
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uasa20

Journal of the American Statistical Association

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uasa20

Identification, Semiparametric Efficiency, and
Quadruply Robust Estimation in Mediation
Analysis with Treatment-Induced Confounding

Fan Xia & Kwun Chuen Gary Chan

To cite this article: Fan Xia & Kwun Chuen Gary Chan (2021): Identification,
Semiparametric Efficiency, and Quadruply Robust Estimation in Mediation Analysis with
Treatment-Induced Confounding, Journal of the American Statistical Association, DOI:
10.1080/01621459.2021.1990765

To link to this article:  https://doi.org/10.1080/01621459.2021.1990765

View supplementary material 

Accepted author version posted online: 08
Oct 2021.

Submit your article to this journal 

Article views: 239

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uasa20
https://www.tandfonline.com/loi/uasa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2021.1990765
https://doi.org/10.1080/01621459.2021.1990765
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2021.1990765
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2021.1990765
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2021.1990765
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2021.1990765
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2021.1990765&domain=pdf&date_stamp=2021-10-08
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2021.1990765&domain=pdf&date_stamp=2021-10-08


 

Identification, Semiparametric Efficiency, and Quadruply Robust 
Estimation in Mediation Analysis with Treatment-Induced 
Confounding 

Fan Xia 

Department of Epidemiology, University of Washington 

and 

Kwun Chuen Gary Chan 

Department of Biostatistics, University of Washington 

acadfanxia@gmail.com 

Author’s Footnote: Fan Xia is UW Data Science Postdoctoral Fellow, National 

Alzheimer’s Coordinating Center, Department of Epidemiology, University of 

Washington (email: fanxia@uw.edu). Kwun Chuen Gary Chan is Professor, 

Department of Biostatistics, University of Washington (email: kcgchan@uw.edu). 

Abstract 

Natural mediation effects are often of interest when the goal is to understand a 

causal mechanism. However, most existing methods and their identification 

assumptions preclude treatment-induced confounders often present in practice. 

To address this fundamental limitation, we provide a set of assumptions that 

identify the natural direct effect in the presence of treatment-induced 

confounders. Even when some of those assumptions are violated, the estimand 

still has an interventional direct effect interpretation. We derive the 

semiparametric efficiency bound for the estimand, which unlike usual 

expressions, contains conditional densities that are variational dependent. We 

consider a reparameterization and propose a quadruply robust estimator that 

remains consistent under four types of possible misspecification and is also 

locally semiparametric efficient. We use simulation studies to demonstrate the 
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proposed method and study an application to the 2017 Natality data to 

investigate the effect of prenatal care on preterm birth mediated by preeclampsia 

with smoking status during pregnancy being a potential treatment-induced 

confounder. Supplementary materials for the article are available online. 

Keywords: Copula; Natural Direct Effect; Treatment-induced Confounding; 

Multiply Robust Estimator; Interventional Direct Effect. 

1 Introduction 

When a treatment has an aggregated effect on an outcome, its causal 

mechanism related to intermediate variables along the causal pathway is often of 

interest. The study of such a treatment effect mechanism involves the estimation 

of direct and indirect effects. An effect is called direct when it does not act 

through some intermediate variables, known as mediators. Conversely, the effect 

that acts through the mediators is called the indirect effect. Intuitively, to evaluate 

a direct effect, the mediators need to be somehow fixed. Depending on the 

scientific question of interest, a variety of direct effects can be defined through 

different ways of fixing the mediators. The natural (pure) effects are most 

relevant in studying treatment effect mechanisms. The natural direct effect 

compares potential outcomes under treatment and control conditions with 

mediators fixed to the value they would have taken had there not been any 

treatment. The natural indirect effect is thereby defined by subtracting the natural 

direct effect from the total treatment effect. 

Under the potential outcomes framework (Rubin, 1974; Rubin, 1978), the 

definition of the natural direct effect is formalized by Robins and 

Greenland (1992) and Pearl (2001). A considerable number of methods have 

been developed for the identification and inference of the natural direct effect 

when all confounders are pre-treatment variables (Pearl, 2001; Pearl, 2009; 

Petersen et al., 2006; Imai et al., 2010; Hafeman and VanderWeele, 2011; 

Tchetgen Tchetgen and Shpitser, 2012). Although methods for handling pre-
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treatment confounders are well studied, they cannot be directly applied to 

treatment-induced confounders, since they are in the causal pathway between 

the exposure and outcome of interest. In fact, treatment-induced confounding 

presents unique challenges to the estimation of natural direct effects, since 

common identification assumptions in the absence of treatment-induced 

confounding, such as sequential ignorability (Imai et al., 2010), can no longer 

identify the natural mediation effects when treatment-induced confounding is 

present (Avin et al., 2005; VanderWeele and Vansteelandt, 2009). Even under 

stronger assumptions such as nonparametric structural equation models with 

independent errors (NPSEM-IE) common in graphical modeling, the natural 

direct effect is still non-identified in the presence of treatment-induced 

confounder (Robins and Richardson, 2010; Tchetgen Tchetgen and 

VanderWeele, 2014). Therefore, both the identification assumptions and 

estimation of natural mediation effects in the presence of treatment-induced 

confounding are substantially different from the case with only pre-treatment 

covariates. 

In practice, treatment-induced confounders often exist, particularly when the 

mediators occur much later than the treatment. In this case, some immediate 

prognostic factors affected by the treatment can be related to both the mediator 

and the outcome (Robins, 1999). One example that was given by Vansteelandt 

and VanderWeele (2012) who considered the effect of adequate prenatal care on 

preterm birth that mediates through preeclampsia. On one hand, smoking status 

during pregnancy confounds the relationship between preeclampsia and preterm 

birth because it reduces the risk of preeclampsia while increasing the likelihood 

of preterm birth. On the other hand, adequate prenatal care may decrease or 

eliminate smoking. Therefore, smoking status during pregnancy is a potential 

treatment-induced confounder between the mediator preeclampsia and the 

outcome preterm birth. While maternal smoking and preeclampsia can be 

grouped together as a vector mediator in a mediation analysis (VanderWeele 

et al., 2014), the joint indirect effect would involve both social and biological 
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mechanisms which may not have the most desired scientific interpretation. When 

we are interested in a specific mediator, and the goal is to estimate the direct 

effect and the indirect effect with respect to this specific mediator, the part of 

treatment effect that goes through the treatment-induced confounders is not of 

interest, thus the joint effect is not sufficient to answer the question of interest. 

