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Abstract

Sea level rise increases coastal cities” exposure to tidal flooding and elevates the risk of
transportation routes being compromised at high tide. Using Miami, Florida as a case study, we
combine tide gauge, elevation, road network, and worker location data with a route optimization
algorithm to model how tidal flooding affected commute times between 2002-2004 and
2015-2017. Results suggest tidal flooding increases annual commutes by 15 min on average and
274 min among the most heavily impacted areas. Additionally, approximately 14 000 commuters
may be unable to reach their workplace due to tidal flooding at least once per year.
Accommodation via dynamic adjustments in residential and work locations may reduce tidal
commuting delays by as much as 70%, particularly among the highest earners. Many of the most
affected areas do not experience flooding directly, expanding the purview of vulnerability beyond
simple residential risk. Using 2060 extreme sea-level rise scenarios without accommodating
behavior, mean annual commute delays are expected to reach 220 min with over 55000 commuters

potentially unable to reach their destinations.

1. Introduction

Sea level rise (SLR)-induced flooding poses a threat
to the economic vitality of coastal cities (Hallegatte
etal 2011, Clark et al 2016, Garner et al 2017, Hsiang
and Kopp 2018, Kopp et al 2019, Kocornik-Mina
et al 2020, Desmet et al 2021). Considerable research
has examined the direct impact of local exposure
to hurricanes, storm surges, and flooding on real
estate (Carbone et al 2006, Michael 2007, Bin and
Landry 2013, Hinkel et al 2014, Deryugina et al 2018,
Bakkensen et al 2019, Bernstein et al 2019, Yiand Choi
2019). Apart from permanent flooding and extreme
events, SLR is expected to increase the extent of tidal
(‘sunny day’ or ‘nuisance’) flooding (Moftakhari et al
2015, Dahl et al 2017, Sweet et al 2018). An emer-
ging literature has begun to investigate the impacts
of this less dramatic but more frequent type of flood-
ing on property (Moftakhari et al 2017, McAlpine and

Porter 2018, Bukvic and Harrald 2019), transporta-
tion (Jacobs et al 2018, Kasmalkar et al 2020, Shen and
Kim 2020, Praharaj et al 2021), and economic activity
(Hino et al 2019).

We extend this research by modeling recent com-
muting delays, relative to hypothetical ‘dry’ condi-
tions, attributable to tidal flooding for the Miami
metropolitan area, how this burden has changed over
the last 15 years, and how it could change with 2060
SLR projections. This focus differentiates our study
from the bulk of the transportation literature which
measures various location vulnerability (or accessib-
ility) metrics. Instead, our work is most closely related
to the Jacobs et al (2018) analysis of the U.S. eastern
coast and the Kasmalkar ef al (2020) study of the San
Francisco area, combining elements of each.

Asin Jacobs et al (2018), we employ historical and
projected tide gauge readings to estimate a distribu-
tion of daily flooding impacts for each road segment.

© 2021 The Author(s). Published by IOP Publishing Ltd
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Figure 1. Tide bins and average annual number of normalized workdays for which maximum tide gauge reading is in each bin.
Source: author calculations based on historic NOAA data and intermediate SLR scenario from NOAA projections (Sweet et al
2017).

Like Kasmalkar et al (2020), we (a) relax the assump-
tion that roads are either unaffected or impassable,
allowing passage on partially flooded road segments
at reduced speed, (b) use data on commuter origin
and destination rather than average annual road use,
and (c) use an optimization algorithm to determine
the fastest route between home and work conditional
on road conditions. This combined approach allows
us to estimate delays based on empirical tide read-
ings while allowing for behavioral change in any given
year.

We take the above approach a step further,
decomposing the changing impact of SLR over time
into a ‘tide effect’ and ‘accommodation’. The tide
effect captures delays attributable purely to changes
in tidal flooding over the two periods, assuming com-
muters retain their first-period home and work loc-
ations. As opposed to retreat or protection, accom-
modation refers to a form of adaptation in which
people change how they use land at increased risk of
flooding (Dronkers et al 1990). Specifically, here it
reflects the aggregate impact on second-period delays
arising as commuters change home and work loca-
tions from those in period one. The decomposition
provides an indicator of the importance of long-term
behavioral changes useful for considering benefits
of future adaptive infrastructure investments (Adger
et al 2009, Hauer 2017). Commuter income data
allow us to explore connections between earnings and
capacity for accommodation. Although our results
are consistent with accommodating behavior among
all income levels, they suggest that highest-earning
commuters may be those most able to mitigate the
impacts of flooding on commuting times.

