[ER

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24

25

26

27
28
29
30
31
32
33
34
35
36
37
38

Theoretical and Experimental Studies of Compression and Shear Deformation Behavior of
Osmium to 280 GPa

Chia-Min Lin, Kaleb Burrage, Chris Perreault, Wei-Chih Chen,
Cheng-Chien Chen*, and Yogesh K. Vohra*

Department of Physics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA

E-mail: chencc@uab.edu; ykvohra@uab.edu

Abstract

The compression behavior of osmium metal was investigated up to 280 GPa (volume compression
V/V,=0.725) under nonhydrostatic conditions at ambient temperature using angle dispersive axial
x-ray diffraction (A-XRD) with a diamond anvil cell (DAC). In addition, shear strength of osmium
was measured to 170 GPa using radial x-ray diffraction (R-XRD) technique in DAC. Both
diffraction techniques in DAC employed platinum as an internal pressure standard. Density
functional theory (DFT) calculations were also performed, and the computed lattice parameters
and volumes under compression are in good agreement with the experiments. DFT predicts a
monotonous increase in axial ratio (c¢/a) with pressure and the structural anomalies of less than 1
% 1in (c/a) ratio reported below 150 GPa were not reproduced in theoretical calculations and
hydrostatic measurements. The measured value of shear strength of osmium (7) approaches a
limiting value of 6 GPa above a pressure of 50 GPa in contrast to theoretical predictions of 24 GPa
and is likely due to imperfections in polycrystalline samples. DFT calculations also enable the
studies of shear and tensile deformations. The theoretical ideal shear stress is found along the
(001)[1-10] shear direction with the maximal shear stress ~24 GPa at critical strain ~0.13.

Keywords: osmium, incompressible materials, diamond anvil cell, compression and deformation
behavior, lattice anomalies, density functional theory, ideal shear strength

1. Introduction

The fundamental understanding of behavior of materials under extreme conditions and
search for materials with desirable mechanical properties like high shear strength are important
endeavors in materials science. The most incompressible transition metal osmium has received
extensive attention due to its high bulk modulus (incompressible nature), high shear modulus
(resistance to deformation), and structural anomalies that have manifested themselves as
anisotropic compression and have been attributed to changes in electronic structure under
compression [1-5]. There are disagreements, however, into the location and existence of these
structural anomalies in the hexagonal lattice c/a ratio. Dubrovinsky et al (2015) has reported
osmium equation of state to 750 GPa where dips in c/a occurred at 150 GPa and 440 GPa
respectively. These anomalies did not manifest themselves into the volumetric compression curve
as it showed a monotonic decrease with pressure and were attributed to be topological changes in
the Fermi surface (at 150 GPa) and electronic transitions for the higher-pressure region (at 440
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GPa) [2]. Kenichi et al. (2004) reported a monotonic increase in c¢/a under quasi-hydrostatic
conditions while results from Occelli et al. (2004) showed a change in slope of ¢/a around 25 GPa.
More recent non-hydrostatic DAC compression to 207 GPa by Perreault et al. (2017) showed a
broad minimum in ¢/a centralized at 75 GPa before a monotonic increase to the maximum pressure.
Such disagreements warrant questions into the behavior of osmium lattice compression in relation
to the degree of hydrostatic environment present in the DAC. Meanwhile, there are unresolved
issues both in experiment and in the fundamental understanding of osmium under extreme
conditions. The experimental uncertainty remains in achieving “true hydrostatic compression”
conditions in the laboratory and measurement of axial (c/a) ratio under hydrostatic conditions and
comparing the results with those obtained under “non-hydrostatic compression”. In addition,
experimentally, there is always an issue of hardness or resistance to plastic deformation of osmium
under high pressure, and a direct measurement of shear strength under high pressures is highly
desirable. The challenge on the theoretical calculations is to investigate the compression and
deformation behavior and relate it to electronic structure changes including electron transfer from
the s-band to d-band under compression [6], and changes in the topology of Fermi surface at high
pressures that may give rise to anomalies in the axial (c/a) ratio. It has been suggested that the
anomaly in c/a ratio can be attributed to non-hydrostatic and preferred orientation or texturing in
polycrystalline osmium under high pressures [7]. Our motivation for the present work is to perform
hydrostatic pressure measurement via radial x-ray diffraction study in a diamond anvil cell and
experimentally demonstrate the presence or lack of anomaly in (c/a) ratio under true hydrostatic
strain conditions in osmium.