Therefore, in many settings, it is often desirable to study the natural direct and 

indirect effects defined with respect to a specific mediator, while other 

intermediate variables are treated as confounders. 

There has been limited methodological development addressing mediation 

analysis with treatment-induced confounding, Robins (2003) provides an 

independence assumption between individual level potential outcome difference 

and mediators but Petersen et al. (2006) and Imai and Yamamoto (2013) 

suggest that this assumption is unlikely to hold in practice. Robins and 

Richardson (2010) and Tchetgen Tchetgen and VanderWeele (2014) each 

provide additional assumptions to those imposed by structural equation models. 

Alternatively, estimands different from the natural direct effect are also 

considered to quantify certain direct and indirect effects in the presence of 

treatment-induced confounding. VanderWeele et al. (2014) summarize three 

such approaches to decompose the effect of a treatment when there exists 

treatment-induced confounding: joint effect of mediators and other treatment-

induced confounders (treating the latter as part of the mediators), path-specific 

effects, and interventional effects. 

Avin et al. (2005) and Shpitser (2013) provide identification conditions for path-

specific effects. Miles et al. (2020) provide semiparametric inference of a path-

specific effect that goes through a mediator without going through its treatment-

induced confounders. The interventional direct effect (VanderWeele et al., 2014) 

is an analog of the natural direct effect that replaces the potential mediator with a 

random draw, which is independent of the potential outcome, from the 

distribution of the mediator among the non-treated. VanderWeele and 
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Tchetgen Tchetgen (2017) define interventional effects with time-varying 

exposures and mediators. The estimand is also used in mediation analysis with 

multiple mediators (VanderWeele and Vansteelandt, 2014; Daniel et al., 2015). 

In this paper, we propose a new set of identification assumptions for the natural 

mediation effects in the presence of treatment-induced confounding without 

invoking structural equation models, and the identified expression remains to 

have a causal interpretation even when certain assumptions are violated. In 

addition to studying the identification of natural direct effect with treatment-

induced confounding, we found that, unlike usual expressions, the efficient 

influence function contains conditional densities that are not variational 

independent. We consider a reparameterization based on copulas to address the 

problem of model incompatibility. The corresponding estimator is quadruply 

robust, that is, consistent under four types of misspecification of nuisance 

models. 

The rest of the paper is organized as follows. In Section 2, we introduce the 

proposed identification assumptions and the expression of the identified natural 

direct effect. We explain the connection between our identification results and 

that of the interventional direct effect. In Section 3, we propose four moment-type 

estimators and a quadruply robust estimator. In the process, we derive the 

efficient influence function (hence the semiparametric efficiency bound) of the 

identified natural direct effect, propose a variation independent parameterization, 

and prove the quadruple robustness of the estimator. In Section 4, we use 

numerical simulations to demonstrate the proposed methods. In Section 5, we 

apply our method to the 2017 Natality data to estimate the effect of prenatal care 

on preterm birth mediated by preeclampsia with smoking status during 

pregnancy being a potential treatment-induced confounder. We conclude the 

paper with some remarks in Section 6. Technical proofs are given in the 

supplementary materials. 

2 Assumptions and Identification 
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We denote the treatment as A, the outcome as Y, the mediator as M, the set of 

treatment-induced confounders as C, and the set of pre-treatment or baseline 

covariates as X. All variables may be multivariate. Figure 1 demonstrates the 

causal diagram, showing that (C, M) are between the causal pathway of . 

The set of covariates X is omitted for simplicity because it has arrows to all other 

variables in the causal diagram. 

The potential outcome Ya and the potential mediator Ma are the values the 

outcome and the mediator would have taken had the treatment been a. Such 

definitions only make sense when there is a well-defined intervention on the 

treatment A so that it can be set to the value a (Rubin, 1974; Rubin, 1978; 

Robins and Greenland, 1992; Pearl, 2001). Similarly, when there are well-defined 

interventions for A, C, and M, the potential outcome Yacm is the value the 

outcome would have taken had the treatment been a, the treatment-induced 

confounder been c, and the mediator been m. We assume the composition (also 

called recursive substitution) holds such that , , and 

. Other conditions are needed as preliminaries of identification: The 

consistency assumption that implies Ca = C and Ma = M when A = a;  

when , and the positivity assumption that implies 

 for all m, c, a. 

When the treatment is binary, the average natural direct effect on a difference 

scale is defined as . It depicts the expected effect of the treatment 

when the mediator is fixed at the value it would have taken had there not been 

any treatment. A set of assumptions sufficient to identify the natural direct effect 

in the presence of treatment-induced confounders are given as follows: for all m, 

c, and a, 

Assumption 2.1. . 

Assumption 2.2.  

A Y

a aa aC MY Y
aam aC mY Y

aa aCM M

acmY Y

, ,A a C c M m  

( | , , ) 0, ( | , ) 0, ( | ) 0 with probability 1f m A C X f c A X f a X  

0 01 0[ ]M ME Y Y

{ , , } |am a aY C M A X

| , ,am a aY M A a C c X  
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Assumption 2.3.  

Assumption 2.4.  

Assumptions 2.1 and 2.2 are ignorability assumptions that are implied by the 

assumptions of no unmeasured confounding between the treatment and post-

treatment variables, and between the mediator and the outcome respectively. 

