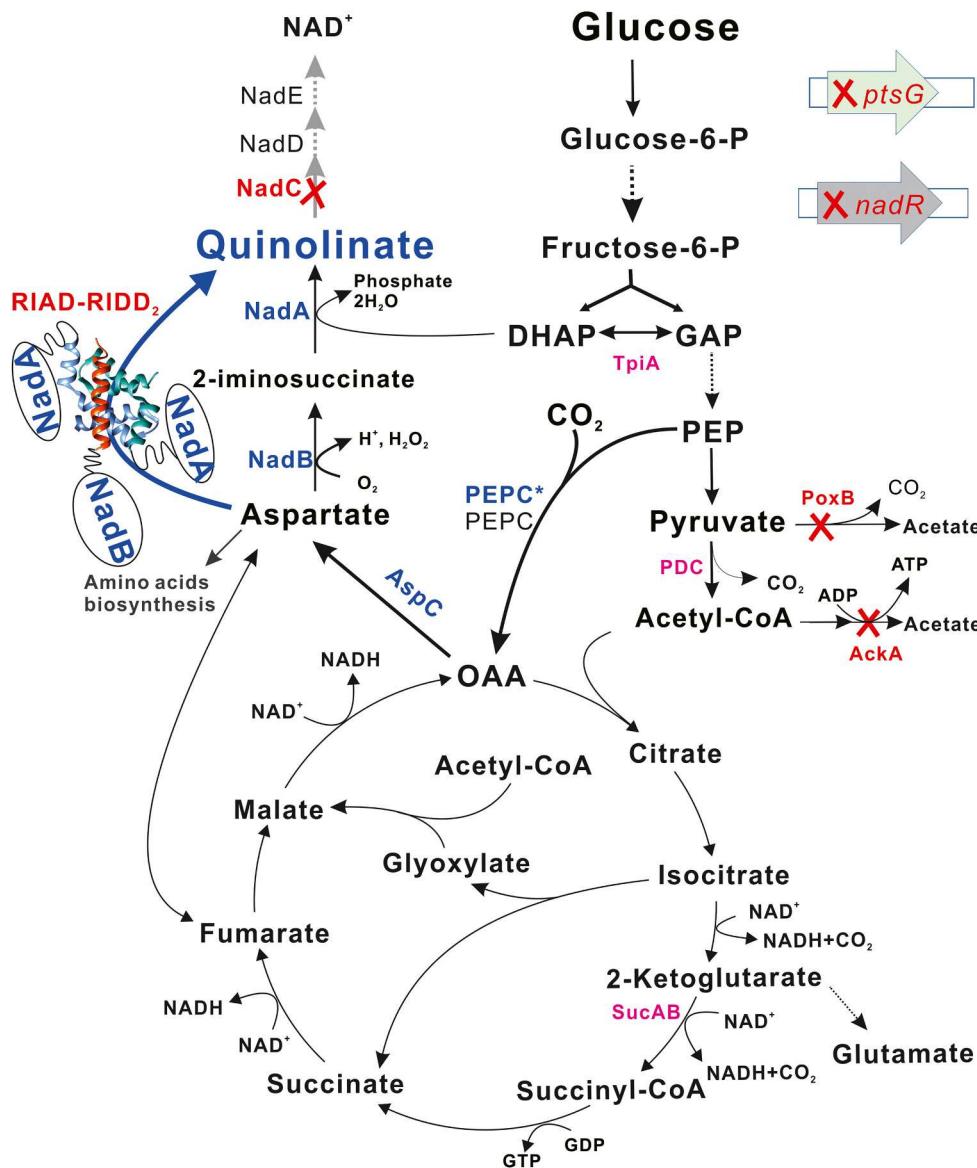
1. Introduction

Quinolinic acid (QA), known as pyridine-2,3-dicarboxylic acid, is a dicarboxylic acid with a pyridine backbone, and it is a key precursor to nicotinic acid and nicotine in nature (Andreoli et al., 1963). Nicotinic acid, also known as niacin or vitamin B₃, is one of the water-soluble B complex vitamins, and it commonly exists in living cells. In general, nicotinic acid is present mainly in the form of nicotinic acid amide co-enzyme [Nicotinamide Adenine Dinucleotide (NAD⁺) or Nicotinamide Adenine Dinucleotide Phosphate (NADP⁺)] *in vivo* and it acts as a cofactor for a large and diverse number of cellular oxidative-reductive reactions. Nicotinic acid is an essential human nutrient as deficiency of nicotinic acid may cause the disease pellagra and neuropathies (Crook, 2014; Hammond et al., 2013). Consequently, nicotinic acid is widely used in the food and pharmaceutical industries. Nicotinic acid has been mainly produced by chemical synthesis through oxidation of β -picoline (Andrushkevich and Ovchinnikova, 2012; Shishido et al.,

2003); however, these processes result in considerable amounts of toxic wastes, which require significant expense for proper disposal. Moreover, these methods use petroleum-based non-renewable chemicals as the precursor, which is affected by concerns about climate change and unpredictable oil refining prices. To overcome these concerns, production of fuels, pharmaceuticals, or bulk and fine chemicals from renewable feedstocks using microorganisms has arisen as an attractive alternative (Keasling, 2010; Lee et al., 2012; Woolston et al., 2013), especially given advancements in metabolic engineering, however, there is little published literature directed to the over-production of nicotinic acid or even quinolinic acid in microorganisms (Kim et al., 2016).

Early work on the enzymes and genes related to quinolinic acid formation from aspartate has been described (Chandler and Gholson, 1972; Flachmann et al., 1988; Griffith et al., 1975). Quinolinic acid, NAD⁺, Coenzyme A, and commercially important amino acids such as threonine and lysine (Becker et al., 2011; Ning et al., 2016; Park and Lee, 2010; Zhao et al., 2020) are generated via aspartate as a key precursor.

* Corresponding author. Department of BioSciences, Rice University, Houston, TX, 77005, USA.


E-mail address: gbennett@rice.edu (G.N. Bennett).

¹ Present address: Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL, 33620, USA

Metabolic engineering at the oxaloacetate and aspartate nodes is important to give a high level of these key intermediates (Sauer and Eikmanns, 2005), as well as to provide high and specific conversion of aspartate to quinolinic acid. We have previously engineered cells to produce compounds derived from the oxaloacetate branch of the TCA cycle and have developed useful designs for metabolic networks to product compounds around this node (Cox et al., 2006; Martinez et al., 2018; Sánchez et al., 2005; Zhu et al., 2020). Likewise, we have investigated computational methods for finding novel pathways to relevant OAA derived compounds (Heath et al., 2010; Kim et al., 2020). There are two major NAD *de novo* biosynthetic pathways used for quinolinate production *in vivo*: NAD *de novo* biosynthesis I (from aspartate) in most prokaryotes and NAD *de novo* biosynthesis II (from tryptophan), also known as the kynurenine pathway, in eukaryotes (Begley et al., 2001; Panizzo et al., 2002). These two pathways converge at quinolinic acid, a key intermediate of NAD biosynthetic pathways, and subsequently use three common steps to synthesize NAD. Five enzymes are involved in the conversion of tryptophan to quinolinate in the kynurenine pathway. In comparison, only two enzymes, L-aspartate oxidase (NadB) and quinolinate synthase (NadA), are needed for quinolinate production aerobically from aspartate (Magni et al., 1999). L-aspartate oxidase (NadB), is a monomer of a 60 kDa flavoenzyme containing 1 mol of non-covalently

bound FAD/mol protein, and it catalyzes the conversion of L-aspartate to 2-iminosuccinate (Mortarino et al., 1996; Nasu et al., 1982). Quinolinate synthase (NadA), which appears mainly as a dimeric protein of 80 kDa (Ollagnier-de Choudens et al., 2005), contains an oxygen-sensitive [4Fe–4S] cluster required to catalyze the condensation of 2-iminosuccinate with dihydroxyacetone phosphate (DHAP) to produce quinolinate (Ceciliani et al., 2000; Cicchillo et al., 2005; Ollagnier-de Choudens et al., 2005). We know that the concentration of NAD(H) and NADP(H) *in vivo* remains relatively stable, and the pool is maintained by a combination of gene expression regulation, feedback inhibition, and cofactor degradation [The NAD(P) recycling and salvage pathways] (Begley et al., 2001). The expression of NadB and NadA was reported to be repressed by a DNA binding transcriptional repressor NadR (Begley et al., 2001; Tritz and Chandler, 1973). Moreover, inhibition of aspartate oxidase activity was reported by the substrate aspartate, the product 2-iminosuccinate and also NAD⁺ (Mortarino et al., 1996; Seifert et al., 1990).

In this study, comprehensive engineering strategies were applied to *E. coli* K12 MG1655 to increase quinolinate production through the NAD *de novo* biosynthesis I (from aspartate) pathway. The approach included: blocking the consumption pathway, eliminating the transcriptional repression of NadA and NadB, decreasing the glucose consumption rate

Fig. 1. Metabolic engineering of *E. coli* MG1655 for quinolinate acid production. Quinolinate acid production was enabled by deactivation of *nadC* (to block the consumption pathway), *nadR* (to eliminate the repression of L-aspartate oxidase NadB and quinolinate synthase NadA), and *ptsG* (to slow the glucose consumption rate and achieve a more balanced metabolism, and to increase the availability of phosphoenolpyruvate). Quinolinate production was enhanced by increasing the oxaloacetate (OAA) pool through overexpression of phosphoenolpyruvate carboxylase (PEPC) and deactivation of the acetate-producing pathways (*poxB*, *ackA*). Quinolinate production was accelerated by assembling NadB and NadA as a enzyme complex with the help of peptide-peptide interaction peptides RIAD and RIDD (Carlson et al., 2006; Gold et al., 2006). *PtsG*: glucose specific PTS enzyme II subunit BC; *NadR*: DNA-binding transcriptional repressor; DHAP: dihydroxyacetone phosphate; GAP: glyceraldehyde 3-phosphate; TpiA: triose-phosphate isomerase; PDC: pyruvate dehydrogenase complex; *poxB*: pyruvate oxidase; *AckA*: acetate kinase; *SucAB*: 2-oxoglutarate dehydrogenase multi-enzyme complex subunit AB; *AspC*: aspartate aminotransferase; *NadC*: quinolinate phosphoribosyltransferase; *NadD*: nicotinate-mononucleotide adenyllyltransferase; *NadE*: NAD synthetase; RIAD, an 18 amino acids peptide from the A kinase-anchoring proteins; RIDD₂: RIDD dimer which contains 50 N-terminal residues of cAMP-dependent protein kinase for each peptide.

and increasing the availability of phosphoenolpyruvate, PEP followed by increasing the oxaloacetate, OAA pool for aspartate synthesis, and blocking the by-product acetate producing pathways, as well as improving the enzymatic efficiency by assembling NadA and NadB as an enzyme complex (Fig. 1). Finally, up to 3.7 g/L quinolinate was produced from 40 g/L glucose in shake-flask cultures of the improved strain. The results lay a foundation for further engineering of the strain for highly efficient production of quinolinate for industrial applications.

2. Materials and methods

2.1. Plasmids and strains

Plasmids and strains used in this study are listed in Table S1 and a brief description of the construction procedure is provided below.

The traditional digestion and ligation method was used for plasmid construction. *NdeI-HindIII* digested DNA fragment including *lacI*, pTrc promoter and multiple cloning sites (MCS) from pFZGNB16 (pTrc99a with a *BglII* site 193 bp upstream of the pTrc promoter) was ligated with a DNA fragment containing the kanamycin resistance gene and the origin of replication from pHL413Km (Thakker et al., 2011) to give pFZGNB33 (*BglII*-pTrc-MCS-Km-ori-*lacI*). Native genes, *nadA*, *nadB* and *aspC* were each individually amplified from *E. coli* MG1655 genomic DNA and inserted into pFZGNB33 to give pFZGNB34, pFZGNB35 and pFZGNB36, respectively. *AspC*, *nadB* and *nadA* gene fragments with ribosome binding sites (RBS) were combined in different orders to give pFZGNB37 to pFZGNB42 (Table S1). *nadA* from *Bacillus subtilis* (BsnadA) was amplified from *Bacillus subtilis* CB10 with an extra DNA fragment coding a HisTag at the C-terminal (BsnadA-HisTag) and inserted into pFZ33 to give pFZGNB43, and pTrc-*nadB* from pFZGNB35 was inserted into pFZGNB43 to give pFZGNB207. L-aspartate oxidase from *Sulfolobus tokodaii* (StrnadB, GenBank: KC333624.1) was synthesized and sub-cloned into pTrc99a by Genscript (pTrc99a-StrnadB). pTrc-StrnadB was then inserted into pFZGNB34 to give pFZGNB189. The *Spel-HindIII* digested pTrc-*nadB* PCR product from pFZGNB35 was inserted into *XbaI-HindIII* digested pFZGNB34 to give pFZGNB190. *NadB* from *Pseudomonas putida* KT2440 (PpnadB) was amplified from genomic DNA and inserted into pFZGNB33 to give pFZGNB183. pTrc-PpnadB from pFZGNB183 was inserted into pFZGNB34 to give pFZGNB193 (Table S1).

For NadA-NadB fusion protein constructions, DNA fragments encoding peptide linkers (GS)₃, (GS)₆ and (G₄S)₂ were introduced at the end of *nadA* or *nadB* without stop codon through PCR and combined with *nadB* or *nadA* to give pFZGNB153 to pFZGNB157 (Table S1). DNA fragments encoding peptides RIAD and RIDD with a linker (G₄S)₂G₄CG were codon-optimized and synthesized by Synbio Technologies (Table S2). Overlap Extension PCR (OE-PCR) was then applied to combine the peptide encoding DNA fragment with *nadA* or *nadB* to give pFZGNB228 to pFZGNB231. pTrc-nadB-RIAD from pFZGNB229 and pTrc-RIAD-nadB from pFZGNB230 were inserted into pFZ228 and pFZGNB231 individually to give pFZGNB232 to pFZGNB235, respectively (Table S1).

N₂₀ of pTargetF (Jiang et al., 2015) was replaced by a *ptsG* specific N₂₀ (GTATCCGTACTGCCTATCGC) through inverse PCR to give pFZGNB44. The upstream and downstream homologous arms of *ptsG* were amplified from *E. coli* MG1655 genomic DNA and inserted between the *EcoRI* and *HindIII* sites of pFZGNB44 with an *XbaI* site between the two homologous arms to give pFZGNB46, which can be used for *ptsG* deletion. The same method was used to construct plasmids pFZGNB63, pFZGNB65, pFZGNB74, pFZGNB75 and pFZGNB76 for deactivation of *tpiA*, *sucAB*, *lpd*, *ackA*, and *pta-ackA*. pTrc-pepc was amplified from pKK313 (Wang et al., 1992) and inserted into pFZGNB46, pFZGNB75, and pFZGNB76 to give pFZGNB50, pFZGNB117, and pFZGNB118, which can be used to replace *ptsG*, *ackA*, *pta-ackA* with pTrc-pepc fragment individually (Table S1).

E. coli K12 MG1655 was used as the parent strain in this study. Genes

nadC and *nadR* were deleted using the lambda red recombination method (Datsenko and Wanner, 2000), and the CRISPR/Cas9 method was employed for deletion/replacement of the other selected genes (Jiang et al., 2015).

2.2. Fermentation of quinolinic acid from glucose

Freshly transformed strains were used for every batch fermentation. Ten single colonies were inoculated into 5 mL LB or quinolinic acid-producing medium with 50 mg/L kanamycin and cultured at 37 °C to form the inoculum seed culture. Fermentation was performed in 250-mL conical flasks that contain 1.5 g CaCO₃. Fifty milliliters of quinolinic acid-producing medium supplemented with 50 mg/L kanamycin was added into each flask, and IPTG was added to a final concentration of 0.1 mM for induction. One percent of an overnight cell culture was inoculated into the fermentation medium. The cells were grown at 37 °C with shaking at 350 rpm unless otherwise stated. A sample of 1-mL of culture broth was withdrawn at designated intervals for product and metabolite analysis by HPLC. The previous reported medium (Kim et al., 2016) with a higher concentration of Fe²⁺, Mn²⁺, and Zn²⁺ (increased from 5 mg/L to 10 mg/L) was used for fermentation. This culture media contains 70 g/L of glucose, 17 g/L of (NH₄)₂SO₄, 1 g/L of KH₂PO₄, 0.5 g/L of MgSO₄·7 H₂O, 2 g/L of yeast extract, 150 mg/L of methionine, 10 mg/L of FeSO₄·7 H₂O, 10 mg/L of MnSO₄·8 H₂O, and 10 mg/L of ZnSO₄, unless otherwise specified.

2.3. SDS-PAGE analysis of soluble protein

To check the protein expression level of the targeted proteins, cells from 3 mL cell culture was harvested and stocked at -80 °C until further analysis. The cells were melted on ice and suspended in 0.8 mL of 50 mM Tris-Cl (pH 8.0), and 0.6 g glass beads was added. The cells were disrupted by disruptor Genie (2500 rpm) for 3 min. Lysed cells were then centrifuged at 13,000 rpm for 10 min and the supernatants were used for SDS-PAGE analysis.

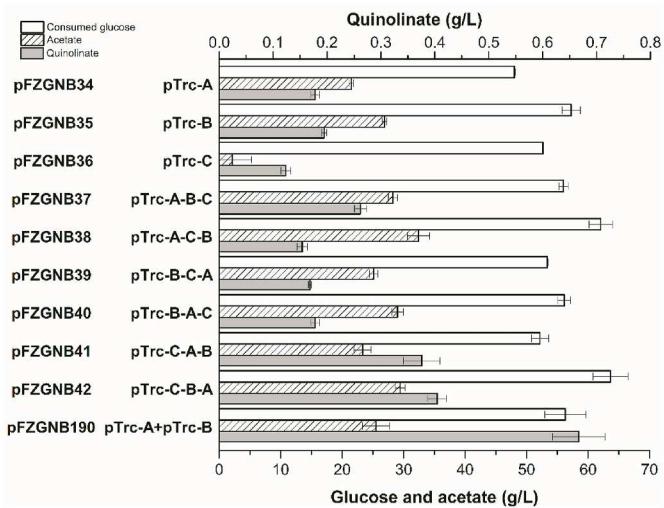
2.4. Analytical methods

For analyzing the fermentation products and residual sugars and other metabolites, the samples were centrifuged at 13,000×g for 2 min and then the supernatant was filtered through a 0.2 μm syringe filter. The glucose, acetate, and quinolinate were quantified using the same method as previously described (Zhu et al., 2018). In brief, an HPLC system was equipped with a cation-exchange column Aminex HPX-87H (Bio-Rad, USA) and a differential refractive index detector RID-10A (Shimadzu, Japan) and UV detector at 210 nm. 2.5 mM H₂SO₄ served as the mobile phase running at 0.5 mL/min, and the column temperature was maintained at 55 °C. Authentic quinolinic acid (Sigma, St. Louis, MO) was used to generate a standard curve from 10 mg/L to 5 g/L, less than 10 mg/L is considered as not detectable (nd) under tested conditions.

3. Results and discussion

3.1. Engineering of *E. coli* MG1655 for quinolinic acid production

Quinolinic acid is an intermediate of the NAD⁺ *de novo* biosynthetic pathway under aerobic conditions (Fig. 1). The gene *nadC* of MG1655 was disrupted to block the consumption pathway and allow strain FZ700 to accumulate quinolinic acid. To increase expression of the NAD⁺ biosynthetic genes, the DNA-binding transcriptional repressor *nadR* (of *nadA* and *nadB*) was deactivated in FZ700 to give FZ703. Plasmid pFZGNB42 (pTrc-*aspC-nadB-nadA*) was introduced into the engineered strains to check their performance. The quinolinic acid accumulated in parent strain *E. coli* MG1655 is less than 43 mg/L under tested conditions, which is likely due to it being further converted to NAD⁺. 138 mg/L


L of quinolinic acid was accumulated in FZ700, and QA titer goes up to 544 mg/L in FZ703.

In experiments we noticed more than 37 g/L acetate was accumulated in these strains, which was a really high level of byproduct from the feedstock, glucose. Deactivation of the glucose specific transporter, PtsG, was reported to be able to reduce acetate secretion significantly by slowing the glucose consumption rate which results in a more balanced and efficient metabolism (De Anda et al., 2006; Gosset, 2005; Wong et al., 2008), and also more PEP can be conserved and available for other metabolic pathways by decoupling glucose transport from PEP-dependent phosphorylation (Chatterjee et al., 2001; Gosset, 2005; Liang et al., 2015; Lin et al., 2005). Moreover, the *E. coli* EMP pathway was reported to potentially form an entire substrate channeling module that prevent PEP from being used by other pathways (Shearer et al., 2005). PtsG is thought to be the anchoring point of the EMP channeling and disrupting it will weaken the EMP channeling and improve the efficiency of the engineered pathway to hijack intermediate metabolites from the native pathway (Abernathy et al., 2019). So, the glucose specific transporter PtsG was deactivated in FZ703 to give FZ723. Meanwhile, the S8D mutant of sorghum phosphoenolpyruvate carboxylase (PEPC) (Wang et al., 1992) was also introduced to increase the OAA pool. This modification was accomplished by the replacement of *ptsG* with pTrc-pepc fragment in FZ703 to give FZ734 (Table S1). After 1-day fermentation, up to 450 mg/L quinolinic acid was accumulated in FZ703, while only 283 mg/L and 360 mg/L quinolinic acid were produced in FZ723 and FZ734, respectively. After 3-day fermentation, strains FZ723 and FZ734 attained a comparable performance to strain FZ703. Finally, 627 mg/L and 740 mg/L quinolinic acid were accumulated in FZ723 and FZ734 respectively after a 7-day fermentation period, while, only 544 mg/L quinolinic acid accumulated in FZ703 (Table 1). However, a very high concentration of acetate still accumulated in FZ734 (Table S2). The experiment clearly indicates that blocking the consumption pathway is necessary for quinolinic acid production, and deactivation of PtsG and introducing PEPC are helpful for quinolinic acid production. Strain FZ734 was used for further experiments.

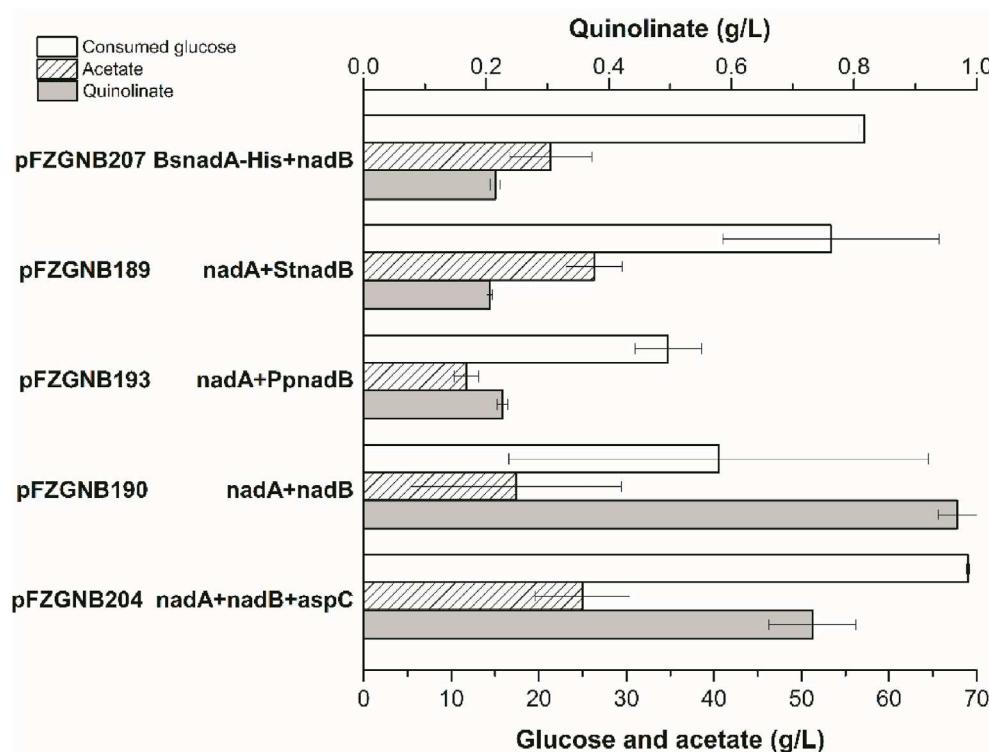
Plasmid pFZGNB42 (pTrc-*aspC-nadB-nadA*) was introduced into the tested strains to examine their performance, aerobic cultures were performed at 37 °C, 350 rpm. The numbers indicate quinolinate concentration (mg/L, average of three replicates with error bars indicating standard deviation).

3.2. Effect of varying the gene order of *aspC*, *nadB*, and *nadA* in expression constructs on quinolinic acid production

Plasmids containing the three genes for quinolinic acid production from OAA in different arrangements were constructed to give plasmids pFZGNB37 to pFZGNB42 (Fig. 2) and their performance on quinolinic acid production in the host FZ734 was evaluated. After 4 days of fermentation, more than 48 g/L of glucose was consumed in all tested

Fig. 2. Quinolinic acid production in FZ734 harboring plasmids containing various gene orders of *aspC*, *nadB*, and *nadA*. Aerobic cultures were performed at 37 °C, 350 rpm for 4 days. Values are the average of three replicates with error bars indicating standard deviation. A, B, and C indicate *nadA*, *nadB*, and *aspC* accordingly.

strains. The culture of the strain where only *aspC* was overexpressed produced the lowest quinolinic acid titer (123 mg/L) compared to the results observed when *nadA* or *nadB* was overexpressed (Fig. 2). When all three genes were co-overexpressed in different gene orders on a plasmid, the quinolinic acid production was slightly improved with plasmid pFZGNB37 (pTrc-*nadA-nadB-aspC*), and the quinolinic acid titer increased to 404 mg/L with plasmid pFZGNB42 (pTrc-*aspC-nadB-nadA*). Unexpectedly, a higher quinolinic acid titer was observed in the strain bearing plasmid pFZGNB190, which only overexpressed *nadA* and *nadB* under control of two individual pTrc promoters (pTrc-*nadA*-pTrc-*nadB*, Table S1), where 667 mg/L quinolinic acid was accumulated (Fig. 2). This experiment suggested the level of AspC expressed from the native gene is already enough for these tested conditions.


3.3. Examination of variants of *nadA* and *nadB* failed to improve quinolinate production

Although FZ734 with plasmid pFZGNB190 (pTrc-*nadA* + pTrc-*nadB*) showed the best performance as described above in section 3.2, it was reported that protein NadB displays a substrate inactivation and its activity can be inhibited by substrate aspartate and NAD, which act as competitive inhibitors (Seifert et al., 1990). NadA was also reported to form inclusion bodies when it is overproduced (Ceciliani et al., 2000), which could diminish its *in vivo* activity. Screening enzymes from diverse sources has been used as an effective strategy to increase the productivity of heterologous pathways in specific hosts. So, some NadA and NadB variants from other species were employed and tested in FZ734 for comparison.

