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Abstract
We consider entanglement-assisted (EA) private communication over a 
quantum broadcast channel, in which there is a single sender and multiple 
receivers. We divide the receivers into two sets: the decoding set and the 
malicious set. The decoding set and the malicious set can either be disjoint or 
can have a finite intersection. For simplicity, we say that a single party Bob has 
access to the decoding set and another party Eve has access to the malicious 
set, and both Eve and Bob have access to the pre-shared entanglement with 
Alice. The goal of the task is for Alice to communicate classical information 
reliably to Bob and securely against Eve, and Bob can take advantage of pre-
shared entanglement with Alice. In this framework, we establish a lower bound 
on the one-shot EA private capacity. When there exists a quantum channel 
mapping the state of the decoding set to the state of the malicious set, such a 
broadcast channel is said to be degraded. We establish an upper bound on the 
one-shot EA private capacity in terms of smoothed min- and max-entropies for 
such channels. In the limit of a large number of independent channel uses, we 
prove that the EA private capacity of a degraded quantum broadcast channel is 
given by a single-letter formula. Finally, we consider two specific examples of 
degraded broadcast channels and find their capacities. In the first example, we 
consider the scenario in which one part of Bob’s laboratory is compromised 
by Eve. We show that the capacity for this protocol is given by the conditional 
quantum mutual information of a quantum broadcast channel, and so we 
thus provide an operational interpretation to the dynamic counterpart of the 
conditional quantum mutual information. In the second example, Eve and 
Bob have access to mutually exclusive sets of outputs of a broadcast channel.
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1.  Introduction

Among the many results of classical information theory, transmitting private information over 
wiretap channels is of both conceptual profoundness and practical relevance [Wyn75]. A wire-
tap channel is modeled as a conditional probability distribution pY,Z|X, in which X models the 
information a sender Alice intends to transmit, Y models the outcome obtained by a receiver 
Bob, and Z models what a malicious third-party Eve holds. The goal of private communication 
is for Alice to reliably transmit a given message to Bob, while Eve gets negligible information 
about the transmitted message.

Private communication in quantum information theory is naturally defined by allowing 
each party to possess a quantum system, as well as a quantum channel to connect Alice to 
Bob and Eve. However, in the quantum setting, it is typical to give Eve full control of the 
environment of the channel from Alice to Bob [Dev05]. This strongest form of security in the 
quantum setting is guaranteed by the peculiar nature of quantum mechanics, in the form of the 
no-cloning theorem and the observer effect. Actually, it is the well-known BB84 quantum key 
distribution protocol [BB84], a particular kind of private communication protocol, that played 
a role in the unification of quantum mechanics and classical Shannon theory, which eventually 
resulted in the birth of what we call quantum Shannon theory today.

The possibility of exploiting shared quantum entanglement prior to communication has 
been considered extensively in quantum Shannon theory. The superdense coding protocol 
[BW92] was the first example to reveal the power of entanglement in the context of com-
munication, in which, by using one ebit and a noiseless quantum channel, one can transmit 
two bits of classical information. Entanglement-assisted (EA) classical communication over a 
quantum channel was thereafter one of the problems considered and solved early on [BSST99, 
BSST02, Hol02]. Surprisingly, the use of pre-shared entanglement simplifies the problem of 
determining capacity, in the sense that the optimal rate is given by a single-letter formula: 
the quantum mutual information of a quantum channel [BSST99, BSST02, Hol02]. Later 
on, various EA protocols have been studied, including quantum communication [DHW04, 
DHW08] and classical communication over quantum broadcast [YHD11, DHL10, WDW17] 
and multiple-access channels [HDW08, QWW17]. However, EA private communication has 
not been considered to the best of our knowledge, although it is practically meaningful and 
mathematically well-defined. In this work, we consider a general EA private communication 
protocol over a single-sender multiple-receiver quantum broadcast channel.

The capacity of a channel is an asymptotic concept, defined in the limit of a large number 
of channel uses. This notion, which in many cases is given by a simple formula and invokes 
powerful tools such as typicality, is one of Shannon’s great contributions [Sha48]. In an effort 
to bring this notion closer to practice, recently many works have been devoted to the so-called 
one-shot theory [Ren08, DRRW13, DH13, MW14a], which studies the maximum amount 
of information that can be transmitted over a single use of a quantum channel, subject to the 
error probability being below a certain threshold. Results in one-shot theory typically not only 
reduce to correct bounds on the capacity in the independent and identically distributed (i.i.d.) 
limit, but they are also the foundation for further study of correlated quantum channels [BD06, 
CGLM14] and second-order asymptotics [TH13, Li14, TT15, DL15, LD16, DTW16, BDL16, 
TBR16, DPR16, WTB17, Led16].
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In this work, we consider a general setting for EA private communication, in which a 
sender and receivers are connected by a quantum broadcast channel NA→B∪E. Here B, called 
the decoding set, includes the systems that Bob holds, and E, called the malicious set, includes 
all the systems held by Eve. The sets B and E need not be disjoint in our model. An (M, ε, δ) 
EA private code is then defined as a set of encoding and decoding channels, such that M trans-
mitted messages can be decoded by Bob with an error probability no more than ε ∈ [0, 1], 
and meanwhile the leakage of information to Eve (defined in what follows) is no more than 
δ ∈ [0, 1]. The ε-δ-one-shot EA private capacity, denoted as Cε,δ

EP (N ), is the largest number 
log2 M  such that there exists an (M, ε, δ) code for the channel N .

