

1 **Theoretical and Experimental Studies of Compression and Shear Deformation Behavior of**
2 **Osmium to 280 GPa**

3 Chia-Min Lin, Kaleb Burrage, Chris Perreault, Wei-Chih Chen,
4 Cheng-Chien Chen*, and Yogesh K. Vohra*

5 *Department of Physics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA*

6 E-mail: chencc@uab.edu; ykvohra@uab.edu

7

8 **Abstract**

9 The compression behavior of osmium metal was investigated up to 280 GPa (volume compression
10 $V/V_0 = 0.725$) under nonhydrostatic conditions at ambient temperature using angle dispersive axial
11 x-ray diffraction (A-XRD) with a diamond anvil cell (DAC). In addition, shear strength of osmium
12 was measured to 170 GPa using radial x-ray diffraction (R-XRD) technique in DAC. Both
13 diffraction techniques in DAC employed platinum as an internal pressure standard. Density
14 functional theory (DFT) calculations were also performed, and the computed lattice parameters
15 and volumes under compression are in good agreement with the experiments. DFT predicts a
16 monotonous increase in axial ratio (c/a) with pressure and the structural anomalies of less than 1
17 % in (c/a) ratio reported below 150 GPa were not reproduced in theoretical calculations and
18 hydrostatic measurements. The measured value of shear strength of osmium (τ) approaches a
19 limiting value of 6 GPa above a pressure of 50 GPa in contrast to theoretical predictions of 24 GPa
20 and is likely due to imperfections in polycrystalline samples. DFT calculations also enable the
21 studies of shear and tensile deformations. The theoretical ideal shear stress is found along the
22 (001)[1-10] shear direction with the maximal shear stress ~ 24 GPa at critical strain ~ 0.13 .

23 Keywords: osmium, incompressible materials, diamond anvil cell, compression and deformation
24 behavior, lattice anomalies, density functional theory, ideal shear strength

25

26 **1. Introduction**

27 The fundamental understanding of behavior of materials under extreme conditions and
28 search for materials with desirable mechanical properties like high shear strength are important
29 endeavors in materials science. The most incompressible transition metal osmium has received
30 extensive attention due to its high bulk modulus (incompressible nature), high shear modulus
31 (resistance to deformation), and structural anomalies that have manifested themselves as
32 anisotropic compression and have been attributed to changes in electronic structure under
33 compression [1-5]. There are disagreements, however, into the location and existence of these
34 structural anomalies in the hexagonal lattice c/a ratio. Dubrovinsky et al (2015) has reported
35 osmium equation of state to 750 GPa where dips in c/a occurred at 150 GPa and 440 GPa
36 respectively. These anomalies did not manifest themselves into the volumetric compression curve
37 as it showed a monotonic decrease with pressure and were attributed to be topological changes in
38 the Fermi surface (at 150 GPa) and electronic transitions for the higher-pressure region (at 440

39 GPa) [2]. Kenichi et al. (2004) reported a monotonic increase in c/a under quasi-hydrostatic
40 conditions while results from Occelli et al. (2004) showed a change in slope of c/a around 25 GPa.
41 More recent non-hydrostatic DAC compression to 207 GPa by Perreault et al. (2017) showed a
42 broad minimum in c/a centralized at 75 GPa before a monotonic increase to the maximum pressure.
43 Such disagreements warrant questions into the behavior of osmium lattice compression in relation
44 to the degree of hydrostatic environment present in the DAC. Meanwhile, there are unresolved
45 issues both in experiment and in the fundamental understanding of osmium under extreme
46 conditions. The experimental uncertainty remains in achieving “true hydrostatic compression”
47 conditions in the laboratory and measurement of axial (c/a) ratio under hydrostatic conditions and
48 comparing the results with those obtained under “non-hydrostatic compression”. In addition,
49 experimentally, there is always an issue of hardness or resistance to plastic deformation of osmium
50 under high pressure, and a direct measurement of shear strength under high pressures is highly
51 desirable. The challenge on the theoretical calculations is to investigate the compression and
52 deformation behavior and relate it to electronic structure changes including electron transfer from
53 the s-band to d-band under compression [6], and changes in the topology of Fermi surface at high
54 pressures that may give rise to anomalies in the axial (c/a) ratio. It has been suggested that the
55 anomaly in c/a ratio can be attributed to non-hydrostatic and preferred orientation or texturing in
56 polycrystalline osmium under high pressures [7]. Our motivation for the present work is to perform
57 hydrostatic pressure measurement via radial x-ray diffraction study in a diamond anvil cell and
58 experimentally demonstrate the presence or lack of anomaly in (c/a) ratio under true hydrostatic
59 strain conditions in osmium.

60 Ideal strength is an important material property, defined as the stress required to
61 permanently deform a perfect material (without defects). The critical shear stress that makes the
62 perfect lattice unstable provides an assessment of the theoretical upper limit of material strength
63 under large deformation strain. The radial x-ray diffraction technique in DAC provides an
64 important opportunity in this study to measure shear strength of osmium metal under high
65 pressures for comparison with theoretical calculations. In addition, we extend our non-hydrostatic
66 measurements on osmium to 280 GPa, and the hydrostatic measurement to 170 GPa. Density
67 functional theory (DFT) calculations still have great challenges in some respects, such as
68 calculating dislocations and cracks under large indentation loads. Nevertheless, the DFT
69 calculation accurately shows the plastic deformation mode and the stress-strain relationship of the
70 crystal, which is of great significance for understanding the fracture mechanism of the crystal
71 under plastic deformation. Several studies have used theoretical methods to investigate the
72 incompressible nature of osmium, but the shear deformation is seldomly investigated. Here, we
73 perform *ab initio* calculations on the shear deformation of osmium, obtaining its first theoretical
74 strain-stress relation. Our work on fundamental compression and deformation behavior of osmium
75 is thereby important for application under extreme conditions and for exploration and design of
76 ultra-incompressible materials.