It was reported that the activity of NadB from *Pseudomonas putida* KT2440 (PpnadB) was not inhibited by aspartate when the concentration of aspartate is less than 50 mM. And the K_m , k_{cat} value of this enzyme was determined to be 2.26 mM, 10.6 s⁻¹ against L-aspartate (Leese et al., 2013). NadB from *Sulfolobus tokodaii* (StNadB) was also reported to be less sensitive to NAD⁺ since it can bind the FAD cofactor tightly with a different structure (Bifulco et al., 2013; Sakuraba et al., 2008); moreover, it displays some other distinctive features, e.g., stable activity over a wide range of pH (from 7 to 10), and high thermostability (with a T_m higher than 79 °C), which would make it attractive for biotechnological applications. However, evaluation of constructs expressing these alternative genes under the same conditions described in Fig. 2 revealed no improvement in quinolinic acid production (Fig. 3).

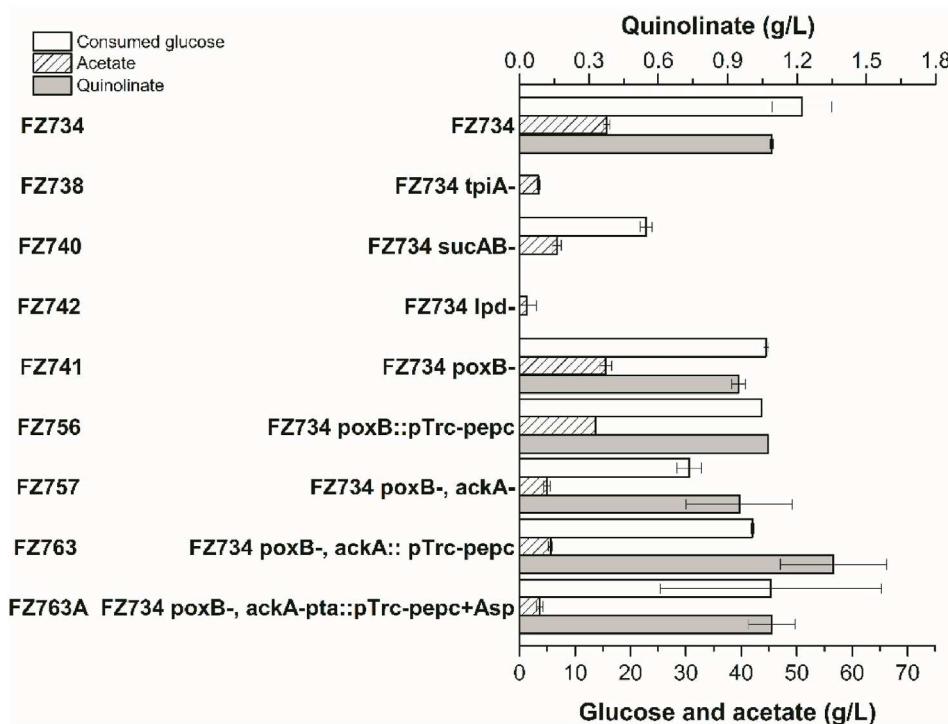
Table 1
Quinolinate production in engineered strains.

	MG1655	FZ700	FZ703	FZ723	FZ734
1 day	40.2 ± 1.6	97.1 ± 13.6	449.7 ± 24.3	282.6 ± 16.0	360.2 ± 29.2
3 day	42.8 ± 3.5	138.2 ± 8.3	488.5 ± 23.4	500.8 ± 28.5	594.5 ± 13.7
5 day	36.9 ± 1.8	133.8 ± 7.5	503.8 ± 26.4	544.0 ± 31.2	644.9 ± 16.4
7 day	36.8 ± 2.1	135.4 ± 6.9	544.4 ± 20.4	627.3 ± 31.6	739.7 ± 16.9
<i>NadC</i>	+	-	-	-	-
<i>NadR</i>	+	+	-	-	-
<i>PtsG</i>	+	+	+	-	-
pTrc- <i>pepc</i>	-	-	-	-	+

Fig. 3. The effect of nadA and nadB variants on quinolinic acid production in FZ734. Aerobic cultures were performed at 37 °C, 350 rpm for 4 days. Proteins were overproduced under the control of pTrc promoter in pFZGNB33. Values are the average of three replicates with error bars indicating standard deviation. BsnadA-HisTag indicates nadA from *Bacillus subtilis* with a His₆-Tag at the C-terminal, StnadB indicates nadB from *Sulfolobus tokodaii*, and PpnadB indicates nadB from *Pseudomonas putida* KT2440.

This may be due to the poor protein expression of these NadB variants (Fig. S1), especially StNadB comes from an extremophile. Another possible reason is these enzymes having a lower affinity for aspartate, the K_m value for L-aspartate of StNadB and PpNadB is 1.3 and 2.26 mM as reported (Bifulco et al., 2013; Leese et al., 2013), which is much higher than the K_m value of *E. coli* NadB (0.048 mM).

The gene encoding NadA from *Bacillus subtilis* (BsNadA) had been successfully overexpressed with a His₆ tag at its C-terminal (BsNadA-HisTag) in *E. coli* with a yield of 10 mg pure protein from 1 L culture (Marinoni et al., 2008). Unexpectedly, only 215 mg/L quinolinic acid was produced when the native nadA in pFZGNB190 was replaced with BsNadA-HisTag (Fig. 3) as no improvement on protein expression was observed in the tested conditions (Fig. S1) and low activity of the BsNadA-HisTag enzyme was reported previously (Marinoni et al., 2008).


Unfortunately, the performance of these strains with different NadA and NadB variants is not as good as the native *E. coli* enzymes NadA and NadB under the tested conditions in FZ734 (Fig. 3). The native aspC was also introduced into pFZGNB190 to give pFZGNB204; however, less quinolinic acid was accumulated in the strain with pFZGNB204 (Fig. 3), possibly due to the substrate inactivation of NadB, potentially caused by the overexpression of AspC.

3.4. Engineering of FZ734F to improve quinolinic acid production

Several manipulations were explored to enhance the carbon flux to quinolinate production, including increasing the substrate availability, downregulating the TCA cycle, and blocking the by-product acetate production. DHAP can be condensed with 2-iminosuccinate by NadA to form quinolinate with a K_m of 0.74 mM (Reichmann et al., 2015), while it is reported that wild type *E. coli* strains normally only have 0.37 mM DHAP (Bennett et al., 2009), so this possibility to enhance the level of DHAP was tested. Triosephosphate isomerase (TpiA), which catalyzes the isomerization between glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP), was deactivated to reserve DHAP for quinolinate biosynthesis. Meanwhile, we considered that the low yield of quinolinate may be due to too much carbon going through the TCA

cycle, so sucAB and lpd were deactivated to down-regulate the carbon flux through TCA cycle. SucA and SucB are two subunits of the 2-oxoglutarate dehydrogenase multi-enzyme complex (OGDHC) that catalyzes the conversion of 2-oxoglutarate (2-ketoglutarate) to succinyl-CoA and CO₂. Deactivation of sucAB could accumulate 2-oxoglutarate, which can be used for glutamate synthesis and will be beneficial for aspartate synthesis. Lipoamide dehydrogenase (Lpd) is the E3 component of three multicomponent enzyme complexes: pyruvate dehydrogenase, 2-oxoglutarate dehydrogenase complex, and the glycine cleavage system (Guest and Creaghan, 1972; Pettit and Reed, 1967; Steiert et al., 1990). Deactivation of lpd was reported to produce more pyruvate and L-glutamate under aerobic conditions (Li et al., 2006), as it affects the function of pyruvate dehydrogenase and the 2-oxoglutarate dehydrogenase complex. However, the FZ738 (FZ734 Δ tpiA) or FZ742 (FZ734 Δ lpd) strain displayed very poor cell growth and failed to produce quinolinate (Fig. 4). Although the sucAB⁻ strain can grow, unfortunately, it also failed to accumulate quinolinate. This may be due to the quinolinate production being an ATP consuming process, and it requires a high level of ATP generated through the TCA cycle or other ATP producing pathway.

More than 20 g/L acetate accumulated in nearly in all tested strains, which may inhibit the cell growth and waste the substrate glucose, so the acetate producing pathways were selected as the next target for genetic modification. There are two predominant acetate producing pathways active aerobically in *E. coli*, they are the pyruvate oxidase (PoxB) and acetate kinase/phosphotransacetylase (AckA-Pta) pathways. Pyruvate oxidase (PoxB) is a peripheral membrane enzyme that catalyzes the oxidative decarboxylation of pyruvate to form acetate and mainly functions at stationary phase, whereas the AckA-Pta catalyzed pathway, which mainly functions during the exponential phase, converts acetyl-CoA to acetate (Dittrich et al., 2005). When the fermentation was performed with strains harboring plasmid pFZGNB190, no difference was observed on acetate accumulation when only the PoxB was deactivated, while much less acetate was accumulated when both PoxB and AckA were deactivated (Fig. 4). However, there is 13% decrease in quinolinate titer in FZ757/pFZGNB190 due to 40% less

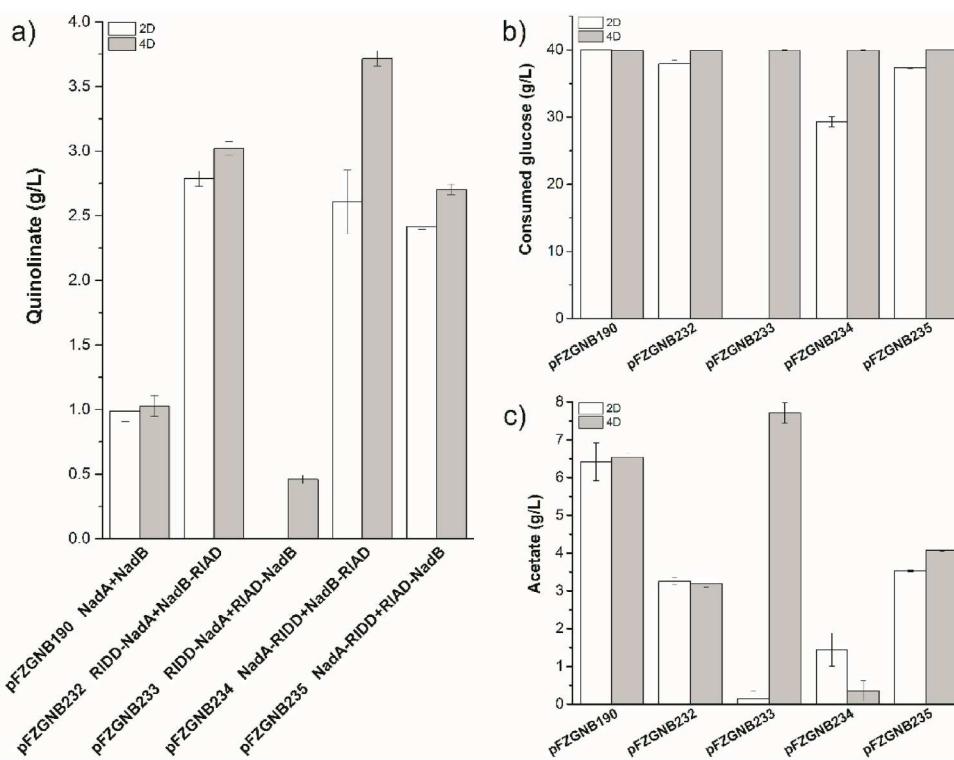
Fig. 4. Quinolinic acid production in engineered strains harboring plasmid pFZGNB190. Aerobic cultures were performed at 37 °C, 350 rpm for 4 days. FZ763A indicates 5 g/L aspartate was added into the fermentation broth (+Asp). Values are the average of three replicates with error bars indicating standard deviation.

glucose being consumed. Since this strain has two acetate producing pathways deactivated, compared with FZ734/pFZGNB190 (Fig. 4), it has a less ability to consume glucose rapidly. Interestingly, improvement was observed when an extra copy of pTrc-pepc was introduced into FZ757 (FZ734 Δ poxB, Δ ackA) forming strain FZ763/pFZGNB190 (Table S1). The resulting strain yielded a 24.4% increase in quinolinic acid formation compared to FZ734/pFZGNB190, with up to 1.4 g/L (32.3 mg/g consumed glucose) being accumulated while consuming 42 g/L glucose (Fig. 4), it's also worth noticing that more than 5.6 g/L acetate accumulated in FZ763/pFZGNB190 in 4-day fermentation (Fig. 4). We also examined the addition of extra aspartate and when 5 g/L aspartate was added into the fermentation broth with strain FZ763/pFZGNB190, the quinolinate titer dropped to 1.1 g/L. The decrease is consistent with the result mentioned in section 3.3 (Fig. 3) that showed quinolinate titer dropped when AspC was overproduced, indicating an imbalance in the synthesis and utilization of this intermediate, which may be due to the substrate inhibition of NadB by a high concentration of aspartate. It also indicates that the flux from aspartate to quinolinic acid is the limiting step for quinolinic acid production in our tested system.

Based on the strains' performance, the strain FZ763/pFZGNB190 was further evaluated with lower glucose concentration (40 g/L). Interestingly, strain FZ763/pFZGNB190 fermented with 40 g/L glucose has a higher quinolinate productivity based on 2-day samples, while the strain has comparable quinolinate titer after a 4-day fermentation (Fig. S2). This result may be due to the fermentation with 40 g/L glucose receiving much less metabolic stress and would be more suitable for chemicals production as the yield per glucose would be higher than in the 70 g/L cultures.

3.5. Improvement of quinolinate production by assembling NadA and NadB as an enzyme complex

The flux from aspartate to quinolinic acid has been demonstrated to be a rate-limiting factor for quinolinic acid production above by the results of experiments on overexpression of individual/combination of


genes encoding AspC, NadB, and NadA (Figs. 2 and 3) and feeding extra aspartate (Fig. 4). Further increasing the flux of these steps is highly desired for quinolinic acid production; moreover, it was reported that the intermediate 2-iminosuccinate is unstable (Nasu et al., 1982), both of which brings a synthetic multiple-enzyme complex into our mind. Synthetic multi-enzyme complexes have been developed to control the flux of metabolites and to improve product yield (Conrado et al., 2008; Quin et al., 2017), not only because it improves local substrate concentration and reaction equilibrium but also prevents loss of reaction intermediates from competing pathways by diffusion, protects cells from unstable/toxic intermediates, and increases local enzyme concentration (Abernathy et al., 2017; Obata, 2020; Wheeldon et al., 2016). All these features are potentially helpful for quinolinic acid production in our system. Also, NadA easily forms an inclusion body as another complication (low protein concentration), and 2-iminosuccinate is unstable (Ceciliani et al., 2000; Nasu et al., 1982), so a synthetic multi-enzyme complex was investigated in this study.

Using a fusion protein is one of the developed strategies to form synthetic multi-enzyme complexes. Such fusions can be easily constructed by genetically fusing two or more protein domains with a peptide linker, and it is also often useful to improve the solubility of recombinant proteins. While, no improvement was observed when NadA and NadB were fused with linkers (GS)₃, (GS)₆, or (G₄S)₂ (Fig. S3), the performance of NadA-(GS)₆-NadB (FZ763/pFZGNB157) was comparable with the performance of the host-plasmid bearing separate proteins (FZ763/pFZGNB190). Possible complications could be due to the linker not being optimized, or the expression of the large fusion protein being worse than the expression of the separate proteins (Fig. S4). It also may be due to the fusion not being easily able to account for the dimer, monomer situation, and such complexes may generate an aggregate or inefficient complex as the dimeric structure is necessary for the stability of NadA (Ollagnier-de Choudens et al., 2005).

Synthetic multi-enzyme complexes can also be constructed by assembling the enzymes with a protein/peptide scaffold based on protein-protein/peptide interaction or even peptide-peptide interaction (Conrado et al., 2008; Quin et al., 2017). A dock-and-lock peptide

interacting family of peptides RIAD and RIDD have been successfully applied for lycopene overproduction (Kang et al., 2019). RIAD, an 18 amino acid peptide which is from the A kinase-anchoring proteins, specifically binds to the RIDD dimer, which contains the first 50 N-terminal residues of cAMP-dependent protein kinase. Their small size, strong binding affinity, and fixed 1:2 binding stoichiometry ratio make them a suitable pair of protein tags for multi-enzyme assembly (Kang et al., 2019). So, NadB and NadA were then assembled as an enzyme complex by adding peptides RIAD and RIDD in this study. DNA fragments encoding peptides RIAD and RIDD with a linker (G₄S)₂G₄CG were codon-optimized and synthesized by Synbio Technologies and incorporated in plasmids for study (Table S3). NadA appears as a dimeric protein and the dimeric structure is essential for its stability (Ollagnier-de Coudens et al., 2005), while NadB is a monomeric protein (Mattevi et al., 1999), so RIDD was combined with *nadA* and RIAD was combined with *nadB* both at N-terminal and C-terminal by Overlap Extension PCR (OE-PCR) to give pFZGNB228 to pFZGNB231. pTrc-nadB-RIAD from pFZGNB229, and pTrc-RIAD-nadB from pFZGNB230 was inserted into pFZ228 and pFZGNB231 individually to give pFZGNB232 to pFZGNB235 (Table S1). Since no significant improvement was observed in quinolinate titer when 70 g/L glucose was used compared to 40 g/L glucose, the strains were evaluated in QA producing medium with 40 g/L glucose. The strain FZ763/pFZGNB233 [RIDD-NadA (RIDD added at the N-terminal of NadA with a G₄SG₄CG linker) with RIAD-NadB] displayed poor cell growth after two days fermentation, no quinolinate was observed (Fig. 5a), and nearly no glucose was consumed (Fig. 5b). Although comparable biomass was obtained after 4 days of fermentation (cell density was not measured due to the present of CaCO₃), it only produced 0.7 g/L quinolinate, which is 31% less than produced in FZ763/pFZGNB190 (1.0 g/L, Fig. 5a). The other strains all exhibited better performance than FZ763/pFZGNB190 (Fig. 5). After 2 days fermentation, FZ763/pFZGNB190 had already consumed all glucose, but only produced 1.0 g/L quinolinate (25 mg/g consumed glucose, 20.8 mg/L/h). Strain FZ763/pFZGNB232 (RIDD-NadA with NadB-RIAD) shows the highest quinolinate titer (2.8 g/L) due to more glucose was consumed

(37.9 g/L) than other strains (except FZ763/pFZGNB190), with a productivity of 58.3 mg/L/h which is 35 times faster than the parent strain MG1655/pFZGNB42 (Fig. 5 and Table 1). Strain FZ763/pFZGNB234 (NadA-RIDD with NadB-RIAD) produced 2.6 g/L quinolinate from 29 g/L glucose with a yield of 89.7 mg/g, and with less acetate being accumulated (Fig. 5c). 37.4 g/L glucose was consumed in FZ763/pFZGNB235 (NadA-RIDD with RIAD-NadB), and 2.4 g/L quinolinate was accumulated. After 4 days of fermentation, no significant improvement was observed in strains FZ763/pFZGNB190, FZ763/pFZGNB232 and FZ763/pFZGNB235, however most of the glucose was consumed within 2 days (Fig. 5a and b). Quinolinate titer in strain FZ763/pFZGNB234 was further increased to 3.7 g/L upon consuming the residual glucose with a yield of 92.5 mg/g. This result is 3.6-fold higher than FZ763/pFZGNB190 (Fig. 5) and more than 86.8 times higher than the parent strain MG1655/pFZGNB42 (Table 1 and Fig. 5a). The higher yield was achieved as less acetate was accumulated in these strains, except for strain FZ763/pFZGNB233, compared to strain FZ763/pFZGNB190 (Fig. 5c), which indicates a more balanced metabolism was achieved. The highest yield (92.5 mg/g) we achieved in FZ763/pFZGNB234 is 3.6-fold higher than FZ763/pFZGNB190 and 151-fold higher than the parent strain MG1655/pFZGNB42 (Table 1 and Fig. 5a). Similar amounts of protein complexes were observed through a non-reducing SDS-PAGE analysis (Fig. S5), except in FZ763/pFZGNB233. The strains were also tested in QA producing medium with 70 g/L glucose as a carbon source, and no improvement on quinolinate titer was observed among most tested strains (Fig. S6). By testing the NadA-NadB protein complex in different arrangements, it clearly shows that the activity and complex formation would depend on the position and orientation of the peptide complexes. The strains with NadA-RIDD had better performance than the strains with RIDD-NadA (Fig. 5), which is consistent with the performance of fusion proteins made in this work where NadA has been linked at the C-terminal end, such as NadA-(GS)₆-NadB (Fig. S3). This may be due to the C-terminal end of the NadA being closer to the active site and more flexible than N-terminal based on the available crystal structures of NadA from other species (PDB number: 4ZK6, 4P3X and 4HHE) (Cherrier et al., 2014;

Fig. 5. The effect of NadA-NadB enzyme complex on quinolinic acid production in FZ763 with 40 g/L glucose. a) quinolinate titer, b) consumed glucose, c) accumulated acetate. Aerobic cultures were performed at 37 °C, 350 rpm, sampled at 2 days (2D) and 4 days (4D). NadA-RIDD and NadB-RIAD fusion proteins were over-expressed under the control of their pTrc promoter in pFZGNB227, NadA-NadB enzyme complex was assembled with the help of peptides, RIAD and RIDD. Values are the average of three replicates with error bars indicating standard deviation.

Esakova et al., 2016; Soriano et al., 2013), which have a similarity of greater than 55% to *E. coli* NadA, as the crystal structure of the *E. coli* native NadA is not available yet. The strains with NadB-RIAD also has better performance than the strains with RIAD-NadB (Fig. 5), which may be because the N-terminal end of NadB is the cofactor FAD-binding domain (Bossi et al., 2002), and adding a RIAD-tag to the N-terminal end affected the cofactor binding efficiency. Moreover, when the peptides were added to the N-terminal of NadA and NadB (RIDD-NadA with RIAD-NadB), the strain has the lowest quinolinate titer, which suggests it formed an non-preferred enzyme complex, perhaps inactive, and leads to a metabolic burden. In contrast, the combination with the peptides added to the C-terminal ends (Nada-RIDD with NadB-RIAD) has the highest quinolinate titer, which suggests a preferred enzyme complex being formed and stabilized in this configuration, providing an efficient and exclusive catalytic reaction series with little free diffusion of the unstable intermediate, 2-iminosuccinate (Nasu et al., 1982). Another possible reason is the RIDD: RIAD complex has a ratio of 2:1 (Kang et al., 2019), which is beneficial for NadA dimer formation and good for its activity and stability. Notably, the turnover frequency of *E. coli* NadB is only 0.267 s^{-1} (Tedeschi et al., 2010), which may limit the enzyme complex catalytic efficiency.

In conclusion, multiple engineering strategies were applied to increase the production of quinolinate. The quinolinate consumption pathway was blocked to enable the production of quinolinate by deactivation of NadC, and quinolinate production was activated by knockout the repressor gene *nadR*. Then, quinolinate production was enhanced by deactivation of glucose transporter gene *ptsG* to slow the glucose consumption rate, to achieve a more balanced metabolism, and to improve the availability of PEP. Increasing the OAA pool through overexpression of PEPC also improved quinolinate production. Moreover, the acetate-producing pathways were deactivated as acetate is a major by-product in the engineered strain FZ734/pFZGNB190. Finally, quinolinate production was accelerated by assembling NadA and NadB as an enzyme complex with the help of peptide-peptide interaction peptides, RIAD and RIDD, and up to 3.7 g/L quinolinate was accumulated in FZ763/pFZGNB234 in shake-flask cultures. These results lay a foundation for further engineering of the strains to efficiently produce quinolinic acid or even nicotinic acid for industrial applications. However, the highest yield we achieved is only 92.5 mg/g , which need to be further improved. Crystal-structural studies of the constructed protein complexes via isolation and crystallography could be employed, which would give us a better understanding of these results and lead to further optimization of the system. Further improvement may be achieved by protein engineering of NadB to eliminate the feedback inhibition and improve the enzymatic activity. Other potential enhancements may be attained through improving the expression of NadA, down-regulating the TCA cycle, optimizing the NadA-NadB enzyme complex, and assembling AspC, NadB, and NadA into a larger enzyme complex to allow more aspartate to more efficiently enter the reactions for quinolinate production.

There has been much attention to improve the efficiency of metabolic reactions through enzyme co-localization and compartmentalization. In this study, we not only built the synthetic enzyme complex (NadA-RIDD and NadB-RIAD enzyme complex) to improve quinolinate production, but also disrupted the potential native EMP channeling by deleting *ptsG* to release the intermediate PEP for quinolinate production. This disrupt-build strategy for metabolism engineering may be beneficial for future engineering of *in vivo* biocatalysis.

Declaration of competing interest

The authors declare no competing financial interests.

Acknowledgment

The authors thank Dr. Charles Stewart, Department of Biosciences at

Rice University, for kindly sharing *Bacillus subtilis* CB10 with us, the authors thank Dr. Guoqiang Zhang at Jiangnan University (Wuxi, China) for helpful suggestions about fusion protein constructs, and Dr. Shuai Qian at Solugen (Houston, TX) for his help on protein structure analysis. This work was supported by NSF DBI-1262491, NSF EAGER: DESYN-C3 CBET-1843556, and DOE BES DE-SC0014462. M. P. was supported by a training fellowship from the Gulf Coast Consortia (NLM Grant T15 LM007093).

Appendix A. Supplementary data

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.ymben.2021.06.007>.

References

Abernathy, M.H., et al., 2017. Channelling in native microbial pathways: implications and challenges for metabolic engineering. *Biotechnol. Adv.* 35, 805–814.

Abernathy, M.H., et al., 2019. Comparative studies of glycolytic pathways and channelling under *in vitro* and *in vivo* modes. *AIChE J.* 65, 483–490.

Andreoli, A.J., Ikeda, M., Nishizuka, Y., Hayaishi, O., 1963. Quinolinic acid: a precursor to nicotinamide adenine dinucleotide in *Escherichia coli*. *Biochem. Biophys. Res. Commun.* 12, 92.

Andrushevich, T.V., Ovchinnikova, E.V., 2012. Gas phase catalytic oxidation of β -picoline to nicotinic acid: catalysts, mechanism and reaction kinetics. *Catal. Rev.* 54, 399–436.

Becker, J., Zelder, O., Häfner, S., Schröder, H., Wittmann, C., 2011. From zero to hero—design-based systems metabolic engineering of *Corynebacterium glutamicum* for l-lysine production. *Metab. Eng.* 13, 159–168.

Begley, T.P., Kinsland, C., Mehl, R.A., Osterman, A., Dorrestein, P., 2001. The biosynthesis of nicotinamide adenine dinucleotides in bacteria. *Vitam. Horm.* 61, 103–119.

Bennett, B.D., Kimball, E.H., Gao, M., Osterhout, R., Van Dien, S.J., Rabinowitz, J.D., 2009. Absolute metabolite concentrations and implied enzyme active site occupancy in *Escherichia coli*. *Nat. Chem. Biol.* 5, 593.

Bifulco, D., Pollegioni, L., Tessaro, D., Servi, S., Molla, G., 2013. A thermostable L-aspartate oxidase: a new tool for biotechnological applications. *Appl. Microbiol. Biotechnol.* 97, 7285–7295.

Bossi, R.T., et al., 2002. Structure of FAD-bound L-aspartate oxidase: insight into substrate specificity and catalysis. *Biochemistry* 41, 3018–3024.