Our first result in theorem 2 is the following lower bound on the one-shot EA private capac-
ity for ε, δ ∈ (0, 1]:

Cε,δ
EP (N ) � sup

ρRA,η1∈(0,ε),η2∈(0,δ)

[
Iε−η1
H (R;B)ω − Ĩδ−η2

max (R; E)ω − log2(4ε/η
2
1)− 2 log2(1/η2)

]
,

� (1)
where ρRA is an arbitrary quantum state and ωRB∪E = NA→B∪E(ρRA). The first two terms in 
the above expression are the difference of the hypothesis-testing- and smoothed-max-mutual 
information, which we formally define in section 2.

To establish the lower bound in (1), we use two recently developed techniques: position-
based coding [AJW17] and convex splitting [ADJ17]. Position-based coding relates the decod-
ing procedure of the receiver to quantum hypothesis testing, while convex splitting works like 
a one-shot version of the covering lemma (see, e.g. [Wil17b, chapter 17] for a discussion 
of the covering lemma). Also, see [QWW17] for further developments on the connection 
between decoding and hypothesis testing in network quantum information theory. These two 
techniques have been applied in various settings, including EA classical communication over 
point-to-point quantum channels and broadcast channels [AJW17], private communication 
[Wil17a], classical communication over quantum multiple-access channels [QWW17], state 
redistribution [ADJ17], and the quantum Slepian–Wolf problem [AJW18]. From one-shot 
lower bounds, it is straightforward to obtain a lower bound on the second-order coding rate 
by applying second-order expansions of the hypothesis testing relative entropy [TH13, Li14, 
DPR16], as done, e.g. in [Wil17a, QWW17].

Our second result in theorem 3 is the following upper bound on the one-shot EA private 
capacity of a quantum broadcast channel:

Cε,δ
EP (N ) � sup

ρMRA

[H
√

2δ
min (M|RE)ω − H

√
2ε

max (M|RB)ω],� (2)

where ρMRA is classical on M and quantum on RA, and ωMRB∪E = NA→B∪E(ρMRA). The defi-
nition of smoothed min- and max-conditional entropies are given in section 2. Theorem 4 
presents a different one-shot bound in the case that the broadcast channel is degraded (see 
definition 1).

Next, we define the EA private information of a quantum broadcast channel (see (73)), and 
we prove that it is additive if the quantum broadcast channel is degraded. Finally, we prove 
that the EA private capacity of a degraded broadcast channel is given by the EA private infor-
mation of the channel.

We also consider two special cases of degraded quantum broadcast channels. We briefly 
summarize our results on the first one here, since it gives an operational meaning to the con-
ditional mutual information (CMI) of a quantum broadcast channel, extending the recent 
development in [SWW17]. The first scenario consists of one part of Bob’s laboratory being 
compromised by Eve, which can be modeled by a broadcast channel NA→BE  in which Bob’s 

H Qi et alJ. Phys. A: Math. Theor. 51 (2018) 374001
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laboratory consists of systems BE. Bob has access to both systems while Eve has access 
to system E. In this case, the broadcast channel is degraded since TrB{ωRBE} = ωRE, where 
ωRBE = NA→BE(ρRA) and ρRA is a bipartite state. We prove a single-letter capacity formula for 
this task, which is given by the CMI of the broadcast channel:

CEP(N ) = max
φRA

I(R; B|E)ω .� (3)

Table 1 summarizes how our result on the CMI of a broadcast channel fits into the larger 
context of prior results in quantum Shannon theory. Optimal rates of communication protocols 
in quantum Shannon theory are often given by entropic quantities. Or put in another way, dif-
ferent communication protocols give operational meanings to different information quantities. 
An initial resource can either be static or dynamic. A protocol involving a static resource starts 
with some initial quantum state and realizes some target state at the end, without using a noisy 
quantum channel as a resource. On the other hand, a protocol involving a dynamic resource, 
such as a noisy quantum channel, involves the corruption of information when it is transmit-
ted via this channel. For protocols involving a dynamic resource, the optimal rate is given by 
an information function of a quantum channel, which usually involves an optimization over 
states that are fed into the channel.

The rest of our paper is organized as follows. In section 2, we summarize definitions and 
lemmas relevant to our proofs. We consider bounds on the one-shot EA private capacity in 
section 3. There we establish both lower and upper bounds on the one-shot EA private capac-
ity of an arbitrary quantum broadcast channel. By combining these results, we arrive at a 
single-letter formula for the EA private capacity of a degraded quantum broadcast channel in 
the asymptotic setting. In section 4, we consider two special cases of a two-receiver broadcast 
channel. As corollaries of our main theorem, we establish EA private capacities for both cases. 
In the first scenario, we prove that the CMI of a quantum broadcast channel is the optimal rate. 
Finally, we summarize our main results and discuss future directions in section 5.

2.  Preliminaries

We use notation and concepts that are standard in quantum information theory and point read-
ers to [Wil17b] for background. In the rest of this section, we review concepts that are less 
standard and set some notation that will be used later in the paper.

Table 1.  Entropic quantities and the corresponding static and dynamic settings. In 
this work, we establish an operational meaning for the CMI of a quantum broadcast 
channel NA→BE : it is the optimal rate of EA private communication over that channel 
(see section 4 for details).

