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ABSTRACT

The ever-growing parameter size and computation cost of Convolu-

tional Neural Network (CNN) models hinder their deployment onto

resource-constrained platforms. Network pruning techniques are

proposed to remove the redundancy in CNN parameters and pro-

duce a sparse model. Sparse-aware accelerators are also proposed to

reduce the computation cost and memory bandwidth requirements

of inference by leveraging the model sparsity. The irregularity of

sparse patterns, however, limits the efficiency of those designs.

Researchers proposed to address this issue by creating a regular

sparsity pattern through hardware-aware pruning algorithms. How-

ever, the pruning rate of these solutions is largely limited by the

enforced sparsity patterns. This limitation motivates us to explore

other compression methods beyond pruning. With two decoupled

computation stages, we found that kernel decomposition could

potentially take the processing of the sparse pattern off from the

critical path of inference and achieve a high compression ratio with-

out enforcing the sparse patterns. To exploit these advantages, we

propose ESCALATE , an algorithm-hardware co-design approach

based on kernel decomposition. At algorithm level, ESCALATE reor-

ganizes the two computation stages of the decomposed convolution

to enable a stream processing of the intermediate feature map. We

proposed a hybrid quantization to exploit the different reuse fre-

quency of each part of the decomposed weight. At architecture

level, ESCALATE proposes a novel ‘Basis-First’ dataflow and its

corresponding microarchitecture design to maximize the benefits

brought by the decomposed convolution.

We evaluate ESCALATE with four representative CNN models

on both CIFAR-10 and ImageNet datasets and compare it against

previous sparse accelerators and pruning algorithms. Results show

that ESCALATE can achieve up to 325× and 11× compression ratio

for models on CIFAR-10 and ImageNet, respectively. Comparing
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with previous dense and sparse accelerators, ESCALATE accelera-

tor averagely boosts the energy efficiency by 8.3× and 3.77×, and

reduces the latency by 17.9× and 2.16×, respectively.
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1 INTRODUCTION

Convolutional Neural Networks (CNNs) have been widely used in

a vast range of applications, such as computer vision, robotics, and

medical science. However, most CNNmodels are both computation-

and memory-intensive. Thus, the execution of CNN models re-

quires high computation power and memory bandwidth, making

it difficult to achieve high throughput and energy efficiency on

general-purpose platforms like CPUs or GPUs. These concerns lead

to the proliferation of domain-specific accelerators for CNNs. Vari-

ous custom architectures [5–8] have been proposed to capture the

parallelism and data reuse opportunities for boosting the inference

efficiency.

Previous works [13] successfully identified the redundancy in

CNN parameters: A large portion of unimportant weights in the

convolutional layer can be removed to produce sparse weights

with minor or no impacts on model accuracy. Moreover, the widely

adopted ReLU activation function filters out all non-positive values

in the output feature maps, leading to sparse activations. Multipli-

cations involving zero-valued (or sparse) activations or weights

produce zero products. By avoiding storing, transferring, and com-

puting these zeros, the computation and bandwidth requirements
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of inference can be reduced. The potential benefit triggers the emer-

gence of sparse-aware accelerators. Cambricon-X [40], for example,

skips all computations related to zero weights, while Cnvlutin [2]

eliminates all the zero activations. SCNN [30] captures the spar-

sity in both weights and activations with the Cartesian product.

SparTen [12] performs efficient inner-join between sparse vectors

to address the inefficiency under certain layer shapes. ExTensor [15]

performs efficient intersection operations to remove zero-involved

computations. However, the irregular sparse pattern of convolu-

tional weight and activations prevents these hardware solutions

from fully utilizing the sparsity.

Researchers propose hardware-aware optimizations of the ex-

isting pruning algorithms to address the irregularity. Cambricon-

S [43] uses coarse-grained pruning to alleviate the irregularity

in sparsity patterns. ADMM-NN [33] jointly performs pruning

and quantization while adjusting the layer-wise sparsity ratios to

achieve an optimal tradeoff between accuracy and runtime speedup.

PatDNN [28] and ADMM-NN-S [26] further enforce specific spar-

sity patterns during pruning to enable more efficient processing

of the regular sparse models. Due to the degraded flexibility of

pruning, these optimizations limit the overall compression rate.

The limitations of individually optimizing hardware and algo-

rithm motivate us to seek an integrated solution. In particular, we

hope to explore an alternative computation formulation of con-

volution operations to take the processing of irregular sparsity

patterns off from the critical path of inference. Thus, the hardware

that supports this formulation can eliminate the negative impact of

irregularity. We may also achieve a high compression rate since no

sparsity pattern is enforced during pruning.

Our recent work, PENNI [25], proposes a new CNN compression

method based on kernel decomposition. It decomposes a weight ten-

sor into two parts – a small number of basis kernels and a coefficient

tensor that determines the linear combination of the basis kernels.

With the decomposition, the forward pass can be performed in

two decoupled stages: basis convolution and weighted accumula-

tion. Sparsity only appears in the weighted accumulation stage,

the execution of which overlaps with the basis convolution stage.

Thus, compared with previous weight pruning methods, [25] can

potentially remove the processing of irregular sparsity pattern from

the critical path and obtains a more hardware-friendly computation

pattern. Moreover, compared with the hardware-aware pruning

methods, such kernel decomposition does not enforce the structure

constraints and can potentially achieve a higher pruning rate.

It is natural to design corresponding CNN accelerators for the

above kernel decomposition method to maximize its advantages.

However, directly applying the kernel decomposition incurs some

challenges to the hardware design: First, while the computational

cost is reduced with a small number of basis kernels, the algorithm

creates a large number of intermediate feature maps with inflated

channels. These intermediate feature maps become a new compu-

tation bottleneck. Moreover, the existing dataflows in mainstream

CNN accelerators do not support the two-stage computation of the

decomposed convolution. The distinct parameter reuse frequen-

cies of the two decomposed stages also impact the performance

differently. Finally, the frequently reused basis kernels require a

higher precision, while the unique coefficient of each input-output

channel can bear a lower precision. The different precisions must

be handled by different hardware configurations.

To tackle these challenges, we propose ESCALATE, an algorithm-

hardware co-design framework based on kernel decomposition. At

algorithm level, we reorganize the two computation stages of the

decomposed convolution based on distributive property to enable

streaming processing of the large intermediate feature maps and

eliminate the computational bottleneck. Based on the observation

that the coefficients are unique to each pair of input-output channels

and the basis kernels are reused by all output channels, we propose

a hybrid quantization scheme to maximize the benefit on both

accuracy and compression ratio. At architecture level, we propose

a novel Basis-First dataflow to increase the parallelism of inference

and exploit the reuse opportunities of the decomposed convolution.

ESCALATE accelerator is equipped with an efficient sparse skipping

scheme, namely, ‘Dilution-Concentration’, based on the compact

weight structure created by the decomposed convolution.

