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Abstract— Tool tip visualization is an essential component
of multiple robotic surgical and interventional procedures.
In this paper, we introduce a real-time photoacoustic visual
servoing system that processes information directly from
raw acoustic sensor data, without requiring image formation
or segmentation in order to make robot path planning
decisions to track and maintain visualization of tool tips. The
performance of this novel deep learning-based visual servoing
system is compared to that of a visual servoing system which
relies on image formation followed by segmentation to make
and execute robot path planning decisions. Experiments were
conducted with a plastisol phantom, ex vivo tissue, and a
needle as the interventional tool. Needle tip tracking perfor-
mance with the deep learning-based approach outperformed
that of the image-based segmentation approach by 67.7% and
55.3% in phantom and ex vivo tissue, respectively. In addition,
the deep learning-based system operated within the frame-
rate-limiting 10 Hz laser pulse repetition frequency rate, with
mean execution times of 75.2 ms and 73.9 ms per acquisition
frame with phantom and ex vivo tissue, respectively. These
results highlight the benefits of our new approach to integrate
deep learning with robotic systems for improved automation
and visual servoing of tool tips.

I. INTRODUCTION

The ability to visualize and track surgical tool tips
is paramount to the success of multiple surgeries and
procedures. Ultrasound is the one of the most commonly
used imaging modalities to track tool tips due to its low
cost, high frame rates, portability, and absence of harmful
ionizing radiation. The combination of ultrasound imaging
with either traditional techniques of visual servoing [1],
[2] or recent advances in deep learning [3], [4] introduces
additional layers of automation for this important task. For
example, ultrasound-based visual servoing may assist with
percutaneous needle insertions [5], and deep learning has
the potential to improve the performance and speed of
ultrasound image-based needle detection systems [6]. How-
ever, both of these automation gains rely on the ultrasound
imaging process, which tends to fail in acoustically chal-
lenging environments characterized by significant acous-
tic clutter [7], sound scattering, and sound attenuation.
Specific examples of challenging acoustic environments
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include transcranial imaging [8], abdominal imaging [7],
spinal imaging [9], or imaging of obese patients [10].

One option to address known limitations with ultra-
sound imaging is to combine ultrasound imaging sys-
tems with a miniature laser system to perform intraopera-
tive photoacoustic imaging [11]–[13], which has provided
clear images of needle tips and other structures when
ultrasound imaging fails [13]. Unlike ultrasound imaging,
which requires the transmission and reception of sound to
make images, photoacoustic imaging is implemented by
transmitting light to generate an acoustic response that
is received by the same ultrasound detectors used for
ultrasound imaging [14], [15]. Photoacoustic imaging tends
to be advantageous over ultrasound imaging in acoustically
challenging environments because it only requires one-
way (as opposed to round-trip) acoustic travel from the
transmission source to the ultrasound receiver.

Previous work from our group demonstrated the success
of using photoacoustic imaging as the computer vision
component of a visual servoing system, enabling contin-
uous monitoring of needle [13] and catheter [12] tips.
The needle or catheter tip each housed an internal optical
fiber as one of the key enabling modifications to the
interventional setup. This optical fiber can potentially be
coupled with any surgical tool tip [16]–[18] to enable
photoacoustic-based visual servoing of the tool tip. There-
fore, this approach was also demonstrated with a fiber that
was independent of any tool, catheter, or needle tip [19].

To achieve photoacoustic-based visual servoing, raw data
is typically beamformed to present a photoacoustic image
that is interpretable to the human eye, followed by image
segmentation to determine coordinates of interest for robot
path planning. However, beamforming and other image
formation approaches rely on mathematical models that
do not consider all possible photoacoustic image artifact
sources. Artifacts that cannot be removed with traditional
amplitude-based [12], [13] or coherence-based [19] photoa-
coustic visual servoing approaches (e.g., reflection artifacts
or coherent artifacts, respectively) are confusing for both
human and robot interpretation, resulting in unreliable
segmentation for photoacoustic visual servoing tasks.