Carlson, C.R., Lygren, B., Berge, T., Hoshi, N., Wong, W., Taskén, K., Scott, J.D., 2006. Delineation of type I protein kinase A-selective signaling events using an RI anchoring disruptor. *J. Biol. Chem.* 281, 21535–21545.

Ceciliani, F., Caramori, T., Ronchi, S., Tedeschi, G., Mortarino, M., Galizzi, A., 2000. Cloning, overexpression, and purification of *Escherichia coli* quinolinate synthetase. *Protein Expr. Purif.* 18, 64–70.

Chandler, J.L., Gholson, R., 1972. De novo biosynthesis of nicotinamide adenine dinucleotide in *Escherichia coli*: excretion of quinolinic acid by mutants lacking quinolinate phosphoribosyl transferase. *J. Bacteriol.* 111, 98–102.

Chatterjee, R., Millard, C.S., Champion, K., Clark, D.P., Donnelly, M.I., 2001. Mutation of the *ptsG* gene results in increased production of succinate in fermentation of glucose by *Escherichia coli*. *Appl. Environ. Microbiol.* 67, 148–154.

Cherrier, M.V., et al., 2014. The crystal structure of Fe4S4 quinolinate synthase unravels an enzymatic dehydration mechanism that uses tyrosine and a hydrolase-type triad. *J. Am. Chem. Soc.* 136, 5253–5256.

Cicchillo, R.M., Tu, L., Stromberg, J.A., Hoffart, L.M., Krebs, C., Booker, S.J., 2005. *Escherichia coli* quinolinate synthetase does indeed harbor a [4Fe-4S] cluster. *J. Am. Chem. Soc.* 127, 7310–7311.

Conrado, R.J., Varner, J.D., DeLisa, M.P., 2008. Engineering the spatial organization of metabolic enzymes: mimicking nature's synergy. *Curr. Opin. Biotechnol.* 19, 492–499.

Cox, S.J., Levanon, S.S., Sanchez, A., Lin, H., Peery, B., Bennett, G.N., San, K.-Y., 2006. Development of a metabolic network design and optimization framework incorporating implementation constraints: a succinate production case study. *Metab. Eng.* 8, 46–57.

Crook, M.A., 2014. The importance of recognizing pellagra (niacin deficiency) as it still occurs. *Nutrition* 30, 729–730.

Datsenko, K.A., Wanner, B.L., 2000. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc. Natl. Acad. Sci. Unit. States Am.* 97, 6640–6645.

De Anda, R., Lara, A.R., Hernández, V., Hernández-Montalvo, V., Gosset, G., Bolívar, F., Ramírez, O.T., 2006. Replacement of the glucose phosphotransferase transport system by galactose permease reduces acetate accumulation and improves process performance of *Escherichia coli* for recombinant protein production without impairment of growth rate. *Metab. Eng.* 8, 281–290.

Dittrich, C.R., Bennett, G.N., San, K.-Y., 2005. Characterization of the acetate-producing pathways in *Escherichia coli*. *Biotechnol. Prog.* 21, 1062–1067.

Esakova, O.A., et al., 2016. Structure of quinolinate synthase from *Pyrococcus horikoshii* in the presence of its product, quinolinic acid. *J. Am. Chem. Soc.* 138, 7224–7227.

Flachmann, R., Kunz, N., Seifert, J., Gütlich, M., Wientjes, F.J., Läufer, A., Gassen, H.G., 1988. Molecular biology of pyridine nucleotide biosynthesis in *Escherichia coli*:

cloning and characterization of quinolinate synthesis genes nadA and nadB. *Eur. J. Biochem.* 175, 221–228.

Gold, M.G., Lygren, B., Dokurno, P., Hoshi, N., McConnachie, G., Taskén, K., Carlson, C.R., Scott, J.D., Barford, D., 2006. Molecular basis of AKAP specificity for PKA regulatory subunits. *Mol. Cell.* 24, 383–395.

Gosset, G., 2005. Improvement of *Escherichia coli* production strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system. *Microb. Cell Factories* 4, 14.

Griffith, G.R., Chandler, J.L., Gholson, R.K., 1975. Studies on the de novo Biosynthesis of NAD in *Escherichia coli*: the Separation of the nadB Gene Product from the nadA Gene Product and Its Purification. *Eur. J. Biochem.* 54, 239–245.

Guest, J., Creaghan, I., 1972. Lipoamide dehydrogenase mutants of *Escherichia coli* K 12. *Biochem. J.* 130, 8P.

Hammond, N., Wang, Y., Dimachkie, M., Barohn, R., 2013. Nutritional neuropathies. *Neurol. Clin.* 31, 477–489.

Heath, A.P., Bennett, G.N., Kavraki, L.E., 2010. Finding metabolic pathways using atom tracking. *Bioinformatics* 26, 1548–1555.

Jiang, Y., Chen, B., Duan, C., Sun, B., Yang, J., Yang, S., 2015. Multigene editing in the *Escherichia coli* genome via the CRISPR-Cas9 system. *Appl. Environ. Microbiol.* 81, 2506–2514.

Kang, W., Ma, T., Liu, M., Qu, J., Liu, Z., Zhang, H., Shi, B., Fu, S., Ma, J., Lai, L.T.F., 2019. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux. *Nat. Commun.* 10, 1–11.

Keasling, J.D., 2010. Manufacturing molecules through metabolic engineering. *Science* 330, 1355–1358.

Kim, S.M., Pena, M.I., Moll, M., Bennett, G.N., Kavraki, L.E., 2020. Improving the organization and interactivity of metabolic pathfinding with precomputed pathways. *BMC Bioinf.* 21, 1–22.

Kim, S.Y., Shin, Y.U., Heo, I.K., Kim, J.E., Son, S.K., Seo, C.I., Kim, H.A., Lee, H.J., Na, K.H., Bae, J.Y., 2016. Method for the Preparation of Nicotinic Acid. Google Patents.

Lee, J.W., Na, D., Park, J.M., Lee, J., Choi, S., Lee, S.Y., 2012. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. *Nat. Chem. Biol.* 8, 536–546.

Leese, C., Fotheringham, I., Escallettes, F., Speight, R., Grogan, G., 2013. Cloning, expression, characterisation and mutational analysis of L-aspartate oxidase from *Pseudomonas putida*. *J. Mol. Catal. B Enzym.* 85, 17–22.

Li, M., Ho, P.Y., Yao, S., Shimizu, K., 2006. Effect of lpdA gene knockout on the metabolism in *Escherichia coli* based on enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by 13C-labeling experiments. *J. Biotechnol.* 122, 254–266.

Liang, Q., Zhang, F., Li, Y., Zhang, X., Li, J., Yang, P., Qi, Q., 2015. Comparison of individual component deletions in a glucose-specific phosphotransferase system revealed their different applications. *Sci. Rep.* 5, 13200.

Lin, H., Bennett, G.N., San, K.-Y., 2005. Metabolic engineering of aerobic succinate production systems in *Escherichia coli* to improve process productivity and achieve the maximum theoretical succinate yield. *Metab. Eng.* 7, 116–127.

Magni, G., Amici, A., Emanuelli, M., Raffaelli, N., Ruggieri, S., 1999. Enzymology of Nad⁺ synthesis. *Adv. Enzymol. Relat. Area Mol. Biol.: Mechanism of Enzyme Action, Part A* 73, 135–182.

Marinoni, I., Nonnis, S., Monteferante, C., Heathcote, P., Härtig, E., Böttger, L.H., Trautwein, A.X., Negri, A., Albertini, A.M., Tedeschi, G., 2008. Characterization of L-aspartate oxidase and quinolinate synthase from *Bacillus subtilis*. *FEBS J.* 275, 5090–5107.

Martinez, I., Gao, H., Bennett, G.N., San, K.-Y., 2018. High yield production of four-carbon dicarboxylic acids by metabolically engineered *Escherichia coli*. *J. Ind. Microbiol. Biotechnol.* 45, 53–60.

Mattevi, A., Tedeschi, G., Baccarella, L., Coda, A., Negri, A., Ronchi, S., 1999. Structure of L-aspartate oxidase: implications for the succinate dehydrogenase/fumarate reductase oxidoreductase family. *Structure* 7, 745–756.

Mortarino, M., Negri, A., Tedeschi, G., Simonic, T., Duga, S., Gassen, H.G., Ronchi, S., 1996. L-Aspartate oxidase from *Escherichia coli*: I. Characterization of coenzyme binding and product inhibition. *Eur. J. Biochem.* 239, 418–426.

Nasu, S., Wicks, F.D., Gholson, R., 1982. L-Aspartate oxidase, a newly discovered enzyme of *Escherichia coli*, is the B protein of quinolinate synthetase. *J. Biol. Chem.* 257, 626–632.

Ning, Y., Wu, X., Zhang, C., Xu, Q., Chen, N., Xie, X., 2016. Pathway construction and metabolic engineering for fermentative production of ectoine in *Escherichia coli*. *Metab. Eng.* 36, 10–18.

Ollagnier-de Choudens, S., Loiseau, L., Sanakis, Y., Barras, F., Fontecave, M., 2005. Quinolinate synthetase, an iron–sulfur enzyme in NAD biosynthesis. *FEBS Lett.* 579, 3737–3743.

Panzo, C., Nawara, M., Suski, C., Kucharczyka, R., Skoneczny, M., Bécam, A.-M., Rytka, J., Herbert, C.J., 2002. Aerobic and anaerobic NAD⁺ metabolism in *Saccharomyces cerevisiae*. *FEBS Lett.* 517, 97–102.

Park, J.H., Lee, S.Y., 2010. Metabolic pathways and fermentative production of L-aspartate family amino acids. *Biotechnol. J.* 5, 560–577.

Pettit, F.H., Reed, L.J., 1967. Alpha-keto acid dehydrogenase complexes. 8. Comparison of dihydrolipoyl dehydrogenases from pyruvate and alpha-ketoglutarate dehydrogenase complexes of *Escherichia coli*. *Proc. Natl. Acad. Sci. U. S. A* 58, 1126.

Quin, M.B., Wallin, K., Zhang, G., Schmidt-Dannert, C., 2017. Spatial organization of multi-enzyme biocatalytic cascades. *Org. Biomol. Chem.* 15, 4260–4271.

Reichmann, D., Couté, Y., Ollagnier de Choudens, S., 2015. Dual activity of quinolinate synthase: triose phosphate isomerase and dehydration activities play together to form quinolinate. *Biochemistry* 54, 6443–6446.

Sakuraba, H., Yoneda, K., Asai, I., Tsuge, H., Katunuma, N., Ohshima, T., 2008. Structure of L-aspartate oxidase from the hyperthermophilic archaeon *Sulfolobus tokodaii*. *Biochim. Biophys. Acta Protein Proteomics* 1784, 563–571.

Sánchez, A.M., Bennett, G.N., San, K.-Y., 2005. Novel pathway engineering design of the anaerobic central metabolic pathway in *Escherichia coli* to increase succinate yield and productivity. *Metab. Eng.* 7, 229–239.

Sauer, U., Eikmanns, B.J., 2005. The PEP—pyruvate—oxaloacetate node as the switch point for carbon flux distribution in bacteria: we dedicate this paper to Rudolf K. Thauer, Director of the Max-Planck-Institute for Terrestrial Microbiology in Marburg, Germany, on the occasion of his 65th birthday. *FEMS Microbiol. Rev.* 29, 765–794.

Seifert, J., Norbert, K., Flachmann, R., Läufer, A., Klaus-Dieter, J., Gassen, H.G., 1990. Expression of the *E. coli* nadB gene and characterization of the gene product L-aspartate oxidase. *Biol. Chem. Hoppe-Seyler* 371, 239–248.

Shearer, G., et al., 2005. Quantitative estimation of channeling from early glycolytic intermediates to CO₂ in intact *Escherichia coli*. *FEBS J.* 272, 3260–3269.

Shishido, T., Song, Z., Kadowaki, E., Wang, Y., Takehira, K., 2003. Vapor-phase oxidation of 3-picoline to nicotinic acid over Cr1–xAlxVO4 catalysts. *Appl. Catal. A-Gen.* 239, 287–296.

Soriano, E.V., et al., 2013. Active-site models for complexes of quinolinate synthase with substrates and intermediates. *Acta Crystallogr. D69*, 1685–1696.

Steiert, P., Stauffer, L., Stauffer, G., 1990. The lpd gene product functions as the L protein in the *Escherichia coli* glycine cleavage enzyme system. *J. Bacteriol.* 172, 6142–6144.

Tedeschi, G., Nonnis, S., Strumbo, B., Cruciani, G., Carosati, E., Negri, A., 2010. On the catalytic role of the active site residue E121 of *E. coli* L-aspartate oxidase. *Biochimie* 92, 1335–1342.

Thakker, C., Zhu, J., San, K.-Y., Bennett, G., 2011. Heterologous pyc gene expression under various natural and engineered promoters in *Escherichia coli* for improved succinate production. *J. Biotechnol.* 155, 236–243.

Tritz, G.J., Chandler, J.L., 1973. Recognition of a gene involved in the regulation of nicotinamide adenine dinucleotide biosynthesis. *J. Bacteriol.* 114, 128–136.

Wang, Y., Duff, S., Lepiniec, L., Crétin, C., Sarath, G., Condon, S.A., Vidal, J., Gadal, P., Chollet, R., 1992. Site-directed mutagenesis of the phosphorylatable serine (Ser8) in C4 phosphoenolpyruvate carboxylase from sorghum: The effect of negative charge at position 8. *J. Biol. Chem.* 267, 16759–16762.

Wheeldon, I., et al., 2016. Substrate channelling as an approach to cascade reactions. *Nat. Chem.* 8, 299.

Wong, M.S., Wu, S., Causey, T.B., Bennett, G.N., San, K.-Y., 2008. Reduction of acetate accumulation in *Escherichia coli* cultures for increased recombinant protein production. *Metab. Eng.* 10, 97–108.

Woolston, B.M., Edgar, S., Stephanopoulos, G., 2013. Metabolic engineering: past and future. *Annu. Rev. Chem. Biomol. Eng.* 4, 259–288.

Zhao, L., Lu, Y., Yang, J., Fang, Y., Zhu, L., Ding, Z., Wang, C., Ma, W., Hu, X., Wang, X., 2020. Expression regulation of multiple key genes to improve L-threonine in *Escherichia coli*. *Microb. Cell Factories* 19, 1–23.

Zhu, F., San, K.Y., Bennett, G.N., 2020. Improved succinate production from galactose-rich feedstocks by engineered *Escherichia coli* under anaerobic conditions. *Biotechnol. Bioeng.* 117, 1082–1091.

Zhu, F., Wang, Y., San, K.Y., Bennett, G.N., 2018. Metabolic engineering of *Escherichia coli* to produce succinate from soybean hydrolysate under anaerobic conditions. *Biotechnol. Bioeng.* 115, 1743–1754.

1

2 **Metabolic engineering of *Escherichia coli* for quinolinic acid production by**

3 **assembling L-aspartate oxidase and quinolinate synthase as an enzyme**

4 **complex**

5
6
7
8 Fayin Zhu^{a,b}, Matthew Peña^a, George N. Bennett^{a,c*}

10
11
12 a Department of BioSciences, Rice University, Houston, TX, USA, 77005
13 b present address: Department of Chemical, Biological, and Materials Engineering, University of
14 South Florida, Tampa, FL 33620
15 c Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA,
16 77005
17 * Corresponding author: Department of BioSciences, Rice University, Houston, TX 77005, E-
18 mail address: gbennett@rice.edu

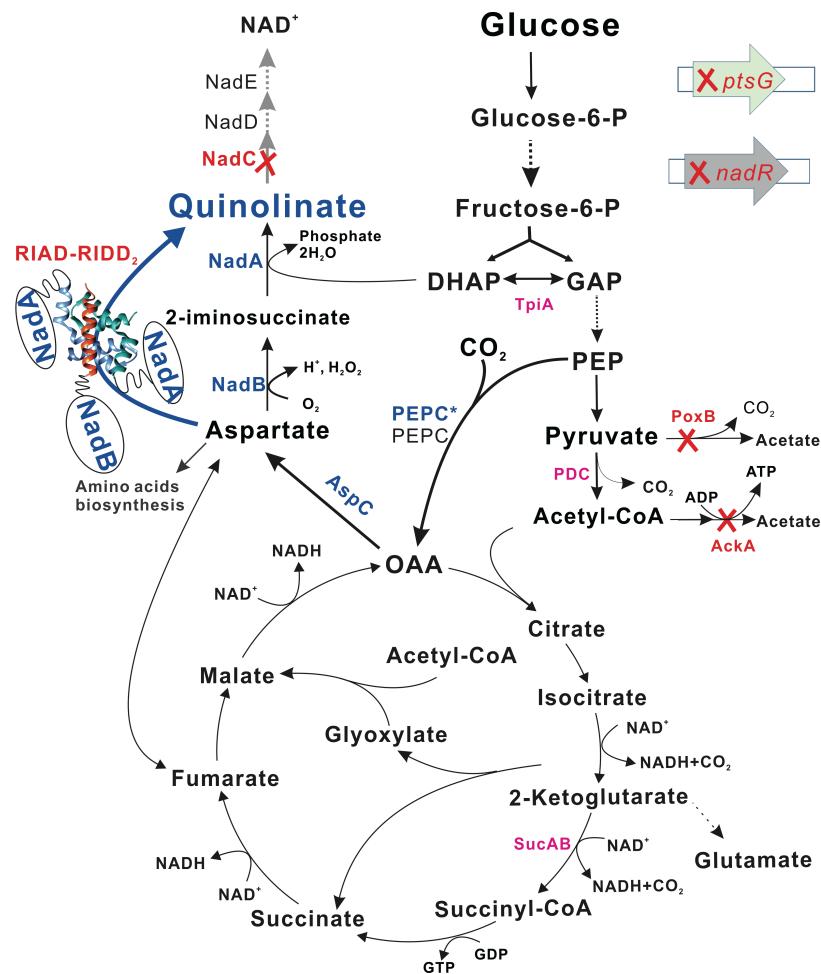
20 **Abstract**

21 Quinolinic acid (QA) is a key intermediate of nicotinic acid (Niacin) which is an essential
22 human nutrient and widely used in food and pharmaceutical industries. In this study, a quinolinic
23 acid producer was constructed by employing comprehensive engineering strategies. Firstly, the
24 quinolinic acid production was improved by deactivation of NadC (to block the consumption
25 pathway), NadR (to eliminate the repression of L-aspartate oxidase and quinolinate synthase),
26 and PtsG (to slow the glucose utilization rate and achieve a more balanced metabolism, and also
27 to increase the availability of the precursor phosphoenolpyruvate). Further modifications to
28 enhance quinolinic acid production were investigated by increasing the oxaloacetate pool
29 through overproduction of phosphoenolpyruvate carboxylase and deactivation of acetate-
30 producing pathway enzymes. Moreover, quinolinic acid production was accelerated by
31 assembling NadB and NadA as an enzyme complex with the help of peptide-peptide interaction
32 peptides RIAD and RIDD, which resulted in up to 3.7 g/L quinolinic acid being produced from
33 40 g/L glucose in shake-flask cultures. A quinolinic acid producer was constructed in this study,
34 and these results lay a foundation for further engineering of microbial cell factories to efficiently
35 produce quinolinic acid and subsequently convert this product to nicotinic acid for industrial
36 applications.

37

38 **Keywords:** quinolinic acid; peptide-peptide interaction; enzyme complex; metabolon; metabolite
39 channeling; metabolic engineering

40 **1. Introduction**


41 Quinolinic acid (QA), known as pyridine-2,3-dicarboxylic acid, is a dicarboxylic acid with a
42 pyridine backbone, and it is a key precursor to nicotinic acid and nicotine in nature (Andreoli et
43 al., 1963). Nicotinic acid, also known as niacin or vitamin B₃, is one of the water-soluble B
44 complex vitamins, and it commonly exists in living cells. In general, nicotinic acid is present
45 mainly in the form of nicotinic acid amide coenzyme [Nicotinamide Adenine Dinucleotide
46 (NAD⁺) or Nicotinamide Adenine Dinucleotide Phosphate (NADP⁺)] *in vivo* and it acts as a
47 cofactor for a large and diverse number of cellular oxidative-reductive reactions. Nicotinic acid
48 is an essential human nutrient as deficiency of nicotinic acid may cause the disease pellagra and
49 neuropathies (Crook, 2014; Hammond et al., 2013). Consequently, nicotinic acid is widely used
50 in the food and pharmaceutical industries. Nicotinic acid has been mainly produced by chemical
51 synthesis through oxidation of β-picoline (Andrushkevich and Ovchinnikova, 2012; Shishido et
52 al., 2003); however, these processes result in considerable amounts of toxic wastes, which
53 require significant expense for proper disposal. Moreover, these methods use petroleum-based
54 non-renewable chemicals as the precursor, which is affected by concerns about climate change
55 and unpredictable oil refining prices. To overcome these concerns, production of fuels,
56 pharmaceuticals, or bulk and fine chemicals from renewable feedstocks using microorganisms
57 has arisen as an attractive alternative (Keasling, 2010; Lee et al., 2012; Woolston et al., 2013),
58 especially given advancements in metabolic engineering, however, there is little published
59 literature directed to the over-production of nicotinic acid or even quinolinic acid in
60 microorganisms (Kim et al., 2016).

61 Early work on the enzymes and genes related to quinolinic acid formation from aspartate has
62 been described (Chandler and Gholson, 1972; Flachmann et al., 1988; Griffith et al., 1975).

63 Quinolinic acid, NAD⁺, Coenzyme A, and commercially important amino acids such as
64 threonine and lysine (Becker et al., 2011; Ning et al., 2016; Park and Lee, 2010; Zhao et al.,
65 2020) are generated via aspartate as a key precursor. Metabolic engineering at the oxaloacetate
66 and aspartate nodes is important to give a high level of these key intermediates (Sauer and
67 Eikmanns, 2005), as well as to provide high and specific conversion of aspartate to quinolinic
68 acid. We have previously engineered cells to produce compounds derived from the oxaloacetate
69 branch of the TCA cycle and have developed useful designs for metabolic networks to product
70 compounds around this node (Cox et al., 2006; Martinez et al., 2018; Sánchez et al., 2005; Zhu et
71 al., 2020). Likewise, we have investigated computational methods for finding novel pathways to
72 relevant OAA derived compounds (Heath et al., 2010; Kim et al., 2020). There are two major
73 NAD *de novo* biosynthetic pathways used for quinolinate production *in vivo*: NAD *de novo*
74 biosynthesis I (from aspartate) in most prokaryotes and NAD *de novo* biosynthesis II (from
75 tryptophan), also known as the kynurenine pathway, in eukaryotes (Begley et al., 2001; Panizzo
76 et al., 2002). These two pathways converge at quinolinic acid, a key intermediate of NAD
77 biosynthetic pathways, and subsequently use three common steps to synthesize NAD. Five
78 enzymes are involved in the conversion of tryptophan to quinolinate in the kynurenine pathway.
79 In comparison, only two enzymes, L-aspartate oxidase (NadB) and quinolinate synthase (NadA),
80 are needed for quinolinate production aerobically from aspartate (Magni et al., 1999). L-aspartate
81 oxidase (NadB), is a monomer of a 60 kDa flavoenzyme containing 1 mol of non-covalently
82 bound FAD/mol protein, and it catalyzes the conversion of L-aspartate to 2-iminosuccinate
83 (Mortarino et al., 1996; Nasu et al., 1982). Quinolinate synthase (NadA), which appears mainly
84 as a dimeric protein of 80 kDa (Ollagnier-de Choudens et al., 2005), contains an oxygen-
85 sensitive [4Fe-4S] cluster required to catalyze the condensation of 2-iminosuccinate with

86 dihydroxyacetone phosphate (DHAP) to produce quinolinate (Ceciliani et al., 2000; Cicchillo et
87 al., 2005; Ollagnier-de Choudens et al., 2005). We know that the concentration of NAD(H) and
88 NADP(H) *in vivo* remains relatively stable, and the pool is maintained by a combination of gene
89 expression regulation, feedback inhibition, and cofactor degradation [The NAD(P) recycling and
90 salvage pathways] (Begley et al., 2001). The expression of NadB and NadA was reported to be
91 repressed by a DNA binding transcriptional repressor NadR (Begley et al., 2001; Tritz and
92 Chandler, 1973). Moreover, inhibition of aspartate oxidase activity was reported by the substrate
93 aspartate, the product 2-iminosuccinate and also NAD⁺ (Mortarino et al., 1996; Seifert et al.,
94 1990).

95 In this study, comprehensive engineering strategies were applied to *E. coli* K12 MG1655 to
96 increase quinolinate production through the NAD *de novo* biosynthesis I (from aspartate)
97 pathway. The approach included: blocking the consumption pathway, eliminating the
98 transcriptional repression of NadA and NadB, decreasing the glucose consumption rate and
99 increasing the availability of phosphoenolpyruvate, PEP followed by increasing the
100 oxaloacetate, OAA pool for aspartate synthesis, and blocking the by-product acetate producing
101 pathways, as well as improving the enzymatic efficiency by assembling NadA and NadB as an
102 enzyme complex (Fig. 1). Finally, up to 3.7 g/L quinolinate was produced from 40 g/L glucose in
103 shake-flask cultures of the improved strain. The results lay a foundation for further engineering
104 of the strain for highly efficient production of quinolinate for industrial applications.

Fig. 1. Metabolic engineering of *E. coli* MG1655 for quinolinic acid production.

107 Quinolinic acid production was enabled by deactivation of *nadC* (to block the consumption
108 pathway), *nadR* (to eliminate the repression of L-aspartate oxidase NadB and quinolinate
109 synthase NadA), and *ptsG* (to slow the glucose consumption rate and achieve a more balanced
110 metabolism, and to increase the availability of phosphoenolpyruvate). Quinolinic acid production
111 was enhanced by increasing the oxaloacetate (OAA) pool through overexpression of
112 phosphoenolpyruvate carboxylase (PEPC) and deactivation of the acetate-producing pathways
113 (*poxB*, *ackA*). Quinolinic acid production was accelerated by assembling NadB and NadA as a
114 enzyme complex with the help of peptide-peptide interaction peptides RIAD and RIDD (Carlson
115 et al., 2006; Gold et al., 2006). PtsG: glucose specific PTS enzyme II subunit BC; NadR: DNA-

116 binding transcriptional repressor; DHAP: dihydroxyacetone phosphate; GAP: glyceraldehyde 3-
117 phosphate; TpiA: triose-phosphate isomerase; PDC: pyruvate dehydrogenase complex; poxB:
118 pyruvate oxidase; AckA, acetate kinase; SucAB: 2-oxoglutarate dehydrogenase multi-enzyme
119 complex subunit AB; AspC: aspartate aminotransferase; NadC: quinolinate
120 phosphoribosyltransferase; NadD: nicotinate-mononucleotide adenylyltransferase; NadE: NAD
121 synthetase; RIAD, an 18 amino acids peptide from the A kinase-anchoring proteins; RIDD₂:
122 RIDD dimer which contains 50 N-terminal residues of cAMP-dependent protein kinase for each
123 peptide.