We evaluate ESCALATE framework with four representative

CNN models on both CIFAR-10 [22] and ImageNet [10] datasets.

Results show that ESCALATE algorithm achieves 11-325× compres-

sion ratio for CIFAR-10 models, and 9-11× for ImageNet models. On

average, ESCALATE accelerator boosts the energy efficiency by 8.3×

and 3.77×, and reduce the latency by 17.9× and 2.13× compared to

previous dense and sparse accelerator designs, respectively.

The remainder of our paper is organized as follows. Section 2

presents the background and the motivation of our work; Section 3

introduces the proposed ESCALATE algorithm; Section 4 presents

the ESCALATE accelerator design; Section 5 provides the evaluation

results of both algorithm and accelerator; Section 6 provides dis-

cussions on design trade-offs; Section 7 summarizes related works,

and Section 8 concludes this work.

2 BACKGROUND AND MOTIVATION

2.1 Convolution Operation

We present essential notations and define the terminologies used in

our discussion. We refer to each individual element of the input fea-

ture maps (IFM) as the activation and the convolution parameters

as weight. We use kernel to denote a 2D convolution kernel corre-

sponding to one input-output channel pair and use filter to denote

a 3D filter corresponding to one output channel. The computation

of a regular convolution operation involves 7 dimensions, including

input batch (N ), input channels (C), output channels (or filter, K),
filter row (R), filter column (S), input row (X ), and input column

(Y ). The index of the output row/column can be deduced from the

input and filter indices. For inference tasks, we focus on the perfor-

mance of a single input sample, thus we ignore N in our discussion.

We use uppercase letters to denote the size of the dimension and

use lowercase letters to denote the index. The computation of one

element in the k-th output channel can be represented as,

OFM
(x+ �r/2�,y+ �s/2�)
k

=

C−1∑
c=0

R−1∑
r=0

S−1∑
s=0

W (k,c,r,s)IFM(c,x+r,y+s),

(1)
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whereW ∈ RK×C×R×S is the weight tensor, IFM ∈ RC×X×Y and

OFM ∈ RK×X ′×Y ′
are the input and output feature maps, respec-

tively. For simplicity, we only show the unit stride situation and

assume the input feature maps are padded.

2.2 Processing Sparse CNN

The redundancy in CNN models comes from two sources: activa-

tions and weights. The widely adopted ReLU activation function

filters out all non-positive values in the output feature maps, leading

to sparse activations. Pruning unimportant weight values produces

sparse weights. Typically, the sparsity introduces on average 2-5×

model size reduction and 4-20× computational cost reduction. How-

ever, leveraging sparsity poses new challenges to the accelerator

design. Specifically, the accelerator needs to identify non-zero pairs

of weights and activations from the compressed data and dispatch

those pairs correctly to processing elements (PEs). Current sparse-

aware accelerators [2, 12, 30, 40] propose various mechanisms to

efficiently process sparse CNN. Due to the irregular distribution

of the non-zero elements, all these mechanisms incur considerable

hardware and energy overheads that significantly offset the ben-

efits brought by sparsity [26]. This challenge can be mitigated by

algorithm-hardware co-designed approaches which can perform

pruning by taking hardware efficiency into consideration. For exam-

ple, Cambricon-S [43] proposes a coarse-grained pruning method to

alleviate the irregularity. ADMM-NN [33] introduces a joint weight

pruning and quantization framework to select a proper layer-wise

compression ratio and maximize the overall hardware efficiency.

PatDNN [28] and ADMM-NN-S [26] further enforce specific spar-

sity patterns during pruning to enable more efficient processing of

the regular sparse models.

2.3 Kernel Decomposition in CNN

Kernel decomposition utilizes the low-rank assumption of weight

matrices to compress the model size for reducing the computa-

tional complexity. Decomposition can be performed at different

levels of the weight structure. Previous works utilize the matrix

decomposition [42] or tensor decomposition [19, 24] to decompose

each convolutional filter into two or more lower rank structures.

PENNI [25] proposes to conduct the decomposition at the kernel

level, i.e., projecting each 2D kernel into a subspace. With the same

notations, the 4-D weight tensor can be reshaped into a matrixW ′

in the shape of KC × RS . The decomposition can be formulated as

W = CeB where Ce ∈ RKC×M , B ∈ RM×RS andM < RS . The two
factor matrices are obtained using singular value decomposition

(SVD). Further retraining steps may be required to recover the ac-

curacy of the model. Here, each row of B can be reshaped into R×S
and can be seen as a kernel. Thus, theM basis kernels are shared

across the entire layer and the original kernels can be approximated

by the linear combinations of the basis kernels. This decomposition

creates two imbalanced parameters: a small set of kernels shared

across all convolution operations and a large coefficient matrix.

Apart from reducing the computation and parameters, the decom-

position also makes it much easier to sparsify the coefficient matrix

compared with directly pruning the original weights.

2.4 Motivation

This work is motivated by the drawbacks of the existing non-

structured and structured pruning. Non-structured (or element-

wise) pruning can achieve the highest compression ratio on CNNs

among different types of compression methods. However, the ir-

regularity of the sparsity pattern leads to a huge gap between the

algorithm-level computation reduction and the actual hardware

speedups. For example, Eyeriss v2 [8] only achieve 1.2× speedup on

sparseMobileNet. ADMM-NN [33] demonstrates only 3.9× speedup

for the pruned convolutional layers in AlexNet with a 25.5× prun-

ing ratio. In essence, non-structured pruning leads to inefficient

and expensive hardware implementations which largely offset the

benefits of the large compression ratio. On the other side, structured

pruning maintains the regularity of weights so that the pruning

ratio can be almost fully converted to the speedup. However, the

structured constraint limits its pruning ratio. For example, struc-

tured pruning on ResNet50 only achieves 2.64× pruning ratio [11]

while non-structured pruning could reach 17.4× [33]. In summary,

none of the two types of pruning method sufficiently translate

the elimination of redundancy in CNNs to the higher inference

performance.

To tackle the challenge, we decide to explore the potential of

the alternative computation formulation of convolution operation

with kernel decomposition. As discussed in Section 2.3, kernel de-

composition creates two imbalance parts to approximate the origi-

nal weight tensor, which naturally form two computation stages.

The stage involving coefficient matrix only requires scalar matrix

product and reduction. It opens the opportunity of utilizing the

sparsity in coefficients in a structured way. Compared to the non-

structured pruning, kernel decomposition alleviates the irregularity

in the sparsity-aware computation and provides better hardware

efficiency. Compared to the structured pruning, without the need

to enforce sparsity pattern when pruning the coefficient matrix, we

can achieve a higher pruning ratio. Motivated by the potential of

obtaining both a high pruning ratio and hardware efficiency, we

build an algorithm-hardware co-design framework based on kernel

decomposition.

