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Abstract 6

Natural mediation effects @Jf interest when the goal is to understand a
causal mechanism. Ho , Most existing methods and their identification
assumptions preclu ent-induced confounders often present in practice.
To address this ntal limitation, we provide a set of assumptions that
identify the rect effect in the presence of treatment-induced

confo ) n when some of those assumptions are violated, the estimand
still has ¥n interventional direct effect interpretation. We derive the
semiparametric efficiency bound for the estimand, which unlike usual
expressions, contains conditional densities that are variational dependent. We
consider a reparameterization and propose a quadruply robust estimator that
remains consistent under four types of possible misspecification and is also

locally semiparametric efficient. We use simulation studies to demonstrate the


http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2021.1990765&domain=pdf

proposed method and study an application to the 2017 Natality data to
investigate the effect of prenatal care on preterm birth mediated by preeclampsia
with smoking status during pregnancy being a potential treatment-induced

confounder. Supplementary materials for the article are available online.

Keywords: Copula; Natural Direct Effect; Treatment-induced Confounding;

Multiply Robust Estimator; Interventional Direct Effect.

1 Introduction Q\
L 2
When a treatment has an aggregated effect on an outcome, its ca&\

mechanism related to intermediate variables along the causal ;@y is often of
interest. The study of such a treatment effect mechanismy s the estimation
of direct and indirect effects. An effect is called direct v@does not act

through some intermediate variables, known a ia Conversely, the effect

sm 1®ys.
' % fect. Intuitively, to evaluate

w fixed. Depending on the

that acts through the mediators is called t

a direct effect, the mediators need to

scientific question of interest, a varg eCt effects can be defined through

different ways of fixing the mediat e natural (pure) effects are most
relevant in studying treatment echanisms. The natural direct effect
compares potential outco r treatment and control conditions with

mediators fixed to the ey would have taken had there not been any

treatment. The nat Irirdct effect is thereby defined by subtracting the natural

direct effect frorg th@total treatment effect.

tial outcomes framework (Rubin, 1974; Rubin, 1978), the

f the natural direct effect is formalized by Robins and

Greenland (1992) and Pearl (2001). A considerable number of methods have
been developed for the identification and inference of the natural direct effect
when all confounders are pre-treatment variables (Pearl, 2001; Pearl, 2009;
Petersen et al., 2006; Imai et al., 2010; Hafeman and VanderWeele, 2011;
Tchetgen Tchetgen and Shpitser, 2012). Although methods for handling pre-



treatment confounders are well studied, they cannot be directly applied to
treatment-induced confounders, since they are in the causal pathway between
the exposure and outcome of interest. In fact, treatment-induced confounding
presents unique challenges to the estimation of natural direct effects, since
common identification assumptions in the absence of treatment-induced
confounding, such as sequential ignorability (Imai et al., 2010), can no longer
identify the natural mediation effects when treatment-induced confoundingy
present (Avin et al., 2005; VanderWeele and Vansteelandt, 2009). Eve &
stronger assumptions such as nonparametric structural equation

independent errors (NPSEM-IE) common in graphical modelin %ral
direct effect is still non-identified in the presence of treatme

confounder (Robins and Richardson, 2010; Tchetgen Tc %a
VanderWeele, 2014). Therefore, both the |dent|flc&\

estimation of natural mediation effects in the pr

ptions and
treatment-induced
confounding are substantially different fro Wlth only pre-treatment

covariates.

In practice, treatment-induced co dlers often exist, particularly when the
mediators occur much later th reatment. In this case, some immediate
prognostic factors affecte &atment can be related to both the mediator
and the outcome (Robl ). One example that was given by Vansteelandt
and VanderWeel o considered the effect of adequate prenatal care on
preterm birt Cdlates through preeclampsia. On one hand, smoking status
durin regé confounds the relationship between preeclampsia and preterm
birth b s&it reduces the risk of preeclampsia while increasing the likelihood
of preterm birth. On the other hand, adequate prenatal care may decrease or
eliminate smoking. Therefore, smoking status during pregnancy is a potential
treatment-induced confounder between the mediator preeclampsia and the
outcome preterm birth. While maternal smoking and preeclampsia can be

grouped together as a vector mediator in a mediation analysis (VanderWeele

et al., 2014), the joint indirect effect would involve both social and biological



mechanisms which may not have the most desired scientific interpretation. When
we are interested in a specific mediator, and the goal is to estimate the direct
effect and the indirect effect with respect to this specific mediator, the part of
treatment effect that goes through the treatment-induced confounders is not of
interest, thus the joint effect is not sufficient to answer the question of interest.
Therefore, in many settings, it is often desirable to study the natural direct and
indirect effects defined with respect to a specific mediator, while other \

intermediate variables are treated as confounders. . Q
n

There has been limited methodological development addressing h
analysis with treatment-induced confounding, Robins (2003) pr&idgs an
independence assumption between individual level pote '@ome difference
and mediators but Petersen et al. (2006) and Imai an %moto (2013)

. Robins and

erWeele (2014) each

y structural equation models.

suggest that this assumption is unlikely to hold in
Richardson (2010) and Tchetgen Tchetgerggn
provide additional assumptions to thosea S
Alternatively, estimands different figm th ral direct effect are also

considered to quantify certain dire @s indirect effects in the presence of

treatment-induced confoundin gerWeele et al. (2014) summarize three

such approaches to decq e effect of a treatment when there exists

treatment-induced con g: joint effect of mediators and other treatment-
induced confoun r@ati®g the latter as part of the mediators), path-specific
effects, and i erngional effects.

