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Abstract

We consider entanglement-assisted (EA) private communication over a
quantum broadcast channel, in which there is a single sender and multiple
receivers. We divide the receivers into two sets: the decoding set and the
malicious set. The decoding set and the malicious set can either be disjoint or
can have a finite intersection. For simplicity, we say that a single party Bob has
access to the decoding set and another party Eve has access to the malicious
set, and both Eve and Bob have access to the pre-shared entanglement with
Alice. The goal of the task is for Alice to communicate classical information
reliably to Bob and securely against Eve, and Bob can take advantage of pre-
shared entanglement with Alice. In this framework, we establish a lower bound
on the one-shot EA private capacity. When there exists a quantum channel
mapping the state of the decoding set to the state of the malicious set, such a
broadcast channel is said to be degraded. We establish an upper bound on the
one-shot EA private capacity in terms of smoothed min- and max-entropies for
such channels. In the limit of a large number of independent channel uses, we
prove that the EA private capacity of a degraded quantum broadcast channel is
given by a single-letter formula. Finally, we consider two specific examples of
degraded broadcast channels and find their capacities. In the first example, we
consider the scenario in which one part of Bob’s laboratory is compromised
by Eve. We show that the capacity for this protocol is given by the conditional
quantum mutual information of a quantum broadcast channel, and so we
thus provide an operational interpretation to the dynamic counterpart of the
conditional quantum mutual information. In the second example, Eve and
Bob have access to mutually exclusive sets of outputs of a broadcast channel.
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1. Introduction

Among the many results of classical information theory, transmitting private information over
wiretap channels is of both conceptual profoundness and practical relevance [Wyn75]. A wire-
tap channel is modeled as a conditional probability distribution py_zy, in which X models the
information a sender Alice intends to transmit, ¥ models the outcome obtained by a receiver
Bob, and Z models what a malicious third-party Eve holds. The goal of private communication
is for Alice to reliably transmit a given message to Bob, while Eve gets negligible information
about the transmitted message.

Private communication in quantum information theory is naturally defined by allowing
each party to possess a quantum system, as well as a quantum channel to connect Alice to
Bob and Eve. However, in the quantum setting, it is typical to give Eve full control of the
environment of the channel from Alice to Bob [Dev05]. This strongest form of security in the
quantum setting is guaranteed by the peculiar nature of quantum mechanics, in the form of the
no-cloning theorem and the observer effect. Actually, it is the well-known BB84 quantum key
distribution protocol [BB84], a particular kind of private communication protocol, that played
arole in the unification of quantum mechanics and classical Shannon theory, which eventually
resulted in the birth of what we call quantum Shannon theory today.

The possibility of exploiting shared quantum entanglement prior to communication has
been considered extensively in quantum Shannon theory. The superdense coding protocol
[BWO92] was the first example to reveal the power of entanglement in the context of com-
munication, in which, by using one ebit and a noiseless quantum channel, one can transmit
two bits of classical information. Entanglement-assisted (EA) classical communication over a
quantum channel was thereafter one of the problems considered and solved early on [BSST99,
BSSTO02, Hol02]. Surprisingly, the use of pre-shared entanglement simplifies the problem of
determining capacity, in the sense that the optimal rate is given by a single-letter formula:
the quantum mutual information of a quantum channel [BSST99, BSST02, Hol02]. Later
on, various EA protocols have been studied, including quantum communication [DHWO04,
DHWOS] and classical communication over quantum broadcast [YHD11, DHL10, WDW17]
and multiple-access channels [HDWO08, QWW 17]. However, EA private communication has
not been considered to the best of our knowledge, although it is practically meaningful and
mathematically well-defined. In this work, we consider a general EA private communication
protocol over a single-sender multiple-receiver quantum broadcast channel.

The capacity of a channel is an asymptotic concept, defined in the limit of a large number
of channel uses. This notion, which in many cases is given by a simple formula and invokes
powerful tools such as typicality, is one of Shannon’s great contributions [Sha48]. In an effort
to bring this notion closer to practice, recently many works have been devoted to the so-called
one-shot theory [Ren08, DRRW13, DH13, MW 14a], which studies the maximum amount
of information that can be transmitted over a single use of a quantum channel, subject to the
error probability being below a certain threshold. Results in one-shot theory typically not only
reduce to correct bounds on the capacity in the independent and identically distributed (i.i.d.)
limit, but they are also the foundation for further study of correlated quantum channels [BD06,
CGLM14] and second-order asymptotics [TH13, Lil4, TT15, DL15,LD16, DTW16, BDL16,
TBR16, DPR16, WTB17, Led16].
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In this work, we consider a general setting for EA private communication, in which a
sender and receivers are connected by a quantum broadcast channel Ny, sue. Here B, called
the decoding set, includes the systems that Bob holds, and &£, called the malicious set, includes
all the systems held by Eve. The sets B and £ need not be disjoint in our model. An (M, ¢, 6)
EA private code is then defined as a set of encoding and decoding channels, such that M trans-
mitted messages can be decoded by Bob with an error probability no more than ¢ € [0, 1],
and meanwhile the leakage of information to Eve (defined in what follows) is no more than
6 € [0,1]. The e-6-one-shot EA private capacity, denoted as C5 (A), is the largest number
log, M such that there exists an (M, ¢, §) code for the channel N

Our first result in theorem 2 is the following lower bound on the one-shot EA private capac-
ity for e,0 € (0, 1]:

Cip (W) > sup 1™ (R B)o — I3 (R; €) o — log, (42 /) — 2logy(1/mp)]
pra.m €(0,€),m€(0,6)
ey
where pgra is an arbitrary quantum state and wrpus = Na—pue(pra)- The first two terms in
the above expression are the difference of the hypothesis-testing- and smoothed-max-mutual
information, which we formally define in section 2.