124

125 **2. Materials and methods**

126 **2.1 Plasmids and strains**

127 Plasmids and strains used in this study are listed in Table S1 and a brief description of the
128 construction procedure is provided below.

129 The traditional digestion and ligation method was used for plasmid construction. NdeI-
130 HindIII digested DNA fragment including lacI, pTrc promoter and multiple cloning sites (MCS)
131 from pFZGNB16 (pTrc99a with a BglII site 193 bp upstream of the pTrc promoter) was ligated
132 with a DNA fragment containing the kanamycin resistance gene and the origin of replication
133 from pHL413Km (Thakker et al., 2011) to give pFZGNB33 (BglII-pTrc-MCS-Km-ori-lacI).
134 Native genes, *nadA*, *nadB* and *aspC* were each individually amplified from *E. coli* MG1655
135 genomic DNA and inserted into pFZGNB33 to give pFZGNB34, pFZGNB35 and pFZGNB36,
136 respectively. *AspC*, *nadB* and *nadA* gene fragments with ribosome binding sites (RBS) were
137 combined in different orders to give pFZGNB37 to pFZGNB42 (Table S1). *nadA* from *Bacillus*
138 *subtilis* (BsnadA) was amplified from *Bacillus subtilis* CB10 with an extra DNA fragment

139 coding a HisTag at the C-terminal (BsnadA-HisTag) and inserted into pFZ33 to give
140 pFZGNB43, and pTrc-*nadB* from pFZGNB35 was inserted into pFZGNB43 to give
141 pFZGNB207. L-aspartate oxidase from *Sulfolobus tokodaii* (*StnadB*, GenBank: KC333624.1)
142 was synthesized and sub-cloned into pTrc99a by Genscript (pTrc99a- *StnadB*). pTrc-*StnadB* was
143 then inserted into pFZGNB34 to give pFZGNB189. The SpeI-HindIII digested pTrc-*nadB* PCR
144 product from pFZGNB35 was inserted into XbaI-HindIII digested pFZGNB34 to give
145 pFZGNB190. *NadB* from *Pseudomonas putida* KT2440 (*PpnadB*) was amplified from genomic
146 DNA and inserted into pFZGNB33 to give pFZGNB183. pTrc-*PpnadB* from pFZGNB183 was
147 inserted into pFZGNB34 to give pFZGNB193 (Table S1).

148 For NadA-NadB fusion protein constructions, DNA fragments encoding peptide linkers
149 (GS)₃, (GS)₆ and (G₄S)₂ were introduced at the end of *nadA* or *nadB* without stop codon through
150 PCR and combined with *nadB* or *nadA* to give pFZGNB153 to pFZGNB157 (Table S1). DNA
151 fragments encoding peptides RIAD and RIDD with a linker (G₄S)₂G₄CG were codon-optimized
152 and synthesized by Synbio Technologies (Table S2). Overlap Extension PCR (OE-PCR) was
153 then applied to combine the peptide encoding DNA fragment with *nadA* or *nadB* to give
154 pFZGNB228 to pFZGNB231. pTrc-nadB-RIAD from pFZGNB229 and pTrc-RIAD-nadB from
155 pFZGNB230 were inserted into pFZ228 and pFZGNB231 individually to give pFZGNB232 to
156 pFZGNB235, respectively (Table S1).

157 N₂₀ of pTargetF (Jiang et al., 2015) was replaced by a *ptsG* specific N₂₀
158 (GTATCCGTACTGCCTATCGC) through inverse PCR to give pFZGNB44. The upstream and
159 downstream homologous arms of *ptsG* were amplified from *E. coli* MG1655 genomic DNA and
160 inserted between the EcoRI and HindIII sites of pFZGNB44 with an XbaI site between the two
161 homologous arms to give pFZGNB46, which can be used for *ptsG* deletion. The same method

162 was used to construct plasmids pFZGNB63, pFZGNB65, pFZGNB74, pFZGNB75 and
163 pFZGNB76 for deactivation of *tpiA*, *sucAB*, *lpd*, *ackA*, and *pta-ackA*. pTrc-pepc was amplified
164 from pKK313 (Wang et al., 1992) and inserted into pFZGNB46, pFZGNB75, and pFZGNB76 to
165 give pFZGNB50, pFZGNB117, and pFZGNB118, which can be used to replace *ptsG*, *ackA*, *pta-*
166 *ackA* with pTrc-pepc fragment individually (Table S1).

167 *E. coli* K12 MG1655 was used as the parent strain in this study. Genes *nadC* and *nadR* were
168 deleted using the lambda red recombination method (Datsenko and Wanner, 2000), and the
169 CRISPR/Cas9 method was employed for deletion/replacement of the other selected genes (Jiang
170 et al., 2015).

171 **2.2 Fermentation of quinolinic acid from glucose**

172 Freshly transformed strains were used for every batch fermentation. Ten single colonies were
173 inoculated into 5 mL LB or quinolinic acid-producing medium with 50 mg/L kanamycin and
174 cultured at 37 °C to form the inoculum seed culture. Fermentation was performed in 250-mL
175 conical flasks that contain 1.5 g CaCO₃. Fifty milliliters of quinolinic acid-producing medium
176 supplemented with 50 mg/L kanamycin was added into each flask, and IPTG was added to a
177 final concentration of 0.1 mM for induction. One percent of an overnight cell culture was
178 inoculated into the fermentation medium. The cells were grown at 37 °C with shaking at 350 rpm
179 unless otherwise stated. A sample of 1-mL of culture broth was withdrawn at designated
180 intervals for product and metabolite analysis by HPLC. The previous reported medium (Kim et
181 al., 2016) with a higher concentration of Fe²⁺, Mn²⁺, and Zn²⁺ (increased from 5 mg/L to 10
182 mg/L) was used for fermentation. This culture media contains 70 g/L of glucose, 17 g/L of
183 (NH₄)₂SO₄, 1 g/L of KH₂PO₄, 0.5 g/L of MgSO₄·7 H₂O, 2 g/L of yeast extract, 150 mg/L of
184 methionine, 10 mg/L of FeSO₄·7H₂O, 10 mg/L of MnSO₄·8H₂O, and 10 mg/L of ZnSO₄, unless

185 otherwise specified.

186 **2.3 SDS-PAGE analysis of soluble protein**

187 To check the protein expression level of the targeted proteins, cells from 3mL cell culture
188 was harvested and stocked at -80 °C until further analysis. The cells were melted on ice and
189 suspended in 0.8 mL of 50 mM Tris-Cl (pH 8.0), and 0.6 g glass beads was added. The cells
190 were disrupted by disruptor Genie (2500 rpm) for 3 mins. Lysed cells were then centrifuged at
191 13,000 rpm for 10 mins and the supernatants were used for SDS-PAGE analysis.

192 **2.4 Analytical methods**

193 For analyzing the fermentation products and residual sugars and other metabolites, the
194 samples were centrifuged at 13,000× g for 2 min and then the supernatant was filtered through a
195 0.2 µm syringe filter. The glucose, acetate, and quinolinate were quantified using the same
196 method as previously described (Zhu et al., 2018). In brief, an HPLC system was equipped with
197 a cation-exchange column Aminex HPX-87H (Bio-Rad, USA) and a differential refractive index
198 detector RID-10A (Shimadzu, Japan) and UV detector at 210 nm. 2.5 mM H₂SO₄ served as the
199 mobile phase running at 0.5 mL/min, and the column temperature was maintained at 55 °C.
200 Authentic quinolinic acid (Sigma, St. Louis, MO) was used to generate a standard curve from
201 10 mg/L to 5 g/L, less than 10 mg/L is considered as not detectable (nd) under tested conditions.

202

203 **3. Results and discussion**

204 **3.1 Engineering of *E. coli* MG1655 for quinolinic acid production.**

205 Quinolinic acid is an intermediate of the NAD⁺ *de novo* biosynthetic pathway under aerobic
206 conditions (Fig. 1). The gene *nadC* of MG1655 was disrupted to block the consumption pathway
207 and allow strain FZ700 to accumulate quinolinic acid. To increase expression of the NAD⁺

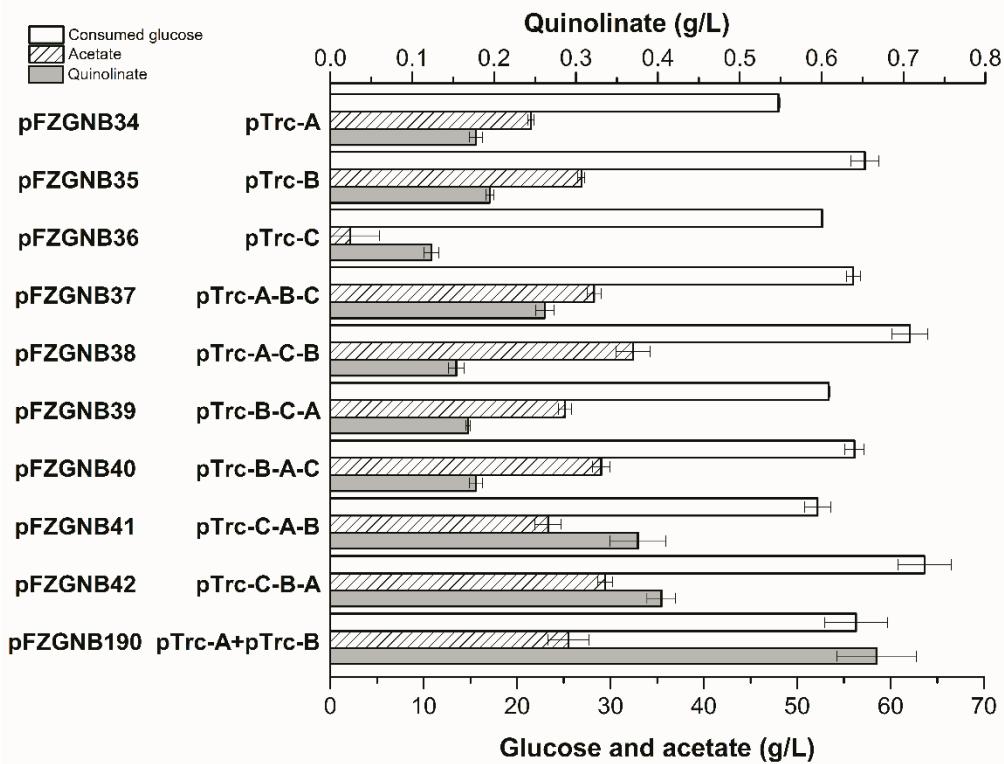
208 biosynthetic genes, the DNA-binding transcriptional repressor *nadR* (of *nadA* and *nadB*) was
209 deactivated in FZ700 to give FZ703. Plasmid pFZGNB42 (pTrc-*aspC-nadB-nadA*) was
210 introduced into the engineered strains to check their performance. The quinolinic acid
211 accumulated in parent strain *E. coli* MG1655 is less than 43 mg/L under tested conditions, which
212 is likely due to it being further converted to NAD⁺. 138 mg/L of quinolinic acid was
213 accumulated in FZ700, and QA titer goes up to 544 mg/L in FZ703.

214 In experiments we noticed more than 37 g/L acetate was accumulated in these strains, which
215 was a really high level of byproduct from the feedstock, glucose. Deactivation of the glucose
216 specific transporter, PtsG, was reported to be able to reduce acetate secretion significantly by
217 slowing the glucose consumption rate which results in a more balanced and efficient metabolism
218 (De Anda et al., 2006; Gosset, 2005; Wong et al., 2008), and also more PEP can be conserved
219 and available for other metabolic pathways by decoupling glucose transport from PEP-dependent
220 phosphorylation (Chatterjee et al., 2001; Gosset, 2005; Liang et al., 2015; Lin et al., 2005).
221 Moreover, the *E. coli* EMP pathway was reported to potentially form an entire substrate
222 channeling module that prevent PEP from being used by other pathways (Shearer et al., 2005).
223 PtsG is thought to be the anchoring point of the EMP channeling and disrupting it will weaken
224 the EMP channeling and improve the efficiency of the engineered pathway to hijack intermediate
225 metabolites from the native pathway (Abernathy, 2019). So, the glucose specific transporter PtsG
226 was deactivated in FZ703 to give FZ723. Meanwhile, the S8D mutant of sorghum
227 phosphoenolpyruvate carboxylase (PEPC) (Wang et al., 1992) was also introduced to increase
228 the OAA pool. This modification was accomplished by the replacement of *ptsG* with pTrc-*pepc*
229 fragment in FZ703 to give FZ734 (Table S1). After 1-day fermentation, up to 450 mg/L
230 quinolinic acid was accumulated in FZ703, while only 283mg/L and 360 mg/L quinolinic acid

231 were produced in FZ723 and FZ734, respectively. After 3-day fermentation, strains FZ723 and
232 FZ734 attained a comparable performance to strain FZ703. Finally, 627 mg/L and 740 mg/L
233 quinolinic acid were accumulated in FZ723 and FZ734 respectively after a 7-day fermentation
234 period, while, only 544 mg/L quinolinic acid accumulated in FZ703 (Table 1). However, a very
235 high concentration of acetate still accumulated in FZ734 (Table S2). The experiment clearly
236 indicates that blocking the consumption pathway is necessary for quinolinic acid production, and
237 deactivation of PtsG and introducing PEPC are helpful for quinolinic acid production. Strain
238 FZ734 was used for further experiments.

239 **Table 1 Quinolinate production in engineered strains**

	MG1655	FZ700	FZ703	FZ723	FZ734
1 day	40.2 ± 1.6	97.1 ± 13.6	449.7 ± 24.3	282.6 ± 16.0	360.2 ± 29.2
3 day	42.8 ± 3.5	138.2 ± 8.3	488.5 ± 23.4	500.8 ± 28.5	594.5 ± 13.7
5 day	36.9 ± 1.8	133.8 ± 7.5	503.8 ± 26.4	544.0 ± 31.2	644.9 ± 16.4
7 day	36.8 ± 2.1	135.4 ± 6.9	544.4 ± 20.4	627.3 ± 31.6	739.7 ± 16.9
<i>nadC</i>	+	-	-	-	-
<i>nadR</i>	+	+	-	-	-
<i>ptsG</i>	+	+	+	-	-
<i>pTrc-pepc</i>	-	-	-	-	+


240 Plasmid pFZGNB42 (pTrc-*aspC-nadB-nadA*) was introduced into the tested strains to examine
241 their performance, aerobic cultures were performed at 37 °C, 350 rpm. The numbers indicate
242 quinolinate concentration (mg/L, average of three replicates with error bars indicating standard
243 deviation).

244

245 **3.2 Effect of varying the gene order of *aspC*, *nadB*, and *nadA* in expression constructs on**
246 **quinolinic acid production**

247 Plasmids containing the three genes for quinolinic acid production from OAA in different
248 arrangements were constructed to give plasmids pFZGNB37 to pFZGNB42 (Fig. 2) and their

249 performance on quinolinic acid production in the host FZ734 was evaluated. After 4 days of
 250 fermentation, more than 48 g/L of glucose was consumed in all tested strains. The culture of the
 251 strain where only *aspC* was overexpressed produced the lowest quinolinic acid titer (123 mg/L)
 252 compared to the results observed when *nadA* or *nadB* was overexpressed (Fig. 2). When all three
 253 genes were co-overexpressed in different gene orders on a plasmid, the quinolinic acid
 254 production was slightly improved with plasmid pFZGNB37 (pTrc-*nadA-nadB-aspC*), and the
 255 quinolinic acid titer increased to 404 mg/L with plasmid pFZGNB42 (pTrc-*aspC-nadB-nadA*).
 256 Unexpectedly, a higher quinolinic acid titer was observed in the strain bearing plasmid
 257 pFZGNB190, which only overexpressed *nadA* and *nadB* under control of two individual pTrc
 258 promoters (pTrc-*nadA*-pTrc-*nadB*, Table S1), where 667 mg/L quinolinic acid was accumulated
 259 (Fig. 2). This experiment suggested the level of AspC expressed from the native gene is already
 260 enough for these tested conditions.

261

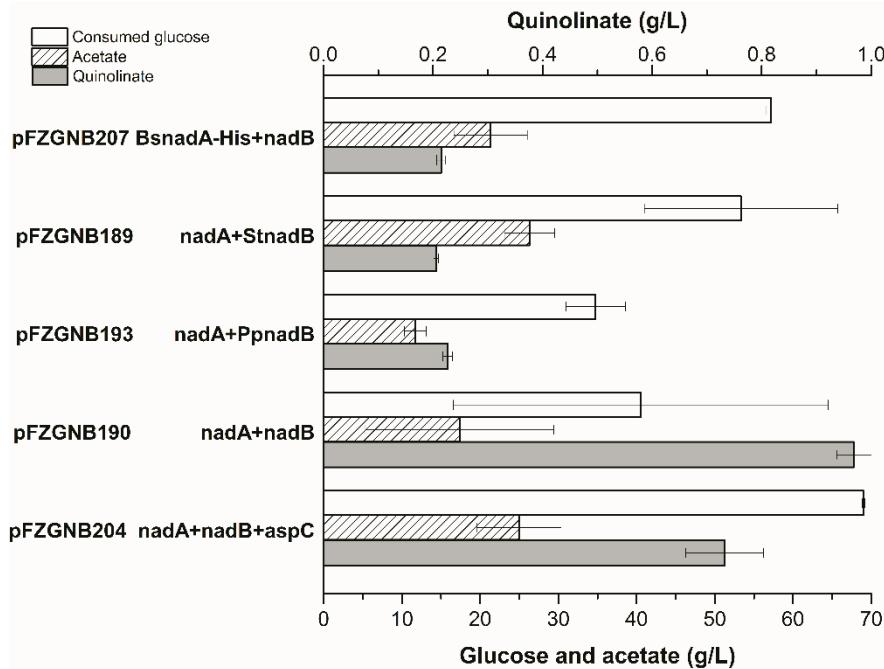
262 **Fig. 2. Quinolinic acid production in FZ734 harboring plasmids containing various gene**

263 **orders of *aspC*, *nadB*, and *nadA*.** Aerobic cultures were performed at 37 °C, 350 rpm for 4
264 days. Values are the average of three replicates with error bars indicating standard deviation. A,
265 B, and C indicate *nadA*, *nadB*, and *aspC* accordingly.

266

267 **3.3 Examination of variants of *nadA* and *nadB* failed to improve quinolinate production**

268 Although FZ734 with plasmid pFZGNB190 (pTrc-nadA+ pTrc-nadB) showed the best
269 performance as described above in section 3.2, it was reported that protein NadB displays a
270 substrate inactivation and its activity can be inhibited by substrate aspartate and NAD, which act
271 as competitive inhibitors (Seifert et al., 1990). NadA was also reported to form inclusion bodies
272 when it is overproduced (Ceciliani et al., 2000), which could diminish its *in vivo* activity.


273 Screening enzymes from diverse sources has been used as an effective strategy to increase the
274 productivity of heterologous pathways in specific hosts. So, some NadA and NadB variants from
275 other species were employed and tested in FZ734 for comparison.

276 It was reported that the activity of NadB from *Pseudomonas putida* KT2440 (PpnadB) was
277 not inhibited by aspartate when the concentration of aspartate is less than 50 mM. And the K_m ,
278 k_{cat} value of this enzyme was determined to be 2.26 mM, 10.6 s⁻¹ against L-aspartate (Leese et
279 al., 2013). NadB from *Sulfolobus tokodaii* (StNadB) was also reported to be less sensitive to
280 NAD⁺ since it can bind the FAD cofactor tightly with a different structure (Bifulco et al., 2013;
281 Sakuraba et al., 2008); moreover, it displays some other distinctive features, e.g., stable activity
282 over a wide range of pH (from 7 to 10), and high thermostability (with a T_m higher than 79 °C),
283 which would make it attractive for biotechnological applications. However, evaluation of
284 constructs expressing these alternative genes under the same conditions described in Figure 2
285 revealed no improvement in quinolinic acid production (Fig. 3). This may be due to the poor

286 protein expression of these NadB variants (Fig. S1), especially StNadB comes from an
287 extremophile. Another possible reason is these enzymes having a lower affinity for aspartate, the
288 K_m value for L-aspartate of StNadB and PpNadB is 1.3 and 2.26 mM as reported (Bifulco et al.,
289 2013; Leese et al., 2013), which is much higher than the K_m value of *E. coli* NadB (0.048 mM).

290 The gene encoding NadA from *Bacillus subtilis* (BsNadA) had been successfully
291 overexpressed with a His₆ tag at its C-terminal (BsNadA-HisTag) in *E. coli* with a yield of 10 mg
292 pure protein from 1 L culture (Marinoni et al., 2008). Unexpectedly, only 215 mg/L quinolinic
293 acid was produced when the native *nadA* in pFZGNB190 was replaced with Bs*nadA*-HisTag
294 (Fig. 3) as no improvement on protein expression was observed in the tested conditions (Fig. S1)
295 and low activity of the BsNadA-HisTag enzyme was reported previously (Marinoni et al.,
296 2008).

297 Unfortunately, the performance of these strains with different NadA and NadB variants is not
298 as good as the native *E. coli* enzymes NadA and NadB under the tested conditions in FZ734 (Fig.
299 3). The native *aspC* was also introduced into pFZGNB190 to give pFZGNB204; however, less
300 quinolinic acid was accumulated in the strain with pFZGNB204 (Fig. 3), possibly due to the
301 substrate inactivation of NadB, potentially caused by the overexpression of AspC.

302

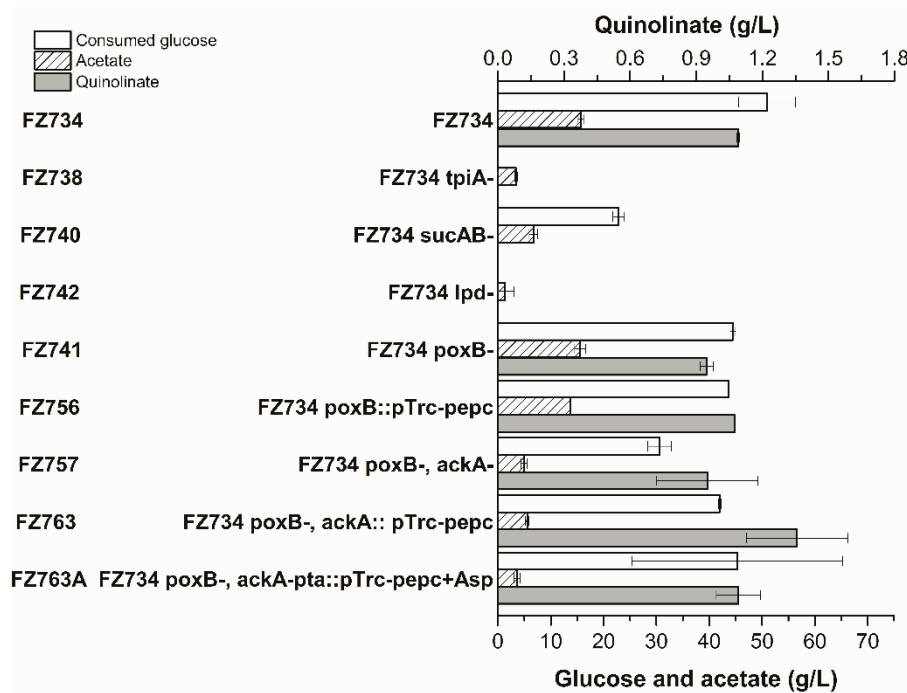
303 **Fig. 3. The effect of nadA and nadB variants on quinolinic acid production in FZ734.**

304 Aerobic cultures were performed at 37 °C, 350 rpm for 4 days. Proteins were overproduced
 305 under the control of pTrc promoter in pFZGNB33. Values are the average of three replicates
 306 with error bars indicating standard deviation. BsnadA-HisTag indicates *nadA* from *Bacillus*
 307 *subtilis* with a His₆-Tag at the C-terminal, StnadB indicates *nadB* from *Sulfolobus tokodaii*, and
 308 PpnadB indicates *nadB* from *Pseudomonas putida* KT2440.

309

310 **3.4 Engineering of FZ734F to improve quinolinic acid production**

311 Several manipulations were explored to enhance the carbon flux to quinolinate production,
 312 including increasing the substrate availability, downregulating the TCA cycle, and blocking the
 313 by-product acetate production. DHAP can be condensed with 2-iminosuccinate by NadA to form
 314 quinolinate with a K_M of 0.74 mM (Reichmann et al., 2015), while it is reported that wild type *E.*
 315 *coli* strains normally only have 0.37 mM DHAP (Bennett et al., 2009) so this possibility to
 316 enhance the level of DHAP was tested. Triosephosphate isomerase (TpiA), which catalyzes the


317 isomerization between glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP),
318 was deactivated to reserve DHAP for quinolinate biosynthesis. Meanwhile, we considered that
319 the low yield of quinolinate may be due to too much carbon going through the TCA cycle, so
320 *sucAB* and *lpd* were deactivated to down-regulate the carbon flux through TCA cycle. SucA and
321 SucB are two subunits of the 2-oxoglutarate dehydrogenase multi-enzyme complex (OGDHC)
322 that catalyzes the conversion of 2-oxoglutarate (2-ketoglutarate) to succinyl-CoA and CO₂.
323 Deactivation of *sucAB* could accumulate 2-oxoglutarate, which can be used for glutamate
324 synthesis and will be beneficial for aspartate synthesis. Lipoamide dehydrogenase (Lpd) is the
325 E3 component of three multicomponent enzyme complexes: pyruvate dehydrogenase, 2-
326 oxoglutarate dehydrogenase complex, and the glycine cleavage system (Guest and Creaghan,
327 1972; Pettit and Reed, 1967; Steiert et al., 1990). Deactivation of *lpd* was reported to produce
328 more pyruvate and L-glutamate under aerobic conditions (Li et al., 2006), as it affects the
329 function of pyruvate dehydrogenase and the 2-oxoglutarate dehydrogenase complex. However,
330 the FZ738 (FZ734 *ΔtpiA*) or FZ742 (FZ734 *Δlpd*) strain displayed very poor cell growth and
331 failed to produce quinolinate (Fig. 4). Although the *sucAB*⁻ strain can grow, unfortunately, it also
332 failed to accumulate quinolinate. This may be due to the quinolinate production being an ATP
333 consuming process, and it requires a high level of ATP generated through the TCA cycle or other
334 ATP producing pathway.