77 2. Experimental and Computational Methods

78 Angle dispersive axial x-ray diffraction (A-XRD) was performed on the osmium and
79 platinum mixture at the Advanced Photon Source (APS) using HPCAT beamline 16-ID-B. The x-

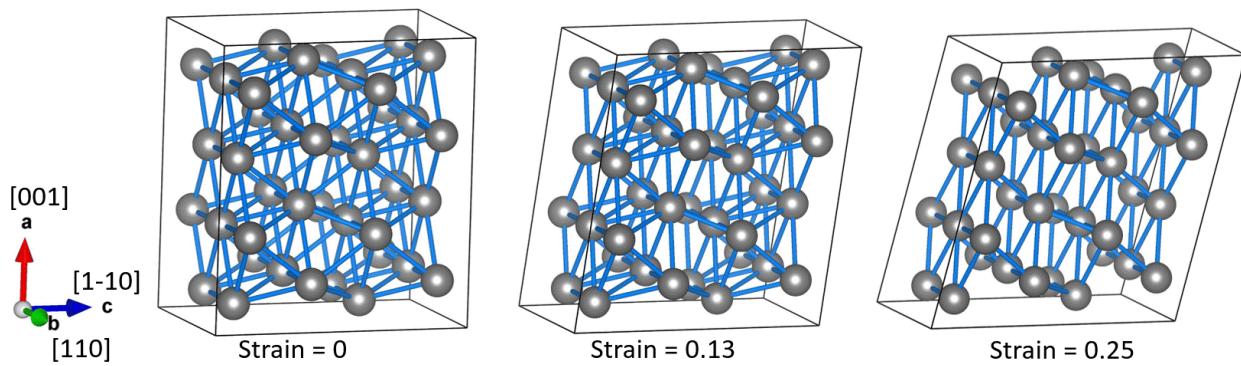
80 ray beam size was $1 \mu\text{m} \times 2 \mu\text{m}$ and the wavelength was 0.4066 Angstroms (30.5 KeV). Diffraction
81 patterns were collected using a Pilatus 1M area CCD detector. Pressure was applied using a gas
82 membrane and the sample to detector distance was calibrated using a NIST CeO₂ standard.
83 Platinum powder (Alpha Aesar 99.97 % purity) was mixed with the osmium sample (Alpha Aesar
84 99.95 % purity) in a 1:3 volumetric ratio and used for sample pressure calibration up to 280 GPa.
85 Compression to 280 GPa was conducted using a diamond anvil cell (DAC) apparatus utilizing
86 toroidal diamond anvil technology. The culets of two 30-micron beveled diamond anvils were
87 machined using a TESCAN LYRA 3 Focused Ion Beam to a culet diameter of 16 microns. A
88 toroidal groove was machined around the culet to a depth of 3-5 microns and an outer diameter of
89 60 microns. The toroidal design helps prevent sample outflow under compression as well as
90 supporting the diamond anvil from undergoing large deformation that leads to premature failure.
91 For sample placement, a steel gasket was indented to a thickness of 30 microns and laser drilled
92 with a sample hole of 8 microns. Osmium sample powder (Alpha Aesar 99.95 % purity) was
93 packed into the sample hole mixed with platinum powder (Alpha Aesar 99.97 % purity) in a 1:3
94 volumetric ratio for pressure calibration.

95 For shear strength and estimation of experimental hydrostatic compression values, radial x-ray
96 diffraction (R-XRD) at Beamline 16 BM-D, Advanced Photon Source, Argonne National
97 Laboratory was conducted using beam energy of 30 keV and beam size $3.4 \mu\text{m}$ vertical $\times 4.4 \mu\text{m}$
98 horizontal at FWHM. A Double Multilayer Monochromator (DMM) was used to collimate the
99 pink x-ray beam of $\lambda = 0.4133 \text{ \AA}$. Pink x-ray beams allow for shorter x-ray diffraction exposure
100 time due to increased photon flux as high as 50 times that of previous collimators at Beamline 16
101 BM-D. Sample diffraction patterns were then collected on a MAR345 Image Plate with sample to
102 detector distance of 286 mm calibrated using CeO₂ x-ray standard. A description of the R-XRD
103 setup can be found in Ref. [8]. Sample compression for R-XRD experiments to 170 GPa was
104 achieved using a panoramic Diamond Anvil Cell (DAC) with 70-micron beveled diamond anvils.
105 The osmium and platinum sample were packed into a 25-micron sample hole in a Be gasket using
106 the same volumetric ratio from the toroidal diamond anvil cell experiment. Both A-XRD and R-
107 XRD experiments used bulk modulus values for platinum $B_0 = 276.4 \text{ GPa}$ $B_0' = 5.12$ [9] employed
108 in the 3rd order Birch Murnaghan equation of state (BM EoS).

109 Collected radial x-ray diffraction patterns were integrated in 72 azimuthal segments of $\delta =$
110 5 degrees around the entire pattern using MAUD X-ray diffraction analysis software [10]. The
111 measured d-spacing (d_m) of osmium sample for each 5-degree segment can be obtained using
112 equation (1)[11]:

$$113 d_m(hkl) = d_p + d_p Q_{hkl} (1 - 3 \cos^2 \chi) \quad (1)$$

114 where d_p is the hydrostatic component of compression, Q_{hkl} is the lattice strain, and χ is the angle
115 between the DAC compression axis and the diffraction plane normal defined by $\cos \chi =$
116 $\cos \delta \cos \theta$. The linear relationship between measured d-spacing d_m and the $1 - 3 \cos^2 \chi$ term
117 allows for direct calculation of the estimated hydrostatic d-spacing d_p by eliminating the
118 directionally dependent lattice strain Q_{hkl} term when $1 - 3 \cos^2 \chi = 0$. When lattice strain Q_{hkl}
119 is present in a sample, the differential stress t and shear strength τ can be determined by averaging
120 the strain over all hkl and using equation (2):