Ideal strength is an important material property, defined as the stress required to
permanently deform a perfect material (without defects). The critical shear stress that makes the
perfect lattice unstable provides an assessment of the theoretical upper limit of material strength
under large deformation strain. The radial x-ray diffraction technique in DAC provides an
important opportunity in this study to measure shear strength of osmium metal under high
pressures for comparison with theoretical calculations. In addition, we extend our non-hydrostatic
measurements on osmium to 280 GPa, and the hydrostatic measurement to 170 GPa. Density
functional theory (DFT) calculations still have great challenges in some respects, such as
calculating dislocations and cracks under large indentation loads. Nevertheless, the DFT
calculation accurately shows the plastic deformation mode and the stress-strain relationship of the
crystal, which is of great significance for understanding the fracture mechanism of the crystal
under plastic deformation. Several studies have used theoretical methods to investigate the
incompressible nature of osmium, but the shear deformation is seldomly investigated. Here, we
perform ab initio calculations on the shear deformation of osmium, obtaining its first theoretical
strain-stress relation. Our work on fundamental compression and deformation behavior of osmium
is thereby important for application under extreme conditions and for exploration and design of
ultra-incompressible materials.

2. Experimental and Computational Methods

Angle dispersive axial x-ray diffraction (A-XRD) was performed on the osmium and
platinum mixture at the Advanced Photon Source (APS) using HPCAT beamline 16-ID-B. The x-
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ray beam size was 1 pum x 2 pm and the wavelength was 0.4066 Angstroms (30.5 KeV). Diffraction
patterns were collected using a Pilatus 1M area CCD detector. Pressure was applied using a gas
membrane and the sample to detector distance was calibrated using a NIST CeO» standard.
Platinum powder (Alpha Aesar 99.97 % purity) was mixed with the osmium sample (Alpha Aesar
99.95 % purity) in a 1:3 volumetric ratio and used for sample pressure calibration up to 280 GPa.
Compression to 280 GPa was conducted using a diamond anvil cell (DAC) apparatus utilizing
toroidal diamond anvil technology. The culets of two 30-micron beveled diamond anvils were
machined using a TESCAN LYRA 3 Focused Ion Beam to a culet diameter of 16 microns. A
toroidal groove was machined around the culet to a depth of 3-5 microns and an outer diameter of
60 microns. The toroidal design helps prevent sample outflow under compression as well as
supporting the diamond anvil from undergoing large deformation that leads to premature failure.
For sample placement, a steel gasket was indented to a thickness of 30 microns and laser drilled
with a sample hole of 8 microns. Osmium sample powder (Alpha Aesar 99.95 % purity) was
packed into the sample hole mixed with platinum powder (Alpha Aesar 99.97 % purity) in a 1:3
volumetric ratio for pressure calibration.

For shear strength and estimation of experimental hydrostatic compression values, radial x-ray
diffraction (R-XRD) at Beamline 16 BM-D, Advanced Photon Source, Argonne National
Laboratory was conducted using beam energy of 30 keV and beam size 3.4 um vertical X 4.4 um
horizontal at FWHM. A Double Multilayer Monochromator (DMM) was used to collimate the
pink x-ray beam of 1 = 0.4133 A. Pink x-ray beams allow for shorter x-ray diffraction exposure
time due to increased photon flux as high as 50 times that of previous collimators at Beamline 16
BM-D. Sample diffraction patterns were then collected on a MAR345 Image Plate with sample to
detector distance of 286 mm calibrated using CeO: x-ray standard. A description of the R-XRD
setup can be found in Ref. [8]. Sample compression for R-XRD experiments to 170 GPa was
achieved using a panoramic Diamond Anvil Cell (DAC) with 70-micron beveled diamond anvils.
The osmium and platinum sample were packed into a 25-micron sample hole in a Be gasket using
the same volumetric ratio from the toroidal diamond anvil cell experiment. Both A-XRD and R-
XRD experiments used bulk modulus values for platinum By = 276.4 GPa By = 5.12 [9] employed
in the 3 order Birch Murnaghan equation of state (BM EoS).