) and Shpitser (2013) provide identification conditions for path-

Avin e
specific &fects. Miles et al. (2020) provide semiparametric inference of a path-
specific effect that goes through a mediator without going through its treatment-
induced confounders. The interventional direct effect (VanderWeele et al., 2014)
is an analog of the natural direct effect that replaces the potential mediator with a
random draw, which is independent of the potential outcome, from the

distribution of the mediator among the non-treated. VanderWeele and



Tchetgen Tchetgen (2017) define interventional effects with time-varying
exposures and mediators. The estimand is also used in mediation analysis with

multiple mediators (VanderWeele and Vansteelandt, 2014; Daniel et al., 2015).

In this paper, we propose a new set of identification assumptions for the natural
mediation effects in the presence of treatment-induced confounding without
invoking structural equation models, and the identified expression remaing to
have a causal interpretation even when certain assumptions are violate
addition to studying the identification of natural direct effect with tre&x
induced confounding, we found that, unlike usual expressions, t %I
influence function contains conditional densities that are not @al

c@s to address the

independent. We consider a reparameterization based o
ér is quadruply

problem of model incompatibility. The corresponding e

robust, that is, consistent under four types of missggifi®ation of nuisance

models. %

The rest of the paper is organized as fo N Section 2, we introduce the
proposed identification assumptiorw the expression of the identified natural
direct effect. We explain the c between our identification results and
that of the interventional d&@t. In Section 3, we propose four moment-type
estimators and a quadr st estimator. In the process, we derive the
efficient influence f@n ence the semiparametric efficiency bound) of the

effect, propose a variation independent parameterization,

numer ations to demonstrate the proposed methods. In Section 5, we
apply ou§ymethod to the 2017 Natality data to estimate the effect of prenatal care
on preterm birth mediated by preeclampsia with smoking status during
pregnancy being a potential treatment-induced confounder. We conclude the
paper with some remarks in Section 6. Technical proofs are given in the

supplementary materials.

2 Assumptions and Identification



We denote the treatment as A, the outcome as Y, the mediator as M, the set of
treatment-induced confounders as C, and the set of pre-treatment or baseline
covariates as X All variables may be multivariate. Figure 1 demonstrates the
causal diagram, showing that (C, M) are between the causal pathway of 4 — Y.
The set of covariates Xis omitted for simplicity because it has arrows to all other

variables in the causal diagram.

The potential outcome Yz and the potential mediator M; are the values

outcome and the mediator would have taken had the treatment beeﬁ

definitions only make sense when there is a well-defined |nterv

treatment A so that it can be set to the value a (Rubin, 197

Robins and Greenland, 1992; Pearl, 2001). Similarly, % are well-defined
interventions for A, C, and M, the potential outcome Y&e value the
outcome would have taken had the treatment bee treatment-induced

confounder been ¢, and the mediator bee ume the composition (also

called recursive substitution) holds su

M,=M,. . Other conditions are nagded

aC,M, )]am = Y;Cum ’ and
reliminaries of identification: The

consistency assumption that impli = Cand M= Mwhen A= g; =Y

when A=a,C=c,M =m, gnd sitivity assumption that implies
f(m|A,C,X)>0, f(c| A4, a| X) >0 with probability 1 for all m, ¢, a.
When the treatmen@\ , the average natural direct effect on a difference
scale is definedfas Y., 1. It depicts the expected effect of the treatment
when the m@;r is fixed at the value it would have taken had there not been
any tre » A set of assumptions sufficient to identify the natural direct effect

in the pr&@sence of treatment-induced confounders are given as follows: for all m,

¢, and g,

Assumption 2.1. {Y, ,C,,M} 1 4| X .

am?

Assumption2.2. ¥, UM |A=a,C =c, X



Assumption 2.3. E[Y,., — Y., | M, =m,X]1=E[Y,., =Y, | X]
Assumption 2.4. E[Y,., =Y., | M, =m X]=E[Y,, — Y. | X]

Assumptions 2.1 and 2.2 are ignorability assumptions that are implied by the
assumptions of no unmeasured confounding between the treatment and post-

treatment variables, and between the mediator and the outcome respectively.

Assumptions 2.3 and 2.4 imply that there is no additional heterogen’eitQ

direct effect of A, or in a pure indirect effect of A that goes through &

levels of M. To put it in the data example, where the treatmentg uate

prenatal care, the treatment-induced confounder is smokin regnancy,

the mediator is preeclampsia, and the outcome is preterm %

2.3 implies that the direct effect of adequate prena% n preterm birth that
sa

goes through neither smoking nor preeclampsi
would or would not get preeclampsia witho§¥&d

he assumption

me among those who
te prenatal care. Similar
interpretation can be made with Assum 4, which concerns the effect that

goes only through smoking during nan

Theorem 2.1. Under assur% . 1-2.4, the natural direct effect E[Y,,, —Y,, ]

/s identified as follows:

AEEX(EM:W:O,X{E , A=1,C.M =m, X]—- W
EC\A:O,XE[Y | A=@, = maX]})
Intere ,C)identification result gives the same empirical expression as the

intervenfOnal effect (VanderWeele et al., 2014; VanderWeele and

Tchetgen Tchetgen, 2017). The interventional direct effect is defined by replacing
the potential mediator with a random draw from the distribution of the potential
mediator M that is independent of the potential outcomes, and requires only