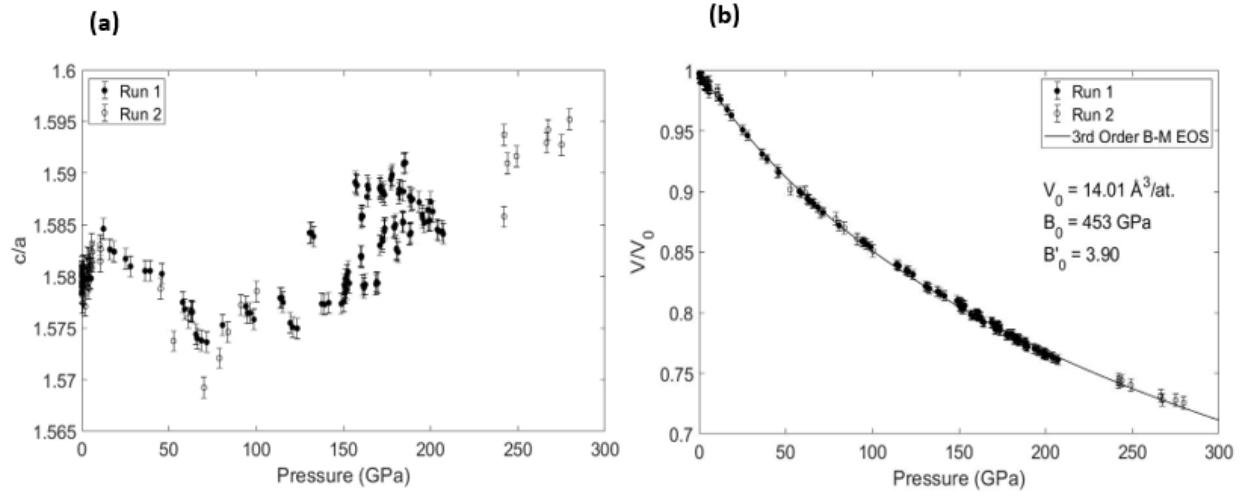

121 $6 < Q_{hkl} > = \frac{t}{G}, t = 2\tau, \quad (2)$

122 where G is the sample shear modulus.

123 In our electronic and structural calculations, plane-wave pseudopotential density functional
 124 theory (DFT) [10, 11] calculation is performed using the projector augmented wave (PAW)
 125 method [12, 13] as implemented in VASP (the Vienna ab initio simulation package, version 5.4.4)
 126 [14, 15]. Perdew–Burke–Ernzerhof generalized gradient approximation (GGA-PBE) [16] is
 127 utilized for the exchange and correlation functional. The plane wave cut-off energy is set to 680
 128 eV, and a Γ -centered Monkhorst-Pack highly dense grid of $33 \times 33 \times 21$ (resolution = $0.01 \times 2\pi/\text{\AA}$)
 129 mesh is used for the Brillouin zone integration. The structure relaxation convergence criterion of
 130 atomic force is set to 10^{-3} eV/ \AA , and the self-consistent convergence criterion of the total energy
 131 is set to 10^{-7} eV/unit cell. A hexagonal primitive cell of osmium (space group P6₃/mmc) is used.

132 VASP allows the use of strain–stress method [14, 15, 17] to calculated elastic constant.
 133 The converged elastic constant can be obtained from the stress-strain relationship by imposing six
 134 finite deformations on the optimized crystal lattice [17, 18]. Within this strain–stress method, the
 135 final elastic constants are determined by the contributions of rigid ion deformation and ion
 136 relaxation. After computing the elastic constants, the bulk and shear moduli of the system are
 137 determined by using the Voigt–Reuss–Hill approximation [19-21].

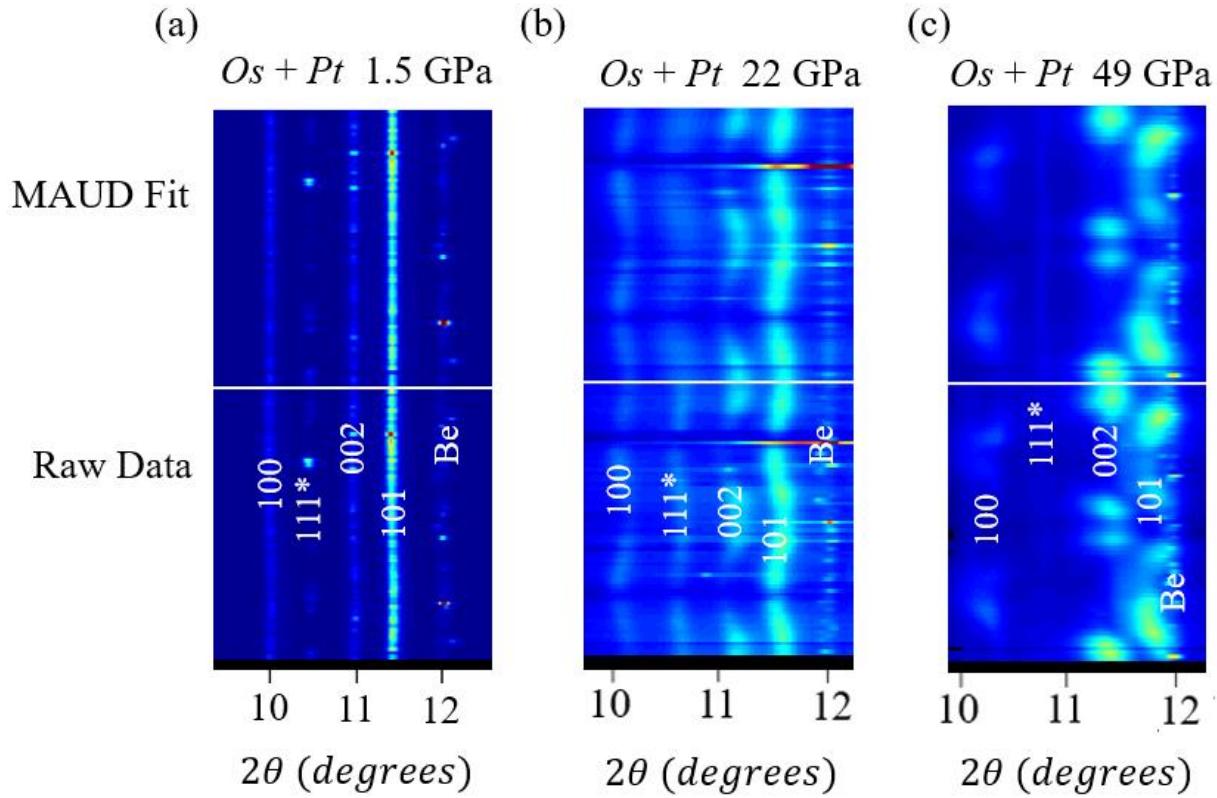
138 To compute the shear and tensile strengths, we use the QE (Quantum ESPRESSO, version
 139 6.3) DFT code [22-24], also with the PAW and GGA-PBE methods. We first calculate the optimal
 140 equilibrium structure at zero pressure and zero temperature by fully relaxing the crystal structure.
 141 The calculation setup and convergence criteria are the same as those used in the VASP
 142 calculations. After structure optimization, we calculate the shear deformation on various planes
 143 along different directions. Figure 1 shows an example of shear deformation on the (001) plane
 144 along the [1-10] direction with different strain values, using a $2 \times 2 \times 2$ supercell with a momentum
 145 grid of $5 \times 5 \times 9$ k-points. In each step of the shear deformation calculation, we fix the lattice
 146 constant and atomic positions of the axis perpendicular to the shear plane (a axis in Figure 1), and
 147 completely relax the lattice constants and atomic positions of the other two axes parallel to the
 148 shear plane (b and c axes in Figure 1). The tensile strength is also calculated in a similar way with
 149 tensile strain applied along the [001], [100] and [011] directions, using the $2 \times 2 \times 2$ supercell with a
 150 momentum grid of $15 \times 15 \times 9$ k-points.