Looking forward, we use the most recent 2060
low, intermediate, and extreme SLR scenarios pub-
lished by the National Oceanographic and Atmo-
spheric Administration (NOAA) (Sweet et al 2017) to
project how the tide effect is likely to evolve over time.
By considering the number of days each year that
each road is likely to experience a given level of tidal

flooding, these projections provide a more nuanced
understanding of these impacts relative to studies that
rely on changes in 100-year floodplains (Suarez et al
2005) or isolated flooding scenarios (Sadler et al 2017,
Kasmalkar et al 2020).

Our case study concentrates on the Miami met-
ropolitan area, home to a quarter of the SLR-exposed
U.S. population (Hauer et al 2016). Figure 1 shows
tide levels above 0.3 m in elevation were infrequent
(10 d) as recently as 2002-2004 but increased over
four-fold (44 d) in 2015-2017. With limited offerings
of public transportation (Florida and Pedigo 2019),
these private SLR costs are borne by those commut-
ing by car. Thus, our estimates can contribute to a
greater understanding of the benefits of implement-
ing adaptation policies (in terms of the value of recu-
perating the time lost to commuting delays) as flood-
ing events become commonplace in 2060 (Kulp and
Strauss 2017).

2. Methods

To reduce potential influence of an anomalous year,
our primary results evaluate commuting delays com-
paring changes in tide levels over two historical three-
year periods: 2002—-2004 (Period 1) and 2015-2017
(Period 2). These two periods do not take place at the
same point in lunar nodal and perigean cycles. Con-
sequently, this analysis is best interpreted as meas-
uring the effects of a change in tides between these
periods resulting from the combined impact of SLR-
driven flooding and lunar cycle-driven flooding. We
also predict commuting delays for 2060 (Period 3)
based on projected tide gauge readings correspond-
ing to NOAA’s low (0.19 m), intermediate (0.45 m),
and extreme (0.9 m) SLR scenarios (Sweet et al 2017).

Calculation of mean regional commuting delays
proceeds in six steps. We first obtain the range of
tide gauge readings for each period. We then model
road inundation depth as a function of a given tide
gauge reading. In a third step, we model travel velocity
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for each road segment as a function of inundation.
Fourth, we select the fastest route between any two
points, conditional on this velocity. Next, we use the
observed distribution of tidal gauge readings in each
period to calculate the average annual flooding delay
for a given pair of points. Finally, we obtain aggreg-
ate commuting delays for the Miami area by taking
the weighted average annual delay over all home-work
location pairs, where the weights correspond to the
number of commuters travelling from a given home
location to a work location in the period. We detail
each of these steps below.

2.1. Step 1: tide gauge readings
We collect data on maximum hourly gauge readings
recorded for each weekday (Monday-Friday) between
the hours of 05:00 and 20:00. For Periods 1 and 2,
readings for the Virginia Key, Biscayne Bay, FL tide
gauge—the most centrally located tide gauge in our
study area—come from the NOAA Center for Oper-
ational Oceanographic Products and Services data-
base. We download hourly verified high/low water
levels for the period 2002-2017 using the ‘rnoaa’
package (Chamberlain 2019), implemented in the R
programming language. To correct for extreme val-
ues corresponding to hurricanes, we deploy an outlier
detection algorithm (Chen and Liu 1993, de Lacalle
2019) to search and correct for extreme outliers in the
time series and generate a counterfactual tide gauge
time series. We use the counterfactual value in time
periods in which the observed gauge exceeds a crit-
ical threshold (7 or t-statistic). This procedure iden-
tified two days with extreme water heights (7 > 10;
24.10.2005 and 10.09.2017) corresponding to hur-
ricanes Wilma and Irma. To project anticipated tide
gauge values in Period 3, we add the change in NOAA
SLR scenario values from 2017 to 2060 in Sweet et al
(2017) to Period 2 daily tide values.

For computational tractability, we group the tide
gauge readings into five discrete bins. Figure 1 dis-
plays the number of days falling in each bin for
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each period and SLR scenario. For each period and
scenario, there is a vector g= (g1,%,...,¢5) with
typical element g;, being the mean workday high
gauge reading for bin b. Table S1 (available online at
stacks.iop.org/ERL/16/064041/mmedia) presents the
values of g.