In order to better discriminate sources from artifacts, we
turn our attention to investigate novel input sources to the
robotic system (which may not necessarily need to operate
on an image that is interpretable to humans). In particular,
our recent photoacoustic-based deep learning approaches
for photoacoustic source detection [20]–[22] suggest that
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Fig. 1. Block diagram illustrating the photoacoustic visual servoing system. Process A is our previously introduced segmentation-based approach
to visual servoing beamformed photoacoustic signals, after the acquisition of raw photoacoustic sensor data (also known as channel data), with
representative implementations described in [12], [13], [19]. Process B is our newly introduced deep learning-based approach to visual servoing raw
photoacoustic channel data. In each case, the red rectangular overlay indicates position coordinates that are input to the robot controller.

deep learning is a viable solution to address current chal-
lenges with amplitude- or coherence-based photoacoustic
visual servoing. The novel concept of using deep learning
to detect interventional structures of interest in raw sensor
data before the application of traditional image formation
techniques was previously implemented to detect needle
[21], [22] and catheter [23], [24] tips. In summary, recent
work from our group independently demonstrated two key
advances with regard to interventional tool tip tracking:
(1) photoacoustic-based visual servoing to enhance tool tip
tracking and centering within the image plane [12], [13],
[19] and (2) deep learning-based photoacoustic image for-
mation from raw sensor data to improve tool tip visibility
[20]–[24].

The independent demonstrations of feasibility described
above suggest that the integration of deep learning with
photoacoustic-based visual servoing is a superior approach
to address well-known challenges with tool tip tracking.
This paper presents the first known deep learning-based
photoacoustic visual servoing system to address these
challenges. The novelty of this contribution includes the
creation and implementation of a direct pathway from the
photoacoustic raw sensor data (i.e., before any image has
been formed) to the robot controller, enabled by recent
advances using deep learning to extract information directly
from raw acoustic sensor data [20]–[25].

The remainder of this paper is organized as follows.
Section II introduces our deep learning-based approach
to visual servoing raw photoacoustic sensor data (also
known as channel data), followed by a description of our
network training process. This deep learning approach is
contrasted with our previously introduced segmentation-
based approach to visual servoing beamformed photoa-
coustic signals. Section III describes our experiments to
test both approaches. Section IV presents our experimental
results. Section V discusses our findings in the context of

prior work. Section VI concludes the manuscript.

II. VISUAL SERVOING SYSTEM

A. System Components

Fig. 1 shows a block diagram of the photoacoustic visual
servoing system used in this work. The system components
include a Sawyer robot (Rethink Robotics, Boston, MA,
USA), a Vantage 128 ultrasound scanner (Verasonics Inc.,
Kirkland, WA, USA), a Verasonics P4-2v phased array
ultrasound probe, a Phocus Mobile laser (Opotek, Carlsbad,
CA, USA), and a 600 µm core diameter optical fiber. One
end of the optical fiber was coupled to the laser. The other
end of the optical fiber was inserted into a hollow core
needle, ensuring coincident fiber and needle tips to form
a fiber-needle pair. The probe was attached to the end
effector of the robot using a 3D-printed holder. Nanosecond
laser pulses were transmitted at a rate of 10 Hz with a
wavelength of 750 nm. The software components of the
visual servoing system were implemented using the Robot
Operating System (ROS) [26].

The frame U was assigned to coincide with the Ve-
rasonics P4-2v probe, with the x-, y-, and z-dimensions
corresponding to the lateral, elevation, and axial dimen-
sions of the probe, respectively. The imaging plane of the
probe corresponded to the x-z plane of the frame U . The
raw channel data frames acquired with the probe were
processed to obtain an estimate U p̂ (n) of the position of the
needle tip in the ultrasound probe frame U and a confidence
measure d (n) ∈ (0, 1) of the estimate. We refer to this
confidence measure as the validity of the estimate.

Process A used the amplitude-based approach developed
by Bell et al. [13] to estimate the needle tip position and
assess its validity. A photoacoustic image was recreated
from the acquired channel data using delay-and-sum beam-
forming. The beamformed image was normalized and a
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binary threshold of 0.7 was applied to the normalized im-
age. Binary erosion and dilation were performed with a 3x3
kernel to remove single pixel regions and connect segments
which became disconnected during the binary threshold
application. The erosion and dilation filters helped to
ensure that the segmented needle tip was displayed as a
single large component, rather than as multiple smaller
components. Connected components were then labeled and
their corresponding pixel areas were computed. If only one
region was larger than 3 times the average area, then that
region was assumed to be the needle tip and the centroid of
that region was output as the needle tip position. Otherwise,
the needle tip was assumed to be outside the field of view of
the probe. For robustness, the estimated needle tip position
was compared across five consecutive frames. If the needle
tip was visible in each frame (i.e., d (n) = 1) and the
estimated position of the needle tip did not change by more
than 1 cm across the 5 frames, then the needle tip position
was labeled as valid.

