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2 Abstract
3 Brown carbon (BrC) is involved in atmospheric light absorption, climate forcing
4 and can cause adverse health effects. Understanding the formation mechanisms and




molecular structure of BrC is of key importance in developing strategies to control

its impact on environment and health. Structure determination of BrC, however, is

challenging. mainly due to the lack in experiments providing characteristic fingerprints

of the molecules and the sheer size of possible molecular structures with identical

molecular mass. Chemical intuition and ad hoc assumptions often provide the basis

10

for suggesting particular structures, but are prone to errors due to their biased nature.

11

This study develops an unbiased algorithm, based on a combined graph-based molecule

12

generator and machine learning workflow, to identify the molecular structure of com-

13

pounds involved in biomass burning (BB) and the composition of BrC. We apply this

14

algorithm to unravel the structures of C1o0H1507 isomers, identified in chamber exper-

15

iments as light-absorbing photooxidation products of syringol, a prevalent marker in

16

wood smoke. Of the 260 million initial molecular graphs with sum formula C12H;507,

17

the algorithm reduces the number of candidates to 0.01%. Further reduction strategies

18

are discussed and analyzed according to their power to condense the number structures

19

consistent with experimental observations. The method will potentially make isomers

20

extracted from lab and field aerosol particles more readily and rapidly identified with-

21

out introducing human bias.

22

23

24

Introduction

Visible light-absorbing secondary organic aerosols (SOAs). also known as brown carbon

(BrC). interfere in atmospheric processes, impact climate forcing. and cause adverse health

25

effects due to their oxidative character.!™ Emerging from biomass burning (BB) and from

26

natural and industrial emissions. SOAs constantly undergo several chemical modifications

27

due to reactions in the atmosphere, eventually forming light-absorbing olicomers with large

28

absorption coefficients. Understanding the molecular details of the formation mechanisms.

29

precursor identification, and knowledge of the exact molecular structure of BrC is of key

30

importance in designing strategies and policies to control its impact on environment and




31

32

public health. Structural knowledge is not only important to evaluate their toxicology,5”’

carcinogenic activity, and receptors binding® in order to assess public health impact, but

33

also does it allow to make predictions on molecular stability and chemical fate; the latter

34

are important properties to assess BrC’s further implications on atmospheric processes and

35

climate forcing.? Thus, structure and precursor identification takes up a key role in atmo-

36

spheric chemistry, connecting field studies with lab experiments and computer modeling.

37

Unravelling the structure of BrC compounds and the characterization of the molecular com-

38

position, particularly identifying the major constitutional isomers, is a pressing challenge

39

for atmospheric chemistry. %2 The difficulty of this process is mainly caused by the lack of

40

41

experiments providing characteristic fingerprints of these molecules and due to the sheer size

of possible molecular structures associated with a given molecular mass. Chemical intuition

42

and ad hoc assumptions for structural elements often provide the basis for suggesting par-

43

ticular structures, but are prone to errors due to their biased nature. This study develops

44

an unbiased algorithm to identify the molecular structure of compounds involved in BB and

45

the composition of BrC. One source of secondary brown carbon believed to be atmospher-

46

ically significant is the formation of olisomers during the aqueous-phase photooxidation of

47

phenolic compounds, such as syringol, that are prevalent in wood smoke. This oligomer

48

formation is thought to change the optical properties of BB aerosol particles during cloud

49

processing, partially counteracting photobleaching and other aging processes. We focus here

50

on the structural identification of a light-absorbing dimer identified from this reaction with

51

the formula C;5H,05.

52

53

54

55

56

57

Typically, the formation and further reactions of SOA under specific atmospheric con-
ditions can be simulated in atmospheric chamber experiments.!® In these experiments,
aerosol-phase reaction products are often extracted from filters and characterized by high-
resolution liquid chromatography (LC)/mass spectrometry (MS) analysis with inline UV /Vis
absorbance spectroscopy. While the detected mass of the compounds gives complete infor-

mation about the chemical sum formula, the exact chemical structure remains unknown. In
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chamber experiments, often molecular structures are proposed on the basis of mass spec-
trometric fragment data, absorption estimates, and chemical intuition. Chemical intuition,
however, introduces a human bias that might prevent the discovery of the exact molecular
constitution by not considering specific isomers if they do not seem probable based on the
chemist’s experience. This bias might constitute a hurdle in finding novel, undiscovered con-
stitutional isomers. In view of the large number of constitutional isomers of medium sized
molecules, the probability of picking the right structure from the first estimate is small.
Moreover, chemical intuition requires manual intervention, limiting the number of potential
target compounds that can be identified.