2.2. Step 2:local inundation as a function of road
elevation and tide gauge

We obtain surface elevation for each road segment
by merging the 2019 road network, extracted from
Miami-Dade County (2020) and U.S. Census Bureau
(2020a), with the 1/9 arc-s (10 m) National Eleva-
tion Dataset (Gesch et al 2002). Applying a ‘bathtub’
hydrological model, similar to that used by NOAA
for mapping tidal flooding (NOAA 2017), we cal-
culate road segment inundation levels as the differ-

ence between the water levels reported at the tide
gauge and road surface elevation. While not perfect,

a single-cell bathtub model provides a useful repres-
entation of subsurface flows given the region’s por-
ous limestone geology. Figure 2 displays areas of the
two counties (not just roadways) subject to flooding
at each tide gauge level.

For further tractability, we discretize mm of
inundation into five bins (0, 0-100, 100-200, 200—
300, >300). For any given road segment the variable
i(gp) represents the midpoint value of the bin corres-
ponding to the modeled inundation depth as a func-
tion of the tide gauge reading.

2.3. Step 3: travel velocity as a function of local
inundation

Statutory speed limits for major roads and bridges
come from the Florida Department of Transporta-
tion (Florida Department of Transportation 2020b).
We assume the speed limit of all other roads to
be 25 mph (Florida Department of Transportation
2020a). To incorporate the influence of flooding,
we model travel velocity v in mph as a function of
the speed limit L and mm of road inundation i:

L i(gy) =0
v(i(gy)) = ¢ min{L,0.6[0.0009i(g,)> — 0.5529i(g,) + 86.9448]} 0 < i(g,) < 300 (1)
1 300 < i(gy).

We base this model on the depth-disruption func-
tion fitted by Pregnolato et al (2017). Besides mak-
ing inundation a function of the tide gauge, we
modify their function in three key aspects: (a)
with no flooding we assume vehicle speed to be
the statutory limit; (b) with flooding less than
300 mm we assume vehicle speed to be the min-
imum of the statutory limit or the maximum safe

speed estimated by Pregnolato et al (2017); and
(c) our main analysis assumes a maximum safe
speed of one mph, rather than zero, after inunda-
tion reaches 300 mm (the average depth at which
passenger vehicles start to float, see Pregnolato
et al (2017)). Under an alternate assumption that
300 mm of inundation renders these segments
impassable, our secondary analysis calculates the
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Figure 2. Tidal flooding, Miami-Dade and Broward
Counties. Colors depict locations that become flooded as
the tide gauge reaches the indicated level. Darkest blue, for
example, represents low-lying areas such as canals and
marshes that are flooded at a tide gauge reading of 77 mm,
while the next lighter shade is areas of higher elevation that
become flooded at a 342 mm tide gauge. Source: author
calculations based on Gesch er al (2002).

number of commuters who are unable to reach their
destinations.

2.4. Step 4: calculating optimal travel times

The next step identifies the fastest route between
each origin (home) and destination (work) location
conditional on the tide gauge reading. We generally
assume the precise origin and destination points to
be Census Block Group (CBG) population centroids.
The CBG is the smallest geography at which the U.S.
Census publishes sample data. Boundaries are typ-
ically streets, bodies of water, or legal jurisdictions,
and do not cross county lines. CBGs generally have
between 600 and 3000 residents. If the work CBG
centroid does not lie within the U.S. Census-defined
Miami urbanized area we use the centroid of the por-
tion of the work CBG in the urbanized area. Unless
indicated otherwise in the extracted road data, we
assume all segments to be bi-directional and to con-
nect to crossing road segments. Under these assump-
tions, we use the ArcGIS Network Analyst algorithm
to obtain the minimum travel time between each
home and work CBG pair conditional on the tide
gauge. The ‘dry’ travel time between CBG pairs ranges

M Hauer et al

from less than a minute to about one hour and
45 min, with a mean of approximately 25 min.

2.5. Step 5: average annual flooding delays for each
home-work pair

Each year has a different number of recorded week-
days. To aggregate across three-year periods we nor-
malize each year into 250 workdays, using the pro-
portion of observed weekdays in each tide gauge bin.
Letting dj, denote the number of workdays in tide bin
b in year y, we compute the annual average number of
normalized weekdays in bin b in a three-year period
(with y indexing years) as:

3
1 dy
dy=73> —52— x 250. (2)
3 iy

y=1

Let H and W be the total number of home and
work CBGs, indexed by h, and w. Optimal minutes
of travel time as a function of tide gauge bin val-
ues gp, (listed in table S1) is #y,,(gy). For a vector
d=(dy,d,,...,ds) of days in each tide bin, the annual
round-trip tidal flooding delay (in min) for a com-
muter on a given home-work pair hw is:

5
ol d) =23 [ () — () i (3)
b=1
h=1,2,.... Hyw=1,2,...,W.