151
 152 **Figure 1:** Shear deformation of osmium along the (001)[1-10] shear direction with strain values of 0, 0.13,

153 and 0.25, respectively. For neighboring atoms within 2.8 Å, they are connected by blue bonds. The VESTA
154 software (version 3.4.8) is utilized to visualize the crystal structures [25].

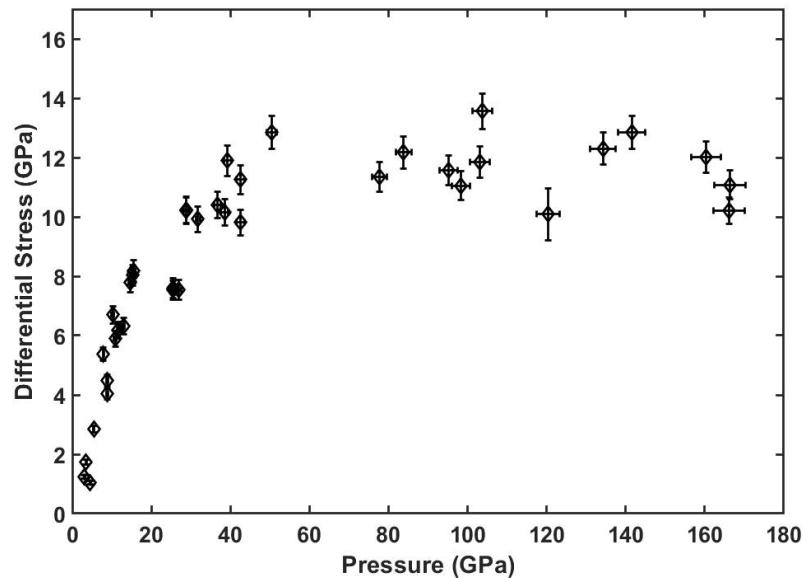
155


156 3. Results

157

158 **Figure 2:** (a) The measured value of axial ratio (c/a) for the hexagonal close packed osmium for two non-
159 hydrostatic experiments to 280 GPa. (b) The measured equation of state of osmium to 280 GPa along with
160 the fit to the data.

161 Figure 2 displays the non-hydrostatic compression data for osmium c/a ratio for two
162 experimental runs to 207 GPa (Run 1 [5]) and 280 GPa (Run 2), respectively. Both experimental
163 runs revealed an anomaly between 50-70 GPa where c/a dropped from ~ 1.58 to ~ 1.57 before
164 increasing linearly to the maximum pressure. Figure 2(b) plots the non-hydrostatic pressure-
165 volume curve for each run to the maximum pressure with an overall volume compression of V/V_0
166 = 0.725 at 280 GPa. Non-hydrostatic equation of state fit to equation (1) results in a bulk modulus
167 and its pressure derivative to be $B_0 = 453 \text{ GPa}$ and $B'_0 = 3.90$.

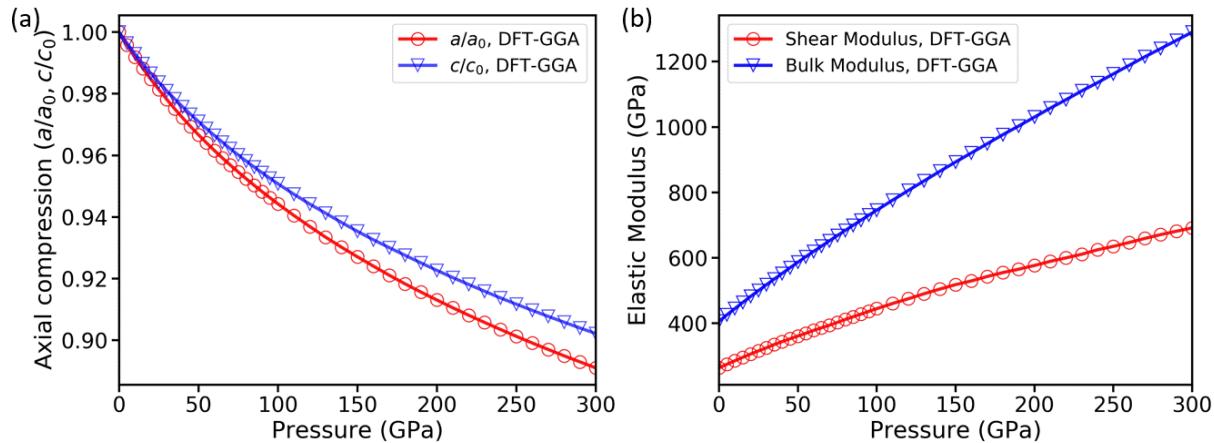


168

169 **Figure 3:** (a) Radial x-ray diffraction profile of Os-Pt mixture at 1.5 GPa corresponding to shear strength
170 $\tau \sim 0.9 \text{ GPa}$ with labeled hkl values. (b) Radial x-ray diffraction profile of Os-Pt mixture at a pressure of
171 22 GPa. (c) Radial x-ray diffraction profile of Os-Pt mixture at a pressure of 49 GPa corresponding to
172 flattening of shear strength at $\tau \sim 6 \text{ GPa}$. Peaks labeled with asterisk (*) represent platinum pressure
173 marker. Diffraction lines on the bottom half represent integrated raw data files while those on top are
174 Rietveld refined using MAUD.