Collected radial x-ray diffraction patterns were integrated in 72 azimuthal segments of § =
5 degrees around the entire pattern using MAUD X-ray diffraction analysis software [10]. The
measured d-spacing (d») of osmium sample for each 5-degree segment can be obtained using
equation (1)[11]:

dm(hkl) = d,, + dyQuii (1 — 3 cos? x) (1)

where d, is the hydrostatic component of compression, Qpy; is the lattice strain, and y is the angle
between the DAC compression axis and the diffraction plane normal defined by cosy =
cosé cosf. The linear relationship between measured d-spacing dy, and the 1 — 3 cos? y term
allows for direct calculation of the estimated hydrostatic d-spacing d, by eliminating the
directionally dependent lattice strain Qp; term when 1 — 3 cos? y = 0. When lattice strain Qpy,
is present in a sample, the differential stress ¢ and shear strength 7 can be determined by averaging
the strain over all 4kl and using equation (2):
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6<Qhkl>: ,tZZT, (2)

Qe+

where G is the sample shear modulus.

In our electronic and structural calculations, plane-wave pseudopotential density functional
theory (DFT) [10, 11] calculation is performed using the projector augmented wave (PAW)
method [12, 13] as implemented in VASP (the Vienna ab initio simulation package, version 5.4.4)
[14, 15]. Perdew—Burke—Ernzerhof generalized gradient approximation (GGA-PBE) [16] is
utilized for the exchange and correlation functional. The plane wave cut-off energy is set to 680
eV, and a I'-centered Monkhors-Pack highly dense grid of 33 x 33 x 21 (resolution = 0.01 x 27t/A)
mesh is used for the Brillouin zone integration. The structure relaxation convergence criterion of
atomic force is set to 107 eV/A, and the self-consistent convergence criterion of the total energy
is set to 1077 eV/unit cell. A hexagonal primitive cell of osmium (space group P63/mmc) is used.

VASP allows the use of strain—stress method [14, 15, 17] to calculated elastic constant.
The converged elastic constant can be obtained from the stress-strain relationship by imposing six
finite deformations on the optimized crystal lattice [17, 18]. Within this strain—stress method, the
final elastic constants are determined by the contributions of rigid ion deformation and ion
relaxation. After computing the elastic constants, the bulk and shear moduli of the system are
determined by using the Voigt—Reuss—Hill approximation [19-21].

To compute the shear and tensile strengths, we use the QE (Quantum ESPRESSO, version
6.3) DFT code [22-24], also with the PAW and GGA-PBE methods. We first calculate the optimal
equilibrium structure at zero pressure and zero temperature by fully relaxing the crystal structure.
The calculation setup and convergence criteria are the same as those used in the VASP
calculations. After structure optimization, we calculate the shear deformation on various planes
along different directions. Figure 1 shows an example of shear deformation on the (001) plane
along the [1-10] direction with different strain values, using a 2x2x2 supercell with a momentum
grid of 5 x 5 % 9 k-points. In each step of the shear deformation calculation, we fix the lattice
constant and atomic positions of the axis perpendicular to the shear plane (a axis in Figure 1), and
completely relax the lattice constants and atomic positions of the other two axes parallel to the
shear plane (b and c axes in Figure 1). The tensile strength is also calculated in a similar way with
tensile strain applied along the [001], [100] and [011] directions, using the 2x2x2 supercell with a
momentum grid of 15 x 15 x 9 k-points.
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Figure 1: Shear deformation of osmium along the (001)[1-10] shear direction with strain values of 0, 0.13,
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and 0.25, respectively. For neighboring atoms within 2.8 A, they are connected by blue bonds. The VESTA
software (version 3.4.8) is utilized to visualize the crystal structures [25].

