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Abstract2

Brown carbon (BrC) is involved in atmospheric light absorption, climate forcing,3

and can cause adverse health e↵ects. Understanding the formation mechanisms and4
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molecular structure of BrC is of key importance in developing strategies to control5

its impact on environment and health. Structure determination of BrC, however, is6

challenging, mainly due to the lack in experiments providing characteristic fingerprints7

of the molecules and the sheer size of possible molecular structures with identical8

molecular mass. Chemical intuition and ad hoc assumptions often provide the basis9

for suggesting particular structures, but are prone to errors due to their biased nature.10

This study develops an unbiased algorithm, based on a combined graph-based molecule11

generator and machine learning workflow, to identify the molecular structure of com-12

pounds involved in biomass burning (BB) and the composition of BrC. We apply this13

algorithm to unravel the structures of C12H12O7 isomers, identified in chamber exper-14

iments as light-absorbing photooxidation products of syringol, a prevalent marker in15

wood smoke. Of the 260 million initial molecular graphs with sum formula C12H12O7,16

the algorithm reduces the number of candidates to 0.01%. Further reduction strategies17

are discussed and analyzed according to their power to condense the number structures18

consistent with experimental observations. The method will potentially make isomers19

extracted from lab and field aerosol particles more readily and rapidly identified with-20

out introducing human bias.21

Introduction22

Visible light-absorbing secondary organic aerosols (SOAs), also known as brown carbon23

(BrC), interfere in atmospheric processes, impact climate forcing, and cause adverse health24

e↵ects due to their oxidative character.1–5 Emerging from biomass burning (BB) and from25

natural and industrial emissions, SOAs constantly undergo several chemical modifications26

due to reactions in the atmosphere, eventually forming light-absorbing oligomers with large27

absorption coe�cients. Understanding the molecular details of the formation mechanisms,28

precursor identification, and knowledge of the exact molecular structure of BrC is of key29

importance in designing strategies and policies to control its impact on environment and30
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public health. Structural knowledge is not only important to evaluate their toxicology,6,731

carcinogenic activity, and receptors binding8 in order to assess public health impact, but32

also does it allow to make predictions on molecular stability and chemical fate; the latter33

are important properties to assess BrC’s further implications on atmospheric processes and34

climate forcing.9 Thus, structure and precursor identification takes up a key role in atmo-35

spheric chemistry, connecting field studies with lab experiments and computer modeling.36

Unravelling the structure of BrC compounds and the characterization of the molecular com-37

position, particularly identifying the major constitutional isomers, is a pressing challenge38

for atmospheric chemistry.10–12 The di�culty of this process is mainly caused by the lack of39

experiments providing characteristic fingerprints of these molecules and due to the sheer size40

of possible molecular structures associated with a given molecular mass. Chemical intuition41

and ad hoc assumptions for structural elements often provide the basis for suggesting par-42

ticular structures, but are prone to errors due to their biased nature. This study develops43

an unbiased algorithm to identify the molecular structure of compounds involved in BB and44

the composition of BrC. One source of secondary brown carbon believed to be atmospher-45

ically significant is the formation of oligomers during the aqueous-phase photooxidation of46

phenolic compounds, such as syringol, that are prevalent in wood smoke. This oligomer47

formation is thought to change the optical properties of BB aerosol particles during cloud48

processing, partially counteracting photobleaching and other aging processes. We focus here49

on the structural identification of a light-absorbing dimer identified from this reaction with50

the formula C12H12O7.51

Typically, the formation and further reactions of SOA under specific atmospheric con-52

ditions can be simulated in atmospheric chamber experiments.13 In these experiments,53

aerosol-phase reaction products are often extracted from filters and characterized by high-54

resolution liquid chromatography (LC)/mass spectrometry (MS) analysis with inline UV/Vis55

absorbance spectroscopy. While the detected mass of the compounds gives complete infor-56

mation about the chemical sum formula, the exact chemical structure remains unknown. In57
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chamber experiments, often molecular structures are proposed on the basis of mass spec-58

trometric fragment data, absorption estimates, and chemical intuition. Chemical intuition,59

however, introduces a human bias that might prevent the discovery of the exact molecular60

constitution by not considering specific isomers if they do not seem probable based on the61

chemist’s experience. This bias might constitute a hurdle in finding novel, undiscovered con-62

stitutional isomers. In view of the large number of constitutional isomers of medium sized63

molecules, the probability of picking the right structure from the first estimate is small.64