Process B used a convolutional neural network (CNN) to
provide estimates of the needle tip position and correspond-
ing confidence levels in the range 0 to 1. With a focus on
proving the feasibility of integrating deep learning-based
approaches with real-time photoacoustic visual servoing
systems, we used the ResNet-101 architecture [27] and
the Faster-RCNN detection method [28], which were pre-
viously demonstrated by Allman et al. [22] as an offline
technique applied to photoacoustic channel data obtained
with an E-CUBE 12R ultrasound scanner (Alpinion Med-
ical Systems, Seoul, South Korea). For robustness, the
estimated needle tip was compared across 5 consecutive
frames as described above. If the needle tip was visible
with a confidence level d (n) > 0.7 in each frame and the
estimated position of the needle tip did not change by more
than 1 cm across the 5 frames, then the needle tip position
was labeled as valid.

Fig. 2 shows the finite state machine used to con-
trol the translational degrees of freedom corresponding to
the lateral and elevation dimensions of the probe. Two-
dimensional (2D) photoacoustic images do not contain el-
evation displacement information. As a result, both Process
A and Process B output zeros in the y-dimension of the
estimate U p̂ (n). In the nominal “Center” state of the FSM,
the error U~e (n) in the frame U was computed using the

Fig. 2. Finite state machine component of visual servoing system
(illustrated with validity checks, d (n), corresponding to Process A).

equation:

U~e (n) =

 1 0 0
0 0 0
0 0 0

(U p̂ (n)− U~pcmd

)
, (1)

where U~pcmd = ~0 is the desired position of the needle tip in
the probe frame U . This computation of U~e (n) ensures that
the visual servoing system will center the probe laterally
above the needle tip without changing the axial or elevation
displacement between the probe and the needle tip. If the
FSM was in the “Center” state and the needle tip position
estimate was marked as valid (i.e., d (n) = 1 for Process
A and d (n) > 0.7 for Process B), then the end effector
of the robot was commanded to move along the x-axis of
the probe frame U with the velocity ~vpid (n) given by the
equation

~vpid (n) =Kp
U~e (n) +Ki

n∑
k=0

U~e (k) ∆T

+Kd

(
U~e (n)− U~e (n− 1)

∆T

)
,

(2)

where Kp, Ki, and Kd are the gains of the PID controller
(with values of 0.1, 0.01, and 0.001, respectively), and ∆T
is the sampling time of the PID controller. The controller
was executed every 0.1 s to match the pulse repetition rate
of the laser.

The validity (i.e., d (n)) was used to indicate movement
of the needle tip outside of the imaging plane of the probe.
If the estimated needle tip position was marked as invalid,
the FSM entered the “Wait” state. In this state, the end
effector was held stationary until up to 5 frames of channel
data were acquired by the photoacoustic imaging system.
If a valid estimate of the needle tip position was obtained
during that time, the FSM returned to the “Center” state.
Otherwise, the FSM entered the “Search” state. In this
state, the robot end effector was moved in a 2D spiral
pattern given by

~vs (n) =

 An cos (ωn)
An sin (ωn)

0

 (3)

where A and ω are the parameters of the spiral search
pattern.

The commanded velocity U
~v (n) was then converted to

the base frame B of the robot using the equation
B
~v(n) = BTE(n)ETU

U
~v(n) (4)

where ETU is the transformation from the ultrasound probe
frame U to the robot end effector frame E and B

TE(n) is
the instantaneous transformation from the frame E to the
robot base frame B. The commanded velocity B

~v(n) was
then transmitted to the internal velocity controller of the
robot over the ROS topic for velocity commands to which
the controller subscribed.
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Fig. 3. Examples of (a) acquired experimental data and (b) simulated
images with reverberations directly under the source. The reverberations
are observed up to 5 mm deeper than the source, and laterally centered
underneath the source.