Entropic quantity Static setting Dynamic setting

H(A) Schumacher compression [Sch95] N/A

H(A|B) State merging [HOW07]  
entanglement distillation [DW05]

Quantum communication, 
entanglement transmission/
generation [Dev05] 

I(A; B) Quantum one-time pad [SW06]  
erasure of quantum correlation [GPW05]  
quantum Slepian–Wolf [HOW07]

EA communication [BSST99]

I(A; B|C) State redistribution [DY08]  
conditional erasure/deconstruction [BBMW16] 
conditional quantum one-time pad [SWW17]

EA private communication 
over quantum broadcast 
channel (this paper)

H Qi et alJ. Phys. A: Math. Theor. 51 (2018) 374001
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2.1. Trace distance, fidelity, and purified distance

Let D(H) denote the set of density operators acting on a Hilbert space H and D�(H) the set of 
subnormalized density operators (with trace not exceeding one) acting on H. The trace distance 
between two quantum states ρ,σ ∈ D(H) is equal to ‖ρ− σ‖1, where ‖C‖1 ≡ Tr{

√
C†C} for 

any operator C. It has a direct operational interpretation in terms of the distinguishability 

of these states. The fidelity between two quantum states is defined as F(ρ,σ) ≡
∥∥√ρ

√
σ
∥∥2

1  

[Uhl76], which is invariant with respect to isometries and monotone non-decreasing with 
respect to channels. The sine distance or C-distance between two quantum states ρ,σ ∈ D(H) 
is defined as

C(ρ,σ) ≡
√

1 − F(ρ,σ),� (4)

and it was proven to be a metric in [Ras02, Ras03, Ras06, GLN05]. It was later [TCR09] (under 
the name ‘purified distance’) shown to be a metric on subnormalized states ρ,σ ∈ D�(H) via 
the embedding

P(ρ,σ) ≡ C(ρ⊕ [1 − Tr{ρ}] ,σ ⊕ [1 − Tr{σ}]).� (5)

The following inequality relates trace distance and purified distance:

1
2
‖ρ⊕ [1 − Tr{ρ}]− σ ⊕ [1 − Tr{σ}]‖1 � P(ρ,σ).� (6)

For a state ρ ∈ D(H), we define the ball of ε-close subnormalized states around ρ as

Bε(ρ) = {ρ̄ ∈ D�(H) : P(ρ̄, ρ) � ε}.� (7)

2.2.  Relative entropies and variances

The quantum relative entropy of two states ω and τ is defined as [Ume62]

D(ω‖τ) ≡ Tr{ω[log2 ω − log2 τ ]}� (8)

whenever supp(ω) ⊆ supp(τ), and it is equal to +∞ otherwise.
The hypothesis testing relative entropy [BD10, WR12] of states ω and τ is defined as

Dε
H(ω‖τ) ≡ − log2 inf

Λ
{Tr{Λτ} : 0 � Λ � I ∧ Tr{Λω} � 1 − ε} .� (9)

The max- and min-relative entropy for states ω and τ are defined as [Dat09, KRS09]

Dmax(ω‖τ) ≡ inf
{
λ ∈ R : ω � 2λτ

}
,� (10)

Dmin(ω‖τ) ≡ − log2 F(ω, τ).� (11)

The following relation between the min- and max-relative entropies holds [MLDS+13, theo-
rem 7]

Dmax(ω‖τ) � Dmin(ω‖τ).� (12)

The smoothed max- and min-relative entropy for states ω and τ, and a parameter ε ∈ (0, 1) are 
defined as [Dat09, KRS09]

Dε
max(ω‖τ) ≡ inf

ω̄∈Bε(ω)
Dmax(ω̄‖τ),� (13)

Dε
min(ω‖τ) ≡ sup

ω̄∈Bε(ω)

Dmin(ω̄‖τ).� (14)

H Qi et alJ. Phys. A: Math. Theor. 51 (2018) 374001
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2.3.  Conditional entropies and mutual informations

Conditional entropies play an important role in our converse proof. The max- and min-condi-
tional entropies are defined as [Ren08]

Hmax(A|B)ρ ≡ − inf
σB∈D(HB)

Dmin(ρAB‖11A ⊗ σB),� (15)

Hmin(A|B)ρ ≡ − inf
σB∈D(HB)

Dmax(ρAB‖11A ⊗ σB),� (16)

along with their smoothed versions:

Hε
max(A|B)ρ ≡ inf

ρ̄∈Bε(ρ)
Hmax(A|B)ρ̄,� (17)

Hε
min(A|B)ρ ≡ sup

ρ̄∈Bε(ρ)

Hmin(A|B)ρ̄.� (18)

If the B system is trivial, the conditional entropies reduce to max- and min-entropies:

Hmax(A)ρ = log2 ‖
√
ρA‖2

1 ,� (19)

Hmin(A)ρ = − log2 λmax(ρA).� (20)

We can define different one-shot mutual informations by using different relative entro-
pies. It turns out that the max-mutual information often appears in one-shot bounds of vari-
ous protocols. There are several different ways to define max-mutual information in general 
[BCR11, CBR14], but what we employ in the convex-split lemma below is the following 
variation [AJW17]:

Ĩεmax(B; A)ρ ≡ inf
ρ′∈Bε(ρ)

Dmax(ρ
′
AB‖ρA ⊗ ρ′B).� (21)

The ε-hypothesis-testing-mutual information is defined here as

IεH(A; B)ρ ≡ Dε
H(ρAB‖ρA ⊗ ρB).� (22)

2.4.  Hayashi–Nagaoka operator inequality

A key tool in analyzing error probabilities in communication protocols is the Hayashi–
Nagaoka operator inequality [HN04]: given operators S and T such that 0 � S � I  and T � 0, 
the following inequality holds for all c  >  0:

I − (S + T)−1/2S(S + T)−1/2 � (1 + c)(I − S) + (2 + c + c−1)T .� (23)

2.5.  Convex-split lemma

The convex-split lemma from [ADJ17] has been a key tool used in recent developments in 
quantum information theory [ADJ17, AJW17]. Here, we state a slight variant of the convex-
split lemma from [Wil17a], which can be helpful for obtaining one-shot bounds for privacy 
and ensuing bounds on second-order coding rates.