175 Stress induced effects on osmium sample can be seen by comparing different R-XRD
176 diffraction patterns in Figure 3. Figure 3(a) presents x-ray diffraction pattern of Os-Pt sample at
177 0.8 GPa. The linearity of R-XRD hkl patterns in Figure 3(a) indicates diminutive shear effects
178 present in the sample lattice structure. As internal stress and shear effects become prominent, the
179 R-XRD hkl patterns display a curved profile as sample d-spacings are distorted maximally at $\delta =$
180 0. This can be most clearly seen in Figure 3(c) when the Os-Pt mixture is at 49 GPa.

181

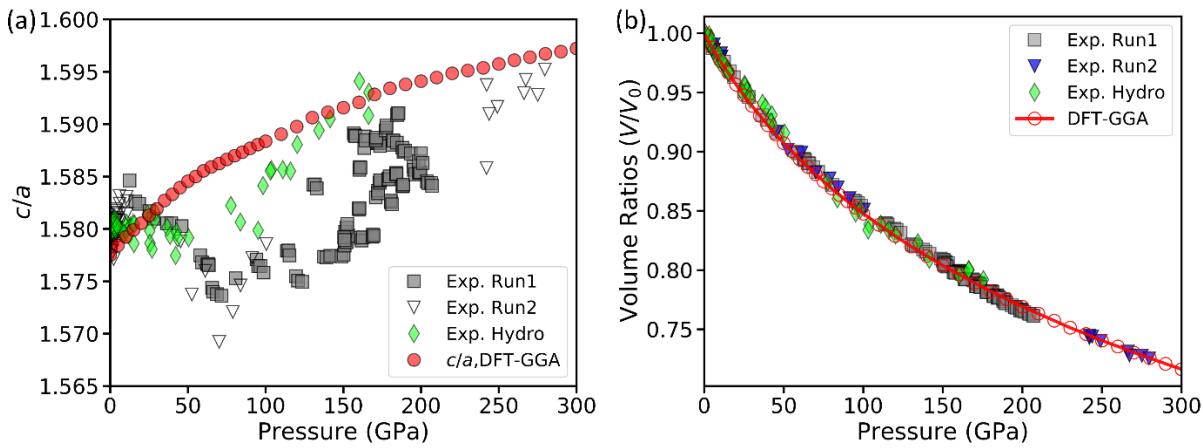


182
183

Figure 4: Measured value of the differential stress (t) using the shear modulus (G) calculated from DFT.

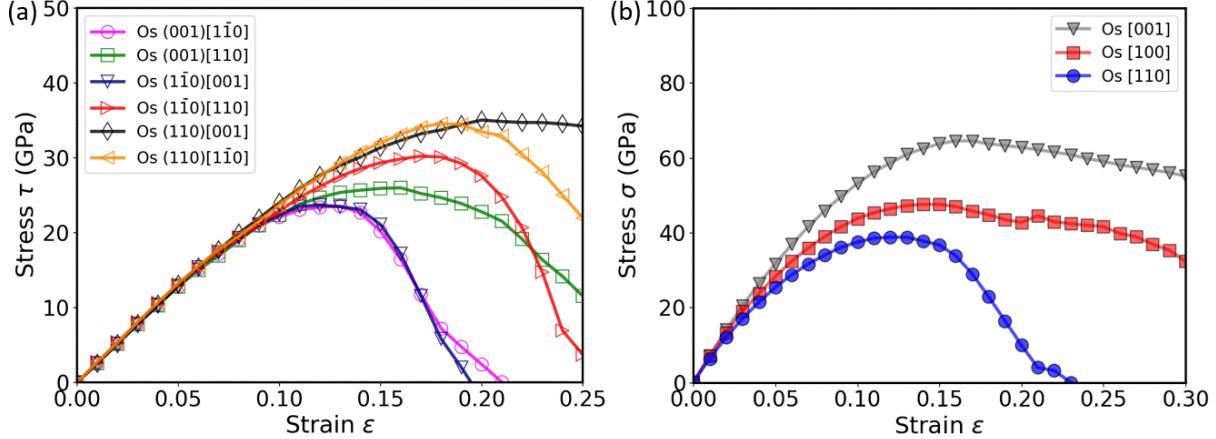
184 The lattice strain Q_{hkl} is then averaged from the (100), (002), (101), and (102) hkl peaks
185 and used in equation (2) to determine the differential stress. This is plotted in Figure 4 with the
186 hydrostatic pressure values from platinum. The differential stress builds quickly between 0-40 GPa
187 before plateauing at $\sim t = 12$ GPa. Thus, the measured value of the shear strength for osmium is
188 approximated to $\tau \sim 6$ GPa

189 We next shift to our calculated results of osmium under hydrostatic pressure up to 300 GPa.
190 The DFT-GGA estimated values of the lattice constant, volume, shear, and bulk moduli at ambient
191 conditions are $a_0 = 2.755$ Å, $c_0 = 4.345$ Å, $V_0 = 14.28$ Å³/atom, $G_0 = 264$ GPa, and $B_0 = 406$ GPa,
192 respectively. The bulk moduli from different groups vary between 382 GPa to 476 GPa. In general,
193 our calculation is consistent with the current experiment and other experimental and theoretical
194 data reported previously [1-4, 26-28].



195

196 Figure 5. Theoretical results based on density functional theory (DFT) with a generalized gradient
197 approximation (GGA) functional. (a) Axial compression of lattice parameters a/a_0 and c/c_0 versus pressure
198 up to 300 GPa for osmium. (b) Bulk and Shear moduli as a function of pressure.