Assumptions 2.1 and 2.2 for identification. In fact, when A% is being replaced by



arandom draw M, Assumptions 2.3 and 2.4 are immediately satisfied because

M, is independent of {Y _.C. }.

acm >

Note that assumptions 2.1 and 2.2 are “single world” assumptions (Richardson
and Robins, 2013) because the treatment is set to be the same in all post-
treatment variables in these assumptions. For “single-world” assumptions, one
can conceptualize an ideal experiment that intervenes on A and M such that
assumptions 2.1 and 2.2 hold, so as to such an experiment to verify the &
from non-experimental data. However, identification of natural direc? Il
inevitably involve “cross-world” assumptions where no experime anve
designed to satisfy those assumptions, even when there is ng tRgatflent-induced
confounders (Imai et al., 2010; Petersen et al., 2006). %

Although assumptions 2.3 and 2.4 are “cross-worlgfa thions, they do not
involve many “cross-world” independence ss% as in NPSEM-IE
(independence between Yacm, M. ang C,)\ a,a',a",c,c’ and m), and
additional assumptions such as indepen between Co and Ci as studied in
Robins and Richardson (2010). In

assumptions are given in Secj

ition, a sensitivity analysis of these

en there is no treatment-induced
confounder, C becomes p& ssumption 2.4 becomes redundant, and
assumption 2.3 reduce @ at in Petersen et al. (2006). The identification of the

natural direct effect

EX[EMmAO’G@ LM=mX)-EY|A=0,M =m,X)}],

which i}j#fe Same empirical expression as the natural direct effect identified by

the sequéntial ignorability assumptions (Pearl, 2001; Imai et al., 2010).

3 Semiparametric Inference

3.1 Moment-type Estimators

Denote the identified expression of the natural direct effect in Theorem 2.1 as A,

which is the estimand of interest for the remaining sections. The observed



independent samples are (X,,4,,C,,M,,Y),i=1,...,n. With slight abuse of
notation, the density (mass) functions are denoted by 7 The estimand A can be

represented in four alternative ways, each leading to a possible estimator.

Theorem 3.1. A=A, =A,=A,=A,, where

A1=EXACMY{ 24-1 f(M|A=O,X)Y},
T fAX) f(M]A4,C,X)

24-1
A=Ey jev o Nex (A, L 4
2 XA, {f(A|X)77( )} \Q
1-4 &
Ay = EX,A,M { (7M,X - Vm.x (0))} 5 0

f(4=0[X)

A4:EX{TX(1)_TX(O)}’ 06
where Q

Nex(@=[EQY|4=a,m.C.X)[f(m| 4=0,X)
(@)= [E(Y|A=a,m,c,X)f(m| A=0, = a, X)dmdc,

Vurx(@=[EY|A=a,M.c.X)f(c 6}0@
The first moment-based e&@l is a fully weighted version of the target

estimand. The weight i y the product of the inverse probability weights,

and the density rati n the marginalized density of M/ without treatment

and a condition of M. Intuitively, this density ratio creates a pseudo
he distribution of Mfollows f(M|A=0,X). The last

estimator A, is a fully marginalized version of the target

population i why
mome
estiman®that has a similar form as the mediation g-formula

(Robins, 1986; Tchetgen Tchetgen and VanderWeele, 2014). Both A, and A,
are partially marginalized, partially weighted versions of the target estimand.
They are both inverse probability weighted marginalized expectations. Compared

with the case when treatment-induced confounders are absent,



Tchetgen Tchetgen and Shpitser (2012) proposed a fully weighted estimator, a

fully marginalized estimator and one partially marginalized estimator.

Based on different representations of A, we consider four estimators A, A,, A,,
and A, that replace conditional expectations or densities in A, A,, A, and A,
with their estimates and the outer expectation by the empirical average. When Y,
M, and C are discrete and low dimensional,

FY|A,M,C,X), f(M]|A,C,X), f(C|4,X),and f(4|X) can be empiric \
probability mass functions, and E(Y | 4,M,C,X) is the expectation &

f(Y| A,M,C,X) . The integrals in the estimators become finite s arM tive four
estimators are nonparametric. In practice, however, Mand C likply to be
multivariate and continuous, thus we use parametric mo I@he purpose of
dimension reduction. The four estimators are consis r@v nuisance
parameters for each part of them are consistentl@im ed. In particular, with

the rest of the models unrestricted, Al is C nd asymptotically normal

when f(4]|X), f(M|A=0,X) and f(

consistent and asymptotically normg

are correctly specified, A2 is

f(M|A4=0,X) are correctly specifed\\, is consistent and asymptotically

normal when f(A4|X), E(Y] A ,and f(C|A4,X) are correctly specified,

and A, is consistent andg tically normal when
E(Y|A,M,C,X), f( % ),and f(C|A4,X) are correctly specified. When

the outcome mo igkartand thus collapsible, or when mediators and

treatment-in nfounders are categorical, numerical integration is not
neces fm calculation of integrals 7, 7, and y, since the expressions can
be sim - When the outcome model is non-collapsible, e.g. a logistic
regressioh model, and the mediator and/or the treatment-induced confounder are

continuous, we need to use numerical integration for computation.

3.2 Efficient Influence Function and the Quadruply Robust Estimator

Next, we derive the efficient influence function of A under a nonparametric model
M

non ?

which does not impose constraints on the observed data.