Here, ¢ denotes the maximum tide gauge value for
which inundation depth is zero for all road segments,
i.e. my,,(g) is the ‘dry’ travel time for each pair.

2.6. Step 6: aggregating flooding delays across the
Miami area

We obtain annual commuting trips from the
US. Census Bureauws Longitudinal Employer-
Household Dynamics Origin-Destination Employ-
ment Statistics (LODES) for the period 2002-2017
(U.S. Census Bureau 2020b). LODES is a partially
synthetic dataset containing CBG-level information
of paired home and work locations with compre-
hensive coverage across the United States. LODES
reports data for about 2530 CBGs in Miami-Dade
and Broward counties, for a total of over 2.8 million
home-work combinations. LODES disaggregates
commuters into three income categories: less than
$1250 per month, between $1251 and $3333 per
month, and over $3333 per month. In Period 2, the
number of commuters in a home-work CBG pair
ranged from 0 to 1097, with an average of 1.7 for all
pairs in Miami-Dade and Broward counties.

To calculate the average regional commuting
delay in a given period we use LODES to generate a
vector p = (P11,P12y- -, Phws - - -, Prw) for the whole
sample and for each income category. Each element
represents the number of people residing in CBG h
who commute to CBG w. Period 3 analysis uses the p
vector corresponding to Period 2.

4
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The aggregate outgoing commuting delays caused
by flooding for a home CBG is the sum over all work
CBGs, weighted by the number of commuters in the
income category:

w
cw(d,p) = cm(d)pmyiforall h=1,2,.... H. (4)

w=1

Similarly, ¢, (d, p) represents the aggregate incoming
commuting delays from all home CBGs to a given
work CBG,

H
cw(d,p) = Zchw(d)phw;for allw=1,2,...,W.
h=1

(5)

For each income category, the total annual commut-
ing delay for the Miami area over a given three year
period is then

Cd,p) =) a(dp) =) cu(dp). (6
h=1 w=1

These calculations do not include people whose home
and work are in the same CBG or whose home
or work CBG is outside Miami-Dade and Broward
counties.

We evaluate flooding impacts for three categories
of home-work pairs: all 2.8 million pairs in Miami-
Dade and Broward counties, the 495 thousand pairs
affected by flooding in Period 2, and the 160 thousand
pairs above the 95th percentile of commuting delays
in Period 2.

Two factors cause commuting delays to change
across time periods, a change in the vector d of
days in each tide bin, and a change in the vec-
tor p of people utilizing each home-work pair. We
exploit these two sources of change to decompose the
total change in commuting delays between two peri-
ods into a ‘tide effect’ and ‘accommodation.’ Letting
superscripts denote periods,

C(dzvpz) - C(dlapl) = C(d27pl) - C(dlvpl)
tide effect
+ C(d27p2) - C(dzvpl) .

accommodation

total change

(7)

The tide effect indicates the change in commuting
delays that would occur if the number of days in each
tide bin changed, but the number of commuters in
each home-work pair remained constant at Period
1 levels. The accommodation effect reflects how the
change in commuter choice of home and work loc-
ations affected delays holding the number of days in
each bin constant for Period 2.

Changes in the number of commuters in each
home-work pair can theoretically reflect adaptive
changes in behavior to lessen the impacts of flood
exposure all else equal. Since our model uses the same
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road network for each period, these figures do not
incorporate adaptation in the physical infrastructure
itself. We do not claim to identify a causal relationship
between changes in flooding and changes in com-
muting patterns since we do not observe commut-
ing changes that might have occurred in the absence
of SLR or over similar nodal and perigean cycles.
Instead, this accommodation is best interpreted as
the impact on commuting times of changes in beha-
vior over time, regardless of motivation. We use these
two metrics to explore the extent to which accom-
modation offsets flood-driven increases in commuter
delays.