Thus, it is advisable to support proposed structures by comparison of as many physically
measurable properties as available to gain confidence in the correctness of the chosen struc-
ture or rule out structures not consistent with experimental observations. Due to the low
concentrations of compounds in gas phase experiments, spectroscopic methods that provide
conclusive information about the chemical constitution, such as NMR, are unfortunately
not applicable. The high absorption coefficients of BrC, however, allow the use of UV /Vis
spectroscopy to probe if the proposed structure is consistent with the experimental observa-
tions. Furthermore, it is questionable if only one constitutional isomer is present. Given the
chemical complexity of SOA, it is often more realistic to assume a composition of different
isomers with similar physical chemical properties.

In an attempt to rule out any human bias in the proposition of candidate structures,
we attack the problem of finding consistent isomers by initially considering all possible iso-
mers exhaustively; this is in stark contrast to the common approaches based on chemical
intuition. "'* However, due to the quickly growing size of the chemical space with the num-
ber of atoms, this approach is already challenging for small and medium-sized molecules
and becomes impossible for larger molecules. As a test case, we consider syringol (2,6-
dimethoxyphenol), an aromatic phenolic Cg compound (Fig. 1) that has been used as a

marker for wood smoke emissions in the atmosphere.® When syringol is photooxidized with
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OH radicals or triplet carbon (3C*) species in the aqueous phase, one of the seven major
products detected by negative-mode nano-desorption electrospray mass spectrometry has
the sum formula C;5H1507.14 In experiments at the CESAM chamber!® where syringol was
oxidized with OH radicals, product peaks identified by UHPLC-(4)ESI-MS in aerosol ex-
tracts were categorized by whether their concentrations were higher in experiments where
brown carbon formed. Within this group of peaks that correlated with brown carbon, 2%
of the peak area was due to Cg (monomer) products, 94% was due to Cyg - Cy5 (dimer)
products, and 4% to larger products, up to Cyg. Among molecules with less than 20 heavy
atoms, C1oH507 was the largest peak, responsible for 7% of the peak area correlating with
brown carbon, and co-eluting with an absorbance peak. Thus, C15H1507 is an appropriate
brown carbon candidate (Fig. 1). Considering all possible molecular graphs (i.e. the set of
all atoms and their bonds including bond orders) of C15H1207, we assign one graph node for
each heavy atom. In total there are more than 103° simple connected graphs of 19 nodes.'”
The number of molecular graphs is even higher, since this count neither includes elemental
composition nor bond orders. These large numbers show that the major bottleneck in ex-
ploring this chemical subspace lies in the efficiency of the computer generation of molecular
structures, which ultimately limits this approach for molecules larger than a given size. A
second challenge arises from the prediction of physical chemical data for all these structures
needed to determine the candidate molecules consistent with experimental measurements.
In BrC, the observable usually is the UV /Vis spectrum, which can be predicted reasonably
well by correlated quantum chemistry methods.'® 22 However, the computational resources
necessary for the spectra prediction of such a large number of isomers quickly becomes out
of reach.

Here, we developed a computational workflow to find possible constitutional Ci5H1505
isomers consistent with the recorded absorption spectra. To tackle the exhaustive genera-
tion of constitutional isomers we present a graph-based, bias-free molecule generator, that

leverages massively parallel computation. The problem of quantum chemical spectra predic-
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Figure 1: In the proposed reaction scheme (left), aqueous-phase syringol photooxidation
forms C12H1207, a product with unknown structure that correlates with brown carbon for-
mation. Right: four different UV /Vis absorbance spectra, measured in a filter extract from
the CESAM chamber at four different retention times; each corresponds with elution of a
different C13H{207 isomer.

tion of a large number of molecules is solved by making use of machine learning to predict
spectral properties of the molecules.?® In a Monte-Carlo procedure, we then determine the
likelihood that specific feature groups give rise to the experimentally observed spectrum.
The work flow starts from an unbiased and exhaustive generation of all possible molecular
graphs. The number of graphs is further reduced by molecular stability and steric criteria
based on tight-binding density functional theory. After prediction of electronic excitation
energies and oscillator strengths, we filter the compounds by the probability of agreement
with experimental UV /Vis absorption spectrum. Finally, we explore how additional infor-
mation about structure or functional groups could further reduce the number of possible

C12H1207 isomers consistent with experimental data.