Theorem 3.2. The efficient influence function of A in M__is:

non

w_ 24-1 f(M]|A4=0,X)
P SA]X) f(M]4,C.X)

(Y—-E[Y|A4,M,C,X])+

24-1 24-1 1-4

X A) - Ty A ———Vux 1) — " x 0
Tl Tex D=7 A+ s e 071 O
+(1_f(11;—|AX)){Tx(1)—TX(O)}—A.

X\

Hence, the semiparametric efficiency bound for the estimation of A¢n

E[S{"SS", and the asymptotic variance of any reqular as ympz‘oz‘/'n‘&/&
estimator of A in M, must be greater than or equal to the ba.@

The efficient influence function is a function of f(4|X), ;E ), f(M|A4,C,X)
$ag models for these

and E(Y|A4,M,C,X). While we may posit parametrj
functions, a complication arises because f(C| X (M| A4,X), and
f(M|A,C,X) are not variation independe

refore model incompatibility
may occur. Richardson et al. (2017) p hat the multiple robustness

property is relevant only when mod&hincoratibility can be avoided.

We consider reparameteri in@al distribution f(M,C| 4,X) into three parts:
the two margins conditio and X f(M|A,X),f(C|A,X) and their

bd using a copula condition on A and X. A copula is

dependence structur

a multivariate cu di%tribution function with uniformly distributed margins
é’xiled discussion on copulas is given by Joe (1997),

on [0,1]. A

Nelse O@Vd Jaworski et al. (2010). For notational simplicity, we consider
univari nd C, and a bivariate conditional copula with support contained in
[0,1]°:

Cluy,u,) = P(U, <u,U, <u,),

where P(U, <u,)=u,. Sklar’'s theorem (Sklar, 1959) allows separate modeling of

these three parts. In other words, the joint distribution F(M,C| 4, X) is uniquely



determined by f(M | 4,X), f(C|4,X), and C(FM|A,X(m)’FC\A,X(C)|A>X) that can
be modeled independently. Examples of copulas for continuous, binary, and

mixed continuous-binary MM and C are given in the supplementary materials. In
multivariate cases, the vine pair copula construction (Panagiotelis et al., 2012)

can be used to construct the joint distribution.

Let P, be the empirical measure. With the variation independent
parameterization, we construct a locally efficient estimator based on the ing

estimating equation:

0\
PSS (A o) = 0. C}

S‘fo is evaluated where all components of the inﬂuencefﬁ are replaced by
their parametric working model: f(a| X) is replac&Q alX), f(c|4,X) is
) (

replaced by ™ (c| 4,X), f(m| 4,X) is replace m|A,X), and
E(Y|A4,M,C,X) is replaced by EP (Y| 4, n particular, f(m,c|A4,X) is

replaced by /™ (m,c|4,X), which is m
[P (m| 4,X), f*™(c| 4,X), and the Ngpula

3

' Xi)J}par(Ci |Ai’Xi)

by the two marginal distributions
- (FM\A,X (m)’FC\A,X (©)]4,X).

Therefore, Aq takes the folloydn

uad

fpm(Ai |Xl)

24 —1
P ol B
ST X)

1, 24-1 ™M, g
_z( i f ( {Y;—Ep (Yi’AiaMwCi’Xi)
n i=1

(7o =7, @) - {#r - 0)] |

+HEF O\ O)).
(2)
This estimator is quadruply robust in the sense that only one out of four sets of

models needs to be correctly specified for it to be consistent and asymptotically

normal as given in Theorem 3.3.



Theorem 3.3. The estimator A__, is consistent and asymptotically normal under

quad

some mild regularity conditions discussed in the supplementary materials if one

of the following four conditions holds:

1. M (A X), fP(C[A,X), [P (M| A,X), C™(Fy, x(m), Fyy (€)| 4,X)
are correctly specified.
2. M, ff(A| X), ff"(M | 4,X), E" (Y| 4,M,C,X) are correct/yspec ed.
3 M ff(A|X), fF(C|l4,X), E (Y| A,M,C, X) arecorrect/ys
4. M,
S™M[A,X), f7(CA4,X), C™ (Fyy x (), Fryy x (0)| 4, X)

are correctly specified.

It is locally semiparametric efficient in the sense that i s the
semiparametric efficiency bound at the mz‘ersecﬂoQ submodels where all

four conditions hold, thatis, at M, .. = r%

Due to the complexity of the quadruply stimator, the multiple robustness

is not easily seen directly from its fgig. We'explicitly illustrate the robustness of

the estimator under M, as an . The large sample limit of the estimating
@s can be written as the sum of

equation for the quadrupl timator A

four parts: g
24 @ | A= OX)

finacx M| 4,C, X)

2. ! nC,X<A>}—E{ 24-1_ Juax M| )E(YIA,M,C,X)}

quad

AX A‘X) fA|X(A’X) fM|A,C,X(M’A’C7X)

" . 24-1 «
3. E{r,()- TX(O)}_E{m TX(A)} ,

. E( 1(A4=0)

* * * * \
MXI_MXO_ Xl_XO )
LfA\X(A=0|X)[{7 x D=7y x O} ={z, (1) T()}]J



where quantities with superscript * represents the components that are
incorrectly specified under M, . Note that the except for the first term, all other
terms include misspecified quantities. We proved that each of the four parts
equals to 0 in the supplementary materials. Similarly, under each of M,, M, and
M,, the large sample limit of the estimating equation can be rewritten into sum of
four parts where one of it contains the correctly specified quantities only and the
other three contain mis-specified quantities, but that all four parts can be wn
to be 0. Details are given in the supplementary materials. Notice tha’t th K
estimators proposed in section 3.1 are such that Al, whose estimatj

conducted using the copula parameterization, is only consisten

only consistent under M,, A, is only consistent under M, c)ls only
consistent under M, . In contrast, the quadruply robus’@ A,... Femains
consistent under four types of misspecification, whi more modeling

flexibility. In other words, A is consistent an totically normal at the

quad

intersection submodel.