335 More than 20 g/L acetate accumulated in nearly in all tested strains, which may inhibit the
336 cell growth and waste the substrate glucose, so the acetate producing pathways were selected as
337 the next target for genetic modification. There are two predominant acetate producing pathways
338 active aerobically in *E. coli*, they are the pyruvate oxidase (PoxB) and acetate
339 kinase/phosphotransacetylase (AckA-Pta) pathways. Pyruvate oxidase (PoxB) is a peripheral

340 membrane enzyme that catalyzes the oxidative decarboxylation of pyruvate to form acetate and
341 mainly functions at stationary phase, whereas the AckA-Pta catalyzed pathway, which mainly
342 functions during the exponential phase, converts acetyl-CoA to acetate (Dittrich et al., 2005).
343 When the fermentation was performed with strains harboring plasmid pFZGNB190, no
344 difference was observed on acetate accumulation when only the PoxB was deactivated, while
345 much less acetate was accumulated when both PoxB and AckA were deactivated (Fig. 4).
346 However, there is 13% decrease in quinolinate titer in FZ757/pFZGNB190 due to 40% less
347 glucose being consumed. Since this strain has two acetate producing pathways deactivated,
348 compared with FZ734/pFZGNB190 (Fig. 4), it has a less ability to consume glucose rapidly.
349 Interestingly, improvement was observed when an extra copy of pTrc-*pepc* was introduced into
350 FZ757 (FZ734 *ΔpoxB, ΔackA*) forming strain FZ763/pFZGNB190 (Table S1). The resulting
351 strain yielded a 24.4% increase in quinolinic acid formation compared to FZ734/pFZGNB190,
352 with up to 1.4 g/L (32.3 mg/g consumed glucose) being accumulated while consuming 42 g/L
353 glucose (Fig. 4), it's also worth noticing that more than 5.6 g/L acetate accumulated in
354 FZ763/pFZGNB190 in 4-day fermentation (Fig. 4). We also examined the addition of extra
355 aspartate and when 5 g/L aspartate was added into the fermentation broth with strain
356 FZ763/pFZGNB190, the quinolinate titer dropped to 1.1 g/L. The decrease is consistent with the
357 result mentioned in section 3.3 (Fig. 3) that showed quinolinate titer dropped when AspC was
358 overproduced, indicating an imbalance in the synthesis and utilization of this intermediate, which
359 may be due to the substrate inhibition of NadB by a high concentration of aspartate. It also
360 indicates that the flux from aspartate to quinolinic acid is the limiting step for quinolinic acid
361 production in our tested system.

362 Based on the strains' performance, the strain FZ763/pFZGNB190 was further evaluated with

363 lower glucose concentration (40 g/L). Interestingly, strain FZ763/pFZGNB190 fermented with
 364 40 g/L glucose has a higher quinolinate productivity based on 2-day samples, while the strain has
 365 comparable quinolinate titer after a 4-day fermentation (Fig. S2). This result may be due to the
 366 fermentation with 40 g/L glucose receiving much less metabolic stress and would be more
 367 suitable for chemicals production as the yield per glucose would be higher than in the 70 g/L
 368 cultures.

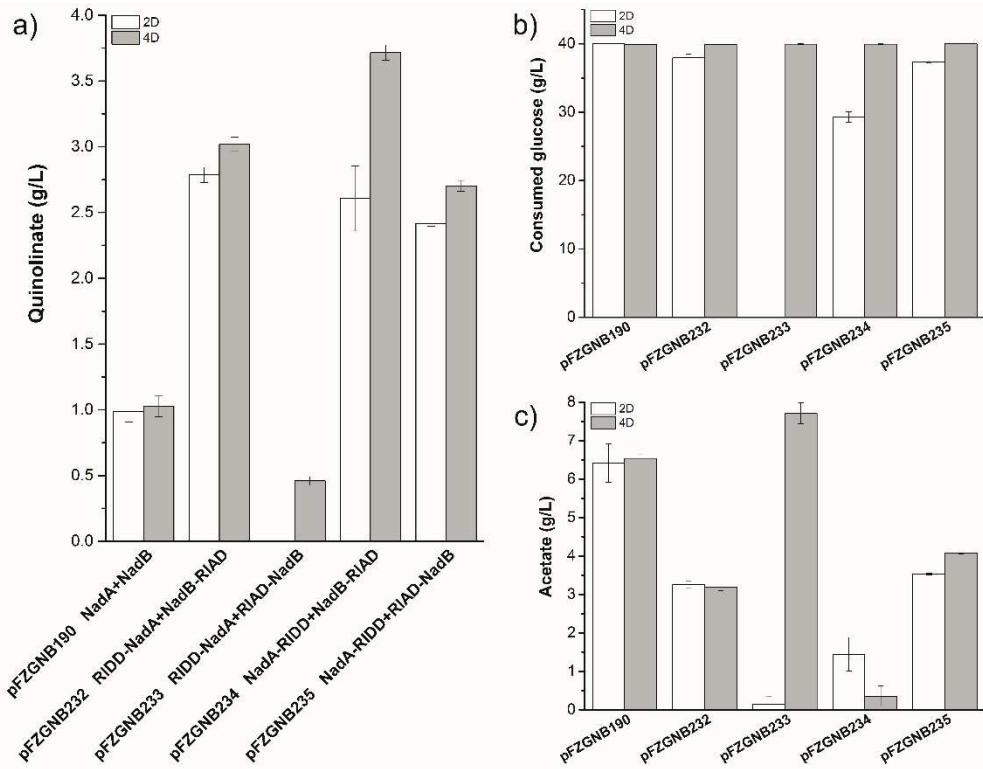
369
 370 **Fig. 4. Quinolinic acid production in engineered strains harboring plasmid pFZGNB190.**

371 Aerobic cultures were performed at 37 °C, 350 rpm for 4 days. FZ763A indicates 5 g/L aspartate
 372 was added into the fermentation broth (+Asp). Values are the average of three replicates with
 373 error bars indicating standard deviation.

374 **3.5 Improvement of quinolinate production by assembling NadA and NadB as an
 375 enzyme complex.**

376 The flux from aspartate to quinolinic acid has been demonstrated to be a rate-limiting factor
 377 for quinolinic acid production above by the results of experiments on overexpression of

378 individual/combination of genes encoding AspC, NadB, and NadA (Fig. 2 and Fig. 3) and
379 feeding extra aspartate (Fig. 4). Further increasing the flux of these steps is highly desired for
380 quinolinic acid production; moreover, it was reported that the intermediate 2-iminosuccinate is
381 unstable (Nasu et al., 1982), both of which brings a synthetic multiple-enzyme complex into our
382 mind. Synthetic multi-enzyme complexes have been developed to control the flux of metabolites
383 and to improve product yield (Conrado et al., 2008; Quin et al., 2017), not only because it
384 improves local substrate concentration and reaction equilibrium but also prevents loss of reaction
385 intermediates from competing pathways by diffusion, protects cells from unstable/toxic
386 intermediates, and increases local enzyme concentration (Abernathy et al., 2017; Obata, 2020;
387 Wheeldon et al., 2016). All these features are potentially helpful for quinolinic acid production in
388 our system. Also, NadA easily forms an inclusion body as another complication (low protein
389 concentration), and 2-iminosuccinate is unstable (Ceciliani et al., 2000, Nasu et al., 1982), so a
390 synthetic multi-enzyme complex was investigated in this study.


391 Using a fusion protein is one of the developed strategies to form synthetic multi-enzyme
392 complexes. Such fusions can be easily constructed by genetically fusing two or more protein
393 domains with a peptide linker, and it is also often useful to improve the solubility of recombinant
394 proteins. While, no improvement was observed when NadA and NadB were fused with linkers
395 (GS)₃, (GS)₆, or (G4S)₂ (Fig. S3), the performance of NadA-(GS)₆-NadB (FZ763/pFZGNB157)
396 was comparable with the performance of the host-plasmid bearing separate proteins
397 (FZ763/pFZGNB190). Possible complications could be due to the linker not being optimized, or
398 the expression of the large fusion protein being worse than the expression of the separate
399 proteins (Fig. S4). It also may be due to the fusion not being easily able to account for the dimer,
400 monomer situation, and such complexes may generate an aggregate or inefficient complex as the

401 dimeric structure is necessary for the stability of NadA (Ollagnier-de Choudens et al., 2005).
402 Synthetic multi-enzyme complexes can also be constructed by assembling the enzymes with
403 a protein/peptide scaffold based on protein-protein/peptide interaction or even peptide-peptide
404 interaction (Conrado et al., 2008; Quin et al., 2017). A dock-and-lock peptide interacting family
405 of peptides RIAD and RIDD have been successfully applied for lycopene overproduction (Kang
406 et al., 2019). RIAD, an 18 amino acid peptide which is from the A kinase-anchoring proteins,
407 specifically binds to the RIDD dimer, which contains the first 50 N-terminal residues of cAMP-
408 dependent protein kinase. Their small size, strong binding affinity, and fixed 1:2 binding
409 stoichiometry ratio make them a suitable pair of protein tags for multi-enzyme assembly (Kang
410 et al., 2019). So, NadB and NadA were then assembled as an enzyme complex by adding
411 peptides RIAD and RIDD in this study. DNA fragments encoding peptides RIAD and RIDD
412 with a linker (G₄S)₂G₄CG were codon-optimized and synthesized by Synbio Technologies and
413 incorporated in plasmids for study (Table S3). NadA appears as a dimeric protein and the
414 dimeric structure is essential for its stability (Ollagnier-de Choudens et al., 2005), while NadB is
415 a monomeric protein (Mattevi et al., 1999), so RIDD was combined with *nadA* and RIAD was
416 combined with *nadB* both at N-terminal and C-terminal by Overlap Extension PCR (OE-PCR) to
417 give pFZGNB228 to pFZGNB231. pTrc-nadB-RIAD from pFZGNB229, and pTrc-RIAD-nadB
418 from pFZGNB230 was inserted into pFZ228 and pFZGNB231 individually to give pFZGNB232
419 to pFZGNB235 (Table S1). Since no significant improvement was observed in quinolinate titer
420 when 70 g/L glucose was used compared to 40 g/L glucose, the strains were evaluated in QA
421 producing medium with 40 g/L glucose. The strain FZ763/pFZGNB233 [RIDD-NadA (RIDD
422 added at the N-terminal of NadA with a G₄SG₄SG₄CG linker) with RIAD-NadB] displayed poor
423 cell growth after two days fermentation, no quinolinate was observed (Fig. 5a), and nearly no

424 glucose was consumed (Fig. 5b). Although comparable biomass was obtained after 4 days of
425 fermentation (cell density was not measured due to the present of CaCO_3), it only produced 0.7
426 g/L quinolinate, which is 31% less than produced in FZ763/pFZGNB190 (1.0 g/L, Fig. 5a). The
427 other strains all exhibited better performance than FZ763/pFZGNB190 (Fig. 5). After 2 days
428 fermentation, FZ763/pFZGNB190 had already consumed all glucose, but only produced 1.0 g/L
429 quinolinate (25 mg/g consumed glucose, 20.8 mg/L/h). Strain FZ763/pFZGNB232 (RIDD-NadA
430 with NadB-RIAD) shows the highest quinolinate titer (2.8 g/L) due to more glucose was
431 consumed (37.9 g/L) than other strains (except FZ763/pFZGNB190), with a productivity of 58.3
432 mg/L/h which is 35 times faster than the parent strain MG1655/pFZGNB42 (Fig. 5 and Table 1).
433 Strain FZ763/pFZGNB234 (NadA-RIDD with NadB-RIAD) produced 2.6 g/L quinolinate from
434 29 g/L glucose with a yield of 89.7 mg/g, and with less acetate being accumulated (Fig. 5c). 37.4
435 g/L glucose was consumed in FZ763/pFZGNB235 (NadA-RIDD with RIAD-NadB), and 2.4 g/L
436 quinolinate was accumulated. After 4 days of fermentation, no significant improvement was
437 observed in strains FZ763/pFZGNB190, FZ763/pFZGNB232 and FZ763/pFZGNB235, however
438 most of the glucose was consumed within 2 days (Fig. 5a and 5b). Quinolinate titer in strain
439 FZ763/pFZGNB234 was further increased to 3.7 g/L upon consuming the residual glucose with a
440 yield of 92.5 mg/g. This result is 3.6-fold higher than FZ763/pFZGNB190 (Fig. 5) and more than
441 86.8 times higher than the parent strain MG1655/pFZGNB42 (Table 1 and Fig. 5a). The higher
442 yield was achieved as less acetate was accumulated in these strains, except for strain
443 FZ763/pFZGNB233, compared to strain FZ763/pFZGNB190 (Fig. 5c), which indicates a more
444 balanced metabolism was achieved. The highest yield (92.5 mg/g) we achieved in
445 FZ763/pFZGNB234 is 3.6-fold higher than FZ763/pFZGNB190 and 151-fold higher than the
446 parent strain MG1655/pFZGNB42 (Table 1 and Fig. 5a). Similar amounts of protein complexes

447 were observed through a non-reducing SDS-PAGE analysis (Fig. S5), except in
448 FZ763/pFZGNB233. The strains were also tested in QA producing medium with 70 g/L glucose
449 as a carbon source, and no improvement on quinolinate titer was observed among most tested
450 strains (Fig. S6). By testing the NadA-NadB protein complex in different arrangements, it clearly
451 shows that the activity and complex formation would depend on the position and orientation of
452 the peptide complexes. The strains with NadA-RIDD had better performance than the strains
453 with RIDD-NadA (Fig. 5), which is consistent with the performance of fusion proteins made in
454 this work where NadA has been linked at the C-terminal end, such as NadA-(GS)₆-NadB (Fig.
455 S3). This may be due to the C-terminal end of the NadA being closer to the active site and more
456 flexible than N-terminal based on the available crystal structures of NadA from other species
457 (PDB number: 4ZK6, 4P3X and 4HHE) (Cherrier et al., 2014; Esakova et al., 2016; Soriano et
458 al., 2013), which have a similarity of greater than 55% to *E. coli* NadA, as the crystal structure of
459 the *E. coli* native NadA is not available yet. The strains with NadB-RIAD also has better
460 performance than the strains with RIAD-NadB (Fig. 5), which may be because the N-terminal
461 end of NadB is the cofactor FAD-binding domain (Bossi et al., 2002), and adding a RIAD-tag to
462 the N-terminal end affected the cofactor binding efficiency. Moreover, when the peptides were
463 added to the N-terminal of NadA and NadB (RIDD-NadA with RIAD-NadB), the strain has the
464 lowest quinolinate titer, which suggests it formed an non-preferred enzyme complex, perhaps
465 inactive, and leads to a metabolic burden. In contrast, the combination with the peptides added to
466 the C-terminal ends (NadA-RIDD with NadB-RIAD) has the highest quinolinate titer, which
467 suggests a preferred enzyme complex being formed and stabilized in this configuration,
468 providing an efficient and exclusive catalytic reaction series with little free diffusion of the
469 unstable intermediate, 2-iminosuccinate (Nasu et al., 1982). Another possible reason is the

470 RIDD: RIAD complex has a ratio of 2:1 (Kang et al., 2019), which is beneficial for NadA dimer
 471 formation and good for its activity and stability. Notably, the turnover frequency of *E. coli* NadB
 472 is only 0.267 s⁻¹ (Tedeschi et al., 2010), which may limit the enzyme complex catalytic
 473 efficiency.

474
 475 **Fig. 5. The effect of NadA-NadB enzyme complex on quinolinic acid production in FZ763**
 476 **with 40 g/L glucose.** a) quinolinate titer, b) consumed glucose, c) accumulated acetate. Aerobic
 477 cultures were performed at 37 °C, 350 rpm, sampled at 2 days (2D) and 4 days (4D). NadA-
 478 RIDD and NadB-RIAD fusion proteins were over-expressed under the control of their pTrc
 479 promoter in pFZGNB227, NadA-NadB enzyme complex was assembled with the help of
 480 peptides, RIAD and RIDD. Values are the average of three replicates with error bars indicating
 481 standard deviation.

482 In conclusion, multiple engineering strategies were applied to increase the production of
 483 quinolinate. The quinolinate consumption pathway was blocked to enable the production of

484 quinolinate by deactivation of NadC, and quinolinate production was activated by knockout the
485 repressor gene *nadR*. Then, quinolinate production was enhanced by deactivation of glucose
486 transporter gene *ptsG* to slow the glucose consumption rate, to achieve a more balanced
487 metabolism, and to improve the availability of PEP. Increasing the OAA pool through
488 overexpression of PEPC also improved quinolinate production. Moreover, the acetate-producing
489 pathways were deactivated as acetate is a major by-product in the engineered strain
490 FZ734/pFZGNB190. Finally, quinolinate production was accelerated by assembling NadA and
491 NadB as an enzyme complex with the help of peptide-peptide interaction peptides, RIAD and
492 RIDD, and up to 3.7 g/L quinolinate was accumulated in FZ763/pFZGNB234 in shake-flask
493 cultures. These results lay a foundation for further engineering of the strains to efficiently
494 produce quinolinic acid or even nicotinic acid for industrial applications. However, the highest
495 yield we achieved is only 92.5 mg/g, which need to be further improved. Crystal-structural
496 studies of the constructed protein complexes via isolation and crystallography could be
497 employed, which would give us a better understanding of these results and lead to further
498 optimization of the system. Further improvement may be achieved by protein engineering of
499 NadB to eliminate the feedback inhibition and improve the enzymatic activity. Other potential
500 enhancements may be attained through improving the expression of NadA, down-regulating the
501 TCA cycle, optimizing the NadA-NadB enzyme complex, and assembling AspC, NadB, and
502 NadA into a larger enzyme complex to allow more aspartate to more efficiently enter the
503 reactions for quinolinate production.

504 There has been much attention to improve the efficiency of metabolic reactions through
505 enzyme co-localization and compartmentalization. In this study, we not only built the synthetic
506 enzyme complex (NadA-RIDD and NadB-RIAD enzyme complex) to improve quinolinate

507 production, but also disrupted the potential native EMP channeling by deleting ptsG to release
508 the intermediate PEP for quinolinate production. This disrupt-build strategy for metabolon
509 engineering may be beneficial for future engineering of *in vivo* biocatalysis.

510

511 **Conflicts of interest**

512 The authors declare no competing financial interests.

513 **Acknowledgment**

514 The authors thank Dr. Charles Stewart, Department of Biosciences at Rice University, for
515 kindly sharing *Bacillus subtilis* CB10 with us, the authors thank Dr. Guoqiang Zhang at Jiangnan
516 University (Wuxi, China) for helpful suggestions about fusion protein constructs, and Dr. Shuai
517 Qian at Solugen (Houston, TX) for his help on protein structure analysis. This work was
518 supported by NSF DBI-1262491, NSF EAGER: DESYN-C3 CBET-1843556, and DOE BES
519 DE-SC0014462. M. P. was supported by a training fellowship from the Gulf Coast Consortia
520 (NLM Grant T15 LM007093).

521

522 **References**

523 Abernathy, M. H., et al., 2017. Channeling in native microbial pathways: implications and
524 challenges for metabolic engineering. *Biotechnol. adv.* 35, 805-814.

525 Abernathy, M. H., et al., 2019. Comparative studies of glycolytic pathways and channeling under
526 in vitro and in vivo modes. *AIChE J.* 65, 483-490.

527 Andreoli, A. J., Ikeda, M., Nishizuka, Y., Hayaishi, O., 1963. Quinolinic acid: a precursor to
528 nicotinamide adenine dinucleotide in *Escherichia coli*. *Biochem. Biophys. Res. Commun.*
529 12, 92.

530 Andrushkevich, T. V., Ovchinnikova, E. V., 2012. Gas Phase Catalytic Oxidation of β -Picoline
531 to Nicotinic Acid: Catalysts, Mechanism and Reaction Kinetics. *Catal. Rev.* 54, 399-436.

532 Becker, J., Zelder, O., Häfner, S., Schröder, H., Wittmann, C., 2011. From zero to hero—design-
533 based systems metabolic engineering of *Corynebacterium glutamicum* for l-lysine
534 production. *Metab. Eng.* 13, 159-168.

535 Begley, T. P., Kinsland, C., Mehl, R. A., Osterman, A., Dorrestein, P., 2001. The biosynthesis of
536 nicotinamide adenine dinucleotides in bacteria. *Vitam. Horm.* 61, 103-119.

537 Bennett, B. D., Kimball, E. H., Gao, M., Osterhout, R., Van Dien, S. J., Rabinowitz, J. D., 2009.
538 Absolute metabolite concentrations and implied enzyme active site occupancy in
539 *Escherichia coli*. *Nat. Chem. Biol.* 5, 593.

540 Bifulco, D., Pollegioni, L., Tessaro, D., Servi, S., Molla, G., 2013. A thermostable L-aspartate
541 oxidase: a new tool for biotechnological applications. *Appl. Microbiol. Biotechnol.* 97,
542 7285-7295.

543 Bossi, R. T., et al., 2002. Structure of FAD-bound L-aspartate oxidase: insight into substrate
544 specificity and catalysis. *Biochemistry.* 41, 3018-3024.

545 Carlson, C. R., Lygren, B., Berge, T., Hoshi, N., Wong, W., Taskén, K., Scott, J. D., 2006.
546 Delineation of type I protein kinase A-selective signaling events using an RI anchoring
547 disruptor. *J. Biol. Chem.* 281, 21535-21545.

548 Ceciliani, F., Caramori, T., Ronchi, S., Tedeschi, G., Mortarino, M., Galizzi, A., 2000. Cloning,
549 overexpression, and purification of *Escherichia coli* quinolinate synthetase. *Protein Expr.*
550 *Purif.* 18, 64-70.

551 Chandler, J. L., Gholson, R., 1972. De novo biosynthesis of nicotinamide adenine dinucleotide in
552 Escherichia coli: excretion of quinolinic acid by mutants lacking quinolinate
553 phosphoribosyl transferase. *J. Bacteriol.* 111, 98-102.

554 Chatterjee, R., Millard, C. S., Champion, K., Clark, D. P., Donnelly, M. I., 2001. Mutation of the
555 ptsG gene results in increased production of succinate in fermentation of glucose
556 by Escherichia coli. *Appl. Environ. Microbiol.* 67, 148-154.

557 Cherrier, M. V., et al., 2014. The crystal structure of Fe4S4 quinolinate synthase unravels an
558 enzymatic dehydration mechanism that uses tyrosine and a hydrolase-type triad. *J. Am.*
559 *Chem. Soc.* 136, 5253-5256.

560 Cicchillo, R. M., Tu, L., Stromberg, J. A., Hoffart, L. M., Krebs, C., Booker, S. J., 2005.
561 Escherichia coli quinolinate synthetase does indeed harbor a [4Fe-4S] cluster. *J. Am.*
562 *Chem. Soc.* 127, 7310-7311.

563 Conrado, R. J., Varner, J. D., DeLisa, M. P., 2008. Engineering the spatial organization of
564 metabolic enzymes: mimicking nature's synergy. *Curr. Opin. Biotechnol.* 19, 492-499.

565 Cox, S. J., Levanon, S. S., Sanchez, A., Lin, H., Peercy, B., Bennett, G. N., San, K.-Y., 2006.
566 Development of a metabolic network design and optimization framework incorporating
567 implementation constraints: a succinate production case study. *Metab. Eng.* 8, 46-57.

568 Crook, M. A., 2014. The importance of recognizing pellagra (niacin deficiency) as it still occurs.
569 *Nutrition.* 30, 729-730.

570 Datsenko, K. A., Wanner, B. L., 2000. One-step inactivation of chromosomal genes in
571 Escherichia coli K-12 using PCR products. *Proc. Natl. Acad. Sci.* 97, 6640-6645.

572 De Anda, R., Lara, A. R., Hernández, V., Hernández-Montalvo, V., Gosset, G., Bolívar, F.,
573 Ramírez, O. T., 2006. Replacement of the glucose phosphotransferase transport system

574 by galactose permease reduces acetate accumulation and improves process performance
575 of *Escherichia coli* for recombinant protein production without impairment of growth
576 rate. *Metab. Eng.* 8, 281-290.

577 Dittrich, C. R., Bennett, G. N., San, K. Y., 2005. Characterization of the acetate-producing
578 pathways in *Escherichia coli*. *Biotechnol. Prog.* 21, 1062-1067.

579 Esakova, O. A., et al., 2016. Structure of quinolinate synthase from *Pyrococcus horikoshii* in the
580 presence of its product, quinolinic acid. *J. Am. Chem. Soc.* 138, 7224-7227.

581 Flachmann, R., KUNZ, N., SEIFERT, J., GÜTLICH, M., WIENTJES, F. J., LÄUFER, A.,
582 GASSEN, H. G., 1988. Molecular biology of pyridine nucleotide biosynthesis in
583 *Escherichia coli*: cloning and characterization of quinolinate synthesis genes nadA and
584 nadB. *Eur. J. Biochem.* 175, 221-228.

585 Gold, M. G., Lygren, B., Dokurno, P., Hoshi, N., McConnachie, G., Taskén, K., Carlson, C. R.,
586 Scott, J. D., Barford, D., 2006. Molecular basis of AKAP specificity for PKA regulatory
587 subunits. *Mol. Cell.* 24, 383-395.

588 Gosset, G., 2005. Improvement of *Escherichia coli* production strains by modification of the
589 phosphoenolpyruvate: sugar phosphotransferase system. *Microb. Cell Fact.* 4, 14.

590 Griffith, G. R., Chandler, J. L., Gholson, R. K., 1975. Studies on the de novo Biosynthesis of
591 NAD in *Escherichia coli*: The Separation of the nadB Gene Product from the nadA Gene
592 Product and Its Purification. *Eur. J. Biochem.* 54, 239-245.

593 Guest, J., Creaghan, I., 1972. Lipoamide dehydrogenase mutants of *Escherichia coli* K 12.
594 *Biochem. J.* 130, 8P.

595 Hammond, N., Wang, Y., Dimachkie, M., Barohn, R., 2013. Nutritional neuropathies. *Neurol.*
596 *Clin.* 31, 477-489.

597 Heath, A. P., Bennett, G. N., Kavraki, L. E., 2010. Finding metabolic pathways using atom
598 tracking. *Bioinformatics*. 26, 1548-1555.

599 Jiang, Y., Chen, B., Duan, C., Sun, B., Yang, J., Yang, S., 2015. Multigene editing in the
600 *Escherichia coli* genome via the CRISPR-Cas9 system. *Appl. Environ. Microbiol.* 81,
601 2506-2514.

602 Kang, W., Ma, T., Liu, M., Qu, J., Liu, Z., Zhang, H., Shi, B., Fu, S., Ma, J., Lai, L. T. F., 2019.
603 Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux. *Nat.*
604 *Commun.* 10, 1-11.

605 Keasling, J. D., 2010. Manufacturing molecules through metabolic engineering. *Science*. 330,
606 1355-1358.

607 Kim, S. M., Peña, M. I., Moll, M., Bennett, G. N., Kavraki, L. E., 2020. Improving the
608 organization and interactivity of metabolic pathfinding with precomputed pathways.
609 *BMC Bioinformatics*. 21, 1-22.

610 Kim, S. Y., Shin, Y. U., Heo, I. K., Kim, J. E., Son, S. K., Seo, C. I., Kim, H. A., Lee, H. J., Na,
611 K. H., Bae, J. Y., Method for the preparation of nicotinic acid. Google Patents, 2016.

612 Lee, J. W., Na, D., Park, J. M., Lee, J., Choi, S., Lee, S. Y., 2012. Systems metabolic engineering
613 of microorganisms for natural and non-natural chemicals. *Nat. Chem. Biol.* 8, 536-546.

614 Leese, C., Fotheringham, I., Escalettes, F., Speight, R., Grogan, G., 2013. Cloning, expression,
615 characterisation and mutational analysis of L-aspartate oxidase from *Pseudomonas*
616 *putida*. *J. Mol. Catal. B Enzym.* 85, 17-22.

617 Li, M., Ho, P. Y., Yao, S., Shimizu, K., 2006. Effect of *lpdA* gene knockout on the metabolism
618 in *Escherichia coli* based on enzyme activities, intracellular metabolite concentrations
619 and metabolic flux analysis by ¹³C-labeling experiments. *J. Biotechnol.* 122, 254-266.