3. Results

We evaluate the tidal flooding impact on commuters
in three periods, Period 1 (2002-2004), Period 2
(2015-2017), and Period 3 (2060). Our unit of ana-
lysis is the pair of CBG centroids describing a poten-
tial worker’s home and work locations. We evaluate
flooding impacts for three categories of home-work
pairs: all 2.8 million pairs in Miami-Dade and
Broward counties, the 495 thousand pairs affected
by flooding in Period 2, and the 160 thousand pairs
above the 95th percentile of flooding costs in Period 2.
Our main analysis assumes road segments flooded at
a depth exceeding 30 cm are passable at a speed of 1
mph. Our secondary analysis instead assumes these
segments are impassable, calculating the number of
commuters who are unable to reach their destination.

We initially describe the commuting delays exper-
ienced in Period 2 (2015-2017), assuming all road
segments passable. The model suggests that tidal
flooding added 15.44 min year ! to the average com-
muter’s travel time in Miami-Dade and Broward
counties spread over the entire commuting popu-
lation (table 1 and figure 3). Conditional on being
impacted at all, the average annual delay was consid-
erably higher—103.38 min—with the 95th percentile
average commuting delay of more than 4.5 hyear™!.
These burdens are 1.43 min, 5.99 min, and 8.21 min
more than Period 1, suggesting a detectable, increas-
ing commuting burden. Figure 3(a) displays how
commuting delays are distributed across the popula-
tion. For Periods 1 and 2, despite the modest changes
in mean commuting times, the upper tails of the dis-
tributions in later years thicken, indicating growth
in the proportion of commuters facing substantial
flooding impacts.

Under the alternative assumption that road seg-
ments are impassable at a depth of 30 cm, travel
between some home-work pairs becomes infeasible
once the tide gauge reaches a certain point, i.e. there
are no routes that connect these pairs without tra-
versing a water depth greater than 30 cm. Using
this assumption our secondary analysis finds that
0.84% of the entire commuter population, 5.64% of
those with any commuting impact, and 7.82% of the

5
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Figure 3. Commuting delays associated with tidal flooding in Miami-Dade and Broward counties. Panel (a) shows the
distribution of travel delays due to flooding on roads in each time period. The solid black line indicates the average commuter’s
flooding delay. The 2060 distribution corresponds to the Intermediate SLR scenario. Dots in panel (b) represent historical average
delays for each year from 20022018 and anticipated 2060 delays corresponding to tide levels predicted by NOAA low (0.3 m),
intermediate (1.0 m), and extreme (2.5 m) 2100 SLR projections assuming 2015-2017 commuter locations. Curves are locally
weighted scatterplot smoothing of the respective points. Note that delays before 2018 reflect the influence of SLR, perigean and
nodal cycles, and changes in number of commuters on each route.
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most heavily impacted (the ‘percent impassable com-
muters’ line in table S2) were unable to reach their
destination at least once per year due to recurrent
tidal flooding in Period 2. In total, approximately
13700 (95% CI [13 400, 13 800]) people were unable
to attend work. Compared to Period 1, the percent
of impassable commuters among the entire com-
muter population increased by 0.26% points, 1.57%
points among all impacted commuters, but a decrease
of 2.44% points among the most heavily impacted.
These results suggest tidal flooding already ‘blocks’
significant numbers of commuters in the Miami area.
The decrease in the percent of impassable commuters
amongst the most heavily-impacted areas suggests
possible accommodating behavior over time.

Figure 4 illustrates potential accommodation. The
number of commuters has grown in those home-
work pairs experiencing small increases in travel
times while shrinking in home-work pairs with large
increases. The figure divides the pairs into 50 min
bins based on tidal-flooding induced changes in travel
times for a single hypothetical commuter between
Periods 1 and 2. Panel (a) shows that only bins with
less than a 100 min annual increase in travel time
saw a net increase in commuters. Recognizing that
changes in absolute numbers of commuters could
be driven by a few large home-work pairs, Panel
(b) presents the simple average percent change in
commuters for each bin. The qualitative results are
similar: all bins below 150 min had a significant
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Table 1. Tidal flood commuting delays in Miami-Dade and Broward Counties (minutes per commuter per year). Period 1: 2002-2004.
Period 2: 2015-2017. Period 3: 2060 (intermediate SLR projections). Assumes road water depth exceeding 30 cm is passable at 1 mph.
Displays three sets of home-work Census Block Group centroid pairs: (1) all pairs, (2) pairs experiencing flooding delays in Period 2,
and (3) pairs above 95th percentile of flooding delays in Period 2. Change in delays between periods is decomposed into two
components: ‘Tide effect’ is due to changes in road water depth, holding number of commuters in each home-work pair constant at
initial period levels; ‘Accommodation’ is due to changes in number of commuters in each pair, holding water levels constant at final
period levels. By construction, total change = tide effect-+accommodation.