TABLE I
RANGE AND INCREMENT SIZES OF SIMULATION VARIABLES

Parameter Min Max Increment

Depth Position (mm) 5 55 0.3

Lateral Position (mm) -18.9 18.9 0.189

Number of Reverberation Artifacts 3 5 1

Depth of Reverberation Artifacts
under Source (mm)

1 10 0.3

Speed of Sound (m/s) 1440 1640 6

Object Intensity (Multiplier) 0.75 1.1 random

Channel SNR (dB) -5 2 random

B. Training the Convolutional Neural Network

Simulations that mimic the physics of photoacoustic
wave propagation offer the ability to generate training
data without the time-intensive process of experimentally
gathering and hand-labeling the large datasets [20]–[25].
This ease of data generation makes simulations a powerful
tool in the context of deep learning. To train the CNN
for Process B, 20,000 frames of photoacoustic channel
data were generated using the k-Wave toolbox [29] in
MATLAB. We simulated a single source of diameter 0.1
mm and 4-6 artifacts in each image. One of the artifacts
could be anywhere in the image to simulate a reflection
artifact and maintain consistency with previous implemen-
tations [22]. The remaining artifacts were constrained to
the range 1 mm to 10 mm below the source to simulate
the reverberation artifacts, as observed in Fig. 3(a), which
shows one of the acquired channel data frames used as a
reference to generate our training dataset. The ranges and
increment values of our simulation variables are listed in
Table I. We simulated a discrete ultrasound probe model
with a sampling frequency of 11.88 MHz, an aperture
of 128 elements, an element width of 0.25 mm, and an
inter-element spacing of 0.05 mm. These parameters were
selected to match the specifications of the Verasonics P4-2v
probe to improve network performance [30]. An example
of our simulated training data is shown in Fig. 3(b).

The Detectron platform [31] was utilized for training

Fig. 4. Photograph of the setup for needle tracking and probe centering
experiments.

and validation. The network was initialized with pre-trained
ImageNet weights [32] and trained on 80% of the simulated
images. The remaining 20% of the images were used for
network validation. Finally, the Detectron-ROS package
[33] was utilized to incorporate the trained network into
Process B of the visual servoing system.

III. EXPERIMENTAL METHODS

A. Probe Centering Experiment

The experimental setup for the probe centering ex-
periments is shown in Fig. 4. These experiments were
implemented to estimate the probe centering and needle
tracking errors of the two processes (i.e., A and B) for
needle tip detection, similar to previous experiments im-
plemented with a segmentation-based photoacoustic visual
servoing system [13]. The choices for each experimental
trial included laser fluence (18.4 uJ/cm2 or 49.5 uJ/cm2),
needle tip detection process (Process A or B), and imaging
environment (plastisol phantom or ex vivo chicken breast).
There were 9 probe centering trials per fluence, per process,
per imaging environment.

At the start of each experimental trial, the translation
stage was reset to 0 mm. The fiber-needle pair was inserted
into the chosen imaging environment. The ultrasound probe
was placed on the surface of the imaging environment, with
the imaging plane of the probe placed to contain as much
of the intended trajectory of the needle tip as possible. The
probe was then manually displaced distances of 2-10 mm
from the needle tip in 2 mm increments in the lateral probe
dimension, followed by initiation of visual servoing with
Process A or B.

The visual servoing system was executed to center the
probe above the needle tip. If the needle tip detection
process output 5 consecutive valid estimates of the needle
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tip position (i.e., d (n) = 1 for Process A and d (n) > 0.7
for Process B), the trial was marked as a success. The
mean of the lateral components of those 5 valid estimates
U p̂ (n) was computed, and the magnitude of U p̂ (n) was
output as the probe centering error. If 5 consecutive valid
readings could not be obtained (i.e., d (n) = 0 for Process
A and d (n) < 0.7 for Process B), the trial was marked
as a failure. The mean and standard deviation of the
probe centering errors were computed for each process and
imaging environment.

B. Needle Tip Tracking Experiment

The same setup shown in Fig. 4 and described in Section
III-A was used for the needle tip tracking centering experi-
ments, using thee same choices for each experimental trial.
There were similarly 9 needle tracking trials per fluence,
per process, per imaging environment. After successfully
centering the probe on the needle tip (as defined in Section
III-A), the translation stage was used to move the needle
tip in 2 mm increments along the lateral dimension of
the probe. At each position, the output of the needle tip
detection process was observed. If the process output five
consecutive valid estimates of the needle tip position (i.e.,
d (n) = 1 for Process A, and d (n) > 0.7 for Process
B), then the position was marked as a success. The needle
tracking error was then computed using the equation:

e = ‖B~pf − B~pi − B~sn‖, (5)

where e, B~pi,
B~pf , and B~sn are the needle tracking error,

the initial robot end effector position, the final robot end
effector position, and the measured displacement of the
needle tip, respectively, in the robot base frame B.