Moreover, chemical intuition requires manual intervention, limiting the number of potential65

target compounds that can be identified.66

Thus, it is advisable to support proposed structures by comparison of as many physically67

measurable properties as available to gain confidence in the correctness of the chosen struc-68

ture or rule out structures not consistent with experimental observations. Due to the low69

concentrations of compounds in gas phase experiments, spectroscopic methods that provide70

conclusive information about the chemical constitution, such as NMR, are unfortunately71

not applicable. The high absorption coe�cients of BrC, however, allow the use of UV/Vis72

spectroscopy to probe if the proposed structure is consistent with the experimental observa-73

tions. Furthermore, it is questionable if only one constitutional isomer is present. Given the74

chemical complexity of SOA, it is often more realistic to assume a composition of di↵erent75

isomers with similar physical chemical properties.76

In an attempt to rule out any human bias in the proposition of candidate structures,77

we attack the problem of finding consistent isomers by initially considering all possible iso-78

mers exhaustively; this is in stark contrast to the common approaches based on chemical79

intuition.11,14 However, due to the quickly growing size of the chemical space with the num-80

ber of atoms, this approach is already challenging for small and medium-sized molecules81

and becomes impossible for larger molecules. As a test case, we consider syringol (2,6-82

dimethoxyphenol), an aromatic phenolic C8 compound (Fig. 1) that has been used as a83

marker for wood smoke emissions in the atmosphere.15 When syringol is photooxidized with84
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OH radicals or triplet carbon (3C⇤) species in the aqueous phase, one of the seven major85

products detected by negative-mode nano-desorption electrospray mass spectrometry has86

the sum formula C12H12O7.14 In experiments at the CESAM chamber16 where syringol was87

oxidized with OH radicals, product peaks identified by UHPLC-(+)ESI-MS in aerosol ex-88

tracts were categorized by whether their concentrations were higher in experiments where89

brown carbon formed. Within this group of peaks that correlated with brown carbon, 2%90

of the peak area was due to C6 (monomer) products, 94% was due to C10 - C15 (dimer)91

products, and 4% to larger products, up to C29. Among molecules with less than 20 heavy92

atoms, C12H12O7 was the largest peak, responsible for 7% of the peak area correlating with93

brown carbon, and co-eluting with an absorbance peak. Thus, C12H12O7 is an appropriate94

brown carbon candidate (Fig. 1). Considering all possible molecular graphs (i.e. the set of95

all atoms and their bonds including bond orders) of C12H12O7, we assign one graph node for96

each heavy atom. In total there are more than 1035 simple connected graphs of 19 nodes.1797

The number of molecular graphs is even higher, since this count neither includes elemental98

composition nor bond orders. These large numbers show that the major bottleneck in ex-99

ploring this chemical subspace lies in the e�ciency of the computer generation of molecular100

structures, which ultimately limits this approach for molecules larger than a given size. A101

second challenge arises from the prediction of physical chemical data for all these structures102

needed to determine the candidate molecules consistent with experimental measurements.103

In BrC, the observable usually is the UV/Vis spectrum, which can be predicted reasonably104

well by correlated quantum chemistry methods.18–22 However, the computational resources105

necessary for the spectra prediction of such a large number of isomers quickly becomes out106

of reach.107

Here, we developed a computational workflow to find possible constitutional C12H12O7108

isomers consistent with the recorded absorption spectra. To tackle the exhaustive genera-109

tion of constitutional isomers we present a graph-based, bias-free molecule generator, that110

leverages massively parallel computation. The problem of quantum chemical spectra predic-111
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Figure 1: In the proposed reaction scheme (left), aqueous-phase syringol photooxidation
forms C12H12O7, a product with unknown structure that correlates with brown carbon for-
mation. Right: four di↵erent UV/Vis absorbance spectra, measured in a filter extract from
the CESAM chamber at four di↵erent retention times; each corresponds with elution of a
di↵erent C12H12O7 isomer.

tion of a large number of molecules is solved by making use of machine learning to predict112

spectral properties of the molecules.23 In a Monte-Carlo procedure, we then determine the113

likelihood that specific feature groups give rise to the experimentally observed spectrum.114