620 Liang, Q., Zhang, F., Li, Y., Zhang, X., Li, J., Yang, P., Qi, Q., 2015. Comparison of individual
621 component deletions in a glucose-specific phosphotransferase system revealed their
622 different applications. *Sci. rep.* 5, 13200.

623 Lin, H., Bennett, G. N., San, K.-Y., 2005. Metabolic engineering of aerobic succinate production
624 systems in *Escherichia coli* to improve process productivity and achieve the maximum
625 theoretical succinate yield. *Metab. Eng.* 7, 116-127.

626 Magni, G., Amici, A., Emanuelli, M., Raffaelli, N., Ruggieri, S., 1999. Enzymology of Nad⁺
627 Synthesis. *Advances in Enzymology and Related Areas of Molecular Biology: Mechanism of Enzyme Action, Part A.* 73, 135-182.

629 Marinoni, I., Nonnis, S., Monteferrante, C., Heathcote, P., Härtig, E., Böttger, L. H., Trautwein,
630 A. X., Negri, A., Albertini, A. M., Tedeschi, G., 2008. Characterization of l-aspartate
631 oxidase and quinolinate synthase from *Bacillus subtilis*. *FEBS J.* 275, 5090-5107.

632 Martinez, I., Gao, H., Bennett, G. N., San, K.-Y., 2018. High yield production of four-carbon
633 dicarboxylic acids by metabolically engineered *Escherichia coli*. *J. Ind. Microbiol.*
634 *Biotechnol.* 45, 53-60.

635 Mattevi, A., Tedeschi, G., Bacchella, L., Coda, A., Negri, A., Ronchi, S., 1999. Structure of L-
636 aspartate oxidase: implications for the succinate dehydrogenase/fumarate reductase
637 oxidoreductase family. *Structure.* 7, 745-756.

638 Mortarino, M., Negri, A., Tedeschi, G., Simonic, T., Duga, S., Gassen, H. G., Ronchi, S., 1996.
639 L-Aspartate Oxidase from *Escherichia coli*: I. Characterization of Coenzyme Binding and
640 Product Inhibition. *Eur. J. Biochem.* 239, 418-426.

641 Nasu, S., Wicks, F. D., Gholson, R., 1982. L-Aspartate oxidase, a newly discovered enzyme of
642 *Escherichia coli*, is the B protein of quinolinate synthetase. *J. Biol. Chem.* 257, 626-632.

643 Ning, Y., Wu, X., Zhang, C., Xu, Q., Chen, N., Xie, X., 2016. Pathway construction and
644 metabolic engineering for fermentative production of ectoine in *Escherichia coli*. *Metab.*
645 *Eng.* 36, 10-18.

646 Ollagnier-de Choudens, S., Loiseau, L., Sanakis, Y., Barras, F., Fontecave, M., 2005.
647 Quinolinate synthetase, an iron–sulfur enzyme in NAD biosynthesis. *FEBS Lett.* 579,
648 3737-3743.

649 Panozzo, C., Nawara, M., Suski, C., Kucharczyka, R., Skoneczny, M., Bécam, A.-M., Rytka, J.,
650 Herbert, C. J., 2002. Aerobic and anaerobic NAD⁺ metabolism in *Saccharomyces*
651 *cerevisiae*. *FEBS Lett.* 517, 97-102.

652 Park, J. H., Lee, S. Y., 2010. Metabolic pathways and fermentative production of L-aspartate
653 family amino acids. *Biotechnol J.* 5, 560-577.

654 Pettit, F. H., Reed, L. J., 1967. Alpha-keto acid dehydrogenase complexes. 8. Comparison of
655 dihydrolipoyl dehydrogenases from pyruvate and alpha-ketoglutarate dehydrogenase
656 complexes of *Escherichia coli*. *Proc. Natl. Acad. Sci. U S A.* 58, 1126.

657 Quin, M. B., Wallin, K., Zhang, G., Schmidt-Dannert, C., 2017. Spatial organization of multi-
658 enzyme biocatalytic cascades. *Organic & biomolecular chemistry.* 15, 4260-4271.

659 Reichmann, D., Couté, Y., Ollagnier de Choudens, S., 2015. Dual activity of quinolinate
660 synthase: triose phosphate isomerase and dehydration activities play together to form
661 quinolinate. *Biochemistry.* 54, 6443-6446.

662 Sakuraba, H., Yoneda, K., Asai, I., Tsuge, H., Katunuma, N., Ohshima, T., 2008. Structure of l-
663 aspartate oxidase from the hyperthermophilic archaeon *Sulfolobus tokodaii*. *Biochim.*
664 *Biophys. Acta. Proteins Proteom.* 1784, 563-571.

665 Sánchez, A. M., Bennett, G. N., San, K.-Y., 2005. Novel pathway engineering design of the
666 anaerobic central metabolic pathway in *Escherichia coli* to increase succinate yield and
667 productivity. *Metab. Eng.* 7, 229-239.

668 Sauer, U., Eikmanns, B. J., 2005. The PEP—pyruvate—oxaloacetate node as the switch point for
669 carbon flux distribution in bacteria: We dedicate this paper to Rudolf K. Thauer, Director
670 of the Max-Planck-Institute for Terrestrial Microbiology in Marburg, Germany, on the
671 occasion of his 65th birthday. *FEMS Microbiol. Rev.* 29, 765-794.

672 Seifert, J., Norbert, K., FLACHMANN, R., LÄUFER, A., Klaus-Dieter, J., GASSEN, H. G.,
673 1990. Expression of the *E. coli* nadB gene and characterization of the gene product L-
674 aspartate oxidase. *Biol. Chem. Hoppe-Seyler.* 371, 239-248.

675 Shearer, G., et al., 2005. Quantitative estimation of channeling from early glycolytic
676 intermediates to CO₂ in intact *Escherichia coli*. *FEBS J.* 272, 3260-3269.

677 Shishido, T., Song, Z., Kadowaki, E., Wang, Y., Takehira, K., 2003. Vapor-phase oxidation of 3-
678 picoline to nicotinic acid over Cr_{1-x}Al_xVO₄ catalysts. *Appl. Catal. A-Gen.* 239, 287-
679 296.

680 Soriano, E. V., et al., 2013. Active-site models for complexes of quinolinate synthase with
681 substrates and intermediates. *Acta Cryst. D69*, 1685-1696.

682 Steiert, P., Stauffer, L., Stauffer, G., 1990. The lpd gene product functions as the L protein in the
683 *Escherichia coli* glycine cleavage enzyme system. *J. Bacteriol.* 172, 6142-6144.

684 Tedeschi, G., Nonnis, S., Strumbo, B., Cruciani, G., Carosati, E., Negri, A., 2010. On the
685 catalytic role of the active site residue E121 of *E. coli* L-aspartate oxidase. *Biochimie.* 92,
686 1335-1342.

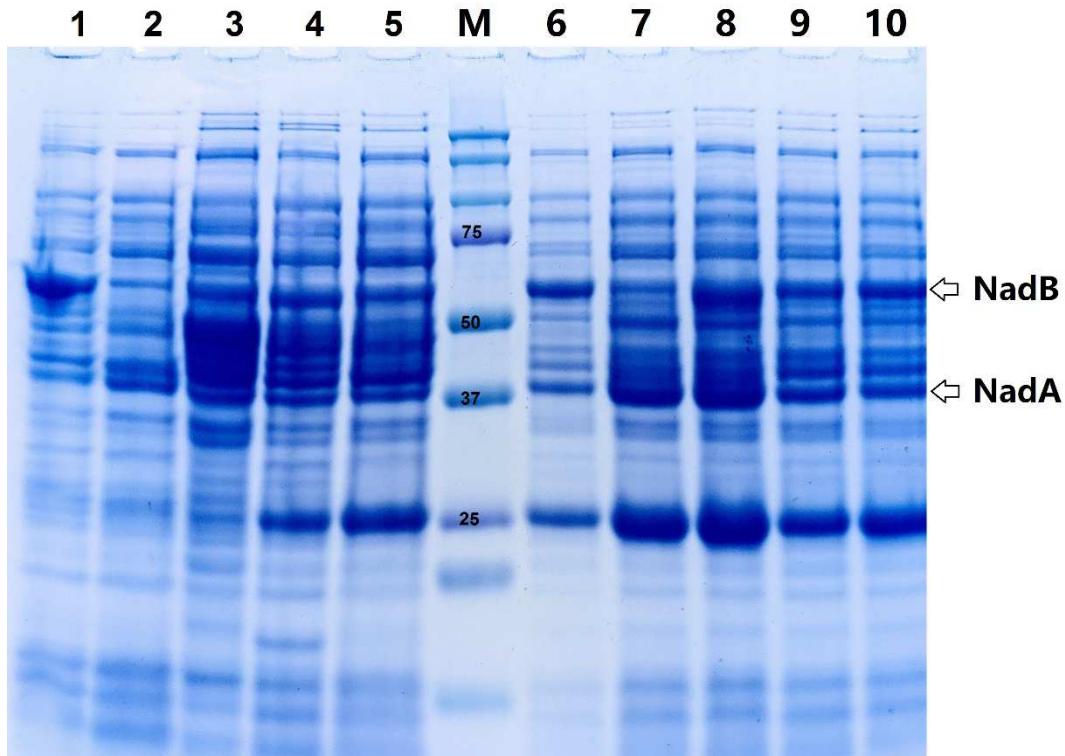
687 Thakker, C., Zhu, J., San, K.-Y., Bennett, G., 2011. Heterologous pyc gene expression under
688 various natural and engineered promoters in *Escherichia coli* for improved succinate
689 production. *J. Biotechnol.* 155, 236-243.

690 Tritz, G. J., Chandler, J. L., 1973. Recognition of a gene involved in the regulation of
691 nicotinamide adenine dinucleotide biosynthesis. *J. Bacteriol.* 114, 128-136.

692 Wang, Y., Duff, S., Lepiniec, L., Crétin, C., Sarath, G., Condon, S. A., Vidal, J., Gadal, P.,
693 Chollet, R., 1992. Site-directed mutagenesis of the phosphorylatable serine (Ser8) in C4
694 phosphoenolpyruvate carboxylase from sorghum. The effect of negative charge at
695 position 8. *J. Biol. Chem.* 267, 16759-16762.

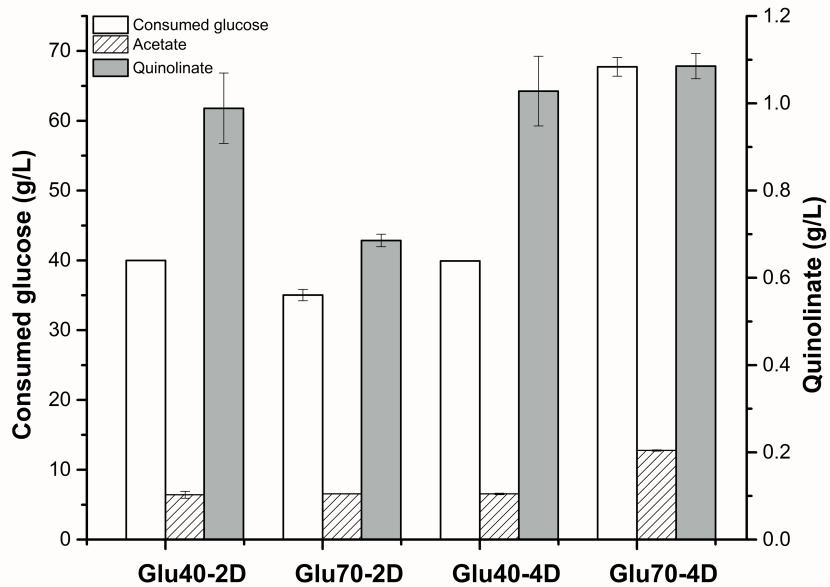
696 Wheeldon, I., et al., 2016. Substrate channelling as an approach to cascade reactions. *Nat. Chem.*
697 8, 299.

698 Wong, M. S., Wu, S., Causey, T. B., Bennett, G. N., San, K.-Y., 2008. Reduction of acetate
699 accumulation in *Escherichia coli* cultures for increased recombinant protein production.
700 *Metab. Eng.* 10, 97-108.


701 Woolston, B. M., Edgar, S., Stephanopoulos, G., 2013. Metabolic engineering: past and future.
702 *Annu. Rev. Chem. Biomol. Eng.* 4, 259-288.

703 Zhao, L., Lu, Y., Yang, J., Fang, Y., Zhu, L., Ding, Z., Wang, C., Ma, W., Hu, X., Wang, X.,
704 2020. Expression regulation of multiple key genes to improve L-threonine in *Escherichia*
705 *coli*. *Microb. Cell Fact.* 19, 1-23.

706 Zhu, F., San, K. Y., Bennett, G. N., 2020. Improved succinate production from galactose-rich
707 feedstocks by engineered *Escherichia coli* under anaerobic conditions. *Biotechnol.*
708 *Bioeng.* 117, 1082-1091

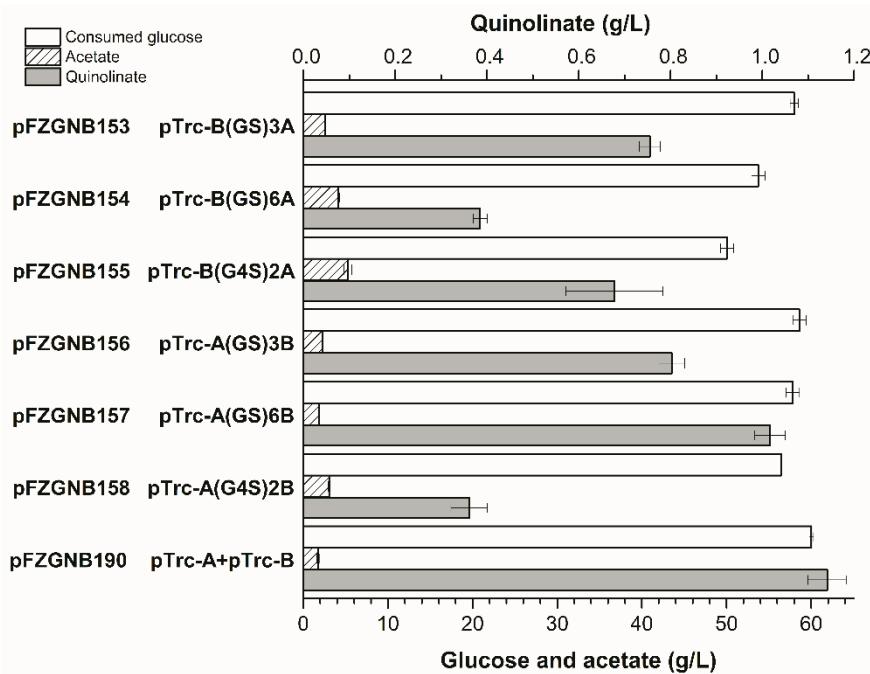

709 Zhu, F., Wang, Y., San, K. Y., Bennett, G. N., 2018. Metabolic engineering of *Escherichia coli*
710 to produce succinate from soybean hydrolysate under anaerobic conditions. *Biotechnol.*
711 *Bioeng.* 115, 1743-1754.

712

714 **Fig. S1. SDS-PAGE analysis of soluble protein.** FZ763 was used as the host strain, 12 μ L
715 sample was loaded unless otherwise specified. From left to right: 1, pFZGNB14 [*E. coli* NadB (5
716 μ L)]; 2, pFZGNB34 (*E. coli* NadA); 3, pTrc99a- Stnadb [*Sulfolobus tokodaii* NadB (StNadB)];
717 4, pFZGNB183 [*Pseudomonas putida* KT2440 NadB (PpNadB)]; 5, pFZGNB43 [*Bacillus*
718 *subtilis* NadA (BsNadA)]; M: Bio-Rad dual color standards (5 μ L); 6, FZ763/pFZGNB190 (7
719 μ L); 7, FZ763/pFZGNB189; 8, FZ763/pFZGNB193; 9, FZ763/pFZGNB207; 10,
720 FZ763/pFZGNB190. Numbers on the marker indicates the protein molecular weight (kDa)

721

722

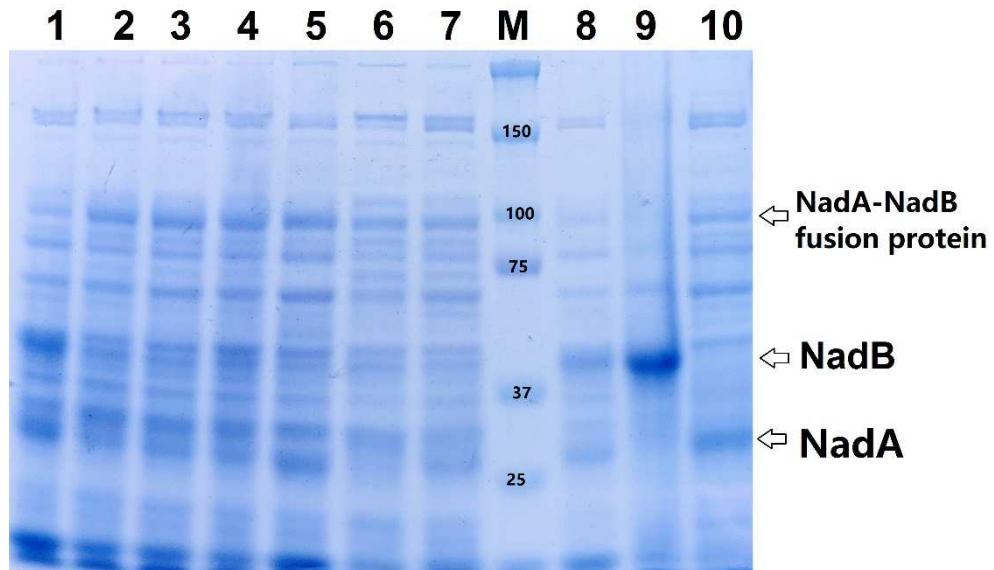

723 Fig. S2. The effect of glucose concentration on quinolinate production in FZ763/pFZGNB190.

724 Aerobic cultures were performed at 37 °C, 350 rpm. Values are the average of three replicates

725 with error bars indicating standard deviation. Glu40/70 indicates fermentation with 40 or 70 g/L

726 glucose and the -2D or -4D indicates the culture was incubated for 2 or 4 days.

727



728

729 **Fig. S3. The effect of NadA-NadB fusion proteins on quinolinic acid production in FZ763.**

730 Aerobic cultures were performed at 37 °C, 350 rpm for 4 days. NadA-NadB fusion protein with
 731 different linkers and different orders were over-expressed under the control of pTrc promoter in
 732 pFZGNB33. Values are the average of three replicates with error bars indicating standard
 733 deviation.

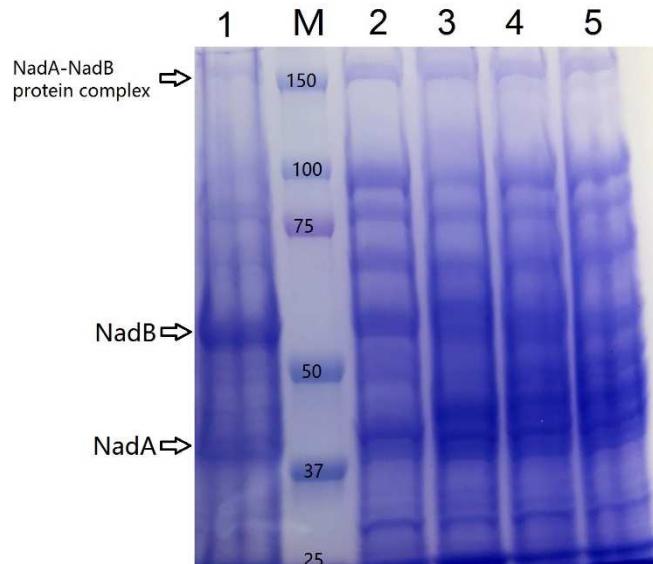
734

735

736 **Fig. S4. SDS-PAGE analysis of soluble protein. Non-reducing SDS-PAGE analysis of**

737 **soluble protein in FZ763 harboring different plasmids.** 20 μ L sample was loaded otherwise

738 specified. From left to right: 1, pFZGNB190; 2, pFZGNB153; 3, pFZGNB154; 4, pFZGNB155;


739 5, pFZGNB156; 6, pFZGNB157; 7, pFZGNB158; M: Bio-Rad dual color standards (5 μ L); 8,

740 pFZGNB190 (7 μ L); 9, pFZGNB14 [*E. coli* NadB (7 μ L)]; 10, pFZGNB34 (*E. coli* NadA).

741 Numbers on the marker indicates the protein molecular weight (kDa), the approximate protein

742 location was also labeled based on the protein molecular weight.

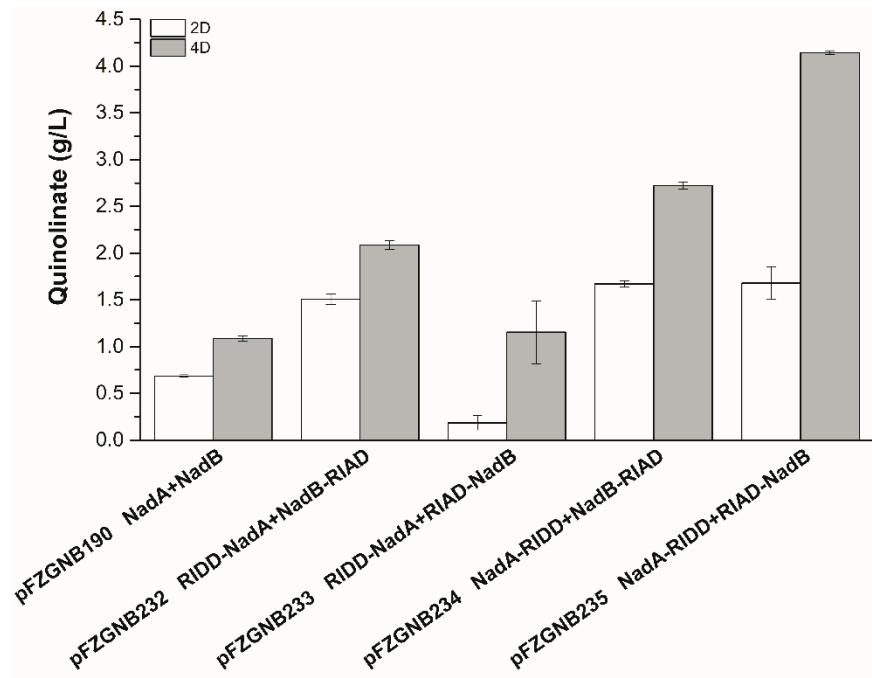
743

744 **Fig. S5: Non-reducing SDS-PAGE analysis of soluble protein in FZ763 harboring**

745 **different plasmids.** 20 μ L sample was loaded otherwise specified. From left to right: 1,

746 pFZGNB190 (7 μ L); M: Bio-Rad dual color standards (5 μ L); 2, pFZGNB232 (15 μ L); 3,

747 pFZGNB233 (25 μ L); 4, pFZGNB234 (15 μ L); 5, pFZGNB235 (15 μ L). Numbers on the marker


748 indicates the protein molecular weight (kDa), the approximate protein location was also labeled

749 based on the protein molecular weight. Non-reducing SDS-PAGE indicates no reductant

750 (Dithiothreitol or 2-mercaptoethanol) was added to the loading buffer.

751

752

753

754 **Fig. S6. The effect of NadA-NadB enzyme complex on quinolinic acid production in FZ763**
 755 **with 70 g/L glucose.** Aerobic cultures were performed at 37 °C, 350 rpm for 4 days. NadA-
 756 RIDD and NadB-RIAD fusion proteins were over-expressed under the control of their pTrc
 757 promoter in pFZGNB227, NadA-NadB enzyme complex was assembled with the help of
 758 peptides, RIAD and RIDD. Values are the average of three replicates with error bars indicating
 759 standard deviation.

Table S1. Plasmids and strains used in this study.