Materials and Methods

Experimental

The filter extraction protocol has been described previously.?* Briefly, each collected Teflon

filter (1 pm pores, 47 mm diam.) was spiked with caffeine (final concentration 100 ppb), as
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internal standard and then extracted twice with 6 mL of acetonitrile and agitated for 20 min-
utes with an orbital shaker at 1000 rpm. The extracts were then filtered with a syringe filter
(0.2 pm, Pall Acrodisc® PSF, with GHP membrane, hydrophilic polypropylene) to remove
any insoluble particles and blown dry under a gentle Ny (g) stream at ambient temperature.
The residues were reconstituted in 0.2 mL of water:methanol (v/v 1:1, Optima®LC/MS,
Fischer Scientific). Finally, the filter extracts were analyzed by ultra-high performance liquid
chromatography (Dionex 3000, Thermo Scientific) using a Water Acquity HSS C18 column
(1.8 pm, 100 x 2.1mm) coupled with a diode array UV /Vis absorbance detector and a Q-
Exactive Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Scientific) equipped with
an electrospray ionization (ESI) source operated in positive or negative mode. The mobile
phase used was constituted of (A) 0.1% formic acid in water (Optima® LC/MS, Fischer
Scientific) and (B) 0.1% formic acid in acetonitrile (Optima® LC/MS, Fischer Scientific).
Gradient elution was carried out by the A/B mixture at a total flow rate of 300 pL/min: 0
to 13 min B from 1% to 100% , 13.1 min B 1% for 9 min.

Raw data was processed with MZmine 2.51. Features with a higher intensity than 1x10°
and at least 10 times higher than the blank intensity were selected. The chromatographic
peaks of all ID selected were visually analyzed and a proposed molecular formula was ob-
tained using Xcalibur 2.2 (Thermo Scientific) software package. A subset of peaks was then
identified that had areas averaging at least 5 times larger in experiments where brown carbon

formed than when it did not; C13H;1207 was prominent within this subset.

Molecule generation

For the sum formula C1,H;,07, we systematically?® enumerate all molecules that potentially
could be a product of the reaction in the atmospheric chamber. We rationalize that the
product forms via radical-initiated coupling?® of two syringol units to C;4H3Og, the most
abundant SOA product identified in previous studies, *27 followed by further oxidation and

fragmentation to C12H;5,07.1* We limited ourselves to those candidates where the two Cg-
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rings found in the two reactant molecules persist in the product, which requires the loss of
methoxy carbons. We note that half of the syringol SOA product structures proposed by
Yu et al.'* have lost at least one methoxy carbon, and 16% of their proposed structures
have lost all methoxy carbons. Demethylation of methoxy groups during photooxidation
has been observed for vanillin,?® syringaldeyde, and acetosyringol.?® Technically, this enu-
meration is performed by a) enumerating all potential molecular graphs ignoring hydrogens,
b) constructing all possible hydrogen saturations of these graphs, c¢) filtering all molecules
which are not stable in GFN2-xTB calculations.®® The protocol for these steps is detailed in

the ST and is based on Refs. 253173

Electronic structure methods and machine learning

To assess the absorption spectrum, we computed the lowest three excitation energies and
their corresponding oscillator strengths using the Algebraic Diagramatic Construction to
Second Order (ADC(2)) method.?333% To include effects of water solvation in the calculation,
we employed the Conductor-like Screening Model (COSMO)3™ using a dielectric constant of
80.1 and a refractive index of 1.3325.3% The def2-TZVP basis set was used.?® This approach
has been shown to yield accurate excitation energies.®® Calculations were carried out with
TURBOMOLE V7.2.41:42