The work flow starts from an unbiased and exhaustive generation of all possible molecular115

graphs. The number of graphs is further reduced by molecular stability and steric criteria116

based on tight-binding density functional theory. After prediction of electronic excitation117

energies and oscillator strengths, we filter the compounds by the probability of agreement118

with experimental UV/Vis absorption spectrum. Finally, we explore how additional infor-119

mation about structure or functional groups could further reduce the number of possible120

C12H12O7 isomers consistent with experimental data.121

Materials and Methods122

Experimental123

The filter extraction protocol has been described previously.24 Briefly, each collected Teflon124

filter (1 µm pores, 47 mm diam.) was spiked with ca↵eine (final concentration 100 ppb), as125
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internal standard and then extracted twice with 6 mL of acetonitrile and agitated for 20 min-126

utes with an orbital shaker at 1000 rpm. The extracts were then filtered with a syringe filter127

(0.2 µm, Pall Acrodisc R� PSF, with GHP membrane, hydrophilic polypropylene) to remove128

any insoluble particles and blown dry under a gentle N2 (g) stream at ambient temperature.129

The residues were reconstituted in 0.2 mL of water:methanol (v/v 1:1, Optima R�LC/MS,130

Fischer Scientific). Finally, the filter extracts were analyzed by ultra-high performance liquid131

chromatography (Dionex 3000, Thermo Scientific) using a Water Acquity HSS C18 column132

(1.8 µm, 100 x 2.1mm) coupled with a diode array UV/Vis absorbance detector and a Q-133

Exactive Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Scientific) equipped with134

an electrospray ionization (ESI) source operated in positive or negative mode. The mobile135

phase used was constituted of (A) 0.1% formic acid in water (Optima R� LC/MS, Fischer136

Scientific) and (B) 0.1% formic acid in acetonitrile (Optima R� LC/MS, Fischer Scientific).137

Gradient elution was carried out by the A/B mixture at a total flow rate of 300 µL/min: 0138

to 13 min B from 1% to 100% , 13.1 min B 1% for 9 min.139

Raw data was processed with MZmine 2.51. Features with a higher intensity than 1⇥106140

and at least 10 times higher than the blank intensity were selected. The chromatographic141

peaks of all ID selected were visually analyzed and a proposed molecular formula was ob-142

tained using Xcalibur 2.2 (Thermo Scientific) software package. A subset of peaks was then143

identified that had areas averaging at least 5 times larger in experiments where brown carbon144

formed than when it did not; C12H12O7 was prominent within this subset.145

Molecule generation146

For the sum formula C12H12O7, we systematically25 enumerate all molecules that potentially147

could be a product of the reaction in the atmospheric chamber. We rationalize that the148

product forms via radical-initiated coupling26 of two syringol units to C16H18O6, the most149

abundant SOA product identified in previous studies,14,27 followed by further oxidation and150

fragmentation to C12H12O7.14 We limited ourselves to those candidates where the two C6-151
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rings found in the two reactant molecules persist in the product, which requires the loss of152

methoxy carbons. We note that half of the syringol SOA product structures proposed by153

Yu et al.14 have lost at least one methoxy carbon, and 16% of their proposed structures154

have lost all methoxy carbons. Demethylation of methoxy groups during photooxidation155

has been observed for vanillin,28 syringaldeyde, and acetosyringol.29 Technically, this enu-156

meration is performed by a) enumerating all potential molecular graphs ignoring hydrogens,157

b) constructing all possible hydrogen saturations of these graphs, c) filtering all molecules158

which are not stable in GFN2-xTB calculations.30 The protocol for these steps is detailed in159

the SI and is based on Refs.25,31–34160

Electronic structure methods and machine learning161

To assess the absorption spectrum, we computed the lowest three excitation energies and162

their corresponding oscillator strengths using the Algebraic Diagramatic Construction to163

Second Order (ADC(2)) method.35,36 To include e↵ects of water solvation in the calculation,164

we employed the Conductor-like Screening Model (COSMO)37 using a dielectric constant of165

80.1 and a refractive index of 1.3325.38 The def2-TZVP basis set was used.39 This approach166

has been shown to yield accurate excitation energies.40 Calculations were carried out with167