3 ESCALATE ALGORITHM

In this section, we first analyze the computational bottleneck in

kernel decomposition algorithm. Then, we propose a reformulated

ESCALATE algorithm to alleviate the bottleneck. Based on kernel

decomposition, ESCALATE utilizes the distributive property of the

convolution operation to create an efficient computation flow. Then,

we present the hybrid quantization which selects the quantization

precision based on the reuse frequency of each part of the weights.

Moreover, we show that ESCALATE can expand the application

of the decomposition technique to depth-wise separable convolu-

tion (DSC) and unify the computation of both regular convolution

and DSC.

3.1 Computation Reorganization

PENNI[25] introduced a kernel level decomposition of the weights.

As we discussed in Section 2.3, this decomposition scheme creates

two imbalanced weight components that respectively correspond to

two computation stages—shared kernel convolution and weighted
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Figure 1: The computation process of one output feature

map of the reorganized decomposed convolution. For sim-

plicity, we assumeM = 3 here.

accumulation. Using the notations defined in Section 2.1 and Section

2.3, if we reshape the coefficients into K ×C ×M , the k-th output

channel can be computed by

OFMk =

C−1∑
c=0

M−1∑
m=0

C
(k,c,m)
e IFMc ∗ Bm , (2)

where IFMc is the c-th input feature map, Bm is them-th basis ker-

nel, and ∗ denotes the 2D convolution operation. The shared kernel

convolution (i.e., the inner summation) is conducted in a depthwise

fashion (i.e., there is no reduction across input channels) and gen-

erates M times more feature maps than the input. The weighted

accumulation (i.e., the outer summation) of these feature maps be-

comes the computational bottleneck. While the decomposition can

achieve a high compression rate on CNN models, it is difficult to

translate the compression rate into the actual speedup. From Equa-

tion (2), we can tell that each pixel of the produced feature maps is

only reused across output channels. We either need to frequently

read and write the output channels to maximize the input reuse,

or we have to build a large buffer to hold all intermediate feature

maps. Both designs are energy-consuming. In addition, although

the coefficients are highly sparse, the irregularity of the sparsity

pattern makes it difficult to skip the zeros without degrading the

parallelism of the computation.

Based on the above analysis, more efficient computation can

be achieve with: (1) reducing of the total number of input feature

maps; (2) reducing of the number of input feature maps related to

each output channel; and (3) increasing the reuse possibilities of

each input feature map in the weighted accumulation stage. These

desirable goals can be achieve with an simple observation: since

the convolution operator follows the distributive property, the two

stages of the computation are interchangeable. Specifically, we can

exchange the order of the summations in Equation (2). With such

reorganization, we first compute the weighted accumulation of

the input feature maps, then conduct the convolution on the accu-

mulated feature maps. The same output channel can be computed

by

OFMk =

M−1∑
m=0

(C−1∑
c=0

C
(k,c,m)
e IFMc

)
∗ Bm . (3)

The reorganized convolution is illustrated in Figure 1. With the

new computation order, we only need to compute the weighted

accumulation of C input feature maps. Each input feature map

can be reused for CM times and each basis kernel can be reused

for K times. In general, the number of output channels is larger

than or equal to the number of the input channels. Hence, this

reorganization can explore more reuse opportunities and reduce

the buffer size and data movements. We note that converting the

convolution from the depthwise-like convolution into the normal

convolution with M channels also improves the parallelism and

data reuse opportunities.

3.2 Hybrid Quantization

In kernel decomposition, the weight sparsity mainly exists in the co-

efficients since they constitute the main part of the parameters. We

observe that the coefficients are unique to each pair of input-output

channel, while the basis kernels are reused by all output channels.

Selecting the same quantization precision for coefficients and basis

kernels will waste the opportunity—a high precision is redundant

for coefficients, while a low precision for basis kernels will severely

affect the accuracy. The results are discussed in Section 5.1. Based

on this observation, we propose a hybrid quantization scheme to

maximize the benefit on both accuracy and compression rate. The

basic idea is to use high precision for the frequently reused basis

kernel while using low precision for the coefficients. We choose to

quantize the basis kernels to 8 bits and the coefficients to ternary

values. Directly quantizing the whole coefficients into ternary value

will cause a severe accuracy drop. We observe that, for a given out-

put channel k , only the C
(k, :, :)
e slice is involved in the computation.

Thus, we apply the filter-wise quantization and allow different posi-

tive and negative scaling factors for each slice. The output feature

maps can be re-quantized to match the range of each output chan-

nel.

To obtain the ternarized value of the coefficients, we adopt a

quantization-aware training scheme. We use a similar method as

described in [44]. Specifically, we store the full precision coeffi-

cients during the quantization. During the forward pass, we select

a threshold for each coefficient slice corresponding to one output

channel. The quantized value of the k-th slice is obtained by

C̃e
(k, :, :)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w
pos

k
, C

(k, :, :)
e > t ·max (|C

(k, :, :)
e |)

0, |C
(k, :, :)
e | ≤ t ·max (|C

(k, :, :)
e |)

−w
neд

k
, C

(k, :, :)
e < −t ·max (|C

(k, :, :)
e |)

, (4)

where max |(C
(k, :, :)
e )| is the maximum magnitude of the k-th coef-

ficient slice, t is a hyper-parameter controlling the threshold, and

w
pos

k
and w

neд

k
are the scaling factors for positive and negative

values, respectively. We use different scaling factors for each slice

of the coefficient matrix Ce , i.e., each accumulation operation, and

obtain the scaling factor through training. We use the gradient of

quantized coefficients to update the full precision parameters as

well as the scaling factors. To simplify the hardware design, we

divide the negative scaling factor by the positive one and quantize

the quotient into 2 bits. During inference, we can attach the coef-

ficient as a sign bit to each activation, and shift the negative one

by the quotient. With these optimizations, we completely remove

the multiplication in the first stage and enable arbitrary reordering

of the activations without worrying about the relative order of the

activations and weights. We claim those benefits in the microarchi-

tecture design developed in section 4. Since the first layer of CNNs
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usually only has a very small number of channels (e.g., 3 channels

for color image-related tasks), quantizing the first layer will incur

a severe loss of information. Moreover, since k is normally larger

than the number of the input channels in the first layer, applying

decomposition will not bring any benefit to improve the compu-

tational efficiency. Thus, we do not apply compression to the first

layer.