Since it is prohibitively expensive to apply this reliable method to the exhaustive list
of all molecules, we calculated 10,000 randomly selected molecules as training set for the
Kernel-Ridge-Regression (KRR) method®® with the FCHL molecular representation! as
implemented in the QML toolkit.#> Machine learning in general and KRR in particular
have been successfully used to predict excited state properties,*6~4® typically highlighting
the need for high-quality reference data. 82 molecules were excluded since they exhibited
negative excitation energies, which indicates a non-stable ground state. We determined
optimal hyperparameters for the kernel widths and regularizer with 5-fold cross validation

(see SI). Once both the excitation energies and oscillator strengths for the lowest three
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excitations have been predicted for all compounds from machine learning, we can model the

349 and compare it to the experimental ones. We employ a Monto-Carlo method

spectrum
(see SI) to assess whether these predicted spectra are compatible with the experimental
spectra. In this work, a predicted spectrum is considered compatible if the experimental

spectrum and predicted spectrum are separated by at most one standard deviation of both

modeling and experimental uncertainties.

Results and discussion

Analysis of the generated molecules

At first we will analyze the distribution of features in the molecular graphs, before the
structures have been optimized. According to our initial assumption that two Cg-rings exist
in the structure, there are two different possibilities how the rings are connected: either
directly by a carbon-carbon bond, or by one or more oxygen atoms, serving as a bridging
unit. These two possibilities are reflected by having either 13 or 12 C-C bonds, respectively
(Fig. 2). Analyzing C-O bonds, we find a peaked distribution ranging from 1 to 13, with a
maximum probability at 7. Oxygen-oxygen bonds range from 0 to a maximum of 6, with the
maximum of 6 corresponding to a structure where an O chain exists (blue, middle Fig. 2).
We also note that the longer the oxygen chain, the fewer graphs are found, as expected. We
note that most structures have 0-2 carbonyl groups (Fig. 2, right), which are important for
absorption properties.

Of the 263 million graphs about 123 million lead to stable three-dimensional structures
according to GFN2-xTB. All their coordinates are available online® together with the refer-
ence data for the machine learning model.? Since we are mainly interested in the structures
that are consistent with the experimental spectra, we skip a more detailed analysis of the
features of this large structure set. However, it is important to say that we observe a substan-

tial amount of structures that are not commonly seen. For instance, we find a considerable
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number of stable molecules with chains up to seven oxygen atoms and dioxiranes (i.e. three
rings with two oxygen atoms). There has been an ongoing discussion about the possible
length of oxygen chains.?® While it might seem unlikely to find oxygen chains with more
than three members, theory has predicted the stability of oxygen chains up to at least 6
members. Experimentally, four-membered chains have been confirmed.? Dioxiranes have
been known experimentally since 1978, although their existence were already predicted in
1899 by Bayer and Villiger.?® An indication of the relative stability of the molecules can also

be based on total electronic energies (see Fig. 1, SI).

Oxygen-Oxygen chains Conjugated double
Bond frequencies of length n Double bond features bond chains of length n

254 —— 00—>— CC g —— nN=2—— n=5 4\ —e— =0 —w— C=C=C | ® n=1 W n=4
OC —— CH n=3 —— n=6 C=C—— Aromatic n=2 e n=5
022.0‘ —=— OH— C-0-C' 1 —&— nN=4 —— n=7 1 1 v n=3
—
€
3
o
v 4
JTE )\
O
= i |
0 5 10 0 1 2 30 2 4 0 2 4
Frequency / Molecule Frequency / Molecule Frequency / Molecule Frequency / Molecule

Figure 2: Total number of molecular graphs with given feature occurrences. Panel 1: bond
count frequencies, and ether bridges connecting the two carbon rings; panel 2: count of
oxygen-oxygen chains of length n; panel 3: count of carbonyl sites, allene sites, double
bonds, aromatic rings; and panel 4: conjugated double bond chains of length n. Each curve
adds up to the total number of molecular graphs of 263'917°411.