199 Figure 5(a) shows our theoretical results of hydrostatic pressure dependance of the axial
 200 compression lattice parameters a/a_0 and c/c_0 up to 300 GPa. The material exhibits anisotropic
 201 compression behavior and stability under high pressure. Compared with the experiments, the
 202 ambient lattice parameters $a_0 = 2.755 \text{ \AA}$ and $c_0 = 4.345 \text{ \AA}$ are within the error margin of 1%. Figure
 203 5(b) displays the bulk and shear moduli as a function of pressure. The high bulk and shear moduli
 204 under compression demonstrate high incompressibility and deformation resistance of osmium.

205 The computed lattice parameter ratio c/a as a function of pressure is plotted in Figure 6(a)
 206 along with the experimental data, including the hydrostatic experiment. The theoretical c/a ratio
 207 does not show any obvious anomaly below 70 GPa. On the other hand, apart from the
 208 abnormalities, the overall theoretical trend of an increasing c/a ratio with pressure is the same as
 209 the experiment. Figure 6(b) shows the calculated volume compression V/V_0 under pressure along
 210 with the experimental data. The calculations are in excellent agreement with the experiments on
 211 the overall compression of $V/V_0 = 0.725$ achieved in osmium at 280 GPa.

212
 213 **Figure 6:** Pressure dependences of (a) lattice parameter c/a ratio, and (b) fractional unit cell volume curve
 214 up to 300 GPa for osmium, calculated by DFT-GGA plotted together with the experimental data obtained
 215 from two non-hydrostatic and one hydrostatic experiment.

216 Figure 7 presents the ideal strength calculations for shear and tensile stresses applied along
 217 difference directions. The stress versus strain curve increases linearly under small strains, and it
 218 exhibits a nonlinear behavior under large strains. The ideal stress value can be identified by the
 219 critical strain value where the stress begins to decrease. As seen in Figure 7(a), the ideal shear
 220 strength, i.e., the lowest peak shear stress in all directions, occurs on the (001) plane along the [1-
 221 10] direction. The ideal shear stress is $\sim 23.53 \text{ GPa}$ at a critical strain value of 0.13. Figure 7(b)
 222 displays the calculated tensile stress as a function of strain along the [001], [100], and [110]
 223 directions. The ideal tensile strength occurs in the [110] direction, which is the weakest tensile
 224 deformation direction of osmium. Table I summarizes the calculated data of maximal tensile and
 225 shear stresses and their corresponding critical strain values.

226

227 **Figure 7:** Stress-strain curves of osmium under (a) shear deformation up to strain value of 0.25 along
 228 various directions, (b) tensile deformation up to strain value of 0.30 in the [001], [100] and [110] directions.
 229 The results are based on DFT-GGA calculations.

Osmium					
<i>Tensile deformation</i>			<i>Shear deformation</i>		
	σ_{\max}	ε_{\max}		τ_{\max}	ε_{\max}
[001]	64.54	0.16	(001)[110]	25.99	0.16
[100]	47.56	0.14	(001)[1-10]	23.53	0.13
[110]	38.80	0.12	(110)[001]	35.03	0.20
			(110)[1-10]	34.57	0.18
			(1-10)[001]	23.67	0.12
			(1-10)[110]	30.21	0.17

230 Table I. [Left column] Peak stress σ_{\max} (in GPa) for tensile deformation and corresponding critical strain
 231 ε_{\max} . [Right column] Peak stress τ_{\max} (in GPa) for shear deformation and corresponding strain ε_{\max} . The
 232 results are based on DFT-GGA calculations for osmium.

233 4. Discussion

234 The apparent dip in the c/a ratio between 50-70 GPa of about 1% [Figure 2(a)] causes
 235 further inquiry into whether the observed effect is induced by non-hydrostatic pressure
 236 environment, or if it is a physical phenomenon of the osmium crystal and electronic structure.
 237 Several experimental groups also have reported anomalies in the axial ratio c/a [4, 29, 30], which
 238 were attributed to an electronic topological transition (ETT) or known as a Lifshitz transition [31-
 239 35]. This type of transition occurs when the Fermi surface topology is altered by external
 240 perturbation. However, the simulated c/a ratios reported previously for osmium were inconsistent
 241 with the non-hydrostatic experimental observations [1, 3, 26-28, 30, 36]. Our DFT calculations
 242 also failed to observe anomalous c/a axial ratio upon non-hydrostatic compression. It needs to be
 243 emphasized that our calculations were performed at absolute zero temperature under hydrostatic
 244 pressure. Since the ETT effect causes the divergence of thermal expansion, the anomaly may not
 245 be visible at absolute zero temperature in theoretical calculations. It is also likely that (c/a)
 246 anomalies are due to non-hydrostatic strains in the crystal which are further enhanced due to any
 247 preferred orientations of the polycrystalline grains during compression. A combined DFT with

248 dynamical mean field theory (DMFT) [37] has been utilized to tackle quantum fluctuation effects
249 in osmium, reporting the correlation between ETT and lattice anomalies. However, in that work
250 [37], the lattice parameters were obtained directly from experimentally measured equation of state.
251 Currently, it remains theoretically very challenging to fully relax crystal structures under pressure
252 directly within DFT+DMFT approaches. Therefore, it is beyond the scope of our current research
253 to address if lattice anomalies and ETT are concurring with strong electron interaction effects.

254 The DFT calculations also show high bulk modulus, high linear stiffness, and anisotropic
255 compression of osmium, which can be attributed to its high valence electron density and strong
256 directional bonding in the electronic structure. However, high bulk modulus does not guarantee a
257 high resistant ability against large plastic deformation. Therefore, we can learn more about the
258 mechanical properties in the deformation from the ideal shear and tensile stress-strain relationships.
259 The ideal shear strength is the minimum value obtained in all possible shear directions at a certain
260 critical strain, where the structure becomes unstable under deformation [38,39]. Our calculations
261 show that the ideal shear strength of osmium occurs along the (001)[1-10] direction, with a peak
262 shear stress value $\tau \sim 23.5$ GPa at critical strain $\varepsilon \sim 0.13$. The ideal strength of a material is related
263 to the bonding in a crystal [40-42]. As seen in Figure 1, where atoms within 2.8 Å are connected
264 by blue bonds, some bonds between osmium atoms are broken when the stress reached the critical
265 strain along the (001)[1-10] direction.