3.3 Decomposing the Compact Model

Depthwise separable convolution (DSC) splits the normal convolu-

tion into two steps: depthwise convolution and pointwise convolu-

tion. The depthwise convolution (DW) assigns an exclusive kernel

to each input channel and eliminates the cross-channel interactions

to reduce the computational cost. Since the input feature maps are

not shared by different kernels in the depthwise stage, DW leads

to under-utilization of PEs on the accelerators optimized for nor-

mal convolution. The lack of input reuse also results in a lower

computation-to-memory ratio and the demand for a higher on-chip

buffer bandwidth. To efficiently support both DSC and normal con-

volution, we unify the computation flow of both types of convolu-

tion with ESCALATE algorithm. We apply the same decomposition

scheme to DSC and use the same decomposed form as described

in Equation (3). With the unified computation flow, our design can

efficiently support both types of convolution (see Section 4). With

the notations defined before, the weights of DSC can be represented

by the kernels in the depthwise convolutionWDW ∈ RC×RS and

the coefficients in pointwise convolutionWPW ∈ RC×K . We can de-

compose the weights of the depthwise convolution asWDW = C
′
eB

where C ′
e ∈ RC×M and B ∈ RM×RS . Then, we can combineWPW

and C ′
e into the coefficient matrix by computing the Hadamard

product of each column of C ′
e andWPW , which can be represented

as:

C
(c,k,m)
e =W

(c,k )
PW

C
′(c,m)
e . (5)

Thus, we have a unified representation with Section 2.3. Although

this decomposition increases the number of convolution operations

byk times, the convolution kernels are shared across input channels.

This kernel sharing allows us to efficiently support both types of

convolution on the same architecture.

4 ESCALATE ARCHITECTURE

We illustrate the ESCALATE accelerator design in Figure 4(a). ES-

CALATE presents a hierarchical PE design by splitting each PE into

slices (lines). Each PE slice has two parts, corresponding to the two

stages of the decomposed convolution. The first part, namely chan-

nel accumulator (CA), uses the Dilution-Concentration mechanism

to efficiently eliminate ineffectual computations. The second part

consists of multiply-accumulate (MAC) units organized in a row.

Each MAC has a small FIFO to hold one basis kernel. The basis

kernels are loaded into the FIFO before the computation begins

and remain in the FIFO. The MAC row design actively exploits the

channel parallelism of the intermediate feature maps and the reuse

of the basis kernels. We build separate buffers to store each slice of

the input feature maps to process multiple rows of input feature

maps in parallel. The PE slices of the same position in different PE

blocks are connected to the same input buffer. Since the coefficients

are unique to the computation of each PE Block, we build individual

coefficient buffers in each PE Block.

ESCALATE makes three contributions. First, ESCALATE accel-

erator features a novel Basis-First dataflow to exploit the unique

parallelism and data reuse opportunities brought by kernel decom-

position. Second, we propose a Dilution-Concentration scheme to

efficiently eliminate ineffectual computation with bit gather. Lastly,

ESCALATE provides an efficient input buffer design to support asyn-

chronously running PE slices to alleviate the impact of workload

imbalance.

4.1 Basis-First Dataflow

Existing CNN accelerator dataflows are designed for regular con-

volution. Those dataflows do not fit the two-stage computation

of the decomposition convolution. We propose the Basis-First (BF)

dataflow for decomposed convolution. Our objectives are to max-

imize the reuse of each batch of inputs, reduce the global buffer

accesses, and avoid stalling the MACs. The BF dataflow is illustrated

in Figure 3.

BF dataflow confines the computation of one output channel to

one PE block so that we can fully utilize the distributed coefficient

buffer and avoid cross-PE communication. We spatially map one

row of the output feature map to one PE slice with the offset of

the total number of PE slices. Inside each PE slice, we process one

position of all input feature maps at one time and spatially map each

intermediate channel (i.e., indexm) to each CA-MAC pair. Based

on the same observation with [30], we multiply each element of

the intermediate feature maps by all weights in the corresponding

kernel (partial weights for the elements on the edge). The product is

sent to the partial sum buffer and accumulated to the corresponding

output position through the read-modify-write operation. Since the

output accumulation is not at the critical path of the processing and

is less sensitive to the latency, we do not attempt to reduce bank

conflicts at the partial sum buffer with additional optimizations.

We also support regular convolution in ESCALATE as a fallback

for those layers that cannot be compressed (e.g., the first convo-

lutional layer). For those layers, we employ the input stationary

dataflow to align with the objective of maximizing input reuse for

decomposed convolution. We directly bypass the channel accumula-

tor and only use the MACs for these layers. For the fully connected

layer, we convert it into 1×1 convolution with 1×1 input feature

maps to maintain a unified mapping. We do not build separate units

to support the sparsity in those layers because: 1) they only take up

a small portion of the overall computation (< 5%); 2) those layers

usually have a low sparsity ratio and the overhead of supporting

sparsity for those layers can outweigh the computation reduction.

For example, as shown in [33], the pruning ratio of the first layer

is only 1.2-1.6× and the sparse weight even causes performance

degradation comparing with its dense version.

4.2 Dilution-Concentration

4.2.1 Sparse Encoding. The sparsity in weights and activations can

reduce the storage and bandwidth consumption. However, we need

a proper encoding scheme to index the non-zero values. Previous

works [30, 40] adopt the Compressed Sparse Row (CSR) or Com-

pressed Sparse Column (CSC), which use separate arrays to store
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Figure 2: (a) Themicroarchitecture of ESCALATE.M corresponds to the hyperparameter in the decomposed convolution, while

l andNPE is the design space parameter. (b) The design of channel accumulator. (c) The design of input buffer. Each input buffer

is implemented as a circular queue and use the reference count to evict the finished chunks.

for(k=blk_id; k<K; k+=Npe) //Each PE Block
for(y=line_id; y<Y; y+=l) //Each PE Slice

for(x=0; x<X; x++)
for(m=ca_id; m<M; m++) // Each CA-MAC pair

for(c=0; c<C; c++) //Channel Accumulator
mid[m][x][y] += I[c][x][y] * Ce[k][c][m]

for(r=0; r<R; r++) //MAC
for(s=0; s<S; s++)

O[k][x-R/2+r][y-S/2+s] += mid[m][x][y] * B[m][r][s]
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Figure 3: The Basis-First Dataflow. (a) The nested-loop ex-

pression. Npe and l are design space parameters correspond-

ing to number of PE blocks and number of slices per block.

(b) The illustration of BF dataflow in one PE slice of the k-th
PE Block. The number represents the index of CA-MAC pair.

We assumeM = 2,C = 3 and current PE slices is the first one.

We assume a unit-stride convolution for simplicity.

the row/column index of the non-zero element. As discussed in [12],

CSR and CSC are not efficient when the sparsity ratio is relatively

low. Making it worse, the cost of storing one index is much higher

than storing multiple ternary values, making the indexing overhead

outweigh the benefits brought by sparsity.