Assumptions 2.3 and 2.4 imply that there is no additional heterogeneity in a 

direct effect of A, or in a pure indirect effect of A that goes through C across 

levels of M0. To put it in the data example, where the treatment is adequate 

prenatal care, the treatment-induced confounder is smoking during pregnancy, 

the mediator is preeclampsia, and the outcome is preterm birth, the assumption 

 implies that the direct effect of adequate prenatal care on preterm birth that 

goes through neither smoking nor preeclampsia is the same among those who 

would or would not get preeclampsia without adequate prenatal care. Similar 

interpretation can be made with Assumption 2.4, which concerns the effect that 

goes only through smoking during pregnancy. 

Theorem 2.1. Under assumptions 2.1–2.4, the natural direct effect  

is identified as follows: 

 (1) 

Interestingly, our identification result gives the same empirical expression as the 

interventional effect (VanderWeele et al., 2014; VanderWeele and 

Tchetgen Tchetgen, 2017). The interventional direct effect is defined by replacing 

the potential mediator with a random draw from the distribution of the potential 

mediator M0 that is independent of the potential outcomes, and requires only 

Assumptions 2.1 and 2.2 for identification. In fact, when M0 is being replaced by 

1 1 1 11 0 0 1 0[ | , ] [ | ]C m C m C m C mE Y Y M m X E Y Y X   

1 0 1 00 0 0 0 0[ | , ] [ | ]C m C m C m C mE Y Y M m X E Y Y X   

2.3

0 01 0[ ]M ME Y Y

| 0, | 1,

| 0,

( { [ | 1, , , ]

[ | 0, , , ]}).

X M m A X C A X

C A X

E E E E Y A C M m X

E E Y A C M m X

  



    

 
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a random draw , Assumptions 2.3 and 2.4 are immediately satisfied because 

 is independent of . 

Note that assumptions 2.1 and 2.2 are “single world” assumptions (Richardson 

and Robins, 2013) because the treatment is set to be the same in all post-

treatment variables in these assumptions. For “single-world” assumptions, one 

can conceptualize an ideal experiment that intervenes on A and M such that 

assumptions 2.1 and 2.2 hold, so as to such an experiment to verify the results 

from non-experimental data. However, identification of natural direct effect will 

inevitably involve “cross-world” assumptions where no experiments can be 

designed to satisfy those assumptions, even when there is no treatment-induced 

confounders (Imai et al., 2010; Petersen et al., 2006). 

Although assumptions 2.3 and 2.4 are “cross-world” assumptions, they do not 

involve many “cross-world” independence assumptions as in NPSEM-IE 

(independence between Yacm,  and  for any  and m), and 

additional assumptions such as independence between C0 and C1 as studied in 

Robins and Richardson (2010). In addition, a sensitivity analysis of these 

assumptions are given in Section 6. When there is no treatment-induced 

confounder, C becomes part of X, assumption 2.4 becomes redundant, and 

assumption 2.3 reduces to that in Petersen et al. (2006). The identification of the 

natural direct effect becomes 

 

which is the same empirical expression as the natural direct effect identified by 

the sequential ignorability assumptions (Pearl, 2001; Imai et al., 2010). 

3 Semiparametric Inference 

3.1 Moment-type Estimators 

Denote the identified expression of the natural direct effect in Theorem 2.1 as Δ, 

which is the estimand of interest for the remaining sections. The observed 

0M

0M { , }acm aY C 

a cM   aC 
, , , ,a a a c c  

| 0,[ { ( | 1, , ) ( | 0, , )}],X M m A XE E E Y A M m X E Y A M m X      
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independent samples are . With slight abuse of 

notation, the density (mass) functions are denoted by f. The estimand Δ can be 

represented in four alternative ways, each leading to a possible estimator. 

Theorem 3.1. , where 

 

where 

 

The first moment-based estimator  is a fully weighted version of the target 

estimand. The weight is given by the product of the inverse probability weights, 

and the density ratio between the marginalized density of M without treatment 

and a conditional density of M. Intuitively, this density ratio creates a pseudo 

population in which the distribution of M follows . The last 

moment-based estimator  is a fully marginalized version of the target 

estimand that has a similar form as the mediation g-formula 

(Robins, 1986; Tchetgen Tchetgen and VanderWeele, 2014). Both  and  

are partially marginalized, partially weighted versions of the target estimand. 

They are both inverse probability weighted marginalized expectations. Compared 

with the case when treatment-induced confounders are absent, 

( , , , , ), 1, ,i i i i iX A C M Y i n 

1 2 3 4        

1 , , , ,

2 , , ,

3 , , , ,

4

2 1 ( | 0, )
,

( | ) ( | , , )

2 1
( ) ,

( | )

1
( (1) (0)) ,

( 0 | )

(1) (0) ,{ }

X A C M Y

X A C C X

X A M M X M X

X X X

A f M A X
E Y

f A X f M A C X

A
E A

f A X

A
E

f A X

E



 

 

  
   

 

 
   

 

 
   

 

  

,

,

( ) ( | , , , ) ( | 0, )d ,

( ) ( | , , , ) ( | 0, ) ( | , )d d ,

( ) ( | , , , ) ( | , ) .

C X

X

M X

a E Y A a m C X f m A X m

a E Y A a m c X f m A X f c A a X m c

a E Y A a M c X f c A a X dc







  

   

  







1

( | 0, )f M A X

4

2 3
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Tchetgen Tchetgen and Shpitser (2012) proposed a fully weighted estimator, a 

fully marginalized estimator and one partially marginalized estimator. 

Based on different representations of Δ, we consider four estimators , 

and  that replace conditional expectations or densities in , and  

with their estimates and the outer expectation by the empirical average. When Y, 

M, and C are discrete and low dimensional, 

, and  can be empirical 

probability mass functions, and  is the expectation under 

. The integrals in the estimators become finite sums, and the four 

estimators are nonparametric. In practice, however, M and C are likely to be 

multivariate and continuous, thus we use parametric models for the purpose of 

dimension reduction. The four estimators are consistent when nuisance 

parameters for each part of them are consistently estimated. In particular, with 

the rest of the models unrestricted,  is consistent and asymptotically normal 

when  and  are correctly specified,  is 

consistent and asymptotically normal when , and 

 are correctly specified,  is consistent and asymptotically 

normal when , and  are correctly specified, 

and  is consistent and asymptotically normal when 

, and  are correctly specified. When 

the outcome model is linear and thus collapsible, or when mediators and 

treatment-induced confounders are categorical, numerical integration is not 

necessary for the calculation of integrals , and , since the expressions can 

be simplified. When the outcome model is non-collapsible, e.g. a logistic 

regression model, and the mediator and/or the treatment-induced confounder are 

continuous, we need to use numerical integration for computation. 