TURBOMOLE V7.2.41,42168

Since it is prohibitively expensive to apply this reliable method to the exhaustive list169

of all molecules, we calculated 10,000 randomly selected molecules as training set for the170

Kernel-Ridge-Regression (KRR) method43 with the FCHL molecular representation44 as171

implemented in the QML toolkit.45 Machine learning in general and KRR in particular172

have been successfully used to predict excited state properties,46–48 typically highlighting173

the need for high-quality reference data. 82 molecules were excluded since they exhibited174

negative excitation energies, which indicates a non-stable ground state. We determined175

optimal hyperparameters for the kernel widths and regularizer with 5-fold cross validation176

(see SI). Once both the excitation energies and oscillator strengths for the lowest three177
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excitations have been predicted for all compounds from machine learning, we can model the178

spectrum3,49 and compare it to the experimental ones. We employ a Monto-Carlo method179

(see SI) to assess whether these predicted spectra are compatible with the experimental180

spectra. In this work, a predicted spectrum is considered compatible if the experimental181

spectrum and predicted spectrum are separated by at most one standard deviation of both182

modeling and experimental uncertainties.183

Results and discussion184

Analysis of the generated molecules185

At first we will analyze the distribution of features in the molecular graphs, before the186

structures have been optimized. According to our initial assumption that two C6-rings exist187

in the structure, there are two di↵erent possibilities how the rings are connected: either188

directly by a carbon-carbon bond, or by one or more oxygen atoms, serving as a bridging189

unit. These two possibilities are reflected by having either 13 or 12 C-C bonds, respectively190

(Fig. 2). Analyzing C-O bonds, we find a peaked distribution ranging from 1 to 13, with a191

maximum probability at 7. Oxygen-oxygen bonds range from 0 to a maximum of 6, with the192

maximum of 6 corresponding to a structure where an O7 chain exists (blue, middle Fig. 2).193

We also note that the longer the oxygen chain, the fewer graphs are found, as expected. We194

note that most structures have 0-2 carbonyl groups (Fig. 2, right), which are important for195

absorption properties.196

Of the 263 million graphs about 123 million lead to stable three-dimensional structures197

according to GFN2-xTB. All their coordinates are available online50 together with the refer-198

ence data for the machine learning model.51 Since we are mainly interested in the structures199

that are consistent with the experimental spectra, we skip a more detailed analysis of the200

features of this large structure set. However, it is important to say that we observe a substan-201

tial amount of structures that are not commonly seen. For instance, we find a considerable202
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number of stable molecules with chains up to seven oxygen atoms and dioxiranes (i.e. three203

rings with two oxygen atoms). There has been an ongoing discussion about the possible204

length of oxygen chains.52 While it might seem unlikely to find oxygen chains with more205

than three members, theory has predicted the stability of oxygen chains up to at least 6206

members. Experimentally, four-membered chains have been confirmed.52 Dioxiranes have207

been known experimentally since 1978, although their existence were already predicted in208

1899 by Bayer and Villiger.53 An indication of the relative stability of the molecules can also209

be based on total electronic energies (see Fig. 1, SI).210

Figure 2: Total number of molecular graphs with given feature occurrences. Panel 1: bond
count frequencies, and ether bridges connecting the two carbon rings; panel 2: count of
oxygen-oxygen chains of length n; panel 3: count of carbonyl sites, allene sites, double
bonds, aromatic rings; and panel 4: conjugated double bond chains of length n. Each curve
adds up to the total number of molecular graphs of 263’917’411.

Electronic spectra prediction211

For a random set of 9,918 molecules ADC(2)/COSMO calculations resulted in positive ex-212

citation energies and oscillator strengths for the lowest three states (Fig. 3). The data is213

available online.51 From Fig. 3, we see that the first excited state contributes with the highest214

oscillator strengths in the region between 0.12 and 0.16 au, where the experimental absorp-215

tion band is located, but S2 and S3 also show substantial absorption in this region. Using216

KKR, we predicted the lowest three excitation energies and oscillator strengths based on217