We adopt the same SparseMap encoding of [12]. As shown in

Figure 4(a), we slice the input feature map along the X dimension

(i.e., row dimension) and store the rows of stride l in a contiguous

array, where l is the number of concurrent accumulations in the first

stage. The coefficients are sliced along the K dimension and stored

in separate arrays for each output channel. We store a separate

bit mask for each array indicating whether each position has non-

zero values. Both activations and coefficients are stored in C-order

to match the computation in the first stage of the decomposed

convolution. To maintain the space efficiency under high sparsity

situation, we also introduce a 2-level SparseMap encoding. We split

the sparse map into 16 bit chunks and use one bit per chunk to

indicate whether the chunk is all zero. The all zero chunks are not

stored. Apart from the space efficiency, SparseMap encoding also

simplifies the processing of the compressed arrays. We are able

to match the index of non-zero elements in activation and weight

arrays with bit-wise AND and bit gather operation, which has a

low energy cost. Moreover, SparseMap allows us to fully utilize

the on-chip bandwidth since we can implicitly extract the number

of processed elements through the index-matching process. We

can insert a barrier indicating moving to a new position, so we do

not need to split and pad the input as fixed-length chunks or have

varied access lengths.

4.2.2 Dilution. The purpose of the dilution process is to match the

input chunk of activations with the coefficients and filter out the

activations corresponding to the zero coefficients. The activations

are kept in high-precision (e.g., 8 or 16 bits) and the shuffling cost

is relatively high. Thus, we keep the “holes” in the filtered chunks

and leave it for the concentration step. Since the coefficients are

quantized to ternary, we only need to generate two masks, one for

filtering out the activations and the other for the sign. The gen-

eration of these two masks can be implemented with bit gather

operations, which has been well-studied [16]. In the gather opera-

tion, we use a mask to indicate the valid elements. We collect all

bits corresponding to the valid bits of the mask to the same side of

the array while keeping their original order.

We show an example of bit gather implementation with an in-

verse butterfly network of loд2(n) steps in Figure 4(b). With the

bit gather operator, we depict the dilution process in Figure 4(c).

Specifically, we calculate the intersection of input activations and

coefficients by bit-wise AND. The filtering mask is generated by

gathering the intersection with the activation sparse map as the

mask. To obtain the sign mask, we first generate a coefficient mask

by gathering the intersection with the sparse map of coefficients.
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Figure 4: The illustration of sparse encoding and the dilution process. (a) The SparseMap encoding of the activations and

coefficients. we assume C = 3,M = 2,K = 3 for this example. (b) Bit gather operation with an inverted butterfly network. (c)

Dilution process. We generate activation masks and coefficient masks through bit gather, and use the masked coefficients as a

sign-mask to obtain the sign-extended activations for concentration process. We omit the higher 4-bits during process in the

figure for simplicity.

The coefficient mask indicates whether the corresponding non-zero

value of coefficients appears in the intersection. Then, we gather

the non-zero value (i.e., the sign bit of ternary coefficients) with

the coefficient mask and generate the sign mask. With the filtering

mask and sign mask, we can filter the input chunks and change

the sign of each filtered activation. The sign bit is also attached to

each activation for the concentration step to apply proper scaling.

Since the sparse map is transferred and stored separately with the

non-zero values, we can start the generation of the masks ahead of

the reading of the chunks. The whole process can be pipelined to

satisfy the timing constraints without impacting the throughput.

Since the distribution of non-zero elements could vary between

activations and coefficients, the size of the mask generated through

one pass might not be able to cover the current input chunk. We

address this issue by keeping a rolling mask, which is shown in

Figure 5. The newly generatedmasks are left-shifted by the length of

the current rolling masks and attached to the rolling mask through

bit-wise OR. Once the size of the rolling mask is large enough to
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Figure 5: Rolling mask and implicit barrier.
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Figure 6: Concentration through look-ahead and look-aside.

cover the current chunk, the corresponding part is evicted from

the buffer. This scheme also supports the implicit barrier between

consecutive input positions. We keep a counter for the rolling mask.

If the count indicates that all elements that correspond to the current

position have been processed, we break the current mask into two

partial masks and separately apply them to the current input chunk.

In other words, the rolling mask creates a barrier to separate the

activations corresponding to different positions. With the barrier,

we can avoid the expensive element rotation operation and fully

utilize the bus bandwidth at the cost of two partially utilized cycles.

4.2.3 Concentration. With the “diluted” and signed chunks of acti-

vations, the concentration process is relatively simple. As shown in

Figure 6, we collect the chunks produced by the dilution process,

folding each of the chunks into multiple columns, and trying to

fill all zeros with the column-wise “look-ahead” and “look-aside”.

This process is equivalent to reorder the activations. Since we have

attached the coefficients as the sign bit, we can permute the activa-

tions in arbitrary order. We use double buffers in this step. When
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one buffer is used to feed the activations to the reduction tree, we

collect and concentrate the processed chunks in the other buffer.

The functionalities of the two buffers swap when the adder tree

has processed all non-zero chunks. The concentration process is

performed in both buffers until the buffer is full or there’s no more

possible movement of the elements. The aforementioned barrier

results in an immediate flush of the buffer, which guarantees that

the chunks from different positions will not get mixed up.

We implement the Dilution-Concentration mechanism in Chan-

nel Accumulator Unit (CA), which is depicted in Figure 2(b). Since

the SparseMaps are stored and processed separately with the input

chunks, we can start the mask generation in advance and over-

lap the process with other parts of the computation. The parallel-

running mask generation could process the sparse pattern in ad-

vance and avoid blocking the major datapath.

4.3 Buffer Design

Unlike previous sparse accelerators, ESCALATE does not require a

reduction across PE slices. The load imbalance can be mitigated by

asynchronously running PE slices. However, it could also reduce

the reuse opportunities of the input feature maps and result in a

higher cost of data movement. We address this issue by altering the

input buffer design. Instead of using a large, unified input buffer, we

break it into multiple individual buffers. Each buffer is connected

to the PE slices of the same position in all PE blocks since they

process the same lines of the input feature map. Inside the buffer,

we organize the non-zero elements of the input feature maps into

chunks. Since the chunks are accessed strictly in order, we store

those chunks in a circular queue. We use registers to keep the

head and tail pointers to the queue. For each chunk, we keep a

chunk ID as well as a counter to count the number of PE slices

that have not processed this chunk. The buffer access requests are

collected through an H-Tree connecting each PE slice. The node of

the tree is an arbitrator that will also calculate the number of PE

slices which the current winning requests could cast to. A separate

request queue in the buffer stores all outstanding access requests.

The chunk as well as its ID corresponding to the head of the request

queue is broadcast to all PE slices. The counter of the accessed

chunk is updated by subtracting the count in the current request. If

the counter is decreased to zero, the corresponding chunk will be

evicted from the queue. A signal will be sent to all slices to update

the ID of the chunk. The chunk ID in the request queue will also be

updated. To efficiently utilize the capacity of the buffer, we apply a

greedy policy in each arbitrator. The arbitrator will prioritize the

request to earlier chunks. The design of the input buffer is shown

in Figure 2(c).