(1) (2) (3)
All home-work pairs Affected home-work pairs Top 5% home-work pairs
Value 95% CI Value 95% CI Value 95% CI

Period 2 15.44 [15.28, 15.59] 103.38 [102.48, 104.29] 274.00 [271.87,276.13]
Period 2-Period 1 1.43 [1.19, 1.68] 5.99 [4.50, 7.49] 8.21 [4.54, 11.87]

Tide effect 2.03 [1.74,2.33] 14.16 [12.31, 16.02] 28.57 [23.82, 33.31]

Accommodation —0.60 [—0.87, —0.33] —8.17 [—9.79, —6.54] —20.36 [—24.42, —16.30]
Period 3-Period 2

Tide effect 30.28 [29.95, 30.61] 155.04 [153.26, 156.81] 140.79 [136.67, 144.91]
Home-work pairs 2817 869 495182 160207
Period 2 commuters 1629135 242 442 86 154
Period 1 commuters 1433163 205427 73807

(a) Absolute change in commuters

1000 ===~

5001

-500

Total change in commuters

644

-1000

0- 50- 100- 150- 200- 650- 700- 750- 800-

n=2799252 n=13455 n=3849 n=11 n=0 n=440 n=446 n=403 n=13
Change in commute time (50 minute bins)

Figure 4. Change in number of commuters travelling between home-work pairs by changes in tidal flooding delays. Both panels
divide home-work CBG pairs into bins based on the annual change in travel time attributable to tidal flooding between 2002—2004
and 2015-2017. The number ‘#’ indicates how many home-work pairs are in each 50 min bin (there are no home-work pairs in
the 200-650 min interval). Panel (a) displays the aggregate net change in commuters for each bin. Panel (b) displays the mean and
95% confidence interval of the percentage change in commuters for those pairs that have at least one commuter in each period.

(b) Mean percent change in commuters

1004

Mean change in commuters (percent)
°

-100

0- 50- 100 150- 200-  650-  700-  750-  800-

n=657572 n=1744 n=2348 n=5 n=0 n=26 n=71 n=77 n=6
Change in commute time (50 minute bins)

increase in commuters, while all bins above 700 min
had a significant decrease.

These trends are reflected in the accommod-
ation results in table 1. If there were no change
in home or work locations from Period 1 levels,
travel times would have increased by 2.03 min by
Period 2 among the entire commuting population
due to increased tidal flooding. The actual increase
in commuting time was just 1.43 min, however, sug-
gesting accommodation reduced commuting times
by a negligible 0.60 min (36 s) year~!. Accommoda-
tion becomes increasingly pronounced amongst pairs
with any commuting delays (—8.17 min) and the
most heavily impacted areas (—20.36 min). While
modest in absolute terms, these changes represent
reductions of 29.56%, 57.70%, and 71.23%, relative
to no accommodation.

A similar pattern occurs with respect to percent
impassable commutes (table S2). The effect of this

change in behavior is particularly pronounced for
the most exposed category. If home and work loc-
ations remained unchanged the percent impassable
for this group would have increased by 0.71% points.
Changes in behavior, however, reduced the percent
impassable by such a large amount (—3.16% points)
that the gross percent declined over time despite the
increase in tide gauge levels.

Panel (c) of table 1 describes the change in com-
muting times between Period 2 and Period 3, using
intermediate SLR projections. These changes do not
account for possible accommodation, holding the
number of commuters in each home-work pair con-
stant at Period 2 levels. Panel (b) of figure 3 shows the
average annual commuting cost in the historic period
and the three SLR projection scenarios in 2060 (Sweet
et al 2017) holding commuting patterns constant for
Period 2. Average commute time for all pairs almost
triples from 15.44 to 45.72 min (430.28 min) and
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(a) Home 2015-2017

(b) Home 2060

Delay (minutes)

(¢) Work 2015-2017

(d) Work 2060
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Figure 5. Geographic distribution of average delay per
outgoing and incoming commuter. Panels (a) and