10



di↵erent training set sizes (Fig. 4). For a training set of 9000 molecules, predictions exhibit218

mean absolute errors (MAEs) of 9, 8, and 7 mHa, for S1, S2, and S3, respectively. Thus, ML219

errors are similar to the expected error of ADC(2) with respect to experimental values, which220

was previously determined to be 8 mHa (0.21 eV).54 The curves confirm the learning abilities221

of the model as it makes use of additional training data to improve prediction accuracy. The222

accuracy of the machine learning predictions is set into perspective by comparison to the null223

model (dashed lines in Fig. 4), which is obtained when the mean excitation energy over all224

training molecules is used as prediction. MAEs for the oscillator strengths amount to 0.035,225

0.038, and 0.036 au, for S1, S2, and S3, respectively (Fig. 4, right). Interestingly, oscillator226

strengths of S1 benefit the most from KKR, whereas, for S2 and S3, learning curves are227

comparably flat. Using the ML model based on the 9,918 training molecules, we predicted228

the lowest three excitation energies and oscillator strengths for the remaining 120 million229

stable structures.230

Establishing matching characteristics231

We present the analysis for the first spectrum on the top right of Fig. 1; results for the232

remaining three spectra are very similar (see Fig. 2, SI). Out of the 123 million stable233

molecules, 55 million match this spectrum according to the criteria defined in the SI. For234

every structure, we determined a feature vector that describes the structural features in the235

molecules (Fig. 5). Features considered were: a) bond types, b) oxygen chains of di↵erent236

lengths, c) carbonylic groups, d) double bonds, e) conjugated double bonds, f) aromatic237

rings, g) ether bridges, and h) allene groups. The total dimension of the feature vector238

amounts to 21, whereas the length of the entries vary between 2 and 6. For instance for the239

carbon-carbon bonds, only two values are possible (12 and 13), but for two-membered oxygen240

chains the number of entries amounts to four, because possible values are 0, 1, 2, 3. For every241

feature and for every number value thereof, we calculate the fraction of the molecules that242

are compatible with the experimental spectrum as defined above. This allows to correlate243
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Figure 3: Distribution of ADC(2)/COSMO excited states as a function of excitation energy
and oscillator strengths of the 9,918 training molecules. The distribution is shown separately
for the lowest three excited states (top three panels) and combined for all three states (bottom
panel). The color code refers to the decadic logarithm of the density found in a square of an
area of 0.008⇥0.008 au2. The blue dotted lines in the bottom panel indicate the region in
which the experimental band is located.
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Figure 4: Left: Mean absolute error (MAE) as a function of training set size for the learning
of the lowest three excitation energies. Right: Mean absolute error (MAE) as a function
of training size for the learning of the lowest three oscillator strengths. In both plots, the
dashed lines indicate the error of the null model, using the same color code for the di↵erent
states.

molecular features with the probability that it causes the experimentally observed spectrum244

(see Fig. 1). Analyzing the features in Fig. 5, we find that for example the probability that245

a molecule is consistent with experimental spectrum increases with the number of (O-O)246

bonds (blue line, left panel). As another example (orange line, right panel), we see that the247

probability of a matching molecule decreases if there are more than two cases of conjugated248

double bond chains of length two.249

To illustrate the chemical diversity of stable molecular structures that are compatible250

with the experimentally observed spectrum, we group all molecules by their feature vector.251

Representatives of large feature groups of matching and non-matching molecules are given252

on top and bottom of Fig. 5, respectively. The corresponding groups of molecules are huge:253

just for the first molecule on the top left in Fig. 5, there are 695,039 stable molecules that254

match the experimental spectrum and have an identical feature vector.255

Each of the other molecules shown in Fig. 5 is just one representative of similarly large256

groups of feature-identical stable molecules. While the presence of individual molecular257
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Figure 5: Per-feature probability (Share matching spectrum) of molecular structures being
compatible with the first spectrum in Figure 1 shown in the panels. Conditional probabilities
are exemplified by grouping all molecules by their feature vector and calculating the share
of matching molecules for each group. Low-energy representatives of the largest groups are
shown for matching (top) and non-matching (bottom) molecules.
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features can significantly reduce the number of molecules, the sheer size of these groups258

highlights that the share of molecules matching any spectrum is still by far too large to259

claim unique identification. Thus, the extent of the structural ambiguity of brown carbon260

absorption spectra is made clear by the exhaustive enumeration of all possible molecular261