5 EVALUATION

To evaluate the effectiveness of the ESCALATE framework, we test

a variety of representative CNN models on both CIFAR-10[22] and

ImageNet[10] datasets. VGG16[36], which is known to be redundant

and easy to compress, is used as a sanity check for the proposed

framework. We select ResNet[14] as the target model for evalu-

ation, including two variants for CIFAR-10: a shallow ResNet18

and deep ResNet152. For ImageNet, we use ResNet50, which is

widely evaluated by previous compression works. We also select

Table 1: Compression result of ESCALATE algorithm.

Model Top-1 CONV Comp. Spar. Prun.1

(Method) (%) (MB) (×) (%) (%)

CIFAR-10

VGG16 93.49 56.12 - - -

STQ 92.38 2.21 25.10 N/A N/A

ADMM-NN-S 93.10 0.54 109 98.3

Ours 92.74 0.71 79.04 89.24 96.1

ResNet18 93.79 42.58 - - -

ADMM-NN-S 93.3 0.33 135 98.6

Ours 93.63 0.4 106.45 97.4 98.21

ResNet152 95.36 221.19 - - -

Naive_L1 94.12 20.452 13.31 92.49

Ours 93.86 0.68 325.27 99.2 99.4

MobileNetV2 94.09 8.40 - - -

ADMM-NN-S3 94.90 0.54 18.8 83.6

Ours 93.32 0.73 11.51 96.98 91.86

ImageNet

ResNet50 76.25 78.03 - - -

STR 74.31 7.622 10.24 90.23

ResRep 75.3 48.164 1.62 N/A 62.1

Ours 73.89 7.17 10.92 88.22 92.16

MobileNet 70.10 26.94 - - -

STR 68.35 6.652 4.05 75.28

ResRep 68.02 13.814 1.95 N/A 73.91

Ours 67.89 3.02 8.92 67.6 63.9
1w.r.t the original weights before decomposition.
2Does not include indices.
3Trained with Mixup augmentation.
4Estimated through FLOPs reduction reported in paper.

MobileNet [17] and MobileNetV2 [34] to evaluate the effectiveness

of our framework on compact models.

5.1 Algorithm

5.1.1 Experiment Settings. OnCIFAR-10, baselinemodels are trained

for 350 epochs using Nestrov accelerated SGD optimizer with 0.9

momentum and 0.0001 weight decay. The learning rate is set to

0.1 initially and multiplied by 0.1 at the 50% and 75% epochs. For

ESCALATE , we select M = 6 for decomposition. The retraining

process lasts for 300 epochs using ADAM [21] optimizer with 0.001

initial learning rate and the same decay policy. We set t = 0.05 in

the ternary quantization process of coefficients . On ImageNet, we

use the pre-trained model provided by PyTorch [31] as the ResNet50

baseline, and train the baseline model of MobileNet with 0.1 initial

learning rate. The retraining process lasts for 60 epochs with ADAM

optimizer with 0.0001 initial learning rate. Other parameters are

the same with CIFAR-10 training.

5.1.2 Analysis. The compression results of ESCALATE algorithm

are summarized in Table 1.We only show the result of convolutional

layers since the ESCALATE algorithm only processes convolutional

layers. Since other layers take up a small portion of the overall com-

putation cost, they have minor impact on the overall performance.

We assume 32bit floating-point precision for the baseline models.
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Figure 7: The comparison of model size and accuracy with

uniform, hybrid and basis-only quantization. We omit coef-

only since it shows identical behavior with hybrid.

For ESCALATE , we use 8bit for the first convolutional layer and

all the basis kernels and use the SparseMap encoding as mention

in Section 4.2 for the coefficients. We compare our result with the

quantization method STQ[27], the structured prunning method

ResRep [11], non-structured pruning method STR [23], and joint

pruning and quantization method presented in ADMM-NN-S[26].

Although ADMM-NN-S presents the results of both structured and

non-structured pruning methods, its structured pruning is a fine-

grained variant; the hardware still needs to be specialized to skip

the pruned columns in the filters. Since non-structured pruning

shows a higher pruning ratio, we select it as the baseline model

both in algorithm and hardware evaluation. For structured pruning

methods, we ignore the sparse encoding overhead and assume the

parameters are represented using 32bit floating point. The proposed

ESCALATE algorithm approaches the non-structured baselines in

terms of both compression ratio and accuracy. On CIFAR-10, we

achieve a compression rate ranging from 11× to 325×. ESCALATE

algorithm reaches a similar compression rate on all CIFAR-10 mod-

els with the non-structured ADMM-NN-S. The encoding overhead

of SparseMap results in the gap. ESCALATE is also able to effi-

ciently explore the redundancy in a large model like ResNet152

and prune 99.2% of parameters, compressing the orignal model by

325×. Some downsampling layers in ResNet152, especially those

in the last three residual blocks, are completely pruned. These re-

sults indicate that ESCALATE algorithm can effectively identify

and eliminate the redundancy in the CNN models. For the compact

MobileNetV2 model, we can also achieve over 11× compression

ratio. ESCALATE incurs a 1.5% accuracy loss on ResNet152, and less

than 0.8% accuracy loss on the remaining three models compared

to the uncompressed models. On ImageNet, we achieve a similar

sparsity with non-structured pruning method STR with less than

0.5% accuracy gap. For MobileNet, we maintain the accuracy at

67.89% while compressing the original model into 3.02MB.

We also show the advantage of hybrid quantization by perform-

ing post-training quantization on decomposed ResNet18 model.

Uniform quantization policy enforces the same precision on both

basis and coefficients, while hybrid quantization keeps the basis in 8

bits and only further quantizes the coefficients. The result is shown

in Figure 7. Since the basis kernels only occupy a small portion

of the parameters while being frequently reused in computation,

keeping the basis kernels in high precision effectively maintains

model accuracy. These results show that hybrid quantization can

Table 2: Configurations of ESCALATE and baselines.

ESCALATE

M 6 Input Buf. 8KB

NPE 32 Coef. Buf. 512Bytes

l 5 Output Buf. 4KB

Input Bus 16Byte Psum Buf. 2KB

Precision 8bit Act. Buf. 16Byte×4

Other Baselines

Proportional scaling of on-chip SRAM buffer.

1024 8-bit multipliers

Table 3: Unit energy cost per 8-bit integer operation ex-

tracted from commercial TSMC 65nm technology.

DRAM MAC Multiply Add

Energy(pJ/8-bit Int) 100 0.407 0.186 0.036

achieve almost the same compression ratio as uniform quantization

while maintaining accuracy.