Let ρAB be a state, and let τA1···AK B be the following state:

τA1···AK B ≡ 1
K

K∑
k=1

ρA1 ⊗ · · · ⊗ ρAk−1 ⊗ ρAkB ⊗ ρAk+1 ⊗ · · · ⊗ ρAK .� (24)

H Qi et alJ. Phys. A: Math. Theor. 51 (2018) 374001
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Let ε ∈ (0, 1) and η ∈ (0,
√
ε). If

log2 K = Ĩ
√
ε−η

max (B; A)ρ + 2 log2

(
1
η

)
,� (25)

then

P(τA1···AK B, ρA1 ⊗ · · · ⊗ ρAK ⊗ ρ̃B) �
√
ε,� (26)

for some state ρ̃B such that P(ρB, ρ̃B) �
√
ε− η .

3.  One-shot bounds for EA private communication over a quantum broadcast 
channel

We consider a quantum broadcast channel NA→B∪E, for which B is the set of systems held by 
Bob, while E is the set of systems held by Eve. We call B the decoding set and E the malicious 
set. Notice that we do not assume any relationship between the two sets B and E. For instance, 
it is possible that B ∩ E �= ∅ or E ⊂ B . It is this freedom that gives our model some generality.

In a protocol for EA private communication, a sender Alice would like to transmit a classi-
cal message m, chosen from a set M = {1, . . . , M} where M ∈ Z+, to Bob via the quantum 
broadcast channel NA→B∪E. She and the receivers also pre-share entanglement to assist their 
communication, represented by some bipartite state ΨRA′. Moreover, we also allow Eve to 
have access to this pre-shared entanglement. The goal of EA private communication is for 
Bob, who holds systems RB, to reliably decode Alice’s transmitted message, while Eve, who 
holds systems RE, can only get negligible information about Alice’s message. Fix M ∈ Z+, 
ε ∈ [0, 1], and δ ∈ [0, 1]. We define an (M, ε, δ) code to be a set of encoding channels {Em

A′→A}m 
and a decoding positive operator-valued measure (POVM) {Λm

RB}m, such that

	 1.	�the classical messages can be reliably decoded by Bob:

max
m∈M

pe(m) � ε,� (27)

		 where pe(m) = Tr{(I − Λm
RB)ρ

m
RB} and ρm

RB∪E = NA→B∪E(Em
A′→A(ΨRA′)), and

	 2.	�each classical message is δ-secure:

1
2
‖ρm

RE − σRE‖1 � δ, ∀m ∈ M,� (28)

		 where σRE is a fixed state.

In the above, σRE is some constant state that does not contain any information about Alice’s 
message (one can show that (28) guarantees that the mutual information I(M; RE) is small 
[Wil17b, section 23.1.1]). For fixed ε, δ, let Cε,δ

EP (NA→B∪E) denote the one-shot EA private 
capacity, i.e. the largest value of log2 M  for which there exists an (M, ε, δ) code. The EA pri-
vate capacity of the quantum broadcast channel NA→B∪E is defined as

C = lim
ε,δ→0

lim inf
n→∞

1
n

Cε,δ
EP (N

⊗n
A→B∪E).� (29)

In our paper, we focus our attention mostly on degraded quantum broadcast channels, 
which are defined as follows:

Definition 1 (Degraded broadcast channel).  Let NA→B∪E be a quantum broadcast 
channel with a decoding set B and a malicious set E. The channel NA→B∪E is degraded if 
there exists a quantum channel T : D(HB) → D(HE) such that

H Qi et alJ. Phys. A: Math. Theor. 51 (2018) 374001
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T (TrB∪E\B{N (ρ)}) = TrB∪E\E{N (ρ)}� (30)

for all states ρ ∈ D(HA). Here A \ B  includes all the systems in A except those in B.

3.1.  Lower bound on the one-shot EA private capacity

In this section, we construct a code for EA private communication based on the techniques of 
position-based coding [AJW17] and convex splitting [ADJ17].

Theorem 2.  Let NA→B∪E be a quantum broadcast channel with decoding set B and mali-
cious set E. For fixed ε ∈ (0, 1) and δ ∈ (0, 1), the one-shot EA private capacity is bounded 
from below as

Cε,δ
EP (N ) � sup

ρRA,η1∈(0,ε),η2∈(0,
√
δ)

Iε−η1
H (R;B)ω − Ĩ

√
δ−η2

max (E ; R)ω − log2

(
4ε
η2

1

)
− 2 log2

(
1
η2

)
.

� (31)
In the above, ρRA is an arbitrary quantum state and ωRB∪E = NA→B∪E(ρRA).

Proof.  The proof is related to the approach given in [Wil17a], which more generally is in-
spired by the well known approach from [Wyn75].

	Encoding: Alice and Bob prepare M blocks of entangled states, each of which is the tensor-
product of K bipartite states ρRA. That is, we take the pre-shared entangled state before the 
communication begins to be

ρRMK AMK = ρR(1,1)A(1,1) ⊗ ρR(1,2)A(1,2) ⊗ · · · ⊗ ρR(1,K)A(1,K)
⊗ · · · ⊗ ρR(M,K)A(M,K)

.
�

(32)

To send message m, Alice first chooses a local key variable k uniformly at random and then 
sends the (m, k)th A system through the quantum channel N . Therefore, after the transmis-
sion, the state for Bob and Eve is as follows:

ρm,k
RMKB∪E = ρR(1,1) ⊗ · · · ⊗ ρR(m,k−1) ⊗ ωR(m,k)B∪E ⊗ · · · ⊗ ρR(M,K)

,� (33)

where ωRB∪E = NA→B∪E(ρRA).