3.2 Efficient Influence Function and the Quadruply Robust Estimator 

Next, we derive the efficient influence function of Δ under a nonparametric model 

, which does not impose constraints on the observed data. 

1 2 3
ˆ ˆ ˆ, ,  

4̂ 1 2 3, ,   4

ˆ ˆ ˆ( | , , , ), ( | , , ), ( | , )f Y A M C X f M A C X f C A X ˆ( | )f A X

( | , , , )E Y A M C X

ˆ( | , , , )f Y A M C X

1̂

( | ), ( | 0, )f A X f M A X ( | , , )f M A C X
2̂

( | ), ( | , , , )f A X E Y A M C X

( | 0, )f M A X
3̂

( | ), ( | , , , )f A X E Y A M C X ( | , )f C A X

4̂

( | , , , ), ( | 0, )E Y A M C X f M A X ( | , )f C A X

,  

non
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Theorem 3.2. The efficient influence function of Δ in  is: 

 

Hence, the semiparametric efficiency bound for the estimation of Δ in  is 

, and the asymptotic variance of any regular asymptotic linear 

estimator of Δ in  must be greater than or equal to the bound. 

The efficient influence function is a function of  

and . While we may posit parametric working models for these 

functions, a complication arises because , and 

 are not variation independent, and therefore model incompatibility 

may occur. Richardson et al. (2017) point out that the multiple robustness 

property is relevant only when model incompatibility can be avoided. 

We consider reparameterizing the joint distribution  into three parts: 

the two margins conditioned on A and X:  and their 

dependence structure modeled using a copula condition on A and X. A copula is 

a multivariate cumulative distribution function with uniformly distributed margins 

on . A more detailed discussion on copulas is given by Joe (1997), 

Nelsen (2007), and Jaworski et al. (2010). For notational simplicity, we consider 

univariate M and C, and a bivariate conditional copula with support contained in 

: 

 

where . Sklar’s theorem (Sklar, 1959) allows separate modeling of 

these three parts. In other words, the joint distribution  is uniquely 

non

eff

, , ,

2 1 ( | 0, )
( [ | , , , ])

( | ) ( | , , )

2 1 2 1 1
( ) ( ) { (1) (0)}

( | ) ( | ) ( | )

1
1 { (1) (0)} .

( | )
( )

C X X M X M X

X X

A f M A X
S Y E Y A M C X

f A X f M A C X

A A A
A A

f A X f A X f A X

A

f A X

   

 



 
  

  
  


    

non

eff eff[ ]TE S S 

non

( | ), ( | , ), ( | , , )f A X f C A X f M A C X

( | , , , )E Y A M C X

( | , ), ( | , )f C A X f M A X

( | , , )f M A C X

( , | , )f M C A X

( | , ), ( | , )f M A X f C A X

[0,1]

2[0,1]

1 2 1 1 2 2( , ) ( , ),u u P U u U u  

1 1 1( )P U u u 

( , | , )F M C A X
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determined by , and  that can 

be modeled independently. Examples of copulas for continuous, binary, and 

mixed continuous-binary M and C are given in the supplementary materials. In 

multivariate cases, the vine pair copula construction (Panagiotelis et al., 2012) 

can be used to construct the joint distribution. 

Let Pn be the empirical measure. With the variation independent 

parameterization, we construct a locally efficient estimator based on the following 

estimating equation: 

 

 is evaluated where all components of the influence function are replaced by 

their parametric working model:  is replaced by  is 

replaced by  is replaced by , and 

 is replaced by . In particular,  is 

replaced by , which is modeled by the two marginal distributions 

, and the copula . 

Therefore,  takes the following form: 

  

(2) 

This estimator is quadruply robust in the sense that only one out of four sets of 

models needs to be correctly specified for it to be consistent and asymptotically 

normal as given in Theorem 3.3. 

( | , ), ( | , )f M A X f C A X | , | ,( ( ), ( ) | , )M A X C A XF m F c A X

effˆ ˆ( ( )) 0.n quadP S  

effŜ

( | )f a X par ( | ), ( | , )f a X f c A X

par ( | , ), ( | , )f c A X f m A X par ( | , )f m A X

( | , , , )E Y A M C X par ( | , , , )E Y A M C X ( , | , )f m c A X

par ( , | , )f m c A X

par par( | , ), ( | , )f m A X f c A X par

| , | ,( ( ), ( ) | , )M A X C A XF m F c A X

ˆ
quad

 

 

 

par par
par

par par
1

par par

,par

par par par

, ,par

ˆ ˆ2 1 ( | 0, ) ( | , )1
( | , , , )

ˆ ˆ( | ) ( , | , )

2 1
ˆ ˆ( ) ( )

ˆ ( | )

1
ˆ ˆ ˆ(1) (0) (1)

ˆ ( 0 | )

(

i i i

i i i i i

n

i i i i i i i
i i i i i i

i i i i i i i

i

C X i X i

i i

i

M X M X X

i i

A f M A X f C A X
Y E Y A M C X

n f A X f M C A X

A
A A

f A X

A

f A X

 

  


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


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Theorem 3.3. The estimator  is consistent and asymptotically normal under 

some mild regularity conditions discussed in the supplementary materials if one 

of the following four conditions holds: 

1.  

are correctly specified. 

2.  are correctly specified. 

3.  are correctly specified. 

4. : 

 

are correctly specified. 