5.2 Accelerator

5.2.1 Experiment Settings. To estimate power and area, we imple-

ment the RTL design of ESCALATE and synthesize it using Synopsys

Design Compiler with TSMC 65nm library under the typical cor-

ner, 1V, and 25°C. The design achieved 800MHz frequency. The

power and area estimated from the synthesized result is shown in

Table 4. We then implement a cycle-accurate simulator and verify

it against the RTL implementation. The simulator generates SRAM

and DRAM access traces. For SRAM, we use CACTI 7.0[3] to esti-

mate the power consumption. For DRAM, we simulate the trace

using ramulator[20] and extract the energy consumption from the

command trace with DRAMPower[4]. We only evaluate the con-

volutional layers since ESCALATE does not process other types of

layers, and the SCNN baseline only supports convolutional layers.

For performance baseline, we select a DNN accelerator optimized

for dense networks, Eyeriss[7], and two sparse CNN accelerators,

SCNN[30] and SparTen[12]. We use TimeLoop [29] to simulate

Eyeriss, and use DNNSim [18] to simulate SCNN, respectively. For

SparTen, we implement a cycle-accurate simulator and verify it

against results reported by the original paper. CACTI is used to

estimate the area and energy consumption of on-chip buffers. We

extract the energy consumption of unit operations under the same

Table 4: Power and Area estimation of PE Block(65nm)

Component Area(mm2) Power(mW)

Activation Buffer 0.0098 5.44

MAC Row 0.0159 7.79

Dilution 0.0450 17.77

Concentration 0.0906 46.74

Coef.&Psum Buffer 0.0538 8.33

Total 0.2150 86.07
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Figure 8: The normalized speedup and energy efficiency

(over Eyeriss) of ESCALATE and baseline accelerators.

65nm technology node, as shown in Table 3, to estimate the en-

ergy cost of other hardware components. According to [39], the

energy cost of DRAM accesses can be approximated as 100pJ per 8

bits. The configuration of all baseline designs are adjusted to have

the same number of multipliers. For baseline accelerators, we use

the model checkpoints from ADMM-NN-S [26] for all CIFAR-10

models except ResNet152 and the checkpoints from STR [23] for all

ImageNet models. Since no previous work provides a checkpoint

for ResNet152, we use the naïve magnitude-based pruning method

with l1-regularization to build a sparse model. The sparsity of the

models used for baseline accelerators can be found in Table 1. Since

the result is also related to the activation sparsity, the result may

vary with different input samples. We randomly generate 10 input

samples and present the average speedup and energy consumption.

We list the configurations of ESCALATE accelerator and baseline

accelerators in Table 2.

5.2.2 Main Result. Figure 8 showcases the normalized speedup

and energy efficiency of all accelerators over Eyeriss. Compared

with the baseline accelerators, ESCALATE achieves the best perfor-

mance under all evaluated models. Comparing with Eyeriss, which

does not exploit sparsity, we achieve a speedup ranging from 8.7×

to 46.31×. ESCALATE benefits from the computation reduction
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Figure 9: The normalized DRAM accesses (w.r.t. ESCALATE )

of baseline accelerators on all evaluated models.
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Figure 10: The inference energy breakdown of all evaluated

models. We omit the output buffer since its energy con-

sumption is negligible compared with other hardware com-

ponents.

brought by both sparsity and the decomposed form of convolution.

Since the second stage of the decomposed convolution is dense, the

upper limit for the speedup of each layer is determined by the layer

shape, specifically M/C . For CIFAR-10 models, the high sparsity

(>90%) enables the channel accumulator to produce intermediate

feature maps in time. Thus, if there is no idle MAC, the speedup

is bounded by the layer shape. For ImageNet models, the sparsity

is relatively low. The CA requires more cycles to produce an inter-

mediate element than a MAC needs to consume. The issue of idle

MAC cycles limits the performance, which we discuss in Section

6.2. Comparing with sparse baselines, ESCALATE also respectively

outperforms SCNN and SparTen by 3.5× and 2.16× on average.

As for the energy efficiency, the result diverges based on the

type of CNN models. Input feature maps of CIFAR-10 models are

relatively small. Thus, the off-chip access of weights dominates the

energy consumption. The coefficient compression makes it possible

for ESCALATE to retain most of the weights on-chip during the

whole computation process. ESCALATE can almost eliminate the

expensive DRAM accesses for weights during the computation,

resulting in over 10× improvement in energy efficiency. For Ima-

geNet models, the movement of input feature maps dominates the

DRAM traffic. ESCALATE has a similar energy consumption with

SparTen due to the same channel-first order in processing the input

feature maps. The large activation buffer of SCNN effectively re-

duces this part of the cost, resulting in up to 3.1× energy efficiency

improvement. On average, we achieve an 8.3× energy efficiency

improvement over Eyeriss, 5.19× improvement over SCNN, and

3.78× improvement over SparTen.

Figure 9 illustrates the normalized number of DRAM accesses

over ESCALATE . As we mentioned above, for ImageNet models, the

DRAM accesses for input feature maps dominate the overall energy

consumption. ESCALATE requires a similar or larger number of

DRAM accesses compared to baseline for these models. On CIFAR-

10, ESCALATE effectively reduces the expensive DRAM accesses.

The reduction relative to SCNN results from the eliminated off-chip

weight accesses. Comparing with SparTen, our input buffer design

exhaustively exploits the input reuse without enforcing a large-

scale synchronization barrier. On average, ESCALATE reduces the

DRAM accesses by 18.1× over Eyeriss, 5.3× over SCNN, and 9.4×

over SparTen, respectively.

Figure 10 shows the energy breakdown of ESCALATE accelerator

on all evaluated models. Apart from the DRAM accesses we have

discussed before, the breakdown also reveals a divergence in the
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Figure 11: Layerwise sparsity and speedup over dense accelerator (Eyeriss) in ResNet-18 model. We also show the width (i.e.,

number of input channels) and the size of the input/output feature map of each layer.

energy consumption of buffers. For shallow models like ResNet18

or VGG16, the partial sum buffer dominates the buffer energy con-

sumption; this is because the output feature maps are kept dense

in the partial sum buffer and require frequent read-modify-write

operations. For deeper models like ResNet152, the cost of reading in-

put activations outweighs the partial sum accumulation. The large

number of 1 × 1 convolutional layers amortize the read-modify-

write cost of other types of layers. Moreover, the ResNet152 model

features more ‘late layers’, which have a large number of input

channels but a relatively small input size. This observation also ap-

plies to MobileNetv2 result since MobileNetv2 quickly downscales

the size of feature maps in early layers that have a small number

of channels. In summary, the reduction in DRAM accesses, espe-

cially off-chip weight accesses, is the main reason for the improved

energy efficiency of ESCALATE .