To establish the lower bound in (1), we use two recently developed techniques: position-
based coding [AJW17] and convex splitting [ADJ17]. Position-based coding relates the decod-
ing procedure of the receiver to quantum hypothesis testing, while convex splitting works like
a one-shot version of the covering lemma (see, e.g. [Will7b, chapter 17] for a discussion
of the covering lemma). Also, see [QWW17] for further developments on the connection
between decoding and hypothesis testing in network quantum information theory. These two
techniques have been applied in various settings, including EA classical communication over
point-to-point quantum channels and broadcast channels [AJW17], private communication
[Will7a], classical communication over quantum multiple-access channels [QWW17], state
redistribution [ADJ17], and the quantum Slepian—Wolf problem [AJW18]. From one-shot
lower bounds, it is straightforward to obtain a lower bound on the second-order coding rate
by applying second-order expansions of the hypothesis testing relative entropy [TH13, Lil4,
DPR16], as done, e.g. in [Will7a, QWW17].

Our second result in theorem 3 is the following upper bound on the one-shot EA private
capacity of a quantum broadcast channel:

Cid (V) < suplHY2 (M|RE)., — Hye (MIRB).), @
PMRA
where ppra is classical on M and quantum on RA, and wyrsus = Na—sus(pmra)- The defi-
nition of smoothed min- and max-conditional entropies are given in section 2. Theorem 4
presents a different one-shot bound in the case that the broadcast channel is degraded (see
definition 1).

Next, we define the EA private information of a quantum broadcast channel (see (73)), and
we prove that it is additive if the quantum broadcast channel is degraded. Finally, we prove
that the EA private capacity of a degraded broadcast channel is given by the EA private infor-
mation of the channel.

We also consider two special cases of degraded quantum broadcast channels. We briefly
summarize our results on the first one here, since it gives an operational meaning to the con-
ditional mutual information (CMI) of a quantum broadcast channel, extending the recent
development in [SWW17]. The first scenario consists of one part of Bob’s laboratory being
compromised by Eve, which can be modeled by a broadcast channel N4, gz in which Bob’s
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Table 1. Entropic quantities and the corresponding static and dynamic settings. In
this work, we establish an operational meaning for the CMI of a quantum broadcast
channel N, pg: it is the optimal rate of EA private communication over that channel
(see section 4 for details).

Entropic quantity  Static setting Dynamic setting
H(A) Schumacher compression [Sch95] N/A
H(A|B) State merging [HOWO07] Quantum communication,
entanglement distillation [DWO05] entanglement transmission/
generation [Dev05]
1(A;B) Quantum one-time pad [SW06] EA communication [BSST99]

erasure of quantum correlation [GPWO05]
quantum Slepian—Wolf [HOWO07]

I(A; B|C) State redistribution [DY08] EA private communication
conditional erasure/deconstruction [BBMW16] over quantum broadcast
conditional quantum one-time pad [SWW17] channel (this paper)

laboratory consists of systems BE. Bob has access to both systems while Eve has access
to system E. In this case, the broadcast channel is degraded since Trp{wrpr} = wrg, Where
wrpe = NMa—pe(pra) and pra is a bipartite state. We prove a single-letter capacity formula for
this task, which is given by the CMI of the broadcast channel:

Cep(N) = rgf;x](R;B|E)w. 3)

Table 1 summarizes how our result on the CMI of a broadcast channel fits into the larger
context of prior results in quantum Shannon theory. Optimal rates of communication protocols
in quantum Shannon theory are often given by entropic quantities. Or put in another way, dif-
ferent communication protocols give operational meanings to different information quantities.
An initial resource can either be static or dynamic. A protocol involving a static resource starts
with some initial quantum state and realizes some target state at the end, without using a noisy
quantum channel as a resource. On the other hand, a protocol involving a dynamic resource,
such as a noisy quantum channel, involves the corruption of information when it is transmit-
ted via this channel. For protocols involving a dynamic resource, the optimal rate is given by
an information function of a quantum channel, which usually involves an optimization over
states that are fed into the channel.

The rest of our paper is organized as follows. In section 2, we summarize definitions and
lemmas relevant to our proofs. We consider bounds on the one-shot EA private capacity in
section 3. There we establish both lower and upper bounds on the one-shot EA private capac-
ity of an arbitrary quantum broadcast channel. By combining these results, we arrive at a
single-letter formula for the EA private capacity of a degraded quantum broadcast channel in
the asymptotic setting. In section 4, we consider two special cases of a two-receiver broadcast
channel. As corollaries of our main theorem, we establish EA private capacities for both cases.
In the first scenario, we prove that the CMI of a quantum broadcast channel is the optimal rate.
Finally, we summarize our main results and discuss future directions in section 5.