Electronic spectra prediction

For a random set of 9,918 molecules ADC(2)/COSMO calculations resulted in positive ex-
citation energies and oscillator strengths for the lowest three states (Fig. 3). The data is
available online.>! From Fig. 3, we see that the first excited state contributes with the highest
oscillator strengths in the region between 0.12 and 0.16 au, where the experimental absorp-
tion band is located, but S, and S3 also show substantial absorption in this region. Using

KKR, we predicted the lowest three excitation energies and oscillator strengths based on

10
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different training set sizes (Fig. 4). For a training set of 9000 molecules, predictions exhibit
mean absolute errors (MAEs) of 9, 8 and 7 mHa, for Sy, Ss, and S, respectively. Thus, ML
errors are similar to the expected error of ADC(2) with respect to experimental values, which
was previously determined to be 8 mHa (0.21 eV).54 The curves confirm the learning abilities
of the model as it makes use of additional training data to improve prediction accuracy. The
accuracy of the machine learning predictions is set into perspective by comparison to the null
model (dashed lines in Fig. 4), which is obtained when the mean excitation energy over all
training molecules is used as prediction. MAEs for the oscillator strengths amount to 0.035,
0.038, and 0.036 au, for Sy, So, and S3, respectively (Fig. 4, right). Interestingly, oscillator
strengths of S; benefit the most from KKR, whereas, for S; and S3, learning curves are
comparably flat. Using the ML model based on the 9,918 training molecules, we predicted
the lowest three excitation energies and oscillator strengths for the remaining 120 million

stable structures.

Establishing matching characteristics

We present the analysis for the first spectrum on the top right of Fig. 1; results for the
remaining three spectra are very similar (see Fig. 2, SI). Out of the 123 million stable
molecules, 55 million match this spectrum according to the criteria defined in the SI. For
every structure, we determined a feature vector that describes the structural features in the
molecules (Fig. 5). Features considered were: a) bond types, b) oxygen chains of different
lengths, ¢) carbonylic groups, d) double bonds, e) conjugated double bonds, f) aromatic
rings, g) ether bridges, and h) allene groups. The total dimension of the feature vector
amounts to 21, whereas the length of the entries vary between 2 and 6. For instance for the
carbon-carbon bonds, only two values are possible (12 and 13), but for two-membered oxygen
chains the number of entries amounts to four, because possible values are 0, 1, 2, 3. For every
feature and for every number value thereof, we calculate the fraction of the molecules that

are compatible with the experimental spectrum as defined above. This allows to correlate

11
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Figure 3: Distribution of ADC(2)/COSMO excited states as a function of excitation energy
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which the experimental band is located.
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molecular features with the probability that it causes the experimentally observed spectrum
(see Fig. 1). Analyzing the features in Fig. 5, we find that for example the probability that
a molecule is consistent with experimental spectrum increases with the number of (O-O)
bonds (blue line, left panel). As another example (orange line, right panel), we see that the
probability of a matching molecule decreases if there are more than two cases of conjugated
double bond chains of length two.

To illustrate the chemical diversity of stable molecular structures that are compatible
with the experimentally observed spectrum, we group all molecules by their feature vector.
Representatives of large feature groups of matching and non-matching molecules are given
on top and bottom of Fig. 5, respectively. The corresponding groups of molecules are huge:
just for the first molecule on the top left in Fig. 5, there are 695,039 stable molecules that
match the experimental spectrum and have an identical feature vector.

Each of the other molecules shown in Fig. 5 is just one representative of similarly large

groups of feature-identical stable molecules. While the presence of individual molecular
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features can significantly reduce the number of molecules, the sheer size of these groups
highlights that the share of molecules matching any spectrum is still by far too large to
claim unique identification. Thus, the extent of the structural ambiguity of brown carbon
absorption spectra is made clear by the exhaustive enumeration of all possible molecular

structures.

Filtering strategies

In view of these large numbers of candidate structures, it is evident that any identification
of individual molecules based on their spectra needs more criteria derived from experiments
to reduce the number of possible candidates. In practice, misidentifications are likely if too
few additional constraints are included in the search. Furthermore, a comparison between
the representative matching and non-matching feature groups (see Fig. 5) shows that it is
not trivial to establish obvious structural characteristics that would increase the likelihood
of being consistent with the experimental spectrum. Hence, common textbook relationships
between structural elements and absorption properties (e.g. batochromic shift) are of limited

utility in the selection of candidate brown carbon molecules.