structures.262

Filtering strategies263

In view of these large numbers of candidate structures, it is evident that any identification264

of individual molecules based on their spectra needs more criteria derived from experiments265

to reduce the number of possible candidates. In practice, misidentifications are likely if too266

few additional constraints are included in the search. Furthermore, a comparison between267

the representative matching and non-matching feature groups (see Fig. 5) shows that it is268

not trivial to establish obvious structural characteristics that would increase the likelihood269

of being consistent with the experimental spectrum. Hence, common textbook relationships270

between structural elements and absorption properties (e.g. batochromic shift) are of limited271

utility in the selection of candidate brown carbon molecules.272

Table 1: Summary of how given structural features reduce the number of possible C12H12O7

structures.

Total molecules with two C6 rings 263,917,411
and which have OH groups 263,917,411
and which have no oxygen chain longer than 2 161,160,394
and which have an oxygen connecting the carbon rings 115,715,458
and which have one aromatic ring 134,944
and which are stable 64,121
and which match spectrum 1 36,518

Strategies to obtain more decisive criteria in establishing the possible candidates can be273

based on structural motifs found in MS fragmentation data, MS ionization data, and/or274

stability criteria. Applied to our first spectrum, Table 1 lists how these criteria reduce the275

number of possible structures. In the present case, although fragmentation spectra of the276
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individual C12H12O7 isomers are not available, the detection of both hydrogen and sodium277

ion adducts of the C12H12O7 isomer in question suggests that it contains OH and ether278

groups rather than carbonyls.55 Furthermore, if we exclude oxygen chains longer than two279

(which most likely are not stable enough to endure the analytical procedure), only 36’516280

stable molecules are left that match the experimental spectrum. This constitutes 0.01 and281

0.03 % of the initially generated molecular graphs and stable structures, respectively. Given282

su�ciently accurate computational chemistry methods, the total energies of the structures283

(Fig. 1, SI) could be used to select or exclude certain structures; due to the approximative284

character of the GFN2-xTB calculations, we do not pursue this route further.285

Starting from a complete list of all molecules is key to allow a bias-free filtering based286

on experimental input. Most importantly, filtering molecular graphs by MS fragments (or287

electrospray ionization information) is free of approximations from the theory side as no288

filtering based on computational chemistry or machine-learning methods is done at these289

early stages. The presence or absence of a structural feature in a given molecular graph can290

be determined readily.291

Having a substantially shortened list (e.g. the 0.01% for our case) allows for better292

calculations on the theory side once the filtering possibilities based on MS data are exhausted.293

There are two reasons for this: not only does a smaller chemical space require fewer training294

points to be accurately modeled with a machine learning approach, but also the reference295

data for the individual training points can be calculated using a better level of theory with296

fewer approximations.297

Figure 6 illustrates how this filtering could be employed in a systematic fashion by re-298

peatedly searching for structural features that divide the current set into two new sets of as299

equal size as possible. Similar to the method of binary search, this filters the total list of300

molecules in the fastest possible way if only tests for the existence of particular MS frag-301

ments are allowed. For the chemical space under consideration, an average of 15 fragment302

tests would be required to reduce the number of candidate molecules to below 10,000, if303
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Figure 6: Idealized reduction in number of molecules as more and more conditions on the
molecular graph are applied (from top to bottom). Note that these conditions are not founded
in experimental fragmentation data, but rather illustrate the filtering process. Including all
features would give a wide tree, so only two branches of the tree are shown. After each
filter step, the total number of remaining molecules is shown where the red bar denotes the
share thereof that is stable. The four bars illustrate how many of the residual molecules are
compatible with the spectra 1-4 in this work. (X)n denotes that the structural feature X
appears n-times in a row.
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fragments were randomly distributed amongst all stable molecules and independent of each304

other. Typically, this is not the case, as exemplified by Figure 6 where we require tests for305

eight fragments until the number of molecules has been reduced to about 10,000 which would306

then be accessible for quantum chemistry calculations. In practice, this means that typically307

on the order of ten fragment tests would be needed to narrow the molecules down. For larger308

molecules, and particularly for molecules with a potentially branched structure, the number309

of fragments tests required will be larger. Starting from the exhaustive list of molecules310

however, it is clear exactly how many molecules remain to be analysed and thus going down311

such a decision tree could guide experimental work or MS data analysis. Furthermore, such312

an approach can not only determine whether additional criteria are still needed to identify a313

molecule, but can also identify which criteria will most e�ciently narrow down the candidate314

molecule list.315

The information whether molecules with these features are stable is typically not available316

while filtering the molecules, as long as the list of molecules is too long to render the required317

calculations feasible for multiple spectra. In this work however, we have performed the318

stability calculations for the complete list to illustrate in Figure 6 that the structural features319

alone are not always su�cient to determine stability or similarity to a UV/Vis spectrum.320