	Reliable decoding:  from previous work [AJW17, Wil17a, QWW17], we know that as long as

log2 MK = Iε−η1
H (R;B)ω − log2(4ε/η

2
1),� (34)

where ε ∈ (0, 1) and η1 ∈ (0, ε), we have the following bound

Tr{(I − Λm,k
RB)ρ

m,k
RB} � ε, ∀ m, k� (35)

where {Λm,k
RB} is a POVM built from the test operator for the hypothesis testing relative entropy 

Dε−η1
H (ωRB‖ωR ⊗ ωB) that optimally distinguishes between ωRB and ωR ⊗ ωB. In particular, 

see [QWW17, theorem 8] for more details.

	Security: since for each message m, the local key k is chosen uniformly at random, the state 
held by the malicious party is as follows:
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ρm
RMKE =

1
K

K∑
k=1

ρm,k
RMKE .� (36)

Now invoking the convex-split lemma (recalled at the end of section 2), as long as

log2 K = Ĩ
√
δ−η2

max (E ; R)ρ + 2 log2(1/η2),� (37)

where η2 ∈ (0,
√
δ), we have the following bound for the trace distance:

1
2
‖ρm

RMKE − ρRMK ⊗ ρ̃E‖1

=
1
2

∥∥∥∥∥
1
K

K∑
k=1

ρR(m,1) ⊗ · · · ⊗ ωR(m,k)E ⊗ · · · ⊗ ρR(m,K)
− ρRK ⊗ ρ̃E

∥∥∥∥∥
1

�
(38)

� P

(
1
K

K∑
k=1

ρR(m,1) ⊗ · · · ⊗ ωR(m,k)E ⊗ · · · ⊗ ρRm,K , ρRK ⊗ ρ̃E

)
� (39)

�
√
δ,� (40)

where ρ̃E is a state such that P(ρE , ρ̃E) �
√
δ − η2, and η2 ∈ (0,

√
δ). The first equality fol-

lows from the property ‖σ ⊗ τ − ω ⊗ τ‖1 = ‖σ − ω‖1. The first inequality follows from the 
definition of purified distance. The last inequality is due to the convex-split lemma and the 
choice in (37).

Therefore, by combining (34) and (37), we have an (M, ε, δ) code with

log2 M = Iε−η1
H (R;B)ω − Ĩ

√
δ−η2

max (E ; R)ω − log2

(
4ε
η2

1

)
− 2 log2

(
1
η2

)
� (41)

= sup
ρRA,η1∈(0,ε),η2∈(0,

√
δ)

[Iε−η1
H (R;B)ω − Ĩ

√
δ−η2

max (E ; R)ω − log2

(
4ε
η2

1

)
− 2 log2

(
1
η2

)
].� (42)

The last equality follows because the first equality holds for any input state ρRA, and for any 
value of η1 ∈ (0, ε) and η2 ∈ (0,

√
δ). Since the one-shot capacity is defined to be the largest 

value of log2 M  for which there exists an (M, ε, δ) code, the desired result follows.� ■ 

3.1.1.  Lower bound on the second-order coding rate.  Defining the relative entropy variance 
of two states ω and τ as [TH13, Li14]

V(ω‖τ) = Tr{ω [log2 ω − log2 τ − D(ω‖τ)]2},� (43)

and the inverse cumulative Gaussian distribution function as Φ−1(ε) ≡ sup {a ∈ R | Φ(a) � ε}, 
where

Φ(a) ≡ 1√
2π

∫ a

−∞
dx exp(−x2/2),� (44)

we can obtain a lower bound on the second-order coding rate for EA private communication, 
in a way similar to what was reported in [Wil17a]. Indeed, recall the following second-order 
expansions [TH13, Li14, DPR16]:
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Dε
H(ω

⊗n‖τ⊗n) = nD(ω‖τ) +
√

nV(ω‖τ)Φ−1(ε) + O(log n),� (45)

D
√
ε

max(ω
⊗n‖τ⊗n) = nD(ω‖τ)−

√
nV(ω‖τ)Φ−1(ε) + O(log n).� (46)

Let us define the mutual information variance V(A; B)ρ of a bipartite state ρAB as

V(A; B)ρ ≡ V(ρAB‖ρA ⊗ ρB).� (47)

Then by taking η1 = η2 = 1/
√

n, and applying the above expansions, as well as [Wil17a, 
lemma 1], we find the following lower bound on the second-order coding rate for EA private 
communication over the broadcast channel N :

Cε,δ
EP (N

⊗n) � n [I(R;B)ω − I(R; E)ω]

+
√

nV(R;B)ωΦ−1(ε) +
√

nV(R; E)ωΦ−1(δ) + O(log n),
� (48)

for ε, δ ∈ (0, 1) and ωRB∪E = NA→B∪E(ρRA) for some state ρRA.

3.2.  Upper bound on the one-shot EA private capacity

In the proof of theorem 3 below, we derive an upper bound on the one-shot EA private capac-
ity of a quantum broadcast channel. This upper bound coincides with the lower bound from 
theorem 2 in the asymptotic, i.i.d. limit.

Theorem 3.  Let NA→B∪E be a quantum broadcast channel with a decoding set B and a 
malicious set E, and let ε, δ ∈ (0, 1). Then the one-shot EA private capacity is bounded from 
above as

Cε,δ
EP (N ) � sup

ρMRA

[H
√

2δ
min (M|RE)ω − H

√
2ε

max (M|RB)ω],� (49)

where ρMRA is classical on M and quantum on RA and ωMRB∪E = NA→B∪E(ρMRA).