2. Preliminaries

We use notation and concepts that are standard in quantum information theory and point read-
ers to [Will7b] for background. In the rest of this section, we review concepts that are less
standard and set some notation that will be used later in the paper.
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2.1 Trace distance, fidelity, and purified distance

Let D(H) denote the set of density operators acting on a Hilbert space H and D (H) the set of
subnormalized density operators (with trace not exceeding one) acting on . The trace distance

between two quantum states p, o € D(H)is equal to ||p — o||,, where ||C||, = Tr{V/C'C} for
any operator C. It has a direct operational interpretation in terms of the distinguishability

of these states. The fidelity between two quantum states is defined as F(p, o) = ||ﬁﬁ ||?

[Uhl76], which is invariant with respect to isometries and monotone non-decreasing with
respect to channels. The sine distance or C-distance between two quantum states p, o € D(H)
is defined as

C(p,o0) =+/1-F(p,0), 4)

and it was proven to be a metric in [Ras02, Ras03, Ras06, GLNO5]. It was later [TCR09] (under
the name ‘purified distance’) shown to be a metric on subnormalized states p, o € D¢ (H) via
the embedding

P(p.0) = Clp® [1 — Te{p}] .o & [1 — Tr{o}]). 5)
The following inequality relates trace distance and purified distance:

1

5 llp@[1=Tr{p}] — o @ [1 = Tr{a}]ll, < P(p.0). (©)

For a state p € D(#), we define the ball of e-close subnormalized states around p as

B*(p) ={p € D<(H) : P(p.p) < €} (7

2.2. Relative entropies and variances
The quantum relative entropy of two states w and 7 is defined as [Ume62]
D(w||7) = Tr{w[log, w — log, 7]} ®)

whenever supp(w) C supp(7), and it is equal to +o0 otherwise.
The hypothesis testing relative entropy [BD10, WR12] of states w and 7 is defined as

D5 (w||T) = —log, irj{f {Tr{A7} : 0 < A<IAT{Aw} > 1—¢€}. )
The max- and min-relative entropy for states w and 7 are defined as [Dat09, KRS09]

Dpax(w|7) =inf {A€R:w < 2’\7} , (10)

Dpin (w|7) = —log, F(w, 7). (11)

The following relation between the min- and max-relative entropies holds [MLDS"13, theo-
rem 7]

Diax(w||7) 2 Dimin(wl|7). (12)

The smoothed max- and min-relative entropy for states w and 7, and a parameter ¢ € (0, 1) are
defined as [Dat09, KRS09]

D: = inf Dpyax(@ s
lr) = ipf D@l .
Do (W[IT) = sup  Dpin(@]|7). (14)

DEBE (w)
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2.3. Conditional entropies and mutual informations

Conditional entropies play an important role in our converse proof. The max- and min-condi-
tional entropies are defined as [Ren08]

Hmax AlB), = — inf Dmin I 5
(Al )p agelerI(HB) (pag||lls ® oB) (15)
Hmin(AlB)p = — a'ge%l(fﬂg) Dmax(pAB”]lA ® UB), (16)

along with their smoothed versions:

H\(AIB)y = inf Hipa(A[B)

peB=(p) 7 (a7
Hiin(A|B)p = sup Huwin(A|B). (18)
pPEBE (p)
If the B system is trivial, the conditional entropies reduce to max- and min-entropies:
2
HmaX(A)p = log, ||VPA||1 > (19)
Hyin (A)p = - logz )\max (PA) (20)

We can define different one-shot mutual informations by using different relative entro-
pies. It turns out that the max-mutual information often appears in one-shot bounds of vari-
ous protocols. There are several different ways to define max-mutual information in general
[BCR11, CBR14], but what we employ in the convex-split lemma below is the following
variation [AJW17]:

Iax(BsA), = p,eilglf(p) Duax(Pisllpa @ pp)- Q1)

The e-hypothesis-testing-mutual information is defined here as

I5(A;B), = Dy(pasllpa @ ps). (22)

2.4. Hayashi—Nagaoka operator inequality

A key tool in analyzing error probabilities in communication protocols is the Hayashi—
Nagaoka operator inequality [HNO4]: given operators S and T'such that0 < S < 7and T > 0,
the following inequality holds for all ¢ > 0:

I—(S+T)V2SE+T)2< (A +e)I—S)+2+c+c DT (23)

2.5. Convex-split lemma

The convex-split lemma from [ADJ17] has been a key tool used in recent developments in
quantum information theory [ADJ17, AJW17]. Here, we state a slight variant of the convex-
split lemma from [Will7a], which can be helpful for obtaining one-shot bounds for privacy
and ensuing bounds on second-order coding rates.

Let pap be a state, and let 74,...4, be the following state:

K
1
TA,---AkB = E ZpAl Q- Qpa_, @ pas @ PA 41 Q- @ pag- (24)
k=1

6
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Lete € (0,1)and n € (0, /¢). If

- 1
log, K = Ig{i;"(B;A)p + 2log, (77> , (25)
then
P<TA1~-AKB’ PA, PR PAk by ﬁB) < \/g> (26)

for some state pp such that P(pgp, pp) < /& — 1.

3. One-shot bounds for EA private communication over a quantum broadcast
channel

We consider a quantum broadcast channel Nu_Bue, for which B is the set of systems held by
Bob, while £ is the set of systems held by Eve. We call B the decoding set and £ the malicious
set. Notice that we do not assume any relationship between the two sets B and €. For instance,
itis possible that BN E # Bor & C B. Itis this freedom that gives our model some generality.