As the number of fragmentation results included increases in Figure 6, the share of stable321

molecules and those matching the four spectra in this work are initially roughly constant322

along the two paths shown. Only at the final stages does the feature list become more323

sensitive to the spectra in question. This emphasizes that real-world structure determinations324

will typically require a substantial number of confirmed/missing MS fragment determinations325

in addition to the UV/vis spectrum.326

We have systematically enumerated all molecules with the sum formula C12H12O7 con-327

taining two C6-rings. We investigated whether the specific C12H12O7 isomer behind an exper-328

imental brown carbon UV/Vis spectrum can be identified uniquely if a bias-free systematic329

comparison is done. To this end, we used a machine learning model to predict spectra for330
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all possible 123 million stable molecules in the set. We find that the experimental spectrum331

alone only halves the set of possible candidate molecules, so much additional information is332

required to determine the structure of a brown carbon molecule. Even with multiple MS333

fragments identified, there are tens to hundreds of thousands of potential structures that are334

compatible with the spectrum. The true scale of this problem only becomes clear once the335

exhaustive enumeration is done.336

In light of our findings, we still consider identifying functional groups from MS the most337

promising strategy to reduce the number of candidates, especially if this information can be338

used early during the generation of molecular graphs. The advantage of using this informa-339

tion early is that it can be used to accelerate the graph generation. In addition, it reduces340

the chemical diversity, which may then reduce the error of the machine learning model.341

Without the systematic enumeration of molecular targets, it becomes unclear whether342

su�ciently numerous molecular fragments have been identified to narrow down the list of343

potential molecules. This might lead to mis-identifications of molecules: Laskin et al.14344

suggested a possible structure for a C12H12O7 product found in a syringol photooxidation345

chamber study, but our calculation shows that because of its dominant absorption band346

between 350 and 400 nm, the spectrum of this structure (Fig. 4, SI) is not consistent with347

any of the four experimentally measured spectra shown in Figure 1.348

Based on the numerical evidence in this work, we expect that a systematic enumera-349

tion approach, where high-quality MS fragmentation data is included early on and where350

calculated spectra come from machine learning predictions based on quantum chemistry cal-351

culations, will make possible the rapid identification of individual brown carbon molecules352

based on their exact mass, MS fragmentation spectrum, and UV/Vis spectrum. In addition,353

such an approach will also yield guarantees that there are no other molecules that also would354

fit the experimental data.355

Unraveling the chemistry behind SOA formation, and BrC formation in particular, is356

necessary until the work makes it possible to quantify their varied atmospheric sources.357
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The identification of molecular tracers and major products is important for connecting field358

measurements with lab studies and computer modeling of particular precursor chemistry.359

High resolution LCMS methods are currently the state-of-the-art for molecular identification360

of SOA and BrC species, but often return long lists of molecular formulae and associated UV-361

Vis absorption spectra. Even with further structural information from mass spectrometry362

fragmentation data for the most abundant ions, it is extremely time-consuming to work363

out chemical structures one by one with their associated reaction mechanisms, especially364

for larger oligomeric species. Furthermore, given the vast number of possible structures365

matching a chemical formula, there is no guarantee that the published structures generated366

in this way are even correct.367

One source of secondary BrC believed to be atmospherically significant is the formation368

of oligomers during the aqueous-phase photooxidation of phenolic compounds, such as sy-369

ringol, that are prevalent in wood smoke. This oligomer formation is thought to change370

the optical properties of BB aerosol particles during cloud processing, partially counteract-371

ing photobleaching and other aging processes. One light-absorbing dimer identified from372

this reaction has the formula C12H12O7, which it shares with more than 260 million other373