Proof.  We begin by establishing an upper bound on log2 M  for an arbitrary (M, ε, δ) EA 
private communication code (with the state ω defined in what follows), essentially by follow-
ing an approach similar to that in [RR11]. To establish the upper bound, we consider the task 
of EA secret key distribution, which in turn gives an upper bound on the one-shot EA private 
capacity. In this task, Alice picks a classical message uniformly at random, places it in a sys-
tem M, and makes a copy of it in a system M′. The goal at the end is to produce a secure and 
perfectly correlated key between her and Bob, such that Bob has a copy of Alice’s message. 
Therefore, the initial state of Alice’s systems is as follows:

ΦMM′ =
∑

m

1
M
|m〉〈m|M ⊗ |m〉〈m|M′ .� (50)

For an arbitrary (M, ε, δ) code, the combined state of Bob and Eve’s systems after one use of 
the broadcast channel NA→B∪E is as follows:

ωMRB∪E =
1
M

∑
m

|m〉〈m|M ⊗ ρm
RB∪E ,� (51)

where ρm
RB∪E = NA→B∪E(Em

A′→A(ΨRA′)). After the decoding procedure, Alice and Bob end up 
with imperfect shared randomness, represented by the following state:
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σMM′ =
1
M

∑
m,m′

p(m′|m)|m〉〈m|M ⊗ |m′〉〈m′|M′ .� (52)

Here, p(m′|m) is the probability of Bob decoding m′ when the message transmitted by Alice 
is m.

Next, we find an upper bound on the trace distance between σMM′ and ΦMM′. Consider the 
following chain of inequalities:

1
2
‖σMM′ − ΦMM′‖1

=
1

2M

∥∥∥∥∥
∑

m

|m〉〈m|M ⊗

[∑
m′

p(m′|m)|m′〉〈m′|M′ − |m〉〈m|M′

]∥∥∥∥∥
1

�
(53)

=
1

2M

∑
m

∥∥∥∥∥∥
∑

m′ �=m

p(m′|m)|m′〉〈m′|M′ + ( p(m|m)− 1)|m〉〈m|M′

∥∥∥∥∥∥
1

� (54)

=
1

2M

∑
m


2

∑
m′ �=m

p(m′|m)


� (55)

� ε.� (56)

The first equality follows from the direct-sum property of trace norm. The second equality fol-
lows from the triangle inequality. To obtain the last inequality, we apply the reliable decoding 
condition of an (M, ε, δ) code.

We now show that H
√

2ε
max(M|RB)ω � 0. Consider the following chain of inequalities:

H
√

2ε
max(M|RB)ω � H

√
2ε

max(M|M′)σ � Hmax(M|M′)Φ � 0.� (57)

The first inequality follows from the data processing inequality for the smoothed max-con-
ditional entropy (see e.g. [Tom12]). The second inequality follows from the definition of 
smoothed-max-conditional entropy.

Next, we show that H
√

2δ
min (M|RE)ω � log2 M, by invoking the security condition of the 

code. From the security condition, we know that 1
2‖ρ

m
RE − σRE‖ � δ for all messages m, and 

we thus have

1
2
‖ωMRE − ωM ⊗ σRE‖1 � δ.� (58)

Therefore, by using the definition of purified distance and the Powers–Stormer inequality 
[PS70], we find that ωM ⊗ σRE ∈ B

√
2δ(ωMRE). The rest is straightforward:

H
√

2δ
min (M|RE)ω � Hmin(M|RE)ωM⊗σRE � Hmin(M)ω = log2 M.� (59)

Using (57) and (59), we establish the following upper bound on the amount of transmitted 
information:
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log2 M � H
√

2δ
min (M|RE)ω − H

√
2ε

max(M|RB)ω� (60)

� sup
ρMRA

[H
√

2δ
min (M|RE)ω − H

√
2ε

max (M|RB)ω].� (61)

Since these inequalities hold for any value of log2 M , the desired result in (49) follows.� ■ 

Theorem 4.  If NA→B∪E is a degraded quantum broadcast channel, then the one-shot EA 
private capacity is bounded from above as

Cε,δ
EP (N ) � sup

ρRA

[
H3

√
2ε+2

√
2δ

min (R|E)ω − H3
√

2ε+2
√

2δ
max (R|B)ω

]
+ f (ε, δ),� (62)

where the optimization is over all bipartite states ρRA. Here, ωRB∪E = NA→B∪E(ρRA), 
δ, ε ∈ (0, 1

8 ), 3
√

2ε+ 2
√

2δ < 1, and f (ε, δ) = − log2(1 −
√

1 − 8δ)(1 −
√

1 − 8ε).

Proof.  Suppose that the quantum broadcast channel NA→B∪E is degraded. In what follows, 
we apply the following chain rules to (60) for ε, ε′, ε′′ ∈ (0, 1) ([VDTR13, theorem 13] and 
its dual):

Hε
min(A|BC)ρ � Hε′+2ε+ε′′

min (AB|C)ρ − Hε′

min(B|C)ρ + g(ε′′),� (63)

Hε
max(A|BC)ρ � Hε+2ε′+ε′′

max (AB|C)ρ − Hε′

max(B|C)ρ − g(ε′′) ,� (64)

where g(x) = − log2(1 −
√

1 − x2) and g(x) ∼ log2(x
−1) for small x. We then have that

log2 M � Hδ′+2
√

2δ+δ′′

min (MR|E)ω − Hδ′

min(R|E)ω + g(δ′′)

−
[
H

√
2ε+2ε′+ε′′

max (MR|B)ω − Hε′

max(R|B)ω − g(ε′′)
]� (65)

= Hδ′+2
√

2δ+δ′′

min (MR|E)ω − H
√

2ε+2ε′+ε′′

max (MR|B)ω −
[
Hδ′

min(R|E)ω − Hε′

max(R|B)ω
]

+ g(δ′′) + g(ε′′),
�

(66)

for ε, ε′, ε′′, δ, δ′, δ′′ ∈ (0, 1).