5.2.3 Layer-wise Analysis. The computational efficiency of ESCA-

LATE accelerator is affected by the layer width and the size of the

input feature maps. To evaluate the impacts of these factors, we

perform a layer-wise analysis. Figure 11 shows the layer-wise nor-

malized speedup of ESCALATE and all baseline sparse accelerators

in ResNet-18. We also mark the layer shape of each residual block

and present the sparsity of each layer. For the first layer, ESCA-

LATE is slower than the dense baseline for the following reasons, (1)

directly mapping the computation into MAC row without skipping

the zero activations or coefficients; (2) the fallback input station-

ary dataflow is not as efficient as the row stationary dataflow in

Eyeriss. Since the first layer only contributes to a small portion of

the overall computational cost, we do not further optimize for the

first layer in ESCALATE to avoid increasing the design complexity

and degrading the efficiency of other layers. For the other layers,

we can tell a clear boundary between SCNN and SparTen—SCNN

effectively utilizes spatial parallelism in early layers, while SparTen

exploits the channel parallelism in late layers. ESCALATE presents

a similar layer-wise speedup pattern to SparTen since both designs

use input channels as the inner-most loop of dataflow. Comparing

with SparTen, the overlapped two computation stages of ESCALATE

further boosts the efficiency. As we mentioned before, due to the

high sparsity in CIFAR-10 models, the performance is bounded by

layer shapes. Within the first three blocks of layers, ESCALATE

almost reaches the C/M limit of speedup. For the last block, the

speedup varies across layers. Since the input feature maps of these

layers are very small, most intermediate results require less than

RS cycles in MAC row, leaving the MACs running idle.

6 DISCUSSION

6.1 Design Trade-off

ESCALATE provides a trade-off between accuracy and latency/energy

by adjusting the number of basis kernelsM in the decomposition

step. With a differentM , we can adjust l to maintain the same num-

ber of MACs and resource consumption. Increasing the number of

basis kernels can effectively increase the model accuracy. However,

it also reduces the number of PE slices per block, leading to a reduc-

tion in row parallelism. We show the trade-off with both ResNet18

and ResNet50 models in Figure 12. ForM = 7, we achieve 93.83%

accuracy on ResNet18 and 74.09% on ResNet50. When increasingM ,

we have a smaller l under the constraints of maintaining the num-

ber of MACs, thus reducing the row parallelism and increasing the

latency. The change in l also affects the number of input buffers. A

larger l requires more input buffers but reduces the cost of off-chip

DRAM accesses. The energy consumption of other components

shows negligible change with the number of basis kernels.

6.2 Overhead Analysis

In ESCALATE design, both CA and MAC can be idle. If CA can-

not produce a new intermediate element before MAC finishes the

current computation, the MAC has to stall. Conversely, if MAC

requires more cycles to consume one element (e.g., a large kernel),

the CA has to stall. We only consider the idle MACs as overhead

since the idle CA can still process masks or perform concentration.

As we mentioned before, in CIFAR-10 models, we did not observe

significant idle MACs (< 0.05% of overall cycles) thanks to the high

sparsity ratio, while the issue of idle MACs limits the speedup of

ImageNet models. We show the layer-wise portion of MAC idle

cycles in Figure 13. The portion of idle cycles is determined by both
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MobileNet.

the sparsity ratio and the distribution of non-zero elements. CA

requires more cycles to process the computation corresponding to

denser coefficients, leading to more idle cycles of MAC.

6.3 Modern Compact CNNs

Through our experiments, we observe that the variation in layer

dimensions could complicate the accelerator design. For sparse

accelerators, it’s difficult to be efficient under all types of layer con-

figurations. Modern compact CNNs, like EfficientNet [37], usually

include a rich set of layer variants, making it hard to be efficiently

deployed to a sparse-aware accelerator. We also noticed that, in our

experiments, sparse VGG16 is 1.5× faster than sparse MobileNetv2,

while they achieve a similar accuracy (0.5% difference). Modern

compact models are mostly designed for general-purpose proces-

sors on the edge. Since these platforms cannot efficiently support

processing sparse data, the compact models do not include the per-

formance of the sparse version into their design considerations.

They are not suitable for sparse-aware accelerators and might even

be outperformed by the sparse version of large and redundant

models. This situation motivates us to explore the possibilities of

jointly designing sparse-aware accelerator and hardware-aware

CNN models in future works.

7 RELATEDWORKS

CNN Compression. Pruning and decomposition are two impor-

tant compression techniques for CNN models. Pruning removes

the redundant structures in the CNN weights. Among all pruning

methods, weight pruning [13, 23, 41] removes individual weight

values based on its magnitude and recovers the accuracy using

different retraining techniques. Previous weight pruning methods

pursuit a high compression ratio, ignoring the hardware efficiency

of the compressed model. Structured pruning[11, 38] eliminates the

whole filter or channel to maintain its original computation flow

and data locality. Although structured pruning can directly benefit

the hardware, it can only achieve a limited compression ratio due to

the limited pruning pattern. Decomposition[24, 42] adopts matrix

decomposition or tensor decomposition to represent the original

weight tensor with multiple low-rank structures. These works did

not exploit the sparsity in the decomposed models. In summary,

previous compression methods focus on algorithm level metrics

or the speedup on existing hardware, ignoring the potential of the

co-optimization.

CNN Accelerators. A vast number of CNN accelerator designs

have been proposed to boost the inference efficiency. Dense accel-

erators [5–7] optimize the inference efficiency by exploring the

reuse opportunities and designing efficient dataflows. Later designs

add the support for sparse CNN models: Cambricon-X [40] and

Cnvlutin [2] only utilize the sparsity from one side. SCNN [30] and

SparTen [12], which we have extensively discussed in our paper,

exploit the two-sided sparsity. The bit-serial accelerators[1, 9, 35]

reduce the computation by removing ineffectual bits during the

multiplication. Since the whole value, other than just effectual bits,

needs to be stored and transferred, these designs may not reduce

the bandwidth cost. Another type of sparsity-aware accelerators

optimizes for sparse tensor or matrix operations and maps CNN

model onto these primitives. ExTensor [15] optimizes for sparse

tensor operations, while SIGMA[32] optimizes for sparse GEMM

operations. These accelerators are not specifically optimized for

the inference of sparse CNN.

8 CONCLUSION

In this paper, we present ESCALATE , a kernel decomposition-based

algorithm-hardware co-design framework to boost the inference

efficiency of sparse CNN models. We reorganize the decomposed

convolution to eliminate the computation bottleneck and apply

hybrid quantization to exploit the discrepancy in parameter reuse

frequencies. We propose ‘Basis-First’ dataflow and corresponding

microarchitecture design to support the ESCALATE -compressed

CNNmodel. Extensive experiments show that ESCALATE algorithm

achieves up to 325× compression rate with negligible additional

accuracy loss compared to previous compression techniques, while

ESCALATE accelerator outperforms previous sparse CNN accel-

erator designs with up to 2.16× reduction in latency and 3.77×

improvement in energy efficiency.
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