Description		Source
plasmids		
pHL413K	Amp ^R of pTrc99a was replaced with Km ^R , and <i>pycA</i> gene	(Thakker et al., 2011)
pKK313	S8D mutant <i>Pepc</i> from <i>sorghum</i> , Amp ^R	(Wang et al., 1992)
pFZGNB16	BglII was introduced 193 bp before pTrc promoter of pTrc99a, Amp ^R	This study
pFZGNB33	Amp ^R of pFZGNB16 was replaced by Km ^R from pHL413K, Km ^R	This study
pFZGNB34	<i>nadA</i> was inserted into pFZGNB33 between EcoRI and BamHI	This study
pFZGNB35	<i>nadB</i> was inserted into pFZGNB33 between NcoI and BamHI	This study
pFZGNB36	<i>aspC</i> was inserted into pFZGNB33 between EcoRI and BamHI	This study
pFZGNB37	pFZGNB33 with <i>nadA-nadB-aspC</i>	This study
pFZGNB38	pFZGNB33 with <i>nadA-aspC-nadB</i>	This study
pFZGNB39	pFZGNB33 with <i>nadB-aspC-nadA</i>	This study
pFZGNB40	pFZGNB33 with <i>nadB-nadA-aspC</i>	This study
pFZGNB41	pFZGNB33 with <i>aspC-nadA-nadB</i>	This study
pFZGNB42	pFZGNB33 with <i>aspC-nadB-nadA</i>	This study
pFZGNB43	<i>nadA</i> from <i>Bacillus subtilis</i> with an extra DNA fragment coding an HisTag at C-terminal (BsnadA-HisTag) was cloned into pFZGNB33 between EcoRI and XbaI	This study

pFZGNB44	pTargetT contains N ₂₀ specific for <i>ptsG</i> , Sm ^R	This study
pFZGNB46	Upstream and downstream homologous arms of <i>ptsG</i> were inserted into pFZGNB44, for <i>ptsG</i> deletion, Sm ^R	This study
pFZGNB50	pTrc- <i>pepc</i> fragment from pKK313 was inserted into pFZGNB46 between homologous arms, for replacement of native <i>ptsG</i> with pTrc- <i>pepc</i> fragment, Sm ^R	This study
pFZGNB63	pTargetT contains N ₂₀ specific for <i>tpiA</i> , upstream and downstream homologous arms of <i>tpiA</i> , Sm ^R , for <i>tpiA</i> deletion	This study
pFZGNB65	pTargetT contains N ₂₀ specific for <i>sucA</i> , upstream and downstream homologous arms of <i>sucAB</i> , Sm ^R , for <i>sucAB</i> deletion	This study
pFZGNB74	pTargetT contains N ₂₀ specific for <i>lpd</i> , upstream and downstream homologous arms of <i>lpd</i> , Sm ^R , for <i>lpd</i> deletion	This study
pFZGNB75	pTargetT contains N ₂₀ specific for <i>ackA</i> , upstream and downstream homologous arms of <i>ackA</i> , Sm ^R , for <i>ackA</i> deletion	This study
pFZGNB76	pTargetT contains N ₂₀ specific for <i>ackA</i> , upstream and downstream homologous arms of <i>pta-ackA</i> , Sm ^R , for <i>pta-ackA</i> deletion	This study
pFZGNB117	pTrc- <i>pepc</i> from pKK313 was inserted into pFZGNB75 between homologous arms, for replacement of <i>ackA</i> with pTrc- <i>pepc</i> fragment, Sm ^R	This study

pFZGNB118	pTrc- <i>pepc</i> from pKK313 was inserted into pFZGNB76 between homologous arms, for replacement of <i>pta-ackA</i> with pTrc- <i>pepc</i> fragment, Sm ^R	This study
pFZGNB153	Gene encoding NadB-(GlySer) ₃ -NadA under the control of pTrc promoter in pFZGNB33	This study
pFZGNB154	Gene encoding NadB-(GlySer) ₆ -NadA under the control of pTrc promoter in pFZGNB33	This study
pFZGNB155	Gene encoding NadB-(Gly ₄ Ser) ₂ -NadA under the control of pTrc promoter in pFZGNB33	This study
pFZGNB156	Gene encoding NadA-(GlySer) ₃ -NadB under the control of pTrc promoter in pFZGNB33	This study
pFZGNB157	Gene encoding NadA-(GlySer) ₆ -NadB under the control of pTrc promoter in pFZGNB33	This study
pFZGNB158	Gene encoding NadA-(Gly ₄ Ser) ₂ -NadB under the control of pTrc promoter in pFZGNB33	This study
pFZGNB183	<i>nadB</i> from <i>Pseudomonas putida</i> KT2440 (PpnadB) was inserted into pFZGNB33 between BamHI and XbaI	This study
pFZGNB33- staspO	<i>nadB</i> (StaspO) from <i>Sulfolobus tokodaii</i> (StnadB) was inserted into pFZGNB33 between NcoI and BamHI	This study
pFZGNB189	pFZGNB33 with pTrc- <i>nadA</i> and pTrc-StnadB	This study
pFZGNB190	pFZGNB33 with pTrc- <i>nadA</i> and pTrc- <i>nadB</i>	This study
pFZGNB193	pFZGNB33 with pTrc- <i>nadA</i> and pTrc-PpnadB	This study
pFZGNB204	pFZGNB33 with pTrc- <i>nadA</i> , pTrc- <i>nadB</i> and pTrc- <i>aspC</i>	This study

pFZGNB207	pFZGNB33 with pTrc-BsnadA and pTrc-nadB	This study
RIDD	DNA coding RIDD with linker was synthesized and inserted into pUC57	This study
RIAD	DNA coding RIAD with linker was synthesized and inserted into pUC57	This study
pFZGNB227	A SpeI was introduced into pFZGNB33 in front of pTrc promoter, Km ^R	This study
pFZGNB228	pFZGNB227 with pTrc-ridd-nadA	This study
pFZGNB229	pFZGNB227 with pTrc-nadB-riad	This study
pFZGNB230	pFZGNB227 with pTrc-riad-nadB	This study
pFZGNB231	pFZGNB227 with pTrc-nadA-ridd	This study
pFZGNB232	pFZGNB227 with pTrc-ridd-nadA and pTrc-nadB-riad	This study
pFZGNB233	pFZGNB227 with pTrc-ridd-nadA and pTrc-riad-nadB	This study
pFZGNB234	pFZGNB227 with pTrc-nadA-ridd and pTrc-nadB-riad	This study
pFZGNB235	pFZGNB227 with pTrc-nadA-ridd and pTrc-riad-nadB	This study

Strains

MG1655	<i>E. coli</i> K12 MG1655, <i>F</i> ⁺ <i>lambda</i> ⁻ <i>ilvG</i> ⁻ <i>rfb</i> -50 <i>rph</i> -1	
FZ700	MG1655 <i>ΔnadC</i>	This study
FZ703	MG1655 <i>ΔnadC, ΔnadR</i>	This study
FZ723	MG1655 <i>ΔnadC, ΔnadR, ΔptsG</i>	This study
FZ734	MG1655 <i>ΔnadC, ΔnadR, ptsG::pTrc-pepc</i>	This study
FZ738	FZ734 <i>ΔtpiA</i>	This study
FZ740	FZ734 <i>ΔsucAB</i>	This study

FZ741	FZ734 Δ poxB	This study
FZ742	FZ734 Δ lpd	This study
FZ756	FZ734 Δ poxB::pTrc-pepc	This study
FZ757	FZ734 Δ poxB, Δ ackA	This study
FZ763	FZ734 Δ poxB, ackA::pTrc-pepc	This study

761

762

Table S2. Acetate accumulated in engineered strains

	MG1655	FZ700	FZ703	FZ723	FZ734
1 day	18.0 \pm 0.3	7.2 \pm 0.1	14.1 \pm 0.3	4.8 \pm 0.5	4.6 \pm 0.1
3 day	34.7 \pm 0.4	30.4 \pm 1.9	29.0 \pm 0.5	18.8 \pm 0.2	18.4 \pm 0.5
5 day	38.8 \pm 1.2	34.2 \pm 1.1	33.9 \pm 0.3	26.1 \pm 0.1	25.8 \pm .5
7 day	42.2 \pm 0.9	36.0 \pm .4	37.0 \pm 0.4	32.0 \pm 0.6	32.5 \pm 0.5
nadC	+	-	-	-	-
nadR	+	+	-	-	-
ptsG	+	+	+	-	-
pTrc-pepc	-	-	-	-	+

763 Plasmid pFZGNB42 (pTrc-aspC-nadB-nadA) was introduced into the tested strains to check
 764 their performance, aerobic cultures were performed at 37 °C, 350 rpm. The numbers indicate
 765 acetate concentration (g/L, average of three replicates with error bars indicating standard
 766 deviation).

Table S3. DNA sequences used in this study

768 >pFZGNB33 partial sequence

769 GCGCAACGCAATTAATGTGAGTTAGCGCGAATAGATCTGGTTGACAGCTTATCATC
 770 GACTGCACGGTGCACCAATGCTTCTGGCGTCAGGCAGCCATCGGAAGCTGTGGTATG

771 GCTGTGCAGGTCTAAATCACTGCATAATTCTGTCGCTCAAGGCGCACTCCCGTTC
772 TGGATAATGTTTTGCGCCGACATCATAACGGTTCTGGCAAATATTCTGAAATGAG
773 CTGTTGACAATTAAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAA
774 TTTCACACAGGAAACAGACCATGGAATTGAGCTCGGTACCCGGGGATCCTCTAGA
775 GTCGACCTGCAGGCATGCAAGCTTAGCTGCAGTGGGCTTACATGGCGATAGCTAGA
776 CTGGCGGTTTATGGACAGCAAGCGAACCGGA

777 The special features are highlighted BglIII, pTrc promoter, MCS

778 >pFZGNB227 partial sequence

779 GCGCAACGCAATTAAATGTGAGTTAGCGCGAATAGATCTGGTTGACAGCTTATCATC
780 GACTGCACGGTGCACCAATGCTCTGGCGTCAGGCAGCCATCGGAAGCTGTGGTATG
781 GCTGTGCAGGTCTAAATCACTGCATAATTCTGTCGCTCAAGGCGCACTCCCGTTC
782 TGGATAATGTTTTGCGCCGACATCATAACGGTTCTGGCAAATATTCTGAAATGAC
783 TAGTGTGACAATTAAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAAC
784 AATTCACACAGGAAACAGACCATGGAATTGAGCTCGGTACCCGGGGATCCTCTA
785 GAGTCGACCTGCAGGCATGCAAGCTTAGCTGCAGTGGGCTTACATGGCGATAGCTA
786 GACTGGCGGTTTATGGACAGCAAGCGAACCGGA

787 The special features are highlighted BglIII, Spel, pTrc promoter, MCS

788 > BsnadA-HisTag sequence

789 gaattcATGTCAATTCTTGATGTGATCAAACAATCGAATGATATGATGCCGAAAGTTA
790 TAAAGAACTATCGAGAAAGGATATGGAAACGCGCGTTGCCGCCATTAAAGAAAAAGT
791 TCGGCAGCAGGCTCTTATACCAGGCCATCATTATCAAAAGGATGAAGTGATAACAT
792 TTGCTGACCAACAGGCGACTCCCTGCAATTGGCCCAAGTAGCGGAAAAAAACAAA
793 GAAGCGGATTATATCGTATTTCGGCGTTCACTTATGGCAGAAACCGCCATATG
794 CTGACAAGCGAGCAGCAAACGGCTCGTCCAGATATGAGAGCTGGATGTTCTAT
795 GGCTGACATGGCTGACATGCAGCAGACCAATAGGGATGGAAGAAGCTTCAGCATA
796 TATTGGAGATACGATCATACCTTAACCTTAACTTATGTGAACTCCACTGCGGAGATCAAGG
797 CATTGTCGGAAAGCATGGCGGAGCAACTGTAACCTCTCGAATGCGAAAAAAAGTG
798 CTTGAATGGCGTTACACAGAAAAAAAGAATTATTTATTTGCCTGATCAGCATTAA
799 GGGAGAAATACGGCTTATGATCTGGCATTGCGCTTGAAGATATGGCTGTGGGAT
800 CCGATGAAAGATGAATTAGTAGCTGAATCCGGGCATACGAATGTGAAAGTGATTTT
801 GTGGAAAGGGCATTGCTCTGTTACGAGAAATTCACTAAACATCCATGATAT
802 GAGAGAGCGAGACCCCGACATTGAGATCATTGTCACCCGGAAATGTTCACACGAAG
803 TCGTACACTAACGATGATAACGGATCAACGAAATATATTATCGACACAATCAAC
804 CAGGCTCCGGCGGGAAAGCAAGTGGCAATCGGACAGAAATGAATCTGTCAGCG
805 GATCATTGAGCATCCAGATAAACAAATCGAATCACTCAACCCTGACATGTGCC
806 TTGCCTGACAATGAACCGAATTGATTGCCGCATTGTTGTGGCGCTGGAACAAAT

807 TGAAAAAGGAGAACCTTCAGGCGTCATCAAGGTGCCAAAGCCATTAGGAAGATG
808 CACTCCTGCCCTGAATCGAATGCTTCGATCACGCACCACCACCCACCACTaga

809 >stnadB sequence

810 ccatggaaATGATCTATATTATCGGTAGCGGTATTGCAGGTCTGAGTGCCGGTGTGCAC
811 TCGTCGTGCAGGTAAAAAGTTACCGTATTGCAGCAAGCGTTGGTAGTGTGATGATAGTCGG
812 ACCCGATTGCAAAAGGTGGTGTGCAGCAAGCGTTGGTAGTGTGATGATGTTAAAACCGT
813 ACTGCATGCACAGGATACCATTGTTGGTAGTGTGATGTTAAAACCGT
814 TAATTATGTTACCAGCGAGGCCAAAACGTGATTGAAACCTTGAAAGCTGGGCTT
815 TGAATTGAAGAAGATCTCGCTGGAAAGGTGGTAGTACCAACGTCGTGTTCTGCA
816 TCGTACCGATGAAACCAGGTGAAATTAACTTCCTGCTGAAACTGGCACCGA
817 AGAAGGTATTCCGATTATTGAAGATCGCCTGGTTGAAATTCGCGTAAAGATGGTAA
818 AGTTACCGGTTGTGACCGAAAAACGTGGTCTGGTAGAGATGTTGATAAACTGGT
819 TCTGGCAACCGGTGGTTAGCTATCTGTATGAATATAGCAGCACCCAGAGCACCAA
820 TATCGGTGATGGTATGGCAATTGCATTAAAGCAGGCACCATTCTGGCCGATATGGA
821 ATTGTTCACTTCATCCGACCGTTACCGAGCCTGGATGGTAGAGTTCTGCTGACC
822 GAAACCTCGTGGTAGAGGTGCACAGATTATAATGAAAATGGCAACGCTTCT
823 GTTTAACTATGATAAACGTGGTAACCTGGCACCGCGTGTGATATTCTGAGCCGTGCAAT
824 TTATATCGAAATGCTGAAAGGCCATAAAGTGTATCGACCTGAGCAAAATCGAAG
825 ATTCGAACGTAAATTCCGGTGGTTGCAAAATATCTGGCACGTATGGCATAACT
826 ATAAAGTAAAATTCCGATTTCCGGCAGCCCATTGTGGATGGTAGGTGTTCTG
827 TTAATATCGTGGCGAAAGCAACATTGTGAACCTGTATGCAATTGGTAGAGTTAGCG
828 ATAGCGGTCTGCATGGTCAAATCGTCTGGCAAGCAATAGCCTGCTGGAGGTCTG
829 GTTTTGGTTAAATCTGCCTCGTTAGCTGAGCTGGAGAGTATTAGCACC
830 GATGATGGTATTGTTCATAGCGTTCGTATTAGCGTAATAAAACCTGAGCCTGAAA
831 GAAATTCGTCGATTAATTGGGAAAACGTGGCATTATCGCAACGAAGAAAAACT
832 GGTGAAAGCCATTAACACCTATAGCAGCAGTACCCAGAACGAAGCAATTATTAGCT
833 ATCTGACCGCACTGGCAGCAGAAATTGTAAGAGAAAGCCGTGGTAATCACTTCGTG
834 AGGATTATCCGTATAAAGATCCGAAATTGGAGAAACGCATTACTTAAACTGGTGG
835 TGCTCGAGTAATAAggatcc

836 >PpnadB sequence

837 ggatccATGAGCCAACAATTCAAACATGATGTCCTGGTATCGGCAGCGGTGCCGCCGG
838 TCTCAGCCTGGCACTTAACCTCCCCAGCCACCTTCGCGTTGCCGTATTGAGCAAGGG
839 CGACCTGTCCAACGGCTCGACCTTCTGGGCCAGGGCGCGTGCAGTGTGGA
840 CAACACCGATACTGTGCAGTCGATGTCGAGGACACCCCTCAATGCCGGCGCGGGC
841 TGTGCCATGAAGACGCAGTGCCTTACCGTCGAGCACAGCCCGAAGCGATCCAA
842 TGGCTGATCGAGCAAGGCAGTGCCTTCACCCCGATGAGCACTACAGCGTCGACGA
843 TGGCGGCTTCGAGTTCCACCTCACCCGTGAAGGGGCCATAGCCACCAGCGCATCAT
844 CCACGCCGCCGACGCTACCGGCGGGCAATCTCACCACGCTGGAACAGGGCTC

845 GCCAGCGCCCGAACATCCAGCTGGAGCAGCGGGTGGCGGTCGACCTGATCACT
846 GAACGCCGCTGGCCTGCCCGCGAACGCTGCCCTGGCGCCTACGTGCTGACCG
847 CAACACCGCGAGGTGGACACCTCGCGCGCTTACCGTGCTGGCCACGGCG
848 GTGCGGCCAAGGTCTATCTCTACACCAGCAACCCGATGGTGCGCTCGGGCGACGGT
849 ATCGCCATGGCCTGGCGGGCGCTGCCAGTGCGAACCTGGAATTCAACCAGTT
850 CCACCCGACCTGCCGTATCACCCACAGGCCAAGAGCTTCCTGATCACCGAAGCCCT
851 GCGCGCGAGGGCGCCCTGCTGCCCTGCCAACGGCGAACGTTCATGCCACGCTT
852 CGACCCACGCGAACAGAGCTGGCCCCACGGGACATCGTGGCCCGGCCATCGACCACG
853 AGATGAAGCGCCTGGCGTGGACTGCGTATACCTGGACATCACTCACAAGCCTGCA
854 GATTCATCAAGAGCCACTCCCCACCGTGTACGAGCGCTGCCCTGGCCTTGGCATC
855 GATATCACCGTCAGCCGATCCCGGTGGTGCCTGCCGCGCATTACACCTGCCATGGCGGG
856 GTGATGGTCGACGACTGCCAACACCGATGTGCCTGGCTGTATGCCATGGCGAA
857 ACCAGTTCACCGGCCTGCACGGCGCCAACCGCATGGCAGCAACTCGCTGCTGGA
858 ATGTTTGTGTACGGTCGCGCCGCGCTGCCGACATCCAGGCCAACCTGGAGCAAGT
859 GGCCATGCCAACGGCCTGCCGGCTGGGACGCCAGCCAGGTGACCGACTCGGACG
860 AGGACGTGATCATTGCGCACAACTGGGACGAACACTGCCGCTTCATGTGGACTAC
861 GTCGGCATCGTGCACCGAACAGCGCCTGCCAGCGGGCCAGCACCGCATTGCCCT
862 GCTGCTGGATGAAATCGACGAGTTCTACAGCAACTACAAGGTCAAGCCGTGACCTGA
863 TCGAGCTGCGAACCTGGCGCAAGTGGCGAGCTGATGATCCTGTCAGCCATGCAG
864 CGCAAGGAAAGCCGAGGGTTGCATTACACACTGGATTATCCAGGGATGCTGGACGA
865 GGCAAGGACACCATCCTAACCGCTCTGAtctaga

866 >optimized RIDD with linker sequence

867 GGTGGCGGTGGTTCTGGCGGTGGCGGTTCTGGTGGCGGCGGTGCGGTTCTCTGCGT
868 GAGTGCAGAACTGTACGTTCAAGAAACACAACATCCAGGCCTGCTGAAAGATAGCAT
869 CGTTCAACTGTGTACCGCACGTCCCGAACGTCCGATGGCATTCTGCGCGAATACTT
870 CGAACGCCCTGGAAAAAGAAGAAGCGAAAGGTGGCGGTGGCTCAGGTGGCGGTGGT
871 TCAGGTGGTGGTGGTTGTGGT

872 >optimized RIAD with linker sequence

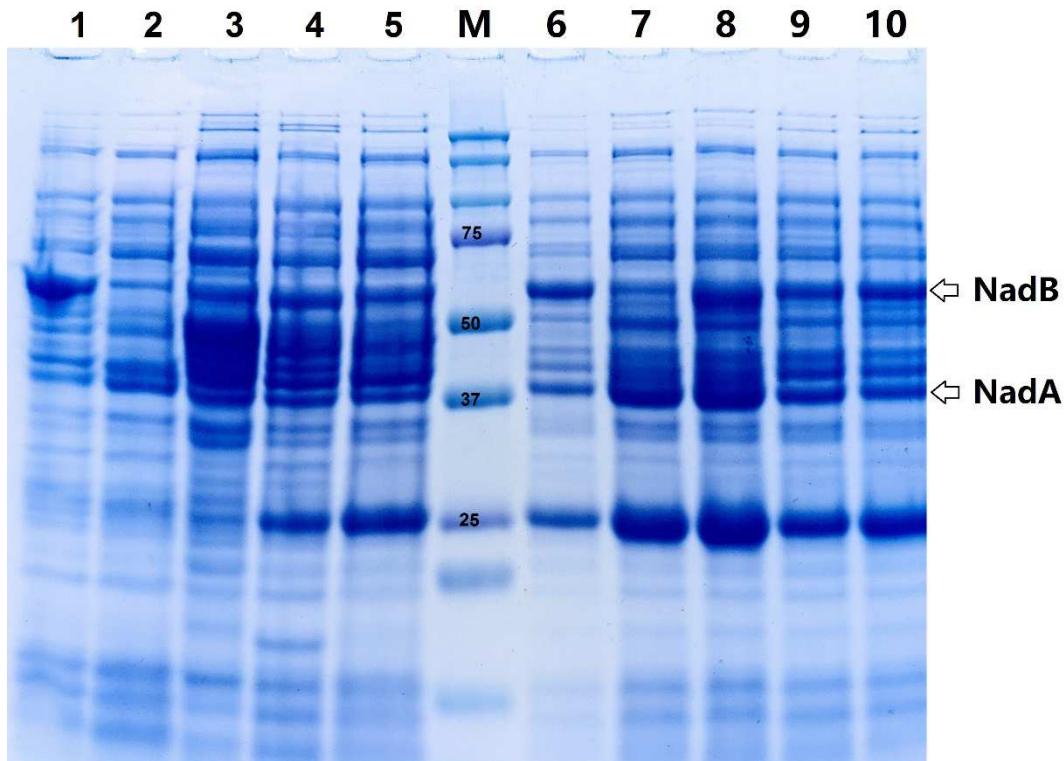
873 ccatggaattcGGTGGTGGCGGTTCTGGTGGCGGCGGTTCTGGTGGCGGCGGTGCGGTCT
874 GGAACAATACGCGAATCAGCTGGCGGATCAGATTATCAAAGAAGCGACCGAACGGCT
875 CGGGCGGCGGTGGTTCAAGGTGGCGGCGGTTCAAGGTGGCGGTGGTTGTGGTggatcc

Supplementary Materials for

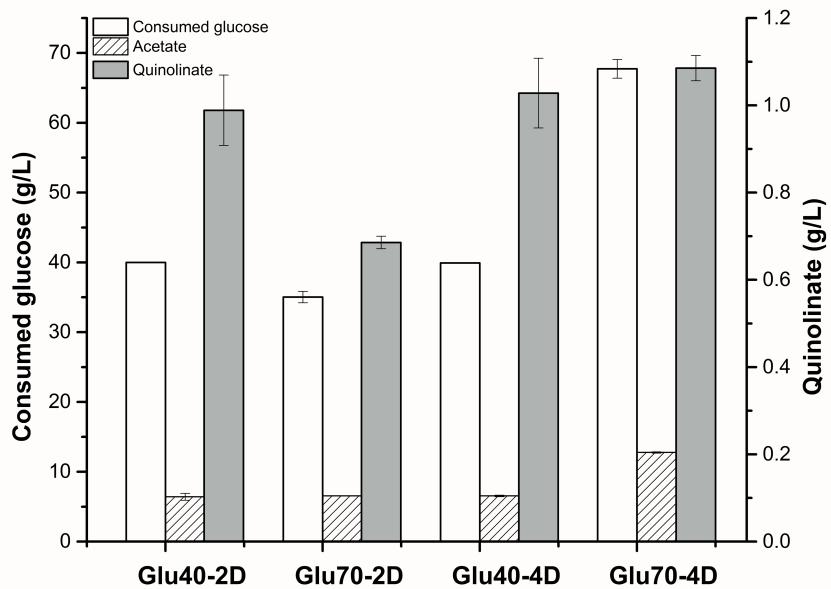
Metabolic engineering of *Escherichia coli* for quinolinic acid production by assembling L-aspartate oxidase and quinolinate synthase as an enzyme complex

Fayin Zhu^{a,b}, Matthew Peña^a, George N. Bennett^{a,c*}

a Department of BioSciences, Rice University, Houston, TX, USA, 77005

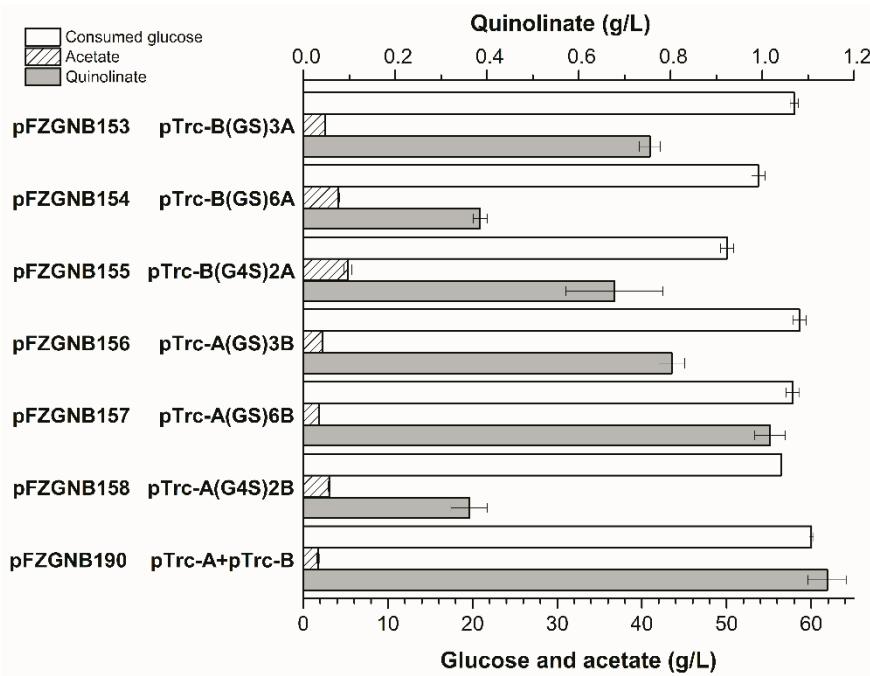

b present address: Department of Chemical, Biological, and Materials Engineering, University of South Florida, Tampa, FL 33620

c Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA,
77005


* Corresponding author: Department of BioSciences, Rice University, Houston, TX 77005, E-mail address: gbennett@rice.edu

This document includes:

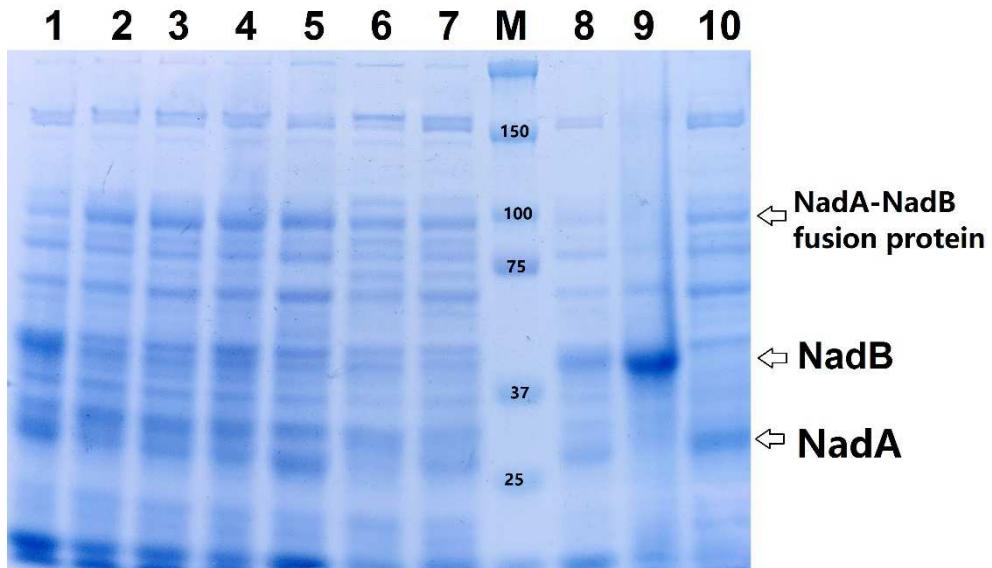
- Figures S1-6
- Tables S1-3


Fig. S1. SDS-PAGE analysis of soluble protein. FZ763 was used as the host strain, 12 μ L sample was loaded unless otherwise specified. From left to right: 1, pFZGNB14 [*E. coli* NadB (5 μ L)]; 2, pFZGNB34 (*E. coli* NadA); 3, pTrc99a- StnadB [*Sulfolobus tokodaii* NadB (StNadB)]; 4, pFZGNB183 [*Pseudomonas putida* KT2440 NadB (PpNadB)]; 5, pFZGNB43 [*Bacillus subtilis* NadA (BsNadA)]; M: Bio-Rad dual color standards (5 μ L); 6, FZ763/pFZGNB190 (7 μ L); 7, FZ763/pFZGNB189; 8, FZ763/pFZGNB193; 9, FZ763/pFZGNB207; 10, FZ763/pFZGNB190. Numbers on the marker indicates the protein molecular weight (kDa)

33

34 **Fig. S2. The effect of glucose concentration on quinolinate production in**
 35 **FZ763/pFZGNB190.** Aerobic cultures were performed at 37 °C, 350 rpm. Values are the
 36 average of three replicates with error bars indicating standard deviation. Glu40/70 indicates
 37 fermentation with 40 or 70 g/L glucose and the -2D or -4D indicates the culture was incubated
 38 for 2 or 4 days.