In a protocol for EA private communication, a sender Alice would like to transmit a classi-
cal message m, chosen from a set M = {1,...,M} where M € 7%, to Bob via the quantum
broadcast channel N, _,5ue. She and the receivers also pre-share entanglement to assist their
communication, represented by some bipartite state Wg4.. Moreover, we also allow Eve to
have access to this pre-shared entanglement. The goal of EA private communication is for
Bob, who holds systems RB, to reliably decode Alice’s transmitted message, while Eve, who
holds systems RE, can only get negligible information about Alice’s message. Fix M € Z™T,
g €10,1],and § € [0, 1]. We define an (M, £, §) code to be a set of encoding channels {E}}_, 4 }m
and a decoding positive operator-valued measure (POVM) { A% }m, such that

1. the classical messages can be reliably decoded by Bob:
,%aﬁpe(m) <&, (27)

where p.(m) = Tr{(I — A}z)pks} and P e = Nassue(EY 4 (¥rar)), and
2. each classical message is §-secure:

1
EHP;gS - URSHI < 6, Vm € M, (28)

where oge is a fixed state.

In the above, oge is some constant state that does not contain any information about Alice’s
message (one can show that (28) guarantees that the mutual information I(M;RE) is small
[Will7b, section 23.1.1]). For fixed ¢, 4, let Cﬁjﬁs (Ma_Bue) denote the one-shot EA private
capacity, i.e. the largest value of log, M for which there exists an (M, €, §) code. The EA pri-
vate capacity of the quantum broadcast channel Ny, e is defined as

. S 1 €,0 n
€= lim liminf ~CE) (N7 s0)- 29)
In our paper, we focus our attention mostly on degraded quantum broadcast channels,

which are defined as follows:

Definition 1 (Degraded broadcast channel). Let N, 3. s be a quantum broadcast
channel with a decoding set B and a malicious set £. The channel Nj_,gu¢ is degraded if
there exists a quantum channel 7 : D(Hp) — D(Heg) such that

7
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T (Trpue\s{N (p)}) = Trpue\e{N (p)} (30)

for all states p € D(Ha). Here A \ B includes all the systems in A except those in B.

3.1. Lower bound on the one-shot EA private capacity

In this section, we construct a code for EA private communication based on the techniques of
position-based coding [AJW17] and convex splitting [ADJ17].

Theorem 2. Let Na_,pue be a quantum broadcast channel with decoding set B and mali-
cious set E. For fixed € € (0,1) and 6 € (0,1), the one-shot EA private capacity is bounded
from below as

- 4 1
Cip (V) = sup Iy " (R By — VST (E5R). — logz<§) - 210gz(*) :
pra-m €(0.6).m€(0.V/5) m m
(3D

In the above, pra is an arbitrary quantum state and wrpLe = Na—sue (pPra)-
Proof. The proof is related to the approach given in [Will7a], which more generally is in-
spired by the well known approach from [Wyn75].

Encoding: Alice and Bob prepare M blocks of entangled states, each of which is the tensor-
product of K bipartite states pra. That is, we take the pre-shared entangled state before the
communication begins to be

PRMKAMK = PR | 1y A(11) & PR12)A(12) K- PR1x)A k) K- PRy Ak * 32)

To send message m, Alice first chooses a local key variable k uniformly at random and then
sends the (m, k)th A system through the quantum channel N. Therefore, after the transmis-
sion, the state for Bob and Eve is as follows:

k
Prikguge = PRy @ @ PRy @ WRep BUE @« @ PRy » (33)
where wrpue = Na_spue(pra)-

Reliable decoding: from previous work [AJW17, Will7a, QWW17], we know that as long as
log, MK = Iy ™ (R: B)., — log, (4</n}). (34)
where ¢ € (0, 1) and n; € (0, ), we have the following bound
Tr{(I — Apg)pus} < e, Ymk (35)

where {A%< }is a POVM built from the test operator for the hypothesis testing relative entropy
D;; " (wrsl|wr @ wp) that optimally distinguishes between wgp and wg ® wg. In particular,
see [QWW 17, theorem 8] for more details.

Security: since for each message m, the local key & is chosen uniformly at random, the state
held by the malicious party is as follows:
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K
m 1 m.k
Pruk g = X k§—1 Pruk g+ (36)
Now invoking the convex-split lemma (recalled at the end of section 2), as long as

10g2K:7‘/5_"2(8;R)p—|—210g2(1/772), (37

max

where 7, € (0, Vo ), we have the following bound for the trace distance:

1 -
5 | pruxe — prx @ pell;

11« _
“2|lk ZpR(m,l) Q- QWRE @ @ PRy — PRE O PE (38)
k=1 1
K
1 ~

<P (K D PRy @ DR @ D PR PRE D pe) (39)
k=1

<V, (40)

where pg is a state such that P(pg, pg) < V'8 — mp, and 1, € (0,+/6). The first equality fol-

lows from the property |0 ® T —w ® 7||; = ||c — w||;. The first inequality follows from the

definition of purified distance. The last inequality is due to the convex-split lemma and the
choice in (37).