266 Based on the Frenkel model [43], which uses a sinusoidal stress-strain relationship, the
267 shear stress τ can be written as

$$268 \quad \tau = \frac{G a}{2\pi h} \sin \frac{2\pi x}{a} \quad (9)$$

269 where G is the shear modulus, a is spacing between atoms in the direction of shear stress, h is
270 spacing of the rows of atoms, and x is shear translation. When $\sin \frac{2\pi x}{a} = 1$, we can obtain the
271 maximal shear stress value τ_{max} . Since $h \approx a$, we have

$$272 \quad \tau_{max} \sim \frac{G}{2\pi} \sim \frac{G}{6} \quad (10)$$

273 When more refined models are used, the estimated maximal shear stress can vary from $\tau_{max} \approx$
274 $G/10$ to $G/30$. In our DFT calculations, $\tau_{max}/G = 23.67/263.66 \approx 0.09$. The experimental
275 shear stress value, however, is much smaller than the theoretical one, potentially due to defects
276 and imperfections in real crystals, which reduce the mechanical strength of materials.

277 Finally, we discuss the relation between shear τ and tensile strength σ . Our shear strength
278 results would suggest that the weakest tensile strength is along the [110] direction. Based on the
279 relationship $\sigma = \sqrt{3}\tau$ [44], the weakest tensile stress along the [110] direction is $\sigma =$
280 $\sqrt{3} \times 23.67 = 40.9$ (GPa). This estimated value is consistent with our calculations in Figure 7(b),
281 where the weakest tensile stress is along the [110] direction, with a peak tensile stress value equal
282 to 38.8 GPa at critical strain value 0.12.

283

284 **5. Conclusions**

285 Experimentally determined non-hydrostatic and hydrostatic elastic properties of polycrystalline
286 osmium sample were obtained using a combination of angular dispersive axial x-ray diffraction
287 (A-XRD) and radial x-ray diffraction (R-XRD) techniques. Density functional theory (DFT)
288 calculations were also performed, and the computed lattice parameters and volumes under
289 compression are in excellent agreement with the experiments. DFT predicts a monotonous increase
290 in axial ratio (c/a) with pressure and the reported structural anomalies of less than 1 % in (c/a)
291 ratio below 150 GPa were not reproduced in theoretical calculations. The hydrostatic lattice
292 parameter data obtained from R-XRD studies clearly indicate that anomalies in (c/a) ratio are not
293 present in true hydrostatic strain conditions providing experimental confirmation of earlier
294 suggestions that (c/a) anomalies are due to non-hydrostatic and texture effects [7]. The shear
295 strength of osmium was measured up to 170 GPa and shown to plateau at a value of $\tau \sim 6 \text{ GPa}$
296 above 50 GPa. The DFT ideal strength calculations indicate that the weakest deformation direction
297 is along the (001)[1-10] shear direction, with a maximal stress $\tau_{max} \sim 24 \text{ GPa}$, about 0.09 of the
298 shear modulus G . The experimental shear stress of 6 GPa is much smaller and is likely due to
299 imperfections in real crystals. Our comprehensive investigations of osmium under high pressure
300 provide detailed information about compression and deformation behaviors, which are important
301 for achieving fundamental understanding and for applications in extreme environments.

302 **Acknowledgment**

303 This research is funded by the U.S. National Science Foundation (NSF) under Metals and Metallic
304 Nanostructures program Grant No. DMR-1904164. Portions of this work were performed at
305 HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT
306 operations are supported by DOE-NNSA's Office of Experimental Sciences. The Advanced
307 Photon Source is a U.S. Department of Energy (DOE) Office of Science User Facility operated for
308 the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-
309 06CH11357. The calculations were performed on the Frontera computing system at the Texas
310 Advanced Computing Center. Frontera is made possible by NSF award OAC-1818253.

311 **References**

- 312 1. Cynn, H., et al., *Osmium has the lowest experimentally determined compressibility*. Physical
313 review letters, 2002. **88**(13): p. 135701.
- 314 2. Dubrovinsky, L., et al., *The most incompressible metal osmium at static pressures above 750*
315 *gigapascals*. Nature, 2015. **525**(7568): p. 226-229.
- 316 3. Kenichi, T., *Bulk modulus of osmium: high-pressure powder x-ray diffraction experiments under*
317 *quasihydrostatic conditions*. Physical Review B, 2004. **70**(1): p. 012101.
- 318 4. Occelli, F., et al., *Experimental evidence for a high-pressure isostructural phase transition in*
319 *osmium*. Physical review letters, 2004. **93**(9): p. 095502.
- 320 5. Perreault, C.S., N. Velisavljevic, and Y.K. Vohra, *High-pressure structural parameters and*
321 *equation of state of osmium to 207 GPa*. Cogent Physics, 2017. **4**(1): p. 1376899.
- 322 6. Pettifor, D., *Theory of energy bands and related properties of 4d transition metals. I. Band*
323 *parameters and their volume dependence*. Journal of Physics F: Metal Physics, 1977. **7**(4): p. 613.

325 7. Godwal, B. K., Yan, J., Clark, S. M., & Jeanloz, R., High-pressure behavior of osmium: An analog
326 for iron In Earth's core. *Journal of Applied Physics*, 2021. **111**(11), 112608.

327

328 8. Burrage, K.C., C.Y. Park, and Y.K. Vohra, *Shear Strength and Hydrostatic Compression of Rhenium*
329 *Diboride under High Pressures*. *Journal of Applied Physics* 2021. **129**, 205901.

330 9. Yokoo, M., et al., *Ultrahigh-pressure scales for gold and platinum at pressures up to 550 GPa*.
331 *Physical Review B*, 2009. **80**(10): p. 104114.

332 10. Hohenberg, P. and W. Kohn, *Inhomogeneous electron gas*. *Physical review*, 1964. **136**(3B): p.
333 B864.

334 11. Kohn, W. and L.J. Sham, *Self-consistent equations including exchange and correlation effects*.
335 *Physical review*, 1965. **140**(4A): p. A1133.

336 12. Blöchl, P.E., *Projector augmented-wave method*. *Physical review B*, 1994. **50**(24): p. 17953.