It is locally semiparametric efficient in the sense that it achieves the 

semiparametric efficiency bound at the intersection of the submodels where all 

four conditions hold, that is, at . 

Due to the complexity of the quadruply robust estimator, the multiple robustness 

is not easily seen directly from its form. We explicitly illustrate the robustness of 

the estimator under  as an example. The large sample limit of the estimating 

equation for the quadruply robust estimator  can be written as the sum of 

four parts: 

1. , 

2. 

, 

3. , 

4. , 

ˆ
quad

par par par par

1 | , | ,: ( | ), ( | , ), ( | , ), ( ( ), ( ) | , )M A X C A Xf A X f C A X f M A X F m F c A X
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2 : ( | ), ( | , ), ( | , , , )f A X f M A X E Y A M C X

par par par

3 : ( | ), ( | , ), ( | , , , )f A X f C A X E Y A M C X

4

par par par par
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where quantities with superscript  represents the components that are 

incorrectly specified under . Note that the except for the first term, all other 

terms include misspecified quantities. We proved that each of the four parts 

equals to 0 in the supplementary materials. Similarly, under each of  and 

, the large sample limit of the estimating equation can be rewritten into sum of 

four parts where one of it contains the correctly specified quantities only and the 

other three contain mis-specified quantities, but that all four parts can be shown 

to be 0. Details are given in the supplementary materials. Notice that the 

estimators proposed in section 3.1 are such that , whose estimation can be 

conducted using the copula parameterization, is only consistent under  is 

only consistent under ,  is only consistent under , and  is only 

consistent under . In contrast, the quadruply robust estimator  remains 

consistent under four types of misspecification, which offers more modeling 

flexibility. In other words,  is consistent and asymptotically normal at the 

intersection submodel. 

Remark 1. Since the quadruply robust estimator involves weighting and the 

weights could be unbounded when models are mis-specified, the resulting 

estimator can be unstable when none of  to  holds (Kang et al., 2007). To 

improve the stability of the weights thereby improve the finite sample 

performance of the quadruply robust estimator, we extend the methods proposed 

in Robins et al. (2007) and Tchetgen Tchetgen and Shpitser (2012) to our setting 

to construct a stabilized quadruply robust estimator with a certain boundedness 

property, by modifying the estimation procedure of the parametric working 

models such that the first three terms of (2) are exactly zero. This requires 

careful construction of estimating equations for working models and needs to be 

considered case by case. In Section 4.2, we give an exact procedure under a 

certain simulation setting. 

Remark 2. While there are other parametrizations of joint densities of (C, M), 

such as Chen (2007) whose decomposition depends on two conditional 

*

1

2 3,

4

1̂

1 2
ˆ, 

2 3̂ 3 4̂

4
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distributions and a odds ratio function, it appears that these characterizations 

would not ensure multiple robustness because marginals of C and M are part of 

the robustness conditions in Theorem 3.3. 

3.3 Related estimands 

One favorable feature of the natural direct effect is that the average treatment 

effect, defined as , can be decomposed into the sum of the average 

natural direct effect and the natural indirect effect: . While the natural 

indirect effect is not the focus of this paper, similar results can be applied to it 

since the average treatment effect is identified under assumption 2.1. The natural 

indirect effect is then identified as the difference between the identified average 

treatment effect and the natural direct effect identified in Theorem 2.1. We should 

note, however, that the identified natural indirect effect is different from the 

interventional indirect effect. This is consistent with the fact that the interventional 

direct effect and indirect effect do not sum up to be the average treatment effect 

(Vansteelandt and Daniel, 2017). The semiparametric estimation theory can also 

be extended for the natural indirect effect. Specifically, we can construct a 

quadruply robust estimator for the natural indirect effect by the difference 

between the augmented inverse probability weighted estimator for the average 

treatment effect (Robins et al., 1994; Robins, 2000, Tsiatis, 2007), and our 

proposed quadruply robust estimator. The augmented inverse propensity 

weighted estimator is consistent if either the model for the propensity score or the 

regression model for the mean outcome is correct. Notice that for each of , 

 and , the condition for the doubly robust average treatment effect 

estimator being consistent is satisfied. Therefore the quadruple robustness 

extends to the natural indirect effect. 

Although we studied the natural direct effect defined as a difference in 

expectations, this effect can also be defined on other scales, such as a ratio 

scale . Because  is identified under assumption 

2.1 and can be estimated by the augmented inverse probability weighted 

1 0[ ]E Y Y

1 01 1[ ]M ME Y Y
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estimator  can be estimated by . Therefore, any functions 

of  and  can be estimated and the asymptotic variance can be 

derived using the delta method. However, since the identification assumptions of 

Δ are given on the difference scale, extra care is needed when interpreting the 

natural direct and indirect effect defined on other scales. 

4 Simulation study 

4.1 Demonstration of Theoretical Results 

We use numerical simulations to demonstrate the theoretical results derived in 

the previous section. We compare the finite sample performance of the moment-

based estimators given in section 3.1 to the proposed quadruply robust 

estimator. We generate 1000 samples, each with 1500 independent 

observations, for both continuous and binary treatment-induced confounder and 

mediator. We consider the moment estimators  and the quadruply 

robust estimator . Let expit denote the function . 

The data are generated as follows: 

Continuous C and M: 

 

Binary C and M: 

00 1
ˆ( ), ( )ME Y E Y 0

ˆ ˆ( )E Y 

01( )ME Y
0( )E Y

1 2 3 4
ˆ ˆ ˆ ˆ, , ,   

ˆ
quad ( ) ( ) / (1 ( ))expit x exp x exp x 

| , | ,

| ,

| ,

~ (0,1); ( 1| ) ( 0.4 0.6 );

( ( ), ( ) | , ) is a Gaussian Copula with correlation 0.2,

where ( ) ( ), 3 2 4 , 5,
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~ 1 2 2 3 5 4 2
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We compare the five estimators under a series of model misspecifications by 

replacing the baseline covariates X with an independent normally distributed 

continuous variable X2 with mean 0 and variance 1. The true natural direct 

effects are 26.01 and 5.50 for the continuous and binary cases, respectively. 