3. Results
(a) (b)
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Figure 2: (a) The measured value of axial ratio (c/a) for the hexagonal close packed osmium for two non-
hydrostatic experiments to 280 GPa. (b) The measured equation of state of osmium to 280 GPa along with
the fit to the data.

Figure 2 displays the non-hydrostatic compression data for osmium c/a ratio for two
experimental runs to 207 GPa (Run 1 [5]) and 280 GPa (Run 2), respectively. Both experimental
runs revealed an anomaly between 50-70 GPa where c/a dropped from ~1.58 to ~1.57 before
increasing linearly to the maximum pressure. Figure 2(b) plots the non-hydrostatic pressure-
volume curve for each run to the maximum pressure with an overall volume compression of V/Vy
=0.725 at 280 GPa. Non-hydrostatic equation of state fit to equation (1) results in a bulk modulus
and its pressure derivative to be Byp =453 GPa and By’ = 3.90.
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Figure 3: (a) Radial x-ray diffraction profile of Os-Pt mixture at 1.5 GPa corresponding to shear strength
T ~ 0.9 GPa with labeled £kl values. (b) Radial x-ray diffraction profile of Os-Pt mixture at a pressure of
22 GPa. (c) Radial x-ray diffraction profile of Os-Pt mixture at a pressure of 49 GPa corresponding to
flattening of shear strength at T ~ 6 GPa . Peaks labeled with asterisk (*) represent platinum pressure
marker. Diffraction lines on the bottom half represent integrated raw data files while those on top are
Rietveld refined using MAUD.

Stress induced effects on osmium sample can be seen by comparing different R-XRD
diffraction patterns in Figure 3. Figure 3(a) presents x-ray diffraction pattern of Os-Pt sample at
0.8 GPa. The linearity of R-XRD Akl patterns in Figure 3(a) indicates diminutive shear effects
present in the sample lattice structure. As internal stress and shear effects become prominent, the
R-XRD #kl patterns display a curved profile as sample d-spacings are distorted maximally at § =
0 . This can be most clearly seen in Figure 3(c) when the Os-Pt mixture is at 49 GPa.
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Figure 4: Measured value of the differential stress (¢) using the shear modulus (G) calculated from DFT.

The lattice strain Qyy; is then averaged from the (100), (002), (101), and (102) hkl peaks
and used in equation (2) to determine the differential stress. This is plotted in Figure 4 with the
hydrostatic pressure values from platinum. The differential stress builds quickly between 0-40 GPa
before plateauing at ~/= 12 GPa. Thus, the measured value of the shear strength for osmium is
approximated to T ~ 6 GPa

We next shift to our calculated results of osmium under hydrostatic pressure up to 300 GPa.
The DFT-GGA estimated values of the lattice constant, volume, shear, and bulk moduli at ambient
conditions are ap = 2.755 A, co=4.345 A, Vo= 14.28 A’/atom, Gy = 264 GPa, and By = 406 GPa,
respectively. The bulk moduli from different groups vary between 382 GPa to 476 GPa. In general,
our calculation is consistent with the current experiment and other experimental and theoretical
data reported previously [1-4, 26-28].
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Figure 5. Theoretical results based on density functional theory (DFT) with a generalized gradient
approximation (GGA) functional. (a) Axial compression of lattice parameters a/ay and ¢/cy versus pressure
up to 300 GPa for osmium. (b) Bulk and Shear moduli as a function of pressure.
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Figure 5(a) shows our theoretical results of hydrostatic pressure dependance of the axial
compression lattice parameters a/ap and c.co up to 300 GPa. The material exhibits anisotropic
compression behavior and stability under high pressure. Compared with the experiments, the
ambient lattice parameters ag=2.755 A and ¢y =4.345 A are within the error margin of 1%. Figure
5(b) displays the bulk and shear moduli as a function of pressure. The high bulk and shear moduli
under compression demonstrate high incompressibility and deformation resistance of osmium.