Therefore, by combining (34) and (37), we have an (M, ¢, §) code with

. 4 1
logy M = 157 (R: B, — 132" (& R)., — log, () ~2log, (n) @1)
m )
e—m VE—m i 1
= sup Iy " (R B)ow — Liax (E5R)w —logy | — | —2logy | — || (42)
pras €(0,6),m2€(0,V/9) Un m

The last equality follows because the first equality holds for any input state pra, and for any
value of 1, € (0,¢) and 7, € (0,/5). Since the one-shot capacity is defined to be the largest
value of log, M for which there exists an (M, ¢, §) code, the desired result follows. [ |

3.1.1. Lower bound on the second-order coding rate. Defining the relative entropy variance
of two states w and 7 as [TH13, Lil4]

V(wl7) = Tr{w [logy w — logy 7 = D(w| 7))}, (43)

and the inverse cumulative Gaussian distribution function as ®~!(¢) = sup{a € R | ®(a) < ¢},
where

b0)= o= [ exp(-2/2), 44)

we can obtain a lower bound on the second-order coding rate for EA private communication,
in a way similar to what was reported in [Will7a]. Indeed, recall the following second-order
expansions [TH13, Lil4, DPR16]:
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D5 (w®|7%") = nD(w||T) + /nV(w|7)® "' (¢) + O(log n), (45)
Dr\r/é (W®|7®") = nD(w||7) — /nV(w||T)® " (g) + O(logn). (46)

Let us define the mutual information variance V(A; B) pofa blpartlte state pap as
V(A;B), = V(pasllpa @ ps). (47)

Then by taking 7, =, = 1/4/n, and applying the above expansions, as well as [Will7a,
lemma 1], we find the following lower bound on the second-order coding rate for EA private
communication over the broadcast channel N

CH(N®) > n[I(R; B) —I(R; )]

+/nV(R; B),® ' (e) + /nV(R; E),® ' (6) + O(logn), (

fore,d € (0,1) and wrpue = NMa—sus(pra) for some state pga.

48)

3.2. Upper bound on the one-shot EA private capacity

In the proof of theorem 3 below, we derive an upper bound on the one-shot EA private capac-
ity of a quantum broadcast channel. This upper bound coincides with the lower bound from
theorem 2 in the asymptotic, i.i.d. limit.

Theorem 3. Let Na_5ue be a quantum broadcast channel with a decoding set B and a
malicious set €, and let ¢, § € (0, 1). Then the one-shot EA private capacity is bounded from
above as

CE3(N) < sup[HY2 (M|RE),, —

min
PMRA

HYZ (M|RB).,]. (49)

where pyga is classical on M and quantum on RA and wyrsus = Na—pus(Pymra)-

Proof. We begin by establishing an upper bound on log, M for an arbitrary (M, e,d) EA
private communication code (with the state w defined in what follows), essentially by follow-
ing an approach similar to that in [RR11]. To establish the upper bound, we consider the task
of EA secret key distribution, which in turn gives an upper bound on the one-shot EA private
capacity. In this task, Alice picks a classical message uniformly at random, places it in a sys-
tem M, and makes a copy of it in a system M’. The goal at the end is to produce a secure and
perfectly correlated key between her and Bob, such that Bob has a copy of Alice’s message.
Therefore, the initial state of Alice’s systems is as follows:

— 1
B = 3 32} ol 2 ) ol (50)

m

For an arbitrary (M, €, 0) code, the combined state of Bob and Eve’s systems after one use of
the broadcast channel N4_,gue is as follows:

1
Ny Z lm)(m|y @ Piue- (51
m

where e = Nasspue (5 _ 4 (Yrar)). After the decoding procedure, Alice and Bob end up
with imperfect shared randomness, represented by the following state:

10
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o = 37 3 plo )l nla by (52)

m m’

Here, p(m’|m) is the probability of Bob decoding m’ when the message transmitted by Alice
is m.

Next, we find an upper bound on the trace distance between oy and ®yy,.. Consider the
following chain of inequalities:

1 _
§||0MM' — Oy |1

>l im)|m’) ' |ayr — m><m|Mf]

= 531 [l -
1
! ’ / /
m||m'#£m .
! ’
=5 2 Z p(m'|m) (55)
m m’#m
<e. 56)

The first equality follows from the direct-sum property of trace norm. The second equality fol-
lows from the triangle inequality. To obtain the last inequality, we apply the reliable decoding
condition of an (M, €, §) code.

We now show that HY22 (M|RB),, < 0. Consider the following chain of inequalities:

max

HY2 (M|RB),, < HY2E(M|M")y < Hinax(M|M')5 < 0. (57)
The first inequality follows from the data processing inequality for the smoothed max-con-
ditional entropy (see e.g. [Tom12]). The second inequality follows from the definition of
smoothed-max-conditional entropy.

Next, we show that HI‘r{; (M|RE),, = log, M, by invoking the security condition of the
code. From the security condition, we know that 1 ||pfaz — oge|| < 4 for all messages m, and
we thus have

1

§||WMR£ —wy @ oge|l1 < 6. (58)
Therefore, by using the definition of purified distance and the Powers—Stormer inequality
[PS70], we find that wy ® oge € Bm(wMRg). The rest is straightforward:

HY2 (M|RE), > Hunin(MIRE )y @0pe = Hinin (M), = log, M. (59)

min

Using (57) and (59), we establish the following upper bound on the amount of transmitted
information:

1
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log, M < HY (M|RE),, — HY? (M|RB),, (60)

max

< sup[HY2 (M|RE).,, —

min
PMRA

Hyod (MIRB).,]. (61)

Since these inequalities hold for any value of log, M, the desired result in (49) follows. W

Theorem 4. If Na_,pue is a degraded quantum broadcast channel, then the one-shot EA
private capacity is bounded from above as

Cap (V) < sup [HZE2VP(RIE), — HYZVE(RIB)L] +£(2.0),  (62)

mil
PRA

where the optimization is over all bipartite states pra. Here, wrpue = Na—spue(pra),

5, € (0,1),3v2e +2v20 < 1, and f(£,8) = —log,(1 — /T = 88)(1 — /1 - 8¢).