To proceed from here, we invoke lemma 9 from [MW14b]:

Hε
min(A|B)ρ � H

√
1−ε4

max (A|B)ρ,� (67)

for ρ ∈ D(HAB), and 0 � ε � 1. Substituting (67) into (66), we find that

log2 M � Hδ′+2
√

2δ+δ′′

min (MR|E)ω − H
√

2ε+2ε′+ε′′

max (MR|B)ω −
[

H
√

1−δ′4

max (R|E)ω − Hε′

max(R|B)ω
]

+ g(δ′′) + g(ε′′).
�

(68)

We now fix ε′ =
√

1 − δ′4 . By using the data-processing inequality of smoothed-max-
conditional entropy (see, e.g. [Tom12]) under the action of a degrading channel TB→E , we get

Hε′

max(R|E)ω � Hε′

max(R|B)ω .� (69)
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Therefore, we can discard the terms inside of the square bracket in (66), and by choosing √
1 − δ′4 = ε′ =

√
2ε, ε′′ = 2

√
2δ , δ′′ = 2

√
2ε , we find

log2 M � H3
√

2ε+2
√

2δ
min (MR|E)ω − H3

√
2ε+2

√
2δ

max (MR|B)ω + f (ε, δ),� (70)

� sup
ρR′A

{
H3

√
2ε+2

√
2δ

min (R′|E)ω − H3
√

2ε+2
√

2δ
max (R′|B)ω

}
+ f (ε, δ),� (71)

where f (ε) = − log2(1 −
√

1 − 8ε)(1 −
√

1 − 8δ), and thus we need to impose the con-
straints δ, ε < 1

8 and 3
√

2ε+ 2
√

2δ < 1. The last step follows since systems M and R extend 
the input of channel N . Since these inequalities hold for any value of log2 M , the desired 
result in (62) follows.� ■ 

Remark 5.  The optimization in theorem 4 is with respect to mixed-state inputs with a po-
tentially unbounded reference system R. This could be viewed as undesirable. To get around 
this problem, we consider a purifying system R′ for the input state ρRA, iterate once more with 
the chain rules in (63) and (64), and arrive at the following upper bound:

Cε,δ
EP (N ) � max

ψRA

[
H3

√
2ε′+2

√
2δ′

min (R|E)ω − H3
√

2ε′+2
√

2δ′
max (R|B)ω

]
+ f (ε′, δ′) + f (ε, δ),� (72)

where the optimization is over all pure bipartite states ψRA and ε′ = δ′ ≡ 3
√

2ε+ 2
√

2δ. 
(Note that, in the above expression, we have consolidated the systems RR′ external to the 
channel as a single system R.) The bound above is not as tight as that stated in theorem 4, but 
it has the advantage that the reference system R need not be any larger than the channel input 
system A, due to the Schmidt decomposition theorem.

3.3.  Asymptotic analysis

In this section, we first define the EA private information of a quantum broadcast channel 
NA→B∪E. We then show that the EA private information of a channel NA→B∪E is additive if 
the channel is degraded. Finally, we prove that the EA private capacity of a degraded broad-
cast channel NA→B∪E is given by the EA private information of the channel.

We define the EA private information of a quantum broadcast channel NA→B∪E as

PEA(N ) ≡ sup
ρRA

[I(R;B)ω − I(R; E)ω],� (73)

where ρRA is an arbitrary quantum state and ωRB∪E = NA→B∪E(ρRA).
We now show that it is sufficient to maximize (73) with respect to only pure states if the 

broadcast channel NA→B∪E is degraded. Consider an arbitrary input state ρRA and the follow-
ing chain of inequalities:

I(R;B)ω − I(R; E)ω
= I(RA′;B)σ − I(A′;BR)σ + I(R; A′)σ − [I(RA′; E)σ − I(A′; ER)σ + I(R; A′)σ]

� (74)

= I(RA′;B)σ − I(RA′; E)σ − [I(A′;BR)σ − I(A′; ER)σ]� (75)

� I(RA′;B)σ − I(RA′; E)σ� (76)
� max

φRA

[I(R;B)ω − I(R; E)ω],� (77)
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where φRAA′ is a purification of the input state ρRA, and σ = NA→B∪E(φRAA′). The first equality 
follows from the identity I(A; C) = I(A; BC)− I(AC; B) + I(B; C). The first inequality fol-
lows from the fact that quantum mutual information decreases under the action of a degrading 
channel from B to E. The last inequality follows from a simple relabeling of variables, and due 
to maximization over all input pure states. Since the chain of inequalities is true for all input 
states ρRA, the EA private information of a degraded broadcast channel is given by

PEA(N ) = max
φRA

[I(R;B)ω − I(R; E)ω],� (78)

where φRA is an arbitrary pure quantum state, and ωRB∪E = NA→B∪E(φRA).
In the following lemma we prove that the EA private information of a degraded quantum 

broadcast channel is additive.

Lemma 1.  Let NA1→B1∪E1 and MA2→B2∪E2 be degraded quantum broadcast channels. Then

PEA(N ⊗M) = PEA(N ) + PEA(M),� (79)

where the EA private information of the channel PEA(N ) is defined as (73) .