Table 1: Summary of how given structural features reduce the number of possible C1oH1507
structures.

Total molecules with two Cg rings 263,917,411
and which have OH groups 263,917,411
and which have no oxygen chain longer than 2 161,160,394
and which have an oxygen connecting the carbon rings | 115,715,458
and which have one aromatic ring 134,944
and which are stable 64,121
and which match spectrum 1 36,518

Strategies to obtain more decisive criteria in establishing the possible candidates can be
based on structural motifs found in MS fragmentation data, MS ionization data, and/or
stability criteria. Applied to our first spectrum, Table 1 lists how these criteria reduce the

number of possible structures. In the present case, although fragmentation spectra of the

15
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individual C15H;507 isomers are not available, the detection of both hydrogen and sodium
ion adducts of the Ci5H207 isomer in question suggests that it contains OH and ether
groups rather than carbonyls.®® Furthermore, if we exclude oxygen chains longer than two
(which most likely are not stable enough to endure the analytical procedure), only 36’516
stable molecules are left that match the experimental spectrum. This constitutes 0.01 and
0.03 % of the initially generated molecular graphs and stable structures, respectively. Given
sufficiently accurate computational chemistry methods, the total energies of the structures
(Fig. 1, SI) could be used to select or exclude certain structures; due to the approximative
character of the GFN2-xTB calculations, we do not pursue this route further.

Starting from a complete list of all molecules is key to allow a bias-free filtering based
on experimental input. Most importantly, filtering molecular graphs by MS fragments (or
electrospray ionization information) is free of approximations from the theory side as no
filtering based on computational chemistry or machine-learning methods is done at these
early stages. The presence or absence of a structural feature in a given molecular graph can
be determined readily.

Having a substantially shortened list (e.g. the 0.01% for our case) allows for better
calculations on the theory side once the filtering possibilities based on MS data are exhausted.
There are two reasons for this: not only does a smaller chemical space require fewer training
points to be accurately modeled with a machine learning approach, but also the reference
data for the individual training points can be calculated using a better level of theory with
fewer approximations.

Figure 6 illustrates how this filtering could be employed in a systematic fashion by re-
peatedly searching for structural features that divide the current set into two new sets of as
equal size as possible. Similar to the method of binary search, this filters the total list of
molecules in the fastest possible way if only tests for the existence of particular MS frag-
ments are allowed. For the chemical space under consideration, an average of 15 fragment

tests would be required to reduce the number of candidate molecules to below 10,000, if
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Figure 6: Idealized reduction in number of molecules as more and more conditions on the
molecular graph are applied (from top to bottom). Note that these conditions are not founded
in experimental fragmentation data, but rather illustrate the filtering process. Including all
features would give a wide tree, so only two branches of the tree are shown. After each
filter step, the total number of remaining molecules is shown where the red bar denotes the
share thereof that is stable. The four bars illustrate how many of the residual molecules are
compatible with the spectra 1-4 in this work. (X), denotes that the structural feature X

appears n-times in a row.
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fragments were randomly distributed amongst all stable molecules and independent of each
other. Typically, this is not the case, as exemplified by Figure 6 where we require tests for
eight fragments until the number of molecules has been reduced to about 10,000 which would
then be accessible for quantum chemistry calculations. In practice, this means that typically
on the order of ten fragment tests would be needed to narrow the molecules down. For larger
molecules, and particularly for molecules with a potentially branched structure, the number
of fragments tests required will be larger. Starting from the exhaustive list of molecules
however, it is clear exactly how many molecules remain to be analysed and thus going down
such a decision tree could guide experimental work or MS data analysis. Furthermore, such
an approach can not only determine whether additional criteria are still needed to identify a
molecule, but can also identify which criteria will most efficiently narrow down the candidate
molecule list.