337 13. Kresse, G. and D. Joubert, *From ultrasoft pseudopotentials to the projector augmented-wave*
338 *method*. *Physical review b*, 1999. **59**(3): p. 1758.

339 14. Kresse, G. and J. Furthmüller, *Efficiency of ab-initio total energy calculations for metals and*
340 *semiconductors using a plane-wave basis set*. *Computational materials science*, 1996. **6**(1): p.
341 15-50.

342 15. Kresse, G. and J. Furthmüller, *Efficient iterative schemes for ab initio total-energy calculations*
343 *using a plane-wave basis set*. *Physical review B*, 1996. **54**(16): p. 11169.

344 16. Perdew, J.P., K. Burke, and M. Ernzerhof, *Generalized gradient approximation made simple*.
345 *Physical review letters*, 1996. **77**(18): p. 3865.

346 17. Le Page, Y. and P. Saxe, *Symmetry-general least-squares extraction of elastic data for strained*
347 *materials from ab initio calculations of stress*. *Physical Review B*, 2002. **65**(10): p. 104104.

348 18. Wu, X., D. Vanderbilt, and D. Hamann, *Systematic treatment of displacements, strains, and*
349 *electric fields in density-functional perturbation theory*. *Physical Review B*, 2005. **72**(3): p.
350 035105.

351 19. Hill, R., *The elastic behaviour of a crystalline aggregate*. *Proceedings of the Physical Society.*
352 *Section A*, 1952. **65**(5): p. 349.

353 20. Voigt, W., *Lehrbuch der Kristallphysik, Leipzig, Taubner*. 1928, Springer, Berlin, Germany.

354 21. Reuß, A., *Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für*
355 *einkristalle*. *ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte*
356 *Mathematik und Mechanik*, 1929. **9**(1): p. 49-58.

357 22. Giannozzi, P., et al., *QUANTUM ESPRESSO: a modular and open-source software project for*
358 *quantum simulations of materials*. *Journal of physics: Condensed matter*, 2009. **21**(39): p.
359 395502.

360 23. Giannozzi, P., et al., *Advanced capabilities for materials modelling with Quantum ESPRESSO*.
361 *Journal of Physics: Condensed Matter*, 2017. **29**(46): p. 465901.

362 24. Giannozzi, P., et al., *Quantum ESPRESSO toward the exascale*. *The Journal of chemical physics*,
363 2020. **152**(15): p. 154105.

364 25. Momma, K. and F. Izumi, *VESTA 3 for three-dimensional visualization of crystal, volumetric and*
365 *morphology data*. *Journal of applied crystallography*, 2011. **44**(6): p. 1272-1276.

366 26. Weinberger, M.B., S.H. Tolbert, and A. Kavner, *Osmium metal studied under high pressure and*
367 *nonhydrostatic stress*. *Physical review letters*, 2008. **100**(4): p. 045506.

368 27. Armentrout, M.M. and A. Kavner, *Incompressibility of osmium metal at ultrahigh pressures and*
369 *temperatures*. *Journal of Applied Physics*, 2010. **107**(9): p. 093528.

370 28. Godwal, B., et al., *High-pressure behavior of osmium: an analog for iron in Earth's core*. *Journal*
371 *of Applied Physics*, 2012. **111**(11): p. 112608.

372 29. Sahu, B. and L. Kleinman, *Osmium is not harder than diamond*. Physical Review B, 2005. **72**(11):
373 p. 113106.

374 30. Ma, Y., et al., *Electronic and crystal structures of osmium under high pressure*. Physical Review B,
375 2005. **72**(17): p. 174103.

376 31. Lifshitz, I., *High-pressure anomalies of electron properties of a metal*. Zh. Eksp. Teor. Fiz., 1960.
377 **38**: p. 1569.

378 32. Efthimiopoulos, I., et al., *High-pressure studies of Bi₂S₃*. The Journal of Physical Chemistry A,
379 2014. **118**(9): p. 1713-1720.

380 33. Gomis, O., et al., *Lattice dynamics of Sb₂Te₃ at high pressures*. Physical Review B, 2011.
381 **84**(17): p. 174305.

382 34. Bruno, E., et al., *Fermi surfaces and electronic topological transitions in metallic solid solutions*.
383 Physics Reports, 1994. **249**(6): p. 353-419.

384 35. Vilaplana, R., et al., *High-pressure vibrational and optical study of Bi₂Te₃*. Physical Review B,
385 2011. **84**(10): p. 104112.

386 36. Pannea, C., et al., *Bulk modulus of osmium, 4–300 K*. Acta Materialia, 2009. **57**(2): p. 544-548.

387 37. Feng, Q., et al., *Topological transitions of the Fermi surface of osmium under pressure: an LDA+
388 DMFT study*. New Journal of Physics, 2017. **19**(3): p. 033020.

389 38. Ogata, S., et al. *Ab initio study of ideal shear strength*. in *IUTAM symposium on mesoscopic
390 dynamics of fracture process and materials strength*. 2004. Springer.

391 39. Ogata, S., et al., *Ideal shear strain of metals and ceramics*. Physical Review B, 2004. **70**(10): p.
392 104104.

393 40. Yang, J., H. Sun, and C. Chen, *Is osmium diboride an ultra-hard material?* Journal of the American
394 Chemical Society, 2008. **130**(23): p. 7200-7201.

395 41. Fan, T.-W., et al., *Ideal strength of Mg₂X (X= Si, Ge, Sn and Pb) from first-principles*. Journal of
396 Magnesium and Alloys, 2013. **1**(2): p. 163-168.

397 42. Zang, C., et al., *Indentation strength of ultraincompressible rhenium boride, carbide, and nitride
398 from first-principles calculations*. Physical Review B, 2012. **86**(1): p. 014108.

399 43. Frenkel, J., *Zur theorie der elastizitätsgrenze und der festigkeit kristallinischer körper*. Zeitschrift
400 für Physik, 1926. **37**(7-8): p. 572-609.

401 44. Mises, R.v., *Mechanik der festen Körper im plastisch-deformablen Zustand*. Nachrichten von der
402 Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1913: p. 582-
403 592.

404