If five consecutive valid readings could not be obtained
(i.e., d (n) = 0 for Process A and d (n) ≤ 0.7 for Process
B), the position was marked as a failure. The failure rates of
Processes A and B were compared to assess the robustness
of each algorithm.

IV. RESULTS

Table II summarizes the mean and standard deviation
of probe centering errors for 90 trials per Process A or
B, implemented with either the plastisol phantom or the
ex vivo tissue. For each imaging environment, the probe
centering errors of Processes A and B were within 0.1 mm
of each other. The probe centering errors were similarly
within 0.1 mm across the two imaging environments.

Fig. 5 shows the mean and standard deviation of the
needle tracking errors for 18 trials per process, imaging

TABLE II
PROBE CENTERING ERRORS

Process Test Case Mean Error [mm] Std Dev [mm]

A Phantom 0.11 0.12

A Ex Vivo Tissue 0.16 0.14

B Phantom 0.19 0.16

B Ex Vivo Tissue 0.18 0.17

2 4 6 8 10

Lateral Shift [mm]
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Fig. 5. Mean needle tip tracking errors as functions of the lateral shift
for Processes A and B in the phantom and ex vivo tissue. The black error
bars represent the standard deviation of each set of measured errors.

environment, and lateral shift value. Process A produced
needle tracking errors ranging 0.59-5.36 mm with a mean
of 2.63 mm across all phantom trials and ranging 1.47-
2.34 mm with mean of 1.96 mm across all ex vivo tissue
trials. Process B generally produced better needle tracking
errors than that of Process A, ranging 0.65-1.03 mm with
a mean of 0.85 mm across all phantom trials and ranging
0.46-1.39 mm with a mean of 0.88 mm across all ex vivo
tissue trials.

Table III lists the failure rates during needle tip tracking.
For multiple trials with Process A, the needle tip was
incorrectly labeled a reflection artifact that formed a larger
bright region than the needle tip. This mislabeling caused
a majority of the observed failures of Process A in both
the phantom and the ex vivo tissue. Process B generally
produced lower failure rates than Process A, with a mean
improvement of 60.6% across all lateral shifts and both
imaging environments. The highest failure rates of 1.85%
and 3.70% for Process B were observed at a lateral offset
of 10 mm in the phantom and ex vivo tissue environments,
respectively. These failure locations are consistent with
previous reports demonstrating increased CNN failure rates
as lateral offset from the center of an image increases,
due to a reduced number of source examples on the image
periphery [24].

We additionally note the <100 ms execution time re-
quirement for Process B in order to achieve the same 10
Hz frame rate previously demonstrated with visual servoing
systems using iterations of Process A [12], [13]. This

TABLE III
NEEDLE TRACKING FAILURE RATES

Lateral
Shift [mm]

Process A Process B
Phantom Ex Vivo Phantom Ex Vivo

2 3.51% 0.00% 0.00% 0.00%

4 7.02% 0.00% 0.00% 1.85%

6 7.02% 0.00% 0.00% 0.00%

8 5.26% 1.85% 0.00% 1.85%

10 3.51% 1.85% 1.85% 3.70%
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requirement is dictated by the 10 Hz laser pulse repetition
frequency of the photoacoustic imaging system. The mean
± one standard deviation of execution times from 36 trials
of both experiments described above with Process B were
75.2±12.8 ms and 73.9±13.2 ms per channel data frame
with the phantom and ex vivo tissue, respectively.

V. DISCUSSION

The results presented in this manuscript highlight the
potential of a CNN to provide an alternative input to
command robotic visual servoing systems. This potential
was demonstrated with a system composed of a Verasonics
ultrasound engine, which was not used in any previous
work testing similar CNN architectures [22]–[24], [30].
It is promising that the presented needle tracking errors
are comparable to the 0.40 ± 0.22 mm point source
location errors obtained by Allman et al. in [22] with an
Alpinion E-CUBE 12R ultrasound scanner and an L3-8
probe. This similar success indicates that the previously
proposed deep learning methods for photoacoustic point
source detection are generalizable across multiple imaging
system platforms.