Proof. Suppose that the quantum broadcast channel N, _, sue is degraded. In what follows,
we apply the following chain rules to (60) for ¢,&’,” € (0,1) ([VDTR13, theorem 13] and
its dual):

mln(A|BC) Hr5n$26+5 (AB|C)P mm(B‘C) ( //)7 (63)
H: . (A|BC), > HE2 " (AB|C), — HE,, (BIC), — g(") , (64)

where g(x) = —log,(1 — v/1 — x2) and g(x) ~ log,(x~!) for small x. We then have that

logy M < HO 2200 (MRIE),, — HE (RIE). + 8(6")

min

1 65
[ rB), - B RB -]
— HO I (MRIE), — HYE 4 (MRIB), — [Hiu (RIE), — Hipa (RIB).]
+8(8") +g(e"),
(66)
fore,e’,e”,6,8,6" € (0,1).
To proceed from here, we invoke lemma 9 from [MW 14b]:
Hi(AIB), > HYax * (AIB),. (67)
for p € D(Hap), and 0 < € < 1. Substituting (67) into (66), we find that
logy M < HiZ 220" (MRE)., — HY22H <" (MRIB). — |H¥ux ™ (RIE)w — Hipor (RIB).s
+ (8" + g(e"). (68)

We now fix ¢/ = /1 — 0"*. By using the data-processing inequality of smoothed-max-
conditional entropy (see, e.g. [Tom12]) under the action of a degrading channel 7, ¢, we get

R|E)w R|B),. (69)

max ( max(

12



J. Phys. A: Math. Theor. 51 (2018) 374001 H Qi et al

Therefore, we can discard the terms inside of the square bracket in (66), and by choosing

V1= =& =+/2¢,¢" =225, 58" =22, we find

logy M < HY2H2VP (MR|E),, — HXY 2TV (MR|B),, + f(2.6), (70)
< sup {HNZ VB (RE), — HRZH (R B)} +£(2.0), 1)
PR’ A

where f(e) = —log2(1 —+/1—8¢)(1 —+/1—28)), and thus we need to impose the con-
straints 0, € < 3 and 3v/2e 4+ 24/26 < 1. The last step follows since systems M and R extend
the input of channel N Since these inequalities hold for any value of log, M, the desired
result in (62) follows. [ ]

Remark 5. The optimization in theorem 4 is with respect to mixed-state inputs with a po-
tentially unbounded reference system R. This could be viewed as undesirable. To get around
this problem, we consider a purifying system R’ for the input state pga, iterate once more with
the chain rules in (63) and (64), and arrive at the following upper bound:

Cid (W) < max [PV (RIE), — HOETHYP (RIB)L] /(. 0) +-£(2.0). (72)

Pra

where the optimization is over all pure bipartite states g4 and ' = §' = 3v/2¢ + 2v/26.
(Note that, in the above expression, we have consolidated the systems RR’ external to the
channel as a single system R.) The bound above is not as tight as that stated in theorem 4, but
it has the advantage that the reference system R need not be any larger than the channel input
system A, due to the Schmidt decomposition theorem.

3.3. Asymptotic analysis

In this section, we first define the EA private information of a quantum broadcast channel
Na_sue. We then show that the EA private information of a channel Ny _,gu¢ is additive if
the channel is degraded. Finally, we prove that the EA private capacity of a degraded broad-
cast channel N4, 5u¢ is given by the EA private information of the channel.

We define the EA private information of a quantum broadcast channel NV, e as

Pea(N) = sup[/(R; B)o, — I(R; €)u], (73)
PRA

where pga is an arbitrary quantum state and wrgus = Na—sus(Pra)-

We now show that it is sufficient to maximize (73) with respect to only pure states if the
broadcast channel Ny, 5_¢ is degraded. Consider an arbitrary input state pgs and the follow-
ing chain of inequalities:

IR;B)y —I(R;E)w
=I(RA";B)y —I(A"; BR); + I(R;A")y — [I(RA";E) s — I(A;ER) 5 + I(R;A") 4]

(74)
=I(RA";B), —I(RA";E)y — [I(A; BR), — I(A’; ER) ] (75)
<I(RA';B), —I(RA’;E), (76)
< max x[I(R; B)w — I(R; E)u], (77)

13
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where ¢raa is a purification of the input state pra, and ¢ = Ni_ sue (draar )- The first equality
follows from the identity I(A; C) = I(A; BC) — I(AC; B) + I(B; C). The first inequality fol-
lows from the fact that quantum mutual information decreases under the action of a degrading
channel from B to £. The last inequality follows from a simple relabeling of variables, and due
to maximization over all input pure states. Since the chain of inequalities is true for all input
states pra, the EA private information of a degraded broadcast channel is given by

Pea(N) = max [I(R; B)., —1(R: )], (78)

where ¢pr4 is an arbitrary pure quantum state, and wrgus = Na—sus(Pra)-
In the following lemma we prove that the EA private information of a degraded quantum
broadcast channel is additive.

Lemmal. Let Nu 5,0, and Ma,—,5,0¢, be degraded quantum broadcast channels. Then
Pea(N @ M) = Pga(N) + Pea(M), (79)

where the EA private information of the channel Pga(N) is defined as (73) .