(b) depict origin (home) CBGs. Panels (¢) and (d) depict
destination (work) CBGs. Panels (a) and (c) are Period 2.
Panels (b) and (d) are Period 3, intermediate SLR scenario.
Colors correspond to Period 2 quartiles, with the fourth
quartile subdivided into two categories: the 75th-98th
percentiles and 99th percentile. Legend assigns the
maximum 2060 commuting time as the upper bound for
the 99th percentile bins.

could exceed 200 min under the extreme SLR projec-
tion. Since this rate of increase is almost twice that
of those pairs affected in Period 2, much of the over-
all increase comes from previously unaffected pairs
(table 1). Under the intermediate scenario, among
those home-work pairs affected in Period 2, the num-
ber of commuters facing at least one impassable trip
per year rises from 5.64% to 7.76%, almost the same
rate as the top 5% in Period 2 (table S2). With extreme
SLR, 3.4% of commuters (about 55000) may face an
impassable trip.

M Hauer et al

Figure 5 uses equations (4) and (5) to illustrate the
geographic distribution of the average delay among
all commuters living in a given home CBG (Pan-
els (a) and (b)) and all commuters travelling to a
given work CBG (Panels (c) and (d)). Panels (a)
and (c) refer to Period 2, while panels (b) and (d)
refer to Period 3 intermediate projections. Values are
expressed in terms of delays (in mins) per commuter
year. In Period 2, the most heavily affected areas for
both outgoing and incoming commutes tend to be
the corridors radiating northwest from downtown
Miami and west from Ft. Lauderdale. There is some
variation between home and work impacts, how-
ever, with areas to the immediate west and imme-
diate north of Miami experiencing a relatively heavy
home impact and areas northwest of Ft. Lauder-
dale experiencing a relatively heavy work impact.
Many of these most affected neighborhoods do not
coincide with areas directly affected by flooding, i.e.
the actual locations of flooding depicted in blue in
figure 2.

Panels (b) and (d) of figure 5 illustrate Period 3
impacts assuming the intermediate NOAA scenario.
The majority of CBGs face commuting delays cor-
responding to the 75th-98th percentile bin in Period
2, between 5 and 29 additional minutes. (Note that
percentiles here refer to individual CBGs, while per-
centiles in table 1 refer to CBG pairs.) Panel (b)
shows that by 2060, home CBGs experiencing delays
corresponding to the recent period’s 99th percent-
ile, greater than 29 min, are prevalent in and around
Miami and Ft. Lauderdale, as well as along much of
the coast. Panel (d) shows that commuting delays
to work CBGs tend to be most pronounced in the
area between Miami and Ft. Lauderdale, despite
the fact that these areas are expected to have rel-
atively little direct exposure to flooding themselves
(figure 2).

The spatial patterns in figure 5 raise the ques-
tion of the distribution of tidal flooding delays across
socioeconomic groups. Figure 6 displays flooding
delays for Periods 1 and 2 for each income group,
illustrating the decomposition of the change into tidal
and accommodation effects (data used to generate the
figure are presented in table S3). Panel (a) presents
results for all home-work pairs in Miami-Dade and
Broward counties. In Period 1, the low-income group
has the lowest delays, followed by the high and
middle-income groups. This finding is consistent
with higher income households living closer to the
coastal areas most likely to experience tidal flood-
ing. Keeping commuting patterns fixed at Period 1,
but using Period 2 tidal gauge data indicates the tidal
effect on commuting delays. The figure shows that
all three groups experience almost the same increase
in commuting times due to rising tide gauge read-
ings. Keeping tide gauges at Period 2 levels, but
allowing commuting patterns to change from Period
1 to Period 2 illustrates accommodation. While all
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(a) All pairs
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Figure 6. Tide and accommodation effects on commuting delays over time by commuter income. Period 1: 2002-2004. Period 2:
2015-2017. Low income: <$1250 per month. Middle income: $1251-$3333 per month. High income: >$3333 per month. The x
axis indicates combinations of tidal and commuter data, by period. Tide effect represents the impact of changes in tide gauge
readings from Period 1 to Period 2, holding commuting patterns fixed in Period 1. Accommodation effect represents the impact
of changes in commuting patterns from Period 1 to Period 2, holding tide gauge readings fixed in Period 2.

(c) Top 5% pairs

3 accommodation— 3 Comnde 1 tideeffect 3 accommodation—

-¢- High income

three income groups demonstrate a tendency to
shift their home or work locations in a way that
moderates the change in commuting delays, this
effect appears pronounced among the high-income
group.