Table 1 shows that the simulation results are consistent with the theoretical 

results derived in the previous sections: when the entire likelihood is correctly 

specified, all five estimators are consistent; when the conditional expectation of Y 

is mis-specified, only  and Δquad are consistent; when the parametric model for 

 is mis-specified, only  and Δquad are consistent; when the 

parametric model for  is mis-specified, only  and Δquad are 

consistent; when the propensity score  is mis-specified, only  and 

Δquad are consistent. The loss in efficiency for the quadruply robust estimator is 

relatively small compared to other estimators in all cases. Since  consists of a 

density ratio, it is more variable when the mediator M is continuous, which makes 

it less preferred even when  is correct. We only present one scenario here, 

but we ran simulations under different settings and they all gave similar results. 

We also include a comparison with the triply robust estimator proposed in 

Tchetgen Tchetgen and Shpitser (2012), which assumes the absence of 

treatment-induced confounding. We consider two cases, with bias and standard 

error multiplied by 100 as in Table 1. First, where C is ignored in the estimation, 

and only use  in the estimation. The sampling bias (sampling 

standard error) is  for continuous mediators and  

for binary mediators. Next, we erroneously treat C as a pre-treatment covariate 

and condition on (C, X) in all working models of the triply robust estimator. The 

| , | ,

1

| ,

1

| ,

~ (0,1); ( 1| ) ( 0.2 0.3 );

( ( ), ( ) | , ) is a Plackett Copula with Odds-Ratio (1 2 3 );
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( ) (1 ) , ( 0
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m m
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
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sampling bias (sampling standard error) is  for continuous 

mediators and  for binary mediators. Therefore, ignoring treatment-

induced confounders or treating them as pre-treatment covariates could lead to 

substantially biased results. 

4.2 Practical Violation of Positivity Assumptions 

Next we consider a scenario similar to Kang et al. (2007) in which the positivity of 

the treatment assignment probability is practically violated under model 

misspecification. The data are simulated as follows: 

 

 

 

 

 

 

 

 

Correctly specified model should include the true “latent” covariates 

. Instead we replace them using the “observed” covariates 

 in misspecified models. The true natural direct effect is –14.57 in 

this case. 

When models are mis-specified, the weights in the quadruply robust estimator 

can be unbounded, and the resulting estimator can be unstable when none of 

 to  holds. In fact, the weights can be unstable even when the models are 

2192.33 (172.94)
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1 2 3 4 4( , , , ) ~ (0, ),  where  where X Z Z Z Z N I I

1 2 3 4~ ( ),  where ( 0.5 0.25 0.1 );a aA Bernoulli p p expit Z Z Z Z    

1 2 3 4~ ( ), ( ) ( 1.6 2 0.8 0.6 ); c cC Bernoulli p where p expit A Z Z Z Z      
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3 2

1 1 2 2 1 3 1 3 4 2 4( / 2), /{1 ( )} 10, ( / 25 0.6) , ( 20) .X exp Z X Z exp Z X Z Z X Z Z        

1 2 3 4( , , , )Z Z Z Z

1 2 3 4( , , , )X X X X

1 4

Acc
ep

te
d 

M
an

us
cr

ipt



well-specified under practical violation of positivity (Westreich and Cole, 2010). 

As mentioned in Section 3.2, a stabilized quadraply robust estimator would be 

desired to handle such a case. It can be written in the form 

 where  and  are estimated in a manner that 

ensures quadruple robustness. Note that the definition of the target estimand is 

, hence the quadruply robust estimator  lies in the range 

of the target estimand Δ as long as  lies in the same range. For a 

continuous Y and binary A, C and M, a stabilized estimator is constructed using 

the following procedure: 

1. To estimate  using a weighted logistic regression in the 

group with treatment a with weights . 

2. To estimate  using weighted logistic regression in the 

group with treatment a with weights . 

3. To estimate  in the group with treatment a using 

weighted least square regression with weights 

 

where  is estimated using the estimated copula and 

two marginal distributions  and . 

Tables 2 and 3 summarize the simulation results for the four moment based 

estimators and the quadruply robust estimator for sample sizes 500 and 1000, 

with 1000 independent replications in each scenario. Note that when two or more 

models are incorrect, none of  to  holds. In most of these scenarios, the 

stabilized version of the quadruply robust estimator has smaller bias than all 

other estimators, including the original quadruply robust estimator. When only 

model  is incorrect,  holds so the unstabilized quadraply robust 

estimator has small estimation bias, but the stabilized estimator reduces the 

sampling standard errors substantially. When  to  holds and under the 
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intersection model, the sampling bias and standard derivations of the 

unstabilized and stabilized quadraply robust estimators are very similar. The 

stabilized version of the quadruply robust estimator is recommended in practice 

because it has a better performance both in terms of bias and standard error 

than the unstabilized version. 

5 Data Example 

We use the 2017 Natality data (https://wonder.cdc.gov/natality.html) for births 

occurring within the United States to U.S. residents to illustrate our method. We 

focus our analysis on the subset of participants that are AIAN (American Indians 

or Alaskan Native). Subjects with missing data (  of the sample) are 

excluded. The total number of observations is 27,138. 

We are interested in estimating the direct effect of prenatal care (A) on preterm 

birth (Y) not through preeclampsia (M). As pointed out in the introduction, 

smoking status during pregnancy (C) is a potential treatment-induced 

confounder. The adequacy of prenatal care is determined by the Adequacy of 

Prenatal Care Utilization Index (Kotelchuck, 1994), which depends on the month 

prenatal care began, the total number of prenatal visits, and the gestational age 

at the time of delivery. In the AIAN sample, the level of prenatal care is either 

inadequate or intermediate. Preterm birth is defined using the Obstetric Estimate 

(OE) (Martin et al., 2015) of the gestational age. The baseline covariates (X) that 

are potential confounders include maternal demographics: age, education level, 

and marital status. Assumption 2.3 implies that the direct effect of prenatal care 

on preterm birth (that goes through neither smoking nor preelampsia) is the same 

among those who would get preelampsia without adequate prenatal care, and 

those who would not. Similarly, Assumption 2.4 implies that the mediated effect 

of prenatal care through smoking is the same among those who would get 

preelampsia without adequate prenatal care, and those who would not. If these 

two assumptions are violated, meaning that the potential preelampsia status 

without adequate prenatal care modifies either the direct effect of prenatal care 

9.5%
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or its mediated effect through smoking, then the estimated effects can be 

interpreted as interventional effects, as explained in section 2. 