Proof. We first prove the trivial inequality Pga(M) + Pea(N) < Pea(N ® M), which
holds for arbitrary quantum broadcast channels. Let pg,4,, and og,4, be arbitrary input states.
Then the following chain of inequalities holds:

IR Bi) (o) — LR E) N (p) + 1(R2: B2) Moy — I(R23 E2) (o)
= I(R1R2; B1B2) (W) (poo) — LRIR2: E1E2) (N M) (p00) (80)

< Pea(NV @ M). (81)

The first equality follows from the definition of Pga(N). The second equality follows from
additivity of mutual information with respect to tensor-product states. The final inequality
follows because the input state pg,a, ® Og,4, is a particular state of the more general form
PRrA,4, Needed in the optimization of the EA private information of the tensor-product channel
N ® M. Since the inequality holds for all input states, we conclude that

Pea(M) + Pea(N) < Pea(N @ M). (82)

We now prove the non-trivial inequality Pga (N @ M) < Pga(M) + Pga(N) for degra-
dable broadcast channels. First note that the tensor-product channel A" ® M is degradable
because the channels individually are. So the equality in (78) applies. Let ¢ra, 4, be a state that
maximizes Pga(N @ M), and let wrp, 8,5, = (Na,—8,6, @ Ma,—B,¢&,)(Praa, ). Consider
the following chain of inequalities:

PeaN @ M) =I(R; B1B2)w — I(R; £1&).w (83)
=I(R; B))o, +I(R; B2|B1), — I(R: &) — I(R; £1|E2). (84)
=I(R; B1|&2)w + I(R; Ba|Br)ww — [(R; &2|B1)ww — [(R; E11E2) s (85)
=I(RE; By)w — I(RE; &) + I(RBy; By) — I(RBy; &)
= [[(Bi; B2) = 1(£1; )] (50
< PeaN) + Pea(M). (87)
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The second equality follows from an application of the chain rule for quantum mutual in-
formation. The third equality follows from the identity 1(A; B|C) = I(A; BC) — I(A; C). The
fourth equality follows from another expression for the conditional quantum mutual informa-
tion I(A; B|C) = I(AC;B) — I(B; C), and from a simple rearrangement. The last inequality
follows from the definition of EA private information of channels N and M, and from the
fact that quanutm mutual information decreases under the action of a tensor product of two
degrading channels. [ |

We now prove that the EA private capacity of a degraded quantum broadcast channel
Na_,Bue is given by the EA private information of the channel in the following theorem.

Theorem 6. Let Ny pue be a degraded quantum broadcast channel. Then the EA private
capacity Cgp(N') of the channel Na_ ¢ is given by

Cep(N) = Pea(N), (88)
where EA private information Pga(N) is defined as (78) .

Proof. The direct part follows immediately from the one-shot lower bound established in
theorem 2 and the subsequent second-order expansion discussed after it in (48).

For the converse part, we begin with our one-shot upper bound established in theorem 3.
Let oyrproer = N, gusen (Pmrar)- Consider the following chain of inequalities:

Cif (N®") < sup [HY2 (MIRE"), — HY 2% (M|RB"),] (89)
PMRA"

< sup [H(M|RE"), — H(M|RB"),] +f(e,6,M) (90)
PMRA"

= sup [I[(M;RB"), — (M;RE"),| + f(£.6,M) 1)
PMRA"

= sup [I(MR;B"), — I(MR;E"), — I(R; B"); — I(R;E")o]] + f (.6, M)
PMRA" (92)
<sup [[(R;B") —I(R;E")] | +f(e.6,M), 93)

PRAN

where f(g,8,M) = 8(v/26 + v/2¢) logy M + 2[hy(\/85) + hy(21/8¢)]. The first inequality
follows by an application of theorem 3 to the tensor-power channel N'®". The second in-
equality is a consequence of the following inequalities [RR11]:

H (AIB), < H(AIB), + 8¢ log, dim(A) + 2h(2¢), 94)
H;, o (A[B), > H(A|B),, — 8¢ log, dim(A) — 2hy(2¢) 95)

In the above, hy(x) = —xlog, x — (1 — x) log,(1 — x) is the binary entropy. (Note that one
could obtain improved parameters in (94) and (95) by employing recent developments in
[Win16].) The second equality follows from the chain rule for quantum mutual information.
The last inequality follows because there is a degrading channel from B" to £", so that the
quantum data-processing inequality implies that I(R; B") > I(R; £").
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Next, we show that it is sufficient to take a supremum over only pure quantum states in
(93). Consider the following chain of inequalities:

I(R; B") jen(py — L(R; E") nren( )
= I(FR; Bn)N®n(¢) — I(FR; 5")N®n(¢) - [I(F, BnR)N®n(¢) - I(F; 5”R)N®,,(¢)]

(96)
SU(FR; BY) jren(g) = I(FR; E") nren(g) O
S PEA (N®n) (98)
— nPaa(N), 9

where ¢pran is a purification of the state pran. The first equality follows from the chain rule for
quantum mutual information. The first inequality follows from the fact that quantum mutual
information decreases under the action of a quantum channel (particularly, a degrading chan-
nel from B” to £"). The second equality follows from the definition of EA private information
of a quantum channel, as defined in (78). The last equality follows from lemma 1. Since the
chain of inequalities is true for all input states pra», we conclude that

CEA (N®") < nPea(N) + f(e,6,M). (100)

We now divide both sides of the last inequality by » and take the limits n — oo, and &, — 0:

Cen(N) < lim liminf [Pea(N) + (e, 5,M) (101
= Pea(N). (102)
Hence, the lower bound in (48) and the upper bound in (102) imply that
Cep(N) = Pea(N). (103)
This concludes the proof. [ |

4. Examples of degraded quantum broadcast channels

In this section, we consider EA private communication over two specific instances of degraded
quantum broadcast channels. Moreover, we establish an operational meaning for the condi-
tional quantum mutual information of a quantum broadcast channel, as a dynamic counterpart
of the prior result from [SWW17].