Remark 1. Since the quadruply roBgt es tor involves weighting and the
weights could be unbounded whe /s are mis-specified, the resulting
e of M, fo M, holds (Kang et al., 2007). To

ts thereby improve the finite sample

estimator can be unstable

improve the stability of {
performance of the robust estimator, we extend the methods proposed

in Robins et al. m d Tchefgen Tchetgen and Shpitser (2012) to our setting
e

careful construction of estimating equations for working models and needs fo be
considered case by case. In Section 4.2, we give an exact procedure under a

certain simulation setting.

Remark 2. While there are other parametrizations of joint densities of (C, M),

such as Chen (2007) whose decomposition depends on two conditional



distributions and a odds ratio function, it appears that these characterizations
would not ensure multiple robustness because marginals of C and M are part of

the robustness conditions in Theorem 3.3.

3.3 Related estimands

One favorable feature of the natural direct effect is that the average treatment

effect, defined as E[Y, —-Y,], can be decomposed into the sum of the aver
natural direct effect and the natural indirect effect: E[Y,, —Y,, 1. While t &al
t

L 2
indirect effect is not the focus of this paper, similar results can be ag¥%
since the average treatment effect is identified under assumptiogs® . N\ The natural

indirect effect is then identified as the difference between thgm gred average
% 2.1. We should

note, however, that the identified natural indirect effgagiNgifFerent from the

interventional indirect effect. This is consistent% ct that the interventional

e average treatment effect

treatment effect and the natural direct effect identified in

direct effect and indirect effect do not sum
(Vansteelandt and Daniel, 2017). The

be extended for the natural indirect\gffect. S@pecifically, we can construct a
quadruply robust estimator for the @ Bl indirect effect by the difference

between the augmented i@bability weighted estimator for the average

treatment effect (Robins W994; Robins, 2000, Tsiatis, 2007), and our
proposed quadruply, timator. The augmented inverse propensity
weighted estimn sistent if either the model for the propensity score or the

etric estimation theory can also

regression the mean outcome is correct. Notice that for each of M,,
M, ' the condition for the doubly robust average treatment effect
estimat®being consistent is satisfied. Therefore the quadruple robustness

extends to the natural indirect effect.

Although we studied the natural direct effect defined as a difference in
expectations, this effect can also be defined on other scales, such as a ratio
scale E(Y,,, )/ E(Y,,, ).Because E(Y,, )= E(Y,) is identified under assumption

2.1 and can be estimated by the augmented inverse probability weighted



estimator £(Y,), E(Y,,, ) can be estimated by A+ E(Y,) . Therefore, any functions
of E(Y,,,) and E(Y;) can be estimated and the asymptotic variance can be
derived using the delta method. However, since the identification assumptions of
A are given on the difference scale, extra care is needed when interpreting the

natural direct and indirect effect defined on other scales.

4 Simulation study

4.1 Demonstration of Theoretical Results

L 2
We use numerical simulations to demonstrate the theoretical resul &in
the previous section. We compare the finite sample performang€ of moment-
based estimators given in section 3.1 to the proposed quad% ust
estimator. We generate 1000 samples, each with 150QJn dent
observations, for both continuous and binary treatr@ ced confounder and
mediator. We consider the moment estimators@, A,, A, and the quadruply

C

robust estimator A Let expit denote the

expit(x) = exp(x)/ (1+exp(x)) .

quad "

The data are generated as follows:

Continuous C and M 6
X ~N(0,1;P(4=1]| X) = e)@ 0.6X);

C(Fyyx (m), Fppy ()| 4 aussian Copula with correlation 0.2,
where F,\, (m) =0 "Wy =3+24+4X,0, =5,
Foy x@;_—ﬂ”),uc —1424+2X,0, =4,
, -
Y~1+ +3C+5X +4AC+2AM + N(0,4%).

Binary C and M



X ~N(0,1); P(A=1| X) = expit(-0.2+0.3.X);
C(Fy4x (m), Fpy x (€) | 4, X) is a Plackett Copula with Odds-Ratio exp(1-24+3.X);
where F,,, (m)= p, (1- ) "D, =expit(—0.3-0.24+0.5X),
FC‘A,X (c)=p.(1- pc)l_c, p. =expit(-0.2-0.14+0.3X),
Y ~1434+6M +3C+6X +4A4C +24AM + N(0,4%).

We compare the five estimators under a series of model misspecifications by
replacing the baseline covariates Xwith an independent normally dlstrlbut
continuous variable Xz with mean 0 and variance 1. The true natura&d
effects are 26.01 and 5.50 for the continuous and binary cases, re
Table 1 shows that the simulation results are consistent with th@ tical
results derived in the previous sections: when the entire lik s correctly
specified, all five estimators are consistent; when the ? | expectation of Y
Y

is mis-specified, only A, and Aquac are conS|stent arametric model for

f(C|4,X) is mis-specified, only A, and Aguaq |stent when the
parametric model for f (M | 4, X) is mig-sp Iy A, and Aguaq are
consistent; when the propensity score X) is mis-specified, only A, and
Aquaq are consistent. The loss in e cy for the quadruply robust estimator is

relatively small compared to om ators in all cases. Since A, consists of a

density ratio, it is more variégl n the mediator Mis continuous, which makes

it less preferred even w @

but we ran simulati@.