dual-ring-retention products. Our study shows, that with further experimental constraints,374

our algorithm is able to shorten the list of possible structures to a few thousands to ten375

thousand candidates. As automated methods like those described here develop further and376

incorporate matching to experimental optical spectra and mass spectrometry fragmentation377

datasets, particular isomers extracted from lab and field aerosol particles may be more readily378

and rapidly identified. This will allow more detailed understanding of reaction mechanisms379

and precursor identification, and make it possible to design control strategies to reduce the380

climate e↵ects of BrC and the adverse health e↵ects of SOAs.381

20



Acknowledgement382

We would like to thank Stefan Heinen and Anders S. Christensen for support with the QML383

code. Research reported in this paper was supported by National Institute of General Medical384

Sciences of the National Institutes of Health (NIH) under award numbers UL1GM118979-02,385

TL4GM118980, and RL5GM118978 and NSF award number AGS-1826593. The content is386

solely the responsibility of the authors and does not necessarily represent the o�cial views387

of the NIH. We acknowledge technical support from the Division of Information Technol-388

ogy of CSULB. O.A.v.L. acknowledges support from the Swiss National Science foundation389

(407540 167186 NFP 75 Big Data) and from the European Research Council (ERC-CoG390

grant QML and H2020 projects BIG-MAP and TREX). This project has received funding391

from the European Union’s Horizon 2020 research and innovation programme under Grant392

Agreements #952165 and #957189. This result only reflects the author’s view and the EU is393

not responsible for any use that may be made of the information it contains. This work was394

partly supported by the NCCR MARVEL, funded by the Swiss National Science Foundation.395

Supporting Information Available396

• Histogram of total ground state energies of 2 % of randomly selected structures.397

• Correlation of features with compatibility of spectra 2 –4.398

• Figure with tolerance regions of the spectra and illustration of matching probability.399

• Description of procedure to generate molecules.400

• Computational details of machine learning procedure.401

• Description of Monte-Carlo procedure to determine matching probability with experi-402

mental spectra.403

• Computational results of the proposed structure of Laskin et al.404

21



References405

(1) Laskin, A.; Laskin, J.; Nizkorodov, S. A. Chemistry of atmospheric brown carbon.406

Chemical reviews 2015, 115, 4335–4382.407

(2) Feng, Y.; Ramanathan, V.; Kotamarthi, V. Brown carbon: a significant atmospheric408

absorber of solar radiation? Atmospheric Chemistry & Physics Discussions 2013, 13 .409

(3) Epstein, S. A.; Tapavicza, E.; Furche, F.; Nizkorodov, S. A. Direct photolysis of car-410

bonyl compounds dissolved in cloud and fog droplets. Atmos. Chem. Phys. 2013, 13,411

9461–9477.412

(4) Kasthuriarachchi, N. Y.; Rivellini, L.-H.; Adam, M. G.; Lee, A. K. Light Absorbing413

Properties of Primary and Secondary Brown Carbon in a Tropical Urban Environment.414

Environmental Science & Technology 2020, 54, 10808–10819.415

(5) Hettiyadura, A. P. S.; Garcia, V.; Li, C.; West, C. P.; Tomlin, J.; He, Q.; Rudich, Y.;416

Laskin, A. Chemical Composition and Molecular-Specific Optical Properties of Atmo-417

spheric Brown Carbon Associated with Biomass Burning. Environmental Science &418

Technology 2021,419

(6) Verma, V.; Rico-Martinez, R.; Kotra, N.; King, L.; Liu, J.; Snell, T. W.; We-420

ber, R. J. Contribution of water-soluble and insoluble components and their hydropho-421

bic/hydrophilic subfractions to the reactive oxygen species-generating potential of fine422

ambient aerosols. Environmental science & technology 2012, 46, 11384–11392.423

(7) Chowdhury, P. H.; He, Q.; Carmieli, R.; Li, C.; Rudich, Y.; Pardo, M. Connecting424

the oxidative potential of secondary organic aerosols with reactive oxygen species in425

exposed lung cells. Environmental science & technology 2019, 53, 13949–13958.426

(8) Shiraiwa, M.; Ueda, K.; Pozzer, A.; Lammel, G.; Kampf, C. J.; Fushimi, A.; Enami, S.;427

22
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