The computed lattice parameter ratio c/a as a function of pressure is plotted in Figure 6(a)
along with the experimental data, including the hydrostatic experiment. The theoretical c¢/a ratio
does not show any obvious anomaly below 70 GPa. On the other hand, apart from the
abnormalities, the overall theoretical trend of an increasing c/a ratio with pressure is the same as
the experiment. Figure 6(b) shows the calculated volume compression V/Vy under pressure along
with the experimental data. The calculations are in excellent agreement with the experiments on
the overall compression of V/V, =0.725 achieved in osmium at 280 GPa.
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Figure 6: Pressure dependences of (a) lattice parameter c/a ratio, and (b) fractional unit cell volume curve
up to 300 GPa for osmium, calculated by DFT-GGA plotted together with the experimental data obtained
from two non-hydrostatic and one hydrostatic experiment.

Figure 7 presents the ideal strength calculations for shear and tensile stresses applied along
difference directions. The stress versus strain curve increases linearly under small strains, and it
exhibits a nonlinear behavior under large strains. The ideal stress value can be identified by the
critical strain value where the stress begins to decrease. As seen in Figure 7(a), the ideal shear
strength, 1.e., the lowest peak shear stress in all directions, occurs on the (001) plane along the [1-
10] direction. The ideal shear stress is ~23.53 GPa at a critical strain value of 0.13. Figure 7(b)
displays the calculated tensile stress as a function of strain along the [001], [100], and [110]
directions. The ideal tensile strength occurs in the [110] direction, which is the weakest tensile
deformation direction of osmium. Table I summarizes the calculated data of maximal tensile and
shear stresses and their corresponding critical strain values.
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Figure 7: Stress-strain curves of osmium under (a) shear deformation up to strain value of 0.25 along
various directions, (b) tensile deformation up to strain value of 0.30 in the [001], [100] and [110] directions.
The results are based on DFT-GGA calculations.

Osmium
Tensile deformation Shear deformation

O max Emax Tmax Emax

[001] 64.54 0.16 (001)[110] 25.99 0.16
[100] 47.56 0.14 (001)[1-10] 23.53 0.13
[110] 38.80 0.12 (110)[001] 35.03 0.20
(110)[1-10]  34.57 0.18

(1-10)[001]  23.67 0.12

(1-10)[110] 30.21 0.17

Table 1. [Left column] Peak stress g, (in GPa) for tensile deformation and corresponding critical strain
Emax- |Right column] Peak stress 7,4, (in GPa) for shear deformation and corresponding strain &,,,,,. The
results are based on DFT-GGA calculations for osmium.

4. Discussion

The apparent dip in the c¢/a ratio between 50-70 GPa of about 1% [Figure 2(a)] causes
further inquiry into whether the observed effect is induced by non-hydrostatic pressure
environment, or if it is a physical phenomenon of the osmium crystal and electronic structure.
Several experimental groups also have reported anomalies in the axial ratio c/a [4, 29, 30], which
were attributed to an electronic topological transition (ETT) or known as a Lifshitz transition [31-
35]. This type of transition occurs when the Fermi surface topology is altered by external
perturbation. However, the simulated c/a ratios reported previously for osmium were inconsistent
with the non-hydrostatic experimental observations [1, 3, 26-28, 30, 36]. Our DFT calculations
also failed to observe anomalous c¢/a axial ratio upon non-hydrostatic compression. It needs to be
emphasized that our calculations were performed at absolute zero temperature under hydrostatic
pressure. Since the ETT effect causes the divergence of thermal expansion, the anomaly may not
be visible at absolute zero temperature in theoretical calculations. It is also likely that (c/a)
anomalies are due to non-hydrostatic strains in the crystal which are further enhanced due to any
preferred orientations of the polycrystalline grains during compression. A combined DFT with
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dynamical mean field theory (DMFT) [37] has been utilized to tackle quantum fluctuation effects
in osmium, reporting the correlation between ETT and lattice anomalies. However, in that work
[37], the lattice parameters were obtained directly from experimentally measured equation of state.
Currently, it remains theoretically very challenging to fully relax crystal structures under pressure
directly within DFT+DMFT approaches. Therefore, it is beyond the scope of our current research
to address if lattice anomalies and ETT are concurring with strong electron interaction effects.