4.1. When Eve has access to the pre-shared entanglement and some part of Bob’s
laboratory

We consider a special case of the protocol considered in section 3, as shown in figure 1. Alice
would like to transmit a classical message m from a set M = {1, ..., M}, to Bob via a quantum
channel N,_,pg, where Bob’s lab is separated into two parts. Bob has access to both parts,
but we assume that the second part of the Bob’s lab (E) is insecure—a malicious third party
Eve has access to this second part. Moreover, Alice and Bob pre-share arbitrary entanglement

16
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M

A

o
B . L T o
o

EEVB

Figure 1. The information-processing task for EA private communication via a two-
receiver broadcast channel. Bob, who has access to the systems R, B and E, can reliably
decode the transmitted message. However, Eve, who has access systems R and E, can
only get negligible information about Alice’s message.

to assist their communication. The quantum channel Naspe is a special case of previously
defined degraded quantum broadcast channel, where we identify B = BE and £ = E. Hence,
the degradable channel from B to £ is simply the partial trace over the B system.

We define an (M, e,d) code to be a set of encoding channels and a decoding POVM
{&E8, 47> AR tm, such that

1. the classical messages can be reliably decoded by Bob,
rgéaMXPe(m) <s, (104)

where pe(m) = Tr{(I — Agpe) Prpe}s PRee = Nav—pe(Ea—ar(Yra)), and
2. each classical message is 6-secure:

1
5ok = orelh <6, Wm e M, (105)

where o is some constant state.

Corollary 7. Let Na_.ge be an arbitrary quantum broadcast channel. Then the EA private
capacity for the scenario discussed above is given by conditional quantum mutual information
of the channel Ny _,pE,

Cep(N) = CMI(N), (106)

where CMI(N) is defined as
CMI(N) = rgaxI(R;BlE)w, (107)

@ra is a pure bipartite state, and wrpe = Na_spe(Pra).

Proof. Let B = BE and £ = E. Then N,_,5¢ is a degraded quantum broadcast channel,
such that the partial trace over system B is the degrading channel from B to £. Using this in
theorem 6, we get

Cep(N) = rgax[l(R;BE)w —I(RE),] = rgaxI(R;B|E)w, (108)

where the last equality follows from the definition of conditional quantum mutual
information. B
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Bob
M AJ’ B
A & N| g
= D _M"
R . :
Eve

Figure 2. The information-processing task for EA private communication through a
quantum channel /. Bob, who has access to the systems R and B, can reliably decode
the transmitted message. However, Eve, who has access systems R and E, can only get
negligible information about Alice’s message.

4.2. When Eve has access to the pre-shared entanglement and no access
to Bob’s laboratory

In this section, we consider another special case of the protocol considered in section 3, as
shown in figure 2. Similarly, Alice would like to securely transmit a classical message m, cho-
sen from a set M = {1,..., M}, to Bob via a quantum channel Na_pe. We assume that there
is an eavesdropper who can access systems R and E. We also suppose now that there exists a
degrading channel from B to E.

We now define an (M, €, §) code to be a set of encoding channels and a decoding POVM
{&EF, ARg}m, such that

1. the classical messages can be reliably decoded by Bob,
<
max pe(m) < €, (109)
where pe(m) = Tr{(I — Akg)pis} and g = Nar—pe(ER 4 (Vra)),

2. each classical message is §-secure:

1
EHleE—O'REHI <(S, VmEM, (110)

where ogg 1S some constant state.

Corollary 8. Let N, pr be a degraded quantum broadcast channel as defined above. Then
the EA private capacity is given by

max[I(R;B), — (R, E).],
Pra (111)
where Qra is any pure quantum state and wrpg = Na_pe(Pra)-

Proof. In this case, B=B and & =FE. Applying theorem 6, we find that
CEA(N) = MaXyy, [I(R;B)w — I(R;E)w]. B

5. Conclusion

In this work, we considered EA private communication over quantum broadcast quantum
channels. We established a lower bound on the one-shot EA capacity based on the recent
techniques of position-based coding [AJW17] and convex splitting [ADJ17]. We also
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established an upper bound on the one-shot EA private capacity by combining various results
on the min- and max-entropy. We defined a quantum broadcast channel to be degraded when
there is a quantum channel mapping from Bob’s systems to Eve’s systems. Using lower and
upper bounds on the one-shot EA private capacity, we proved a single-letter EA capacity
formula for degraded quantum broadcast channels. As special cases, we found capacities
of EA private communication over two-receiver degraded broadcast channels. Especially in
the first case, we not only proved a single-letter capacity formula, but also established an
operational meaning to conditional quantum mutual information of a quantum broadcast
channel. One possible future direction is to investigate whether our upper bound is also
a strong converse upper bound. Another intriguing idea is to generalize our results to the
scenario of secret sharing.
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