Since both the smoking status and the preeclampsia status are binary, we use 

the Plackett copula with a cross-ratio (odds ratio) specified using a log link. 

Logistic regression models are used for the binary treatment and outcome, as 

well as the distributions of C and M given A and X. The parameters of the copula 

are estimated by the maximum likelihood method. The bootstrap confidence 

intervals are computed for the purpose of inference. 

The estimated direct effect of better prenatal care (intermediate care versus 

inadequate care) not through preeclampsia decreases the risk of preterm birth by 

2.5% (1.6%, 3.4%), leaving a tiny indirect effect through preeclampsia that 

increases the risk of preterm birth by 0.15% (0.07%, 0.23%). The moment-type 

estimators give similar results (Table 4). This is consistent with VanderWeele 

et al. (2014) who studied this problem on a different population. 

6 Discussion 

In this paper, we identify the natural direct effect in the presence of treatment-

induced confounding, and derive semiparametric bounds and propose a 

quadruply robust estimator. Our method can be applied to continuous, 

categorical, and multivariate outcomes, and to mediators and treatment-induced 

confounders. 

When identification assumptions may be violated, sensitivity analysis can be 

useful to assess how vulnerable the estimator would be. Inspired by 

Vansteelandt and VanderWeele (2012) and VanderWeele and Chiba (2014), we 

can consider the following two sensitivity functions: 

 
1 1 1 1

1 0 1 0

0 1 0 0 1 0 0

0 0 0 0 0 0 0
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m C m C m C m C m

m C m C m C m C m

q M X E Y Y M m X E Y Y M X

l M X E Y Y M m X E Y Y M X

    
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The former captures the heterogeneity in the direct effect of the treatment across 

different subgroups defined by potential mediators under control and baseline 

confounders, and the latter captures the heterogeneity in the indirect effect of the 

treatment through the treatment-induced confounder across different subgroups. 

Let  and 

, then assumuption 2.3 and 2.4 

corresponds to Qm = 0 and Lm = 0 respectively. Assuming the sensitivity 

functions to be known, the natural direct effect can be identified as 

. 

Another possible direction is to develop bounds when identification assumptions 

are relaxed. However, bounds are often developed for categorical data where 

linear inequality constraints may be specified. Bounds on the natural direct effect 

for a binary mediator are given by Robins and Richardson (2010), which are 

extended by Tchetgen and Phiri (2014) in the presence of treatment-induced 

confounding, and are further extended to the polytomous mediator by Miles 

et al. (2015). 

As Robins and Richardson (2010) point out, different assumptions give different 

identifying expressions. It is sometimes not clear how scientists can choose an 

identification assumption when it lacks scientific justification, because they are 

often not refutable even by experiments. Our identified expression has the 

advantage that even when the no additional effect heterogeneity assumptions 

are inappropriate, it can still be interpreted as the interventional effect, to which 

the semiparametric theory and the quadruply robust estimator are still applicable. 

Finally, a reviewer inquire us about the possibility of handling high-dimensional 

(M, C) using this method. In such cases, the proposed semiparametric 

framework will require modeling of the marginal distributions of M and C and the 

joint distribution through a copula function, which could be a difficult task with 

high dimensional M and C. Even under a linear structural equation model with 

0( ) ( ( , ) | ) ( ( , ) | 0, )m m mQ X E q M X X E q M X A X  

0( ) ( ( , ) | ) ( ( , ) | 0, )m m mL X E l M X X E l M X A X  

( ( )) ( ( ))m mE Q X E L X 
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independent errors, bootstrapping may have non-standard performance as in 

El Karoui and Purdom (2018), and would require future theoretical investigation. 

Supplementary Materials 

A written supplementary material contains the proof of Theorem 2.1, 3.1, 3.2 and 

3.3, examples of copula for discrete and continuous data, further discussions of 

the stabilization procedure given in Section 4.2, and additional simulations. 

Supplementary files containing the codes for numerical results are also provided. 
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Fig. 1 The Causal Diagram with Treatment-induced Confounding 
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Table 1 Simulation Results: Bias ( Standard Error) 

Continuous C, M 

      

All correct  -5 (191)  -3 (151)  -4 (141)  -3 (139)  -4 (144)  

 is correct 10 (180)  87 (141)  89 (137)  88 (135)  2 (138)  

 is correct 77 (176)  3 (149)  599 (141)  600 (140)  4 (144)  

 is correct -1390 (369)  -189 (135)  -6 (134)  -187 (133)  -6 (135)  

 is correct 1589 (220)  1587 (187)  -359 (143)  4 (134)  4 (134)  

Binary C, M 

      

All correct  1 (154)  -1 (26)  -1 (26)  -1 (26)  1 (49)  

 is correct -2 (115)  176 (40)  175 (40)  176 (40)  3 (115)  

 is correct 44 (27)  1 (26)  12 (25)  12 (26)  1(26)  

 is correct 22 (30)  -4 (24)  -1 (24)  -4 (24)  -1 (25)  

 is correct 245 (44)  210 (46)  -9 (27)  -2 (27)  -2 (27)  
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Table 2 Simulation with sample size 500. Bias (Standard Error).  