The DFT calculations also show high bulk modulus, high linear stiffness, and anisotropic
compression of osmium, which can be attributed to its high valence electron density and strong
directional bonding in the electronic structure. However, high bulk modulus does not guarantee a
high resistant ability against large plastic deformation. Therefore, we can learn more about the
mechanical properties in the deformation from the ideal shear and tensile stress-strain relationships.
The ideal shear strength is the minimum value obtained in all possible shear directions at a certain
critical strain, where the structure becomes unstable under deformation [38,39]. Our calculations
show that the ideal shear strength of osmium occurs along the (001)[1-10] direction, with a peak
shear stress value 7 ~ 23.5 GPa at critical strain ¢ ~ 0.13. The ideal strength of a material is related
to the bonding in a crystal [40-42]. As seen in Figure 1, where atoms within 2.8 A are connected
by blue bonds, some bonds between osmium atoms are broken when the stress reached the critical
strain along the (001)[1-10] direction.

Based on the Frenkel model [43], which uses a sinusoidal stress-strain relationship, the
shear stress T can be written as

Ga . 2mx
T_Z_n'hSlnT (9)

where G is the shear modulus, a is spacing between atoms in the direction of shear stress, h is

. . . ,  2Tx .
spacing of the rows of atoms, and x is shear translation. When sin— = 1, we can obtain the
maximal shear stress value 7,,4,. Since h = a, we have

G

G
Tmax"’%"’g (10)

When more refined models are used, the estimated maximal shear stress can vary from 7,4, =
G/10 to G/30. In our DFT calculations, 7,,4,/G = 23.67/263.66 = 0.09. The experimental
shear stress value, however, is much smaller than the theoretical one, potentially due to defects
and imperfections in real crystals, which reduce the mechanical strength of materials.

Finally, we discuss the relation between shear T and tensile strength o. Our shear strength
results would suggest that the weakness tensile strength is along the [110] direction. Based on the

relationship ¢ = V3t [44], the weakest tensile stress along the [110] direction is o =

V3 x 23.67 = 40.9 (GPa). This estimated value is consistent with our calculations in Figure 7(b),
where the weakest tensile stress is along the [110] direction, with a peak tensile stress value equal
to 38.8 GPa at critical strain value 0.12.

10
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5. Conclusions

Experimentally determined non-hydrostatic and hydrostatic elastic properties of polycrystalline
osmium sample were obtained using a combination of angular dispersive axial x-ray diffraction
(A-XRD) and radial x-ray diffraction (R-XRD) techniques. Density functional theory (DFT)
calculations were also performed, and the computed lattice parameters and volumes under
compression are in excellent agreement with the experiments. DFT predicts a monotonous increase
in axial ratio (c¢/a) with pressure and the reported structural anomalies of less than 1 % in (c/a)
ratio below 150 GPa were not reproduced in theoretical calculations. The hydrostatic lattice
parameter data obtained from R-XRD studies clearly indicate that anomalies in (c/a) ratio are not
present in true hydrostatic strain conditions providing experimental confirmation of earlier
suggestions that (c/a) anomalies are due to non-hydrostatic and texture effects [7]. The shear
strength of osmium was measured up to 170 GPa and shown to plateau at a value of 7 ~ 6 GPa
above 50 GPa. The DFT ideal strength calculations indicate that the weakest deformation direction
is along the (001)[1-10] shear direction, with a maximal stress 7,,,,~24 GPa, about 0.09 of the
shear modulus G. The experimental shear stress of 6 GPa is much smaller and is likely due to
imperfections in real crystals. Our comprehensive investigations of osmium under high pressure
provide detailed information about compression and deformation behaviors, which are important
for achieving fundamental understanding and for applications in extreme environments.
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