We also inc mparison with the triply robust estimator proposed in

is correct. We only present one scenario here,

different settings and they all gave similar results.

Tchet en and Shpitser (2012), which assumes the absence of
treatmeg-induced confounding. We consider two cases, with bias and standard
error multiplied by 100 as in Table 1. First, where Cis ignored in the estimation,
and only use (Y,M, A, X) in the estimation. The sampling bias (sampling
standard error) is —2577.83 (164.60) for continuous mediators and —93.10 (65.84)
for binary mediators. Next, we erroneously treat C as a pre-treatment covariate

and condition on (C, X) in all working models of the triply robust estimator. The



sampling bias (sampling standard error) is —2192.33 (172.94) for continuous
mediators and —96.49 (65.60) for binary mediators. Therefore, ignoring treatment-
induced confounders or treating them as pre-treatment covariates could lead to

substantially biased results.

4.2 Practical Violation of Positivity Assumptions

Next we consider a scenario similar to Kang et al. (2007) in which the posjiyity of
the treatment assignment probability is practically violated under model

misspecification. The data are simulated as follows:

0\
X=(4,2,,2,,Z,)~ N(0,1,), where I where é
A~ Bernoulli(p,), where p, =expit(—Z,+0.5Z, —0.25Z, @%

C ~ Bernoulli(p,), (where)p, = expit(—1.6 +2A4+Z —@ 0.62,-7,);
—a!.S

M ~ Bernoulli(p,,), where p, = expit(—1.gg&2 Z,+092Z,-Z2,);

C(Fpy 0 (M), Friy 1 (€) | 4, X) is a Plackg Coput with odds ratio exp(1.2);

Y~210+4+M —50C+27.K@Z2 +13.7Z, +13.7Z, + N(0,30°).

Instead of observing the e observe transformations of them:

X, =exp(Z, /2),&1+exp(21)}+10, X, =(Z,2,/25+0.6)’, X, = (Z, + Z, +20)".

Corre iii#d model should include the true “latent” covariates
(Z,.Z,,MZ,). Instead we replace them using the “observed” covariates
(X,,X,,X;,X,) in misspecified models. The true natural direct effect is —14.57 in

this case.

When models are mis-specified, the weights in the quadruply robust estimator
can be unbounded, and the resulting estimator can be unstable when none of

M to M, holds. In fact, the weights can be unstable even when the models are



well-specified under practical violation of positivity (Westreich and Cole, 2010).
As mentioned in Section 3.2, a stabilized quadraply robust estimator would be
desired to handle such a case. It can be written in the form

Af

rat =PATL ()= 71(0)}, where 7}.(1) and 7} (1) are estimated in a manner that

ensures quadruple robustness. Note that the definition of the target estimand is

A=E[r,(1)-17,(0)], hence the quadruply robust estimator Aj} lies in the range

uad

of the target estimand A as long as 7, (1)~ 7% (0) lies in the same range. a
continuous Yand binary A, Cand M, a stabilized estimator is constr’uch

the following procedure: &\

1. To estimate f”’“”(C| A=a,X) using a weighted logisj rgksion in the
group with treatment a with weights 7" (a| X)™".

2. To estimate f”"”’*(M | A=a, X) using weighte i regression in the
group with treatment a with weights 7 @

3. Toestimate E[Y|X,M,C,A=a] in

weighted least square regressi ' ights

7 part _ > part _
fﬁar(a|X)—1f (MJA_Oﬂ (C|A_a9X),
fparT:EE =a,X)

\d’) is estimated using the estimated copula and
ns /*"(C|A=a,X) and f™'(M|A=a,X).

ith treatment a using

where f*(M,C,

two marginal

Tables 2 and f@xarize the simulation results for the four moment based

estimajors agd tPe quadruply robust estimator for sample sizes 500 and 1000,
with 10 pendent replications in each scenario. Note that when two or more
models incorrect, none of M, to M, holds. In most of these scenarios, the
stabilized version of the quadruply robust estimator has smaller bias than all
other estimators, including the original quadruply robust estimator. When only
model f(A4|X) is incorrect, M, holds so the unstabilized quadraply robust
estimator has small estimation bias, but the stabilized estimator reduces the

sampling standard errors substantially. When M, to M, holds and under the



intersection model, the sampling bias and standard derivations of the
unstabilized and stabilized quadraply robust estimators are very similar. The
stabilized version of the quadruply robust estimator is recommended in practice
because it has a better performance both in terms of bias and standard error

than the unstabilized version.