Estimator        

all correct bias 0.04 -0.05 0.11 0.12 -0.05 -0.03 

 s.e. 24.17 20.73 3.80 3.75 4.64 4.41 

incorrect A bias 34.06 37.93 -0.16 0.23 -0.62 0.27 

 s.e. 145.11 174.94 3.67 3.66 18.35 5.29 

incorrect C bias 3.22 -0.49 1.88 1.88 0.18 0.18 

 s.e. 25.53 21.40 3.80 3.78 4.67 4.43 

incorrect M bias -9.29 -0.32 0.21 0.21 0.07 0.08 

 s.e. 22.19 21.13 3.73 3.67 4.14 4.17 

incorrect Y bias -0.14 -8.67 -9.31 -9.37 -0.33 -0.52 

 s.e. 23.53 21.41 4.21 3.99 4.83 4.75 

incorrect A,Y bias 98.40 108.50 -9.31 -9.08 -23.20 -4.58 

 s.e. 1660.12 2067.75 4.00 3.99 374.43 5.42 

incorrect A,C bias 32.82 33.79 1.62 1.66 1.08 1.09 

 s.e. 121.95 136.16 3.68 3.69 13.66 5.32 

incorrect C,Y bias 4.55 -8.74 -7.73 -7.76 0.89 0.50 

 s.e. 25.56 21.42 4.04 3.84 5.16 5.05 

incorrect M,A bias 27.58 33.61 -0.59 -0.19 -1.52 -0.27 

 s.e. 280.53 318.43 3.70 3.68 40.94 5.95 

incorrect M,C bias -7.26 0.70 1.75 1.72 0.28 0.26 

 s.e. 22.45 20.79 3.89 3.82 4.40 4.53 

incorrect M,Y bias -9.96 -9.53 -9.26 -9.26 -3.95 -4.21 

 s.e. 21.44 20.71 4.31 4.06 4.54 4.74 

incorrect M,A,C bias 27.55 32.56 1.61 1.64 1.14 1.22 
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Estimator        

 s.e. 124.22 129.27 3.66 3.66 20.28 5.41 

incorrect A,C,Y bias 38.36 38.20 -7.86 -7.95 -7.27 -2.86 

 s.e. 194.37 283.71 3.85 3.88 68.42 5.57 

incorrect M,C,Y bias -8.89 -10.00 -7.93 -7.89 -3.44 -3.36 

 s.e. 23.38 22.39 4.23 3.90 5.04 5.05 

incorrect M,A,Y bias 32.68 34.95 -9.54 -9.33 -14.88 -8.38 

 s.e. 241.50 183.98 3.71 3.71 71.32 5.23 

all incorrect bias 21.59 24.25 -7.58 -7.91 -10.50 -6.40 

 s.e. 88.88 97.63 3.79 3.85 23.99 5.17 
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Table 3 Simulation with sample size 1000. Bias (Standard Error).  

Estimator        

all correct bias 0.02 0.02 0.10 0.10 0.04 0.05 

 s.e. 17.00 14.87 2.64 2.62 3.20 3.13 

incorrect A bias 33.31 35.45 -0.36 0.03 0.29 0.01 

 s.e. 121.68 127.79 2.55 2.54 7.97 4.31 

incorrect C bias 3.54 -0.03 1.64 1.64 0.004 0.02 

 s.e. 16.92 14.36 2.64 2.60 3.36 3.19 

incorrect M bias -8.77 0.73 0.26 0.25 0.16 0.16 

 s.e. 15.46 14.68 2.75 2.68 3.06 3.14 

incorrect Y bias 0.95 -8.45 -9.25 -9.32 0.07 -0.07 

 s.e. 16.32 14.32 2.90 2.80 3.49 3.42 

incorrect A, Y bias 60.01 75.18 -9.35 -9.14 -18.24 -4.00 

 s.e. 501.58 771.00 2.91 2.89 182.44 4.53 

incorrect A, C bias 32.99 31.36 1.65 1.69 1.84 1.52 

 s.e. 66.38 64.52 2.59 2.59 7.17 4.38 

incorrect C, Y bias 4.10 -8.94 -7.80 -7.83 0.86 0.45 

 s.e. 17.12 14.71 2.86 2.75 3.54 3.45 

incorrect M, A bias 38.63 44.16 -0.26 0.14 -0.89 0.03 

 s.e. 202.86 224.69 2.56 2.56 30.09 4.75 

incorrect M, C bias -8.28 0.15 1.49 1.49 -0.14 -0.16 

 s.e. 16.15 15.43 2.64 2.58 2.91 2.98 

incorrect M, Y bias -8.57 -8.33 -9.13 -9.16 -3.92 -4.03 

 s.e. 16.02 15.64 2.93 2.78 3.28 3.45 

incorrect M,A,C bias 61.96 70.48 1.69 1.73 -1.42 1.37 
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Estimator        

 s.e. 670.96 748.10 2.65 2.65 117.83 4.64 

incorrect A,C,Y bias 33.15 32.34 -7.78 -7.88 -6.13 -2.46 

 s.e. 60.71 81.40 2.64 2.66 14.31 4.16 

incorrect M,C,Y bias -7.78 -8.88 -7.88 -7.90 -3.40 -3.30 

 s.e. 15.72 15.29 2.79 2.66 3.23 3.44 

incorrect M,A,Y bias 58.51 74.34 -9.31 -9.11 -25.19 -7.81 

 s.e. 560.11 822.28 2.82 2.83 264.87 4.66 

all incorrect bias 55.19 74.10 -7.41 -7.75 -26.31 -5.80 

 s.e. 744.14 1132.02 2.63 2.68 388.65 4.63 
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Table 4 Estimation of Direct Effect of Better Prenatal Care on Preterm Birth 

Estimator  Direct Effect Estimate Bootstrap 95% CI 

 0.026  (0.016, 0.036)  

 0.028  (0.018, 0.037)  

 0.027  (0.018, 0.036)  

 0.027  (0.018, 0.036)  

 0.025  (0.016, 0.034)  

 

1̂

2̂

3̂

4̂

ˆ
quad

Acc
ep

te
d 

M
an

us
cr

ipt