Panel (b) restricts attention to only those home-
work CBG pairs that experienced some flooding
delays in Period 2. It only shows the reallocation of
commuters within the set of affected pairs. It thus
does not capture the effect of commuters switching to
unaffected home-work pairs. Among affected pairs,
the highest income group has the lowest average delay
in Period 1. As in Panel (a) the tidal effect is parallel
across the three groups. Although the highest income
group shows the largest accommodation effect, the
difference with the other groups is less pronounced
than in Panel (a).

Panel (c) further focuses on only the 5% of home-
work pairs most highly impacted by flooding delays in
Period 2. In this group, as in Panel (a), low-income
commuters are the least affected, followed by high
and middle income. Here, the differences in accom-
modation are striking. Changes in location among
all three groups appear to have moderated the aver-
age flooding delay. While there does not seem to be
much difference in accommodation among low and
middle income commuters, location changes for the
high income group were such that Period 2 delays
were lower than Period 1 delays despite the higher tide
levels. It is important to emphasize, however, that as
before the accommodation results are descriptive and
do not have a causal interpretation. When analyzing
income groups we have the additional challenge that
we cannot identify changes in average group com-
muting time arising from other factors. Changes in
wages over time, for example, may cause commuters
to shift from one income group to another, affect-
ing mean commuting time without any change in
location.

4. Discussion

While overall commuting times have risen due to road
inundation, changes in home and/or work locations
since 2002 have ameliorated this impact, particu-
larly among the highest income commuters. Such
potential accommodation should not be ignored
when planning future infrastructure investments and
adaptation policies. In locations facing increasing
burdens on travel to work (the top 5th percentile),
the relocation of commuter residential and work loc-
ations over time offset the costs net of adaptation by
over 70%. Private accommodation potentially under-
mines the benefits of investments aimed to protect
coastal residents.

To maintain tractability, our model makes sev-
eral simplifying assumptions commonly employed in
the literature. Spatial variation in surface water depth
uses a bathtub model under an assumption of per-
fect hydraulic connectivity similar to NOAA. In gen-
eral, the areas our model predicts to be flooded during
high tides, as visualized in figure 2, closely resemble
the high tide predictions of NOAA’s Sea Level Rise
Viewer (2020). Lacking data on placement, imple-
mentation, and effectiveness of road pumps, sea walls,
raised streets, backflow preventers, etc our model
ignores possible impacts of such adaptive infrastruc-
ture. Taken together these assumptions could lead
our model to overstate the incidence of tidal flood-
ing. However, due to the porous limestone geography,
subsurface flows play a significant role in nuisance
flooding in the Miami area, potentially limiting the
bias of these assumptions.

Other factors in the model may lead to under-
stating the flooding impacts. Apart from the dir-
ect impact on street flooding, high tides adversely
affect drainage. Since our model implicitly assumes
no rainfall, it does not include street flooding caused
by the combination of precipitation and high tides.
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Regarding driver behavior, the model does not
account for possible street congestion, which may fur-
ther increase commuting times during flood events as
commuters redirect to fewer streets.

In addition to improving the precision of flood-
ing measurement, future research could benefit from
expanding the geographic scope and the popula-
tion of commuters investigated. For example, we
only evaluate commutes between CBGs. Data lim-
itations prevent us from estimating commuting
delays for people living and working within the
same CBG—potentially underestimating impacts for
workers living in CBGs susceptible to tidal flood-
ing. We also omit impacts for those commuting
between Miami-Dade or Broward and other sur-
rounding counties. The additional commuting time
imposed by tidal flooding may push long-distance
travelers to migrate if their tolerance threshold for
commuting is exceeded. Finally, cities with high levels
of public transportation may observe distinct accom-
modation patterns (Kasmalkar et al 2020). Thus, rep-
licating this analysis in other cities will be crucial to
informing urban adaptation policies.

Understanding the limitations of private accom-
modation is of utmost importance to inform policy
decisions. Our preliminary analysis indicates that
commuters in the middle-income wealth category
($1251-$3333 per month) are hardest hit by com-
muting delays. The high-income category (more than
$3333 per month) has the greatest potential to avert
delays through accommodation. We interpret these
results qualitatively because our approach is unable to
control for auxiliary factors that would influence the
findings, such as changes in wages over time. Approx-
imating these heterogeneous effects, however, should
not be taken lightly going forward, as identifying the
appropriate city investment, whether it be building a
sea wall or expanding social protection, will depend
on the beneficiaries being targeted.
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