5 Data Example

We use the 2017 Natality data (https://wonder.cdc.gov/natality.html) for
occurring within the United States to U.S. residents to illustrate our

focus our analysis on the subset of participants that are AIAN ( Q Indians
or Alaskan Native). Subjects with missing data (<9.5% of t ) are
excluded. The total number of observations is 27,138. 0@

We are interested in estimating the direct effect of@al care (A) on preterm
birth (Y) not through preeclampsia (M). As i@ in the introduction,
a

smoking status during pregnancy (O) i jal treatment-induced

confounder. The adequacy of prengtal calg iS'determined by the Adequacy of

Prenatal Care Utilization Index (K¢flel8guck, 1994), which depends on the month

prenatal care began, the total@ of prenatal visits, and the gestational age
at the time of delivery. In t1{ENg sample, the level of prenatal care is either
inadequate or intermed
(OE) (Martin et al.

are potential o@ders include maternal demographics: age, education level,
<(at:¥

and mgrital . Assumption 2.3 implies that the direct effect of prenatal care

reterm birth is defined using the Obstetric Estimate

oMNthe gestational age. The baseline covariates (X) that

on pret h (that goes through neither smoking nor preelampsia) is the same
among tfse who would get preelampsia without adequate prenatal care, and
those who would not. Similarly, Assumption 2.4 implies that the mediated effect
of prenatal care through smoking is the same among those who would get
preelampsia without adequate prenatal care, and those who would not. If these
two assumptions are violated, meaning that the potential preelampsia status

without adequate prenatal care modifies either the direct effect of prenatal care



or its mediated effect through smoking, then the estimated effects can be

interpreted as interventional effects, as explained in section 2.

Since both the smoking status and the preeclampsia status are binary, we use
the Plackett copula with a cross-ratio (odds ratio) specified using a log link.
Logistic regression models are used for the binary treatment and outcome, as
well as the distributions of Cand Mgiven A and X. The parameters of the copula
are estimated by the maximum likelihood method. The bootstrap confide

intervals are computed for the purpose of inference. *

The estimated direct effect of better prenatal care (intermediat ca&ersus
inadequate care) not through preeclampsia decreases the eterm birth by
2.5% (1.6%, 3.4%), leaving a tiny indirect effect throug@ mpsia that
increases the risk of preterm birth by 0.15% (0.07‘%@ 0). The moment-type
estimators give similar results (Table 4). Thjs i% ent with VanderWeele

et al. (2014) who studied this problem gn a population.

6 Discussion

In this paper, we identify the n ct effect in the presence of treatment-
induced confounding, and Yr miparametric bounds and propose a
quadruply robust estimg Q‘ method can be applied to continuous,
categorical, and mt@ & outcomes, and to mediators and treatment-induced

confounders. c)

When ti n assumptions may be violated, sensitivity analysis can be
useful tfassess how vulnerable the estimator would be. Inspired by
Vansteelandt and VanderWeele (2012) and VanderWeele and Chiba (2014), we

can consider the following two sensitivity functions:

qm(MO’X):E[}IICIm _Y()Clm |M0 :m’X]_E[YlClm _},()Clm |MO’X]’
lm(MO’X):E[YOC]m _}/()Com |M0 :m,X]—E[Yqu _Y()Com |MO’X]



The former captures the heterogeneity in the direct effect of the treatment across
different subgroups defined by potential mediators under control and baseline
confounders, and the latter captures the heterogeneity in the indirect effect of the
treatment through the treatment-induced confounder across different subgroups.
Let O (X)=E(q,(M,,X)|X)=E(q,(M,X)|A=0,X) and

L (X)=E(I,(M,,X)|X)=E(,(M,X)| A=0,X), then assumuption 2.3 and 2.4
corresponds to Qn» = 0 and L, = 0 respectively. Assuming the sensitivity \

functions to be known, the natural direct effect can be identified as o
A+ E(Q, (X)) +E(L, (X)) . \

Another possible direction is to develop bounds when identif'!;E®ssumptions

are relaxed. However, bounds are often developed for c ighl data where
linear inequality constraints may be specified. Boun thPnatural direct effect

for a binary mediator are given by Robins and RiciMgds®n (2010), which are

extended by Tchetgen and Phiri (2014) in e of treatment-induced
confounding, and are further extende tomous mediator by Miles
et al. (2015).

As Robins and Richardson (2 out, different assumptions give different
identifying expressions. It | mnes not clear how scientists can choose an
identification assumptiQn it lacks scientific justification, because they are
often not refutable @ periments. Our identified expression has the
advantage that@ en the no additional effect heterogeneity assumptions

are inapprofriatq, It can still be interpreted as the interventional effect, to which

the se \@» aetric theory and the quadruply robust estimator are still applicable.

Finally, a reviewer inquire us about the possibility of handling high-dimensional
(M, C) using this method. In such cases, the proposed semiparametric
framework will require modeling of the marginal distributions of //and C and the
joint distribution through a copula function, which could be a difficult task with

high dimensional /MM and C. Even under a linear structural equation model with



independent errors, bootstrapping may have non-standard performance as in

El Karoui and Purdom (2018), and would require future theoretical investigation.

Supplementary Materials

A written supplementary material contains the proof of Theorem 2.1, 3.1, 3.2 and

3.3, examples of copula for discrete and continuous data, further discussions of

the stabilization procedure given in Section 4.2, and additional simulationxj
gl

Supplementary files containing the codes for numerical results are also
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Table 1 Simulation Results: 100 x Bias (100 x Standard Error)

Continuous C, M

A ~ A ~

A, A, A, A, A guad
All correct (-5 (191)  |-3(151) |4 (141) (-3 (139) |-4 (144)
M, is correct|10 (180) |87 (141) |89 (137) |(88 (135) |2 (138)
M, is correct|77 (176) |3 (149) 599 (141) |[600 (140) |4 (144)
M, is correct|-1390 (369)|-189 (135) |-6 (134) ||-187 (133)|-6 (13
M, is correct|[1589 (220) 1587 (187)|-359 (143)|[4 (134) |4

Binary C, M
A, A, A,
All correct |1 (154) -1 (26) -1 (26) 1(49)
M, is correct|-2 (115) 176 (40) 3 (115)
M, is correct|44 (27) ) 1(26)
M, is correct||22 (30) -1 (25)
M, is correct||245 (44) -2 (27)




Table 2 Simulation with sample size 500. Bias (Standard Error).