The information whether molecules with these features are stable is typically not available
while filtering the molecules, as long as the list of molecules is too long to render the required
calculations feasible for multiple spectra. In this work however, we have performed the
stability calculations for the complete list to illustrate in Figure 6 that the structural features
alone are not always sufficient to determine stability or similarity to a UV /Vis spectrum.
As the number of fragmentation results included increases in Figure 6, the share of stable
molecules and those matching the four spectra in this work are initially roughly constant
along the two paths shown. Only at the final stages does the feature list become more
sensitive to the spectra in question. This emphasizes that real-world structure determinations
will typically require a substantial number of confirmed /missing MS fragment determinations
in addition to the UV /vis spectrum.

We have systematically enumerated all molecules with the sum formula Ci5H12,07 con-
taining two Cg-rings. We investigated whether the specific C1oH1207 isomer behind an exper-
imental brown carbon UV /Vis spectrum can be identified uniquely if a bias-free systematic

comparison is done. To this end, we used a machine learning model to predict spectra for
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all possible 123 million stable molecules in the set. We find that the experimental spectrum
alone only halves the set of possible candidate molecules, so much additional information is
required to determine the structure of a brown carbon molecule. Even with multiple MS
fragments identified, there are tens to hundreds of thousands of potential structures that are
compatible with the spectrum. The true scale of this problem only becomes clear once the
exhaustive enumeration is done.

In light of our findings, we still consider identifying functional groups from MS the most
promising strategy to reduce the number of candidates, especially if this information can be
used early during the generation of molecular graphs. The advantage of using this informa-
tion early is that it can be used to accelerate the graph generation. In addition, it reduces
the chemical diversity, which may then reduce the error of the machine learning model.

Without the systematic enumeration of molecular targets, it becomes unclear whether
sufficiently numerous molecular fragments have been identified to narrow down the list of
potential molecules. This might lead to mis-identifications of molecules: Laskin et al.'*
suggested a possible structure for a Ci;2H1507 product found in a syringol photooxidation
chamber study, but our calculation shows that because of its dominant absorption band
between 350 and 400 nm, the spectrum of this structure (Fig. 4, SI) is not consistent with
any of the four experimentally measured spectra shown in Figure 1.

Based on the numerical evidence in this work, we expect that a systematic enumera-
tion approach, where high-quality MS fragmentation data is included early on and where
calculated spectra come from machine learning predictions based on quantum chemistry cal-
culations, will make possible the rapid identification of individual brown carbon molecules
based on their exact mass, MS fragmentation spectrum, and UV /Vis spectrum. In addition,
such an approach will also yield guarantees that there are no other molecules that also would
fit the experimental data.

Unraveling the chemistry behind SOA formation, and BrC formation in particular. is

necessary until the work makes it possible to quantify their varied atmospheric sources.
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358

359

The identification of molecular tracers and major products is important for connecting field

measurements with lab studies and computer modeling of particular precursor chemistry.

360

High resolution LCMS methods are currently the state-of-the-art for molecular identification

361

of SOA and BrC species, but often return long lists of molecular formulae and associated UV-

362

Vis absorption spectra. Even with further structural information from mass spectrometry

363

fragmentation data for the most abundant ions, it is extremely time-consuming to work

364

out chemical structures one by one with their associated reaction mechanisms, especially

365

for larger olisomeric species. Furthermore, given the vast number of possible structures

366

matching a chemical formula, there is no guarantee that the published structures generated

367

in this way are even correct.

368

One source of secondary BrC believed to be atmospherically significant is the formation

369

370

of oligomers during the aqueous-phase photooxidation of phenolic compounds, such as sy-

ringol. that are prevalent in wood smoke. This olisomer formation is thought to change

371

the optical properties of BB aerosol particles during cloud processing, partially counteract-

372

ing photobleaching and other aging processes. One light-absorbing dimer identified from

373

this reaction has the formula C{3H1507, which it shares with more than 260 million other

374

dual-ring-retention products. Our study shows, that with further experimental constraints,

375

our algorithm is able to shorten the list of possible structures to a few thousands to ten

376

thousand candidates. As automated methods like those described here develop further and

377

incorporate matching to experimental optical spectra and mass spectrometry fragmentation

378

datasets. particular isomers extracted from lab and field aerosol particles may be more readily

379

and rapidly identified. This will allow more detailed understanding of reaction mechanisms

380

381

and precursor identification, and make it possible to design control strategies to reduce the

climate effects of BrC and the adverse health effects of SOAs.
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