We identified three advantages of integrating this novel
deep learning approach with a robotic photoacoustic visual
servoing system, when compared to the amplitude-based
image segmentation approach: (1) lower tool tip tracking
failure rates in the presence of reflection artifacts, (2)
reduced needle tracking errors across different imaging
environments, and (3) maintenance of 10 Hz frame rates
despite increased algorithmic complexity. Regarding the
first advantage, the sensitivity of the beamforming tech-
niques to reflection artifacts (e.g., caused by bone) can lead
to uncertain and potentially hazardous robot arm move-
ments during surgical procedures, which is a major concern
for the steps required to complete the segmentation-based
visual servoing approach (i.e., Process A). Instead of
adding successive layers of complexity to the beamformer
or segmentation algorithm to account for these artifacts
and features, the deep learning approach (i.e., Process B)
trains a CNN to distinguish between true sources and
reflection artifacts in the raw channel data, thus mitigating
the introduction of misclassification errors.

To appreciate the second advantage, the reduced mean
needle tracking errors with the deep learning approach (i.e.,
0.85 mm and 0.88 mm in phantom and ex vivo tissue,
respectively) can be compared to the needle tracking errors
obtained with the segmentation approach (i.e., 2.63 mm and
1.96 mm in the phantom and ex vivo tissue, respectively).
The overall mean improvement with Process B translates
to 67.7% and 55.3% reductions in needle tracking errors
in the phantom and ex vivo tissue, respectively.

With regard to the third advantage of achieving 10
Hz frame rates, the deep learning approach has a higher
algorithmic complexity compared to the image seg-
mentation approach (i.e., O (MNS) for Process A vs.
O
(
NconvD

2N2
chMN

)
for Process B, where M , N , S,

and Nconv are the numbers of receiving elements, samples
acquired per frame, scan lines in the beamformed image,
and convolutional layers in the CNN, respectively, D is
the size of the largest convolutional kernel, and Nch is
the maximum filter dimension). This constraint would
ordinarily compromise the maximum achievable frame
rate. However, the use of GPUs combined with recent
deep learning advances allow us to benefit from the deep
learning approach without compromising the desired frame
rate dictated by the 10 Hz laser pulse repetition frequency.

Future possible improvements to the proposed deep
learning visual servoing system include mitigating tracking
errors obtained with larger lateral displacements from the
center of the probe and increasing the number of degrees
of freedom for the motion of the robot end effector.
Regarding tracking error mitigation, an increase in the
lateral displacement of the source from the center of the
probe during the ex vivo experiments resulted in needle
tracking errors increasing from 0.46 mm to 1.39 mm
(Fig. 5) and needle tracking failure rates increasing to
a maximum of 3.70% (Table III). This increase in error
may potentially be resolved by improving the training
process and by increasing the number of training images
containing sources with large lateral offsets [24]. Regarding
the tracking degree of freedom, the nominal motion of
the robot end effector is limited to 1 dimension in our
visual servoing system, and a second dimension is used
to search for and find the tool tip when it is not in the
imaging plane of the probe. While these two degrees of
freedom sufficiently achieve the desired end result, future
work will determine the extent to which additional degrees
of freedom are necessary to achieve more complicated path
planning outcomes with the proposed deep learning-based
photoacoustic visual servoing system.

VI. CONCLUSION

This work is the first to demonstrate the integration of
deep learning-based techniques with photoacoustic-based
robotic visual servoing of needle tips. The deep learning-
based needle tip detection process is more accurate (e.g.,
0.46-1.39 mm needle tracking errors) and produces lower
failure rates (e.g., 0-3.70%) when compared to the al-
ternative photoacoustic image segmentation-based visual
servoing system (which produced tracking errors and fail-
ure rates of 0.59-5.36 mm and 0-7.02%, respectively).
The deep learning-based system additionally maintains
the frame rates achieved with the segmentation-based ap-
proach. Overall, these results demonstrate the promise of a
robotic photoacoustic visual servoing system that bypasses
traditional image formation and segmentation steps, instead
supplying robot controller input based on details contained
within raw photoacoustic sensor data. While this work
focuses on tracking needle tips, the system described herein
can be extended to track the tips of catheters and a mul-
titude of other surgical tools that are critical to automated
surgeries and interventional procedures.
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