~ A A ~ ~ ~

Estimator A, Al Al A A A:;uad

all correct|bias 0.04 -0.05|| 0.11|| 0.12|| -0.05}]-0.03

s.e.|| 2417

incorrect Albias|| 34.06

s.e.|| 145.11

incorrect (|bias 3.22

s.e.|| 25.53

incorrect M|bias -9.29

s.e|l 22.19

incorrect Y||bias -0.14

s.e.|| 23.53

incorrect A, Y|bias| 98.40

s.e.||1660.12

incorrect A,C|bias|| 32.82

incorrect C, Y||bi

incorrect M, Y||bias -9.96 -9.53|-9.26||-9.26| -3.95|]-4.21

incorrect M A,C|bias|| 27.55|| 32.56| 1.61| 1.64| 1.14|| 1.22




~

Estimator, A, Al A A A || AL

s.e.| 124.22| 129.27| 3.66| 3.66| 20.28| 5.41

incorrect A,C, Y|bias| 38.36| 38.20|-7.86|-7.95| -7.27|-2.86

s.e.| 194.37| 283.71| 3.85| 3.88| 68.42| 5.57

incorrect M,C, Y|bias|| -8.89| -10.00|-7.93|-7.89| -3.44(-3.36

s.e.| 23.38| 22.39|4.23| 3.90| 5.04| 5.05

incorrect M A, Y||bias|| 32.68| 34.95|-9.54|-9.33|/-14.88|-8.38

s.e.| 241.50| 183.98| 3.71| 3.71| 71.32| 5.23

all incorrect|bias|| 21.59| 24.25|-7.58|-7.91|-10.50(-6,4

s.e.| 88.88| 97.63|3.79|3.85| 23.9




Table 3 Simulation with sample size 1000. Bias (Standard Error).

A

A

Estimator, A, Al Al A Apa Aj}lmd
all correct|bias| 0.02 0.02|| 0.10( 0.10|| 0.04| 0.05
s.e.| 17.00| 14.87| 2.64| 2.62|| 3.20| 3.13
incorrect Albias|| 33.31| 35.45|-0.36| 0.03|| 0.29| 0.01
s.e.|121.68| 127.79| 2.55| 2.54| 7.97|| 4.31
incorrect C|bias|| 3.54|| -0.03| 1.64| 1.64| 0.004| 0.02
s.e.| 16.92| 14.36
incorrect M\bias|| -8.77 0.73
s.e.| 15.46| 14.68
incorrect Y|bias| 0.95| -8.45
s.e.| 16.32| 14.32
incorrect A, Y|bias|| 60.01|| 75.18
s.e.|501.58| 771:
incorrect A, C|bias| 32.99| 3186
s.e.| 66. 42| 2.59| 2.59| 7.17| 4.38
incorrect C, Y||bias N -8.94|-7.80|-7.83| 0.86|| 0.45
S. 14.71|| 2.86|| 2.75|| 3.54| 3.45
incorrect A/, iagl 38.63|| 44.16|-0.26| 0.14| -0.89| 0.03
.€.202.86|| 224.69| 2.56|| 2.56|| 30.09| 4.75
incorregt M, Cbias|| -8.28 0.15|| 1.49|| 1.49|| -0.14|-0.16
s.e.| 16.15| 15.43| 2.64| 2.58|| 2.91|| 2.98
incorrect M, Y|bias| -8.57|| -8.33|-9.13(-9.16| -3.92||-4.03
s.e.| 16.02| 15.64| 2.93| 2.78|| 3.28| 3.45
incorrect M,A,C|bias|| 61.96] 70.48| 1.69| 1.73| -1.42|| 1.37




8

Estimator| A, AL A Al A || A

s.e.|670.96| 748.10| 2.65| 2.65|117.83| 4.64

incorrect A,C, Y|bias| 33.15| 32.34|-7.78|-7.88| -6.13|-2.46

s.e.| 60.71| 81.40| 2.64| 2.66| 14.31|| 4.16

incorrect M,C, Y|bias|| -7.78| -8.88|-7.88|-7.90| -3.40|-3.30

s.e.| 15.72| 15.29| 2.79| 2.66| 3.23| 3.44

incorrect M, A, Y||bias|| 58.51| 74.34|-9.31||-9.11||-25.19|-7.81

s.e.|560.11| 822.28| 2.82| 2.83|264.87|| 4.66

all incorrect|bias|| 55.19| 74.10|-7.41|-7.75|-26.31|-5.

s.e.|744.14|1132.02| 2.63| 2.68||388.65

?g)

O

x<
Q
0@

)



Table 4 Estimation of Direct Effect of Better Prenatal Care on Preterm Birth

Estimator|Direct Effect Estimate|Bootstrap 95% CI
A, 0.026 (0.016, 0.036)
A, 0.028 (0.018, 0.037)
A, 0.027 (0.018, 0.036)
A, 0.027 (0.018, 0.036)
A v 0.025 (0.016, 0.034)