39



40

41 **Fig. S3. The effect of NadA-NadB fusion proteins on quinolinic acid production in FZ763.**

42 Aerobic cultures were performed at 37 °C, 350 rpm for 4 days. NadA-NadB fusion protein with
 43 different linkers and different orders were over-expressed under the control of pTrc promoter in
 44 pFZGNB33. Values are the average of three replicates with error bars indicating standard
 45 deviation.

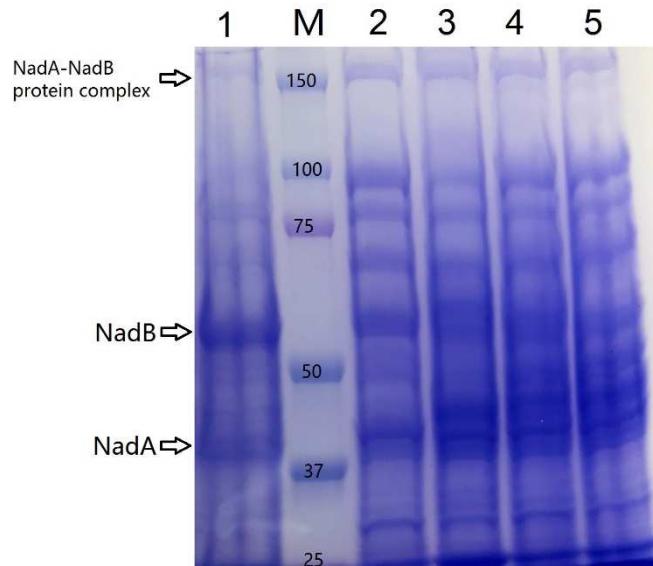
46

48 **Fig. S4. SDS-PAGE analysis of soluble protein. Non-reducing SDS-PAGE analysis of**

49 **soluble protein in FZ763 harboring different plasmids.** 20 μ L sample was loaded otherwise

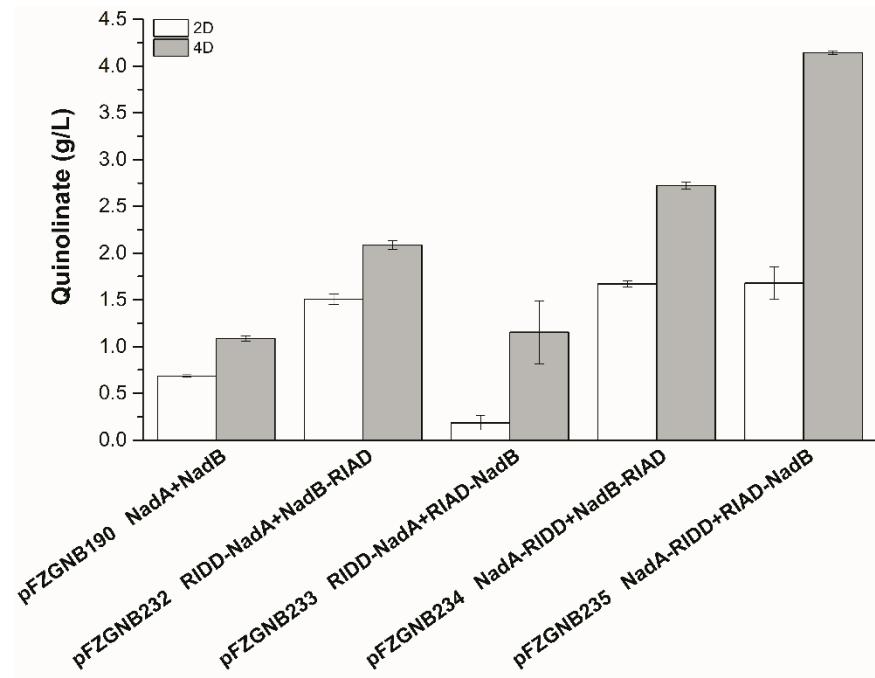
50 specified. From left to right: 1, pFZGNB190; 2, pFZGNB153; 3, pFZGNB154; 4, pFZGNB155;

51 5, pFZGNB156; 6, pFZGNB157; 7, pFZGNB158; M: Bio-Rad dual color standards (5 μ L); 8,


52 pFZGNB190 (7 μ L); 9, pFZGNB14 [*E. coli* NadB (7 μ L)]; 10, pFZGNB34 (*E. coli* NadA).

53 Numbers on the marker indicates the protein molecular weight (kDa), the approximate protein

54 location was also labeled based on the protein molecular weight.


55

56

57 **Fig. S5: Non-reducing SDS-PAGE analysis of soluble protein in FZ763 harboring**

58 **different plasmids.** 20 μ L sample was loaded otherwise specified. From left to right: 1,
59 pFZGNB190 (7 μ L); M: Bio-Rad dual color standards (5 μ L); 2, pFZGNB232 (15 μ L); 3,
60 pFZGNB233 (25 μ L); 4, pFZGNB234 (15 μ L); 5, pFZGNB235 (15 μ L). Numbers on the marker
61 indicates the protein molecular weight (kDa), the approximate protein location was also labeled
62 based on the protein molecular weight. Non-reducing SDS-PAGE indicates no reductant
63 (Dithiothreitol or 2-mercaptoethanol) was added to the loading buffer.

64

65

66 **Fig. S6. The effect of NadA-NadB enzyme complex on quinolinic acid production in FZ763**
 67 **with 70 g/L glucose.** Aerobic cultures were performed at 37 °C, 350 rpm for 4 days. NadA-
 68 RIDD and NadB-RIAD fusion proteins were over-expressed under the control of their pTrc
 69 promoter in pFZGNB227, NadA-NadB enzyme complex was assembled with the help of
 70 peptides, RIAD and RIDD. Values are the average of three replicates with error bars indicating
 71 standard deviation.

Table S1. Plasmids and strains used in this study.

Description		Source
plasmids		
pHL413K	Amp ^R of pTrc99a was replaced with Km ^R , and <i>pycA</i> gene	(Thakker et al., 2011)
pKK313	S8D mutant <i>Pepc</i> from <i>sorghum</i> , Amp ^R	(Wang et al., 1992)
pFZGNB16	BglII was introduced 193 bp before pTrc promoter of pTrc99a, Amp ^R	This study
pFZGNB33	Amp ^R of pFZGNB16 was replaced by Km ^R from pHL413K, Km ^R	This study
pFZGNB34	<i>nadA</i> was inserted into pFZGNB33 between EcoRI and BamHI	This study
pFZGNB35	<i>nadB</i> was inserted into pFZGNB33 between NcoI and BamHI	This study
pFZGNB36	<i>aspC</i> was inserted into pFZGNB33 between EcoRI and BamHI	This study
pFZGNB37	pFZGNB33 with <i>nadA-nadB-aspC</i>	This study
pFZGNB38	pFZGNB33 with <i>nadA-aspC-nadB</i>	This study
pFZGNB39	pFZGNB33 with <i>nadB-aspC-nadA</i>	This study
pFZGNB40	pFZGNB33 with <i>nadB-nadA-aspC</i>	This study
pFZGNB41	pFZGNB33 with <i>aspC-nadA-nadB</i>	This study
pFZGNB42	pFZGNB33 with <i>aspC-nadB-nadA</i>	This study
pFZGNB43	<i>nadA</i> from <i>Bacillus subtilis</i> with an extra DNA fragment coding an HisTag at C-terminal (BsnadA-HisTag) was cloned into pFZGNB33 between EcoRI and XbaI	This study

pFZGNB44	pTargetT contains N ₂₀ specific for <i>ptsG</i> , Sm ^R	This study
pFZGNB46	Upstream and downstream homologous arms of <i>ptsG</i> were inserted into pFZGNB44, for <i>ptsG</i> deletion, Sm ^R	This study
pFZGNB50	pTrc- <i>pepc</i> fragment from pKK313 was inserted into pFZGNB46 between homologous arms, for replacement of native <i>ptsG</i> with pTrc- <i>pepc</i> fragment, Sm ^R	This study
pFZGNB63	pTargetT contains N ₂₀ specific for <i>tpiA</i> , upstream and downstream homologous arms of <i>tpiA</i> , Sm ^R , for <i>tpiA</i> deletion	This study
pFZGNB65	pTargetT contains N ₂₀ specific for <i>sucA</i> , upstream and downstream homologous arms of <i>sucAB</i> , Sm ^R , for <i>sucAB</i> deletion	This study
pFZGNB74	pTargetT contains N ₂₀ specific for <i>lpd</i> , upstream and downstream homologous arms of <i>lpd</i> , Sm ^R , for <i>lpd</i> deletion	This study
pFZGNB75	pTargetT contains N ₂₀ specific for <i>ackA</i> , upstream and downstream homologous arms of <i>ackA</i> , Sm ^R , for <i>ackA</i> deletion	This study
pFZGNB76	pTargetT contains N ₂₀ specific for <i>ackA</i> , upstream and downstream homologous arms of <i>pta-ackA</i> , Sm ^R , for <i>pta-ackA</i> deletion	This study
pFZGNB117	pTrc- <i>pepc</i> from pKK313 was inserted into pFZGNB75 between homologous arms, for replacement of <i>ackA</i> with pTrc- <i>pepc</i> fragment, Sm ^R	This study

pFZGNB118	pTrc- <i>pepc</i> from pKK313 was inserted into pFZGNB76 between homologous arms, for replacement of <i>pta-ackA</i> with pTrc- <i>pepc</i> fragment, Sm ^R	This study
pFZGNB153	Gene encoding NadB-(GlySer) ₃ -NadA under the control of pTrc promoter in pFZGNB33	This study
pFZGNB154	Gene encoding NadB-(GlySer) ₆ -NadA under the control of pTrc promoter in pFZGNB33	This study
pFZGNB155	Gene encoding NadB-(Gly ₄ Ser) ₂ -NadA under the control of pTrc promoter in pFZGNB33	This study
pFZGNB156	Gene encoding NadA-(GlySer) ₃ -NadB under the control of pTrc promoter in pFZGNB33	This study
pFZGNB157	Gene encoding NadA-(GlySer) ₆ -NadB under the control of pTrc promoter in pFZGNB33	This study
pFZGNB158	Gene encoding NadA-(Gly ₄ Ser) ₂ -NadB under the control of pTrc promoter in pFZGNB33	This study
pFZGNB183	<i>nadB</i> from <i>Pseudomonas putida</i> KT2440 (PpnadB) was inserted into pFZGNB33 between BamHI and XbaI	This study
pFZGNB33- staspO	<i>nadB</i> (StaspO) from <i>Sulfolobus tokodaii</i> (StnadB) was inserted into pFZGNB33 between NcoI and BamHI	This study
pFZGNB189	pFZGNB33 with pTrc- <i>nadA</i> and pTrc-StnadB	This study
pFZGNB190	pFZGNB33 with pTrc- <i>nadA</i> and pTrc- <i>nadB</i>	This study
pFZGNB193	pFZGNB33 with pTrc- <i>nadA</i> and pTrc-PpnadB	This study
pFZGNB204	pFZGNB33 with pTrc- <i>nadA</i> , pTrc- <i>nadB</i> and pTrc- <i>aspC</i>	This study

pFZGNB207	pFZGNB33 with pTrc-BsnadA and pTrc-nadB	This study
RIDD	DNA coding RIDD with linker was synthesized and inserted into pUC57	This study
RIAD	DNA coding RIAD with linker was synthesized and inserted into pUC57	This study
pFZGNB227	A SpeI was introduced into pFZGNB33 in front of pTrc promoter, Km ^R	This study
pFZGNB228	pFZGNB227 with pTrc-ridd-nadA	This study
pFZGNB229	pFZGNB227 with pTrc-nadB-riad	This study
pFZGNB230	pFZGNB227 with pTrc-riad-nadB	This study
pFZGNB231	pFZGNB227 with pTrc-nadA-ridd	This study
pFZGNB232	pFZGNB227 with pTrc-ridd-nadA and pTrc-nadB-riad	This study
pFZGNB233	pFZGNB227 with pTrc-ridd-nadA and pTrc-riad-nadB	This study
pFZGNB234	pFZGNB227 with pTrc-nadA-ridd and pTrc-nadB-riad	This study
pFZGNB235	pFZGNB227 with pTrc-nadA-ridd and pTrc-riad-nadB	This study

Strains

MG1655	<i>E. coli</i> K12 MG1655, <i>F</i> ⁺ <i>lambda</i> ⁻ <i>ilvG</i> ⁻ <i>rfb</i> -50 <i>rph</i> -1	
FZ700	MG1655 <i>ΔnadC</i>	This study
FZ703	MG1655 <i>ΔnadC, ΔnadR</i>	This study
FZ723	MG1655 <i>ΔnadC, ΔnadR, ΔptsG</i>	This study
FZ734	MG1655 <i>ΔnadC, ΔnadR, ptsG::pTrc-pepc</i>	This study
FZ738	FZ734 <i>ΔtpiA</i>	This study
FZ740	FZ734 <i>ΔsucAB</i>	This study

FZ741	FZ734 Δ poxB	This study
FZ742	FZ734 Δ lpd	This study
FZ756	FZ734 Δ poxB::pTrc-pepc	This study
FZ757	FZ734 Δ poxB, Δ ackA	This study
FZ763	FZ734 Δ poxB, ackA::pTrc-pepc	This study

73

74

Table S2. Acetate accumulated in engineered strains

	MG1655	FZ700	FZ703	FZ723	FZ734
1 day	18.0 \pm 0.3	7.2 \pm 0.1	14.1 \pm 0.3	4.8 \pm 0.5	4.6 \pm 0.1
3 day	34.7 \pm 0.4	30.4 \pm 1.9	29.0 \pm 0.5	18.8 \pm 0.2	18.4 \pm 0.5
5 day	38.8 \pm 1.2	34.2 \pm 1.1	33.9 \pm 0.3	26.1 \pm 0.1	25.8 \pm .5
7 day	42.2 \pm 0.9	36.0 \pm .4	37.0 \pm 0.4	32.0 \pm 0.6	32.5 \pm 0.5
nadC	+	-	-	-	-
nadR	+	+	-	-	-
ptsG	+	+	+	-	-
pTrc-pepc	-	-	-	-	+

75 Plasmid pFZGNB42 (pTrc-aspC-nadB-nadA) was introduced into the tested strains to check
 76 their performance, aerobic cultures were performed at 37 °C, 350 rpm. The numbers indicate
 77 acetate concentration (g/L, average of three replicates with error bars indicating standard
 78 deviation).

Table S3. DNA sequences used in this study

80 >pFZGNB33 partial sequence

81 GCGAACGCAATTAATGTGAGTTAGCGCGAATAGATCTGGTTGACAGCTTATCATC
 82 GACTGCACGGTGCACCAATGCTTCTGGCGTCAGGCAGCCATCGGAAGCTGTGGTATG

83 GCTGTGCAGGTCTAAATCACTGCATAATTCTGTCGCTCAAGGCGCACTCCCGTTC
84 TGGATAATGTTTTGCGCCGACATCATAACGGTTCTGGCAAATATTCTGAAATGAG
85 CTGTTGACAATTAAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAACAA
86 TTTCACACAGGAAACAGACCATGGAATTGAGCTCGGTACCCGGGGATCCTCTAGA
87 GTCGACCTGCAGGCATGCAAGCTTAGCTGCAGTGGGCTTACATGGCGATAGCTAGA
88 CTGGCGGTTTATGGACAGCAAGCGAACCGGA

89 The special features are highlighted BglIII, pTrc promoter, MCS

90 >pFZGNB227 partial sequence

91 GCGCAACGCAATTAAATGTGAGTTAGCGCGAATAGATCTGGTTGACAGCTTATCATC
92 GACTGCACGGTGCACCAATGCTCTGGCGTCAGGCAGCCATCGGAAGCTGTGGTATG
93 GCTGTGCAGGTCTAAATCACTGCATAATTCTGTCGCTCAAGGCGCACTCCCGTTC
94 TGGATAATGTTTTGCGCCGACATCATAACGGTTCTGGCAAATATTCTGAAATGAC
95 TAGTGTGACAATTAAATCATCCGGCTCGTATAATGTGTGGAATTGTGAGCGGATAAC
96 AATTCACACAGGAAACAGACCATGGAATTGAGCTCGGTACCCGGGGATCCTCTA
97 GAGTCGACCTGCAGGCATGCAAGCTTAGCTGCAGTGGGCTTACATGGCGATAGCTA
98 GACTGGCGGTTTATGGACAGCAAGCGAACCGGA

99 The special features are highlighted BglIII, Spel, pTrc promoter, MCS

100 > BsnadA-HisTag sequence

101 gaattcATGTCAATTCTTGATGTGATCAAACAATCGAATGATATGATGCCGAAAGTTA
102 TAAAGAACTATCGAGAAAGGATATGGAAACGCGCGTTGCCGCCATTAAAGAAAAAGT
103 TCGGCAGCAGGCTCTTATACCAGGCCATCATTATCAAAAGGATGAAGTGATACAAT
104 TTGCTGACCAACAGGCGACTCCCTGCAATTGGCCCAAGTAGCGGAAAAAAACAAA
105 GAAGCGGATTATATCGTATTTCGGCGTTCACTTATGGCAGAAACCGCCGATATG
106 CTGACAAGCGAGCAGCAAACGGCTCGTCCGCCAGATATGAGAGCTGGATGTTCTAT
107 GGCTGACATGGCTGACATGCAGCAGACCAATAGGGATGGAAGAAGCTTCAGCATA
108 TATTGGAGATACGATCATACCTTAACCTTAACTTATGTGAACTCCACTGCGGAGATCAAGG
109 CATTGTCGGAAAGCATGGCGGAGCAACTGTAACCTCTCGAATGCGAAAAAAAGTG
110 CTTGAATGGCGTTACACAGAAAAAAAGAATTATTTATTTGCGCTGATCAGCATTAA
111 GGGAGAAATACGGCTTATGATCTGGCATTGCGCTTGAAGATATGGCTGTGGGAT
112 CCGATGAAAGATGAATTAGTAGCTGAATCCGGGCATACGAATGTGAAAGTGATTTT
113 GTGGAAAGGGCATTGCTCTGTTACGAGAAATTCACTAAACATCCATGATAT
114 GAGAGAGCGAGACCCCGACATTGAGATCATTGTCACCCGGAATGTTCACACGAAG
115 TCGTGACACTAACGAGATAACGGATCAACGAAATATATTATCGACACAATCAAC
116 CAGGCTCCGGCGGGAAAGCAAGTGGCAATCGGACAGAAATGAATCTGTCAGCG
117 GATCATTGAGCATCCAGATAAACAAATCGAATCACTCAACCCTGACATGTGCC
118 TTGCCTGACAATGAACCGAATTGATTGCCGCATTGTTGTCGCTGGAACAAAT

119 TGAAAAAGGAGAACCTTCAGGCATCAAGGTGCCAAAGCCATTAGGAAGATG
120 CACTCCTGCCCTGAATCGAATGCTTCGATCACGCACCACCACCCACCAactaga

121 >stnadB sequence

122 ccatggaaATGATCTATATTATCGGTAGCGGTATTGCAGGTCTGAGTGCCGGTGTGCAC
123 TCGTCGTGCAGGTAAAAAGTTACCGTATTGCAGCAAGCGTTGGTAGTGTGATGATAGTCCGGA
124 ACCCGATTGCAGGTGGTGTGCAGCAAGCGTTGGTAGTGTGATGATGTTAAACCGT
125 TAATTATGTTACCAGCGAGGCCAAAACGTGATTGAAACCTTGAAAGCTGGGCTT
126 TGAATTGAAGAAGATCTCGCTGGAAAGGTGGTCATACCAACGTCGTGTTCTGCA
127 TCGTACCGATGAAACCGGTCGTGAAATTAACTTCCTGCTGAAACTGGCACCGA
128 AGAAGGTATTCCGATTATTGAAGATCGCCTGGTGAAATTCGCGTGAAGAGATGGTAA
129 AGTTACCGGTTTGACCGAAAAACGTGGTCTGGTGAAAGATGTTGATAAACTGGT
130 TCTGGCAACCGGTGGTTAGCTATCTGTATGAATATAGCAGCACCCAGAGCACCAA
131 TATCGGTGATGGTATGGCAATTGCATTAAAGCAGGCACCATTCTGCCGATATGGA
132 ATTGTTCACTTCATCCGACCGTTACCGAGCCTGGATGGTGAAAGTTCTGCTGACC
133 GAAACCTCGTGGTGAAGGTGCACAGATTATAATGAAAATGGCAACGCTTCT
134 GTTTAACTATGATAAACGTGGTAACCTGGCACCGCGTGTGATATTCTGAGCCGTGCAAT
135 TTATATCGAAATGCTGAAAGGCCATAAAGTGTATCGACCTGAGCAAAATCGAAG
136 ATTCGAACGTAAATTCCGGTGGTGCAAAATATCTGGCACGTATGCCATAACT
137 ATAAAGTAAAATTCCGATTTCCGGCAGCCCATTGTGGATGGTGGTATTCTG
138 TTAATATCGTGGCGAAAGCAACATTGTGAACCTGTATGCAATTGGTGAAAGTTAGCG
139 ATAGCGGTCTGCATGGTCAAATCGTCTGGCAAGCAATAGCCTGCTGGAAAGGTCTG
140 GTTTTGGTATTAAATCTGCCTCGTTAGCTGATAGCAGCTGGAAAGGTATTAGCACC
141 GATGATGGTATTGTTCATAGCGTTCGTATTAGCGTAATAAAACCTGAGCCTGAAA
142 GAAATTCGTCGATTAATTGGGAAAACGTGGCATTATCGCAACGAAGAAAAACT
143 GGTGAAAGCCATTAACACCTATAGCAGCAGTACCCAGAACGAAGCAATTATTAGCT
144 ATCTGACCGCACTGGCAGCAGAAATCGTAAAGAAAGCCGTGGTAATCACTTCGTG
145 AGGATTATCCGTATAAAGATCCGAAATTGGGAGAAACGCATTACTTAAACTGGTGG
146 TGCTCGAGTAATAAggatcc

148 >PpnadB sequence

149 ggatccATGAGCCAACAATTCAAACATGATGTCCTGGTATCGGCAGCGGTGCCCGG
150 TCTCAGCCTGGCACTTAACCTCCCCAGCCACCTTCGCGTTGCCGTATTGAGCAAGGG
151 CGACCTGTCCAACGGCTCGACCTTCTGGGCCAGGGCGCGTGCAGTGTGGA
152 CAACACCGATACTGTGCAGTCGATGTCGAGGACACCCCTCAATGCCGGCGCGGGC
153 TGTGCCATGAAGACGCAGTGCCTTACCGTCGAGCACAGCCCGAAGCGATCCAA
154 TGGCTGATCGAGCAAGGCAGTGCCTTCACCCCGATGAGCACTACAGCGTCGACGA
155 TGGCGGCTTCGAGTTCCACCTCACCCGTGAAGGGGCCATAGCCACCAGCGCATCAT
156 CCACGCCGCGACGCTACCGCGCGCAATCTCACCACGCTGGAACAGGCTC

157 GCCAGCGCCCGAACATCCAGCTGGAGCAGCGGGTGGCGGTCGACCTGATCACT
158 GAACGCCGCTGGCCTGCCCGCGAACGCTGCCCTGGCGCCTACGTGCTGACCG
159 CAACACCGCGAGGTGGACACCTTCGGCGCGCTTACCGTGCTGGCCACGGCG
160 GTGCGGCCAAGGTCTATCTCTACACCAGCAACCCGATGGTGCGCTCGGGCGACGGT
161 ATCGCCATGGCCTGGCGGGCCGGCTGCCAGTGCGAACCTGGAATTCAACCAGTT
162 CCACCCGACCTGCCGTATCACCCACAGGCCAAGAGCTTCCTGATCACCGAAGCCCT
163 GCGCGCGAGGGCGCCCTGCTGCCCTGCCAACGGCGAACGTTCATGCCACGCTT
164 CGACCCACGCGAAGAGCTGGCCCCACGGGACATCGTGGCCCGGCCATGACCAACG
165 AGATGAAGCGCCTGGCGTGACTGCGTATACCTGGACATCACTCACAAGCCTGCA
166 GATTCATCAAGAGCCACTCCCCACCGTGTACGAGCGCTGCCCTGGCCTTGGCATC
167 GATATCACCGTCAGCCGATCCCGGTGGTGCCTGCCGCGCATTACACCTGCCGGGG
168 GTGATGGTCGACGACTGCCACACCGATGTGCCTGGCTGTATGCCATGGCGAA
169 ACCAGTTCACCGGCCTGCACGGCGCAACCGCATGGCAGCAACTCGCTGCTGGA
170 ATGTTTGTGTACGGTCGCGCCGCGCTGCCGACATCCAGGCCACCTGGAGCAAGT
171 GGCCATGCCAACGGCCTGCCGGCTGGGACGCCAGCCAGGTGACCGACTCGGACG
172 AGGACGTGATCATTGCGCACAACTGGGACGAACCGCCTCATGTGGACTAC
173 GTCGGCATCGTGCACAGCAAGCGCCTGCAGCGGGCCAGCACCGCATTGCCCT
174 GCTGCTGGATGAAATCGACGAGTTCTACAGCAACTACAAGGTCAAGCCGTGACCTGA
175 TCGAGCTGCGAACCTGGCGCAAGTGGCGAGCTGATGATCCTGTCAGCCATGCAG
176 CGCAAGGAAAGCCGAGGGTTGCATTACACACTGGATTATCCAGGGATGCTGGACGA
177 GGCAAGGACACCATCCTAACCGCTCTGAtctaga

178 >optimized RIDD with linker sequence

179 GGTGGCGGTGGTTCTGGCGGTGGCGGTTCTGGTGGCGGCGGTGCGGTTCTCTGCGT
180 GAGTGCAGAACTGTACGTTCAAGAAACACAACATCCAGGCCTGCTGAAAGATAGCAT
181 CGTTCAACTGTGTACCGCACGTCCCGAACGTCCGATGGCATTCTGCCGAATACTT
182 CGAACGCCCTGGAAAAAGAAGAAGCGAAAGGTGGCGGTGGCTCAGGTGGCGGTGGT
183 TCAGGTGGTGGTGGTTGTGGT

184 >optimized RIAD with linker sequence

185 ccatggaattcGGTGGTGGCGGTTCTGGTGGCGGCGGTTCTGGTGGCGGCGGTGCGGTCT
186 GGAACAATACGCGAATCAGCTGGCGGATCAGATTATCAAAGAAGCGACCGAAGGGCT
187 CGGGCGGCGGTGGTTCAAGGTGGCGGCGGTTCAAGGTGGCGGTGGTTGTGGTggatcc