Proof.  We first prove the trivial inequality PEA(M) + PEA(N ) � PEA(N ⊗M), which 
holds for arbitrary quantum broadcast channels. Let ρR1A1, and σR2A2 be arbitrary input states. 
Then the following chain of inequalities holds:

I(R1;B1)N (ρ) − I(R1; E1)N (ρ) + I(R2;B2)M(σ) − I(R2; E2)M(σ)

= I(R1R2;B1B2)(N⊗M)(ρ⊗σ) − I(R1R2; E1E2)(N⊗M)(ρ⊗σ)
�

(80)

� PEA(N ⊗M).� (81)

The first equality follows from the definition of PEA(N ). The second equality follows from 
additivity of mutual information with respect to tensor-product states. The final inequality 
follows because the input state ρR1A1 ⊗ σR2A2 is a particular state of the more general form 
ρRA1A2 needed in the optimization of the EA private information of the tensor-product channel 
N ⊗M. Since the inequality holds for all input states, we conclude that

PEA(M) + PEA(N ) � PEA(N ⊗M).� (82)

We now prove the non-trivial inequality PEA(N ⊗M) � PEA(M) + PEA(N ) for degra-
dable broadcast channels. First note that the tensor-product channel N ⊗M is degradable 
because the channels individually are. So the equality in (78) applies. Let φRA1A2  be a state that 
maximizes PEA(N ⊗M), and let ωRB1E1B2E2 = (NA1→B1E1 ⊗MA2→B2E2)(φRA1A2). Consider 
the following chain of inequalities:

PEA(N ⊗M) = I(R;B1B2)ω − I(R; E1E2)ω� (83)

= I(R;B1)ω + I(R;B2|B1)ω − I(R; E2)ω − I(R; E1|E2)ω� (84)

= I(R;B1|E2)ω + I(R;B2|B1)ω − I(R; E2|B1)ω − I(R; E1|E2)ω� (85)

= I(RE2;B1)ω − I(RE2; E1) + I(RB1;B2)− I(RB1; E2)

− [I(B1;B2)− I(E1; E2)]
� (86)

� PEA(N ) + PEA(M).� (87)
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The second equality follows from an application of the chain rule for quantum mutual in-
formation. The third equality follows from the identity I(A; B|C) = I(A; BC)− I(A; C). The 
fourth equality follows from another expression for the conditional quantum mutual informa-
tion I(A; B|C) = I(AC; B)− I(B; C), and from a simple rearrangement. The last inequality 
follows from the definition of EA private information of channels N  and M, and from the 
fact that quanutm mutual information decreases under the action of a tensor product of two 
degrading channels.� ■ 

We now prove that the EA private capacity of a degraded quantum broadcast channel 
NA→B∪E is given by the EA private information of the channel in the following theorem.

Theorem 6.  Let NA→B∪E be a degraded quantum broadcast channel. Then the EA private 
capacity CEP(N ) of the channel NA→B∪E is given by

CEP(N ) = PEA(N ),� (88)

where EA private information PEA(N ) is defined as (78) .

Proof.  The direct part follows immediately from the one-shot lower bound established in 
theorem 2 and the subsequent second-order expansion discussed after it in (48).

For the converse part, we begin with our one-shot upper bound established in theorem 3. 
Let σMRBn∪En = N⊗n

An→Bn∪En(ρMRAn). Consider the following chain of inequalities:

Cε,δ
EP (N

⊗n) � sup
ρMRAn

[
H

√
2δ

min (M|REn)σ − H
√

2ε
max(M|RBn)σ

]
� (89)

� sup
ρMRAn

[
H(M|REn)σ − H(M|RBn)σ

]
+ f (ε, δ, M)� (90)

= sup
ρMRAn

[
I(M; RBn)σ − I(M; REn)σ

]
+ f (ε, δ, M)� (91)

= sup
ρMRAn

[
I(MR;Bn)σ − I(MR; En)σ − [I(R;Bn)σ − I(R; En)σ]

]
+ f (ε, δ, M)

� (92)

� sup
ρRAn

[
I(R;Bn)− I(R; En)

]
σ
+ f (ε, δ, M),� (93)

where f (ε, δ, M) = 8(
√

2δ +
√

2ε) log2 M + 2[h2(
√

8δ) + h2(2
√

8ε)]. The first inequality 
follows by an application of theorem 3 to the tensor-power channel N⊗n. The second in-
equality is a consequence of the following inequalities [RR11]:

Hε
min(A|B)ρ � H(A|B)ρ + 8ε log2 dim(A) + 2h2(2ε),� (94)

Hε
max(A|B)ρ � H(A|B)ρ − 8ε log2 dim(A)− 2h2(2ε) .� (95)

In the above, h2(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy. (Note that one 
could obtain improved parameters in (94) and (95) by employing recent developments in 
[Win16].) The second equality follows from the chain rule for quantum mutual information. 
The last inequality follows because there is a degrading channel from Bn to En, so that the 
quantum data-processing inequality implies that I(R;Bn) � I(R; En).
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Next, we show that it is sufficient to take a supremum over only pure quantum states in 
(93). Consider the following chain of inequalities:

I(R;Bn)N⊗n(ρ) − I(R; En)N⊗n(ρ)

= I(FR;Bn)N⊗n(φ) − I(FR; En)N⊗n(φ) − [I(F;BnR)N⊗n(φ) − I(F; EnR)N⊗n(φ)]
� (96)

� I(FR;Bn)N⊗n(φ) − I(FR; En)N⊗n(φ)� (97)

� PEA(N⊗n)� (98)

= nPEA(N ),� (99)

where φFRAn  is a purification of the state ρRAn . The first equality follows from the chain rule for 
quantum mutual information. The first inequality follows from the fact that quantum mutual 
information decreases under the action of a quantum channel (particularly, a degrading chan-
nel from Bn to En). The second equality follows from the definition of EA private information 
of a quantum channel, as defined in (78). The last equality follows from lemma 1. Since the 
chain of inequalities is true for all input states ρRAn , we conclude that

Cε,δ
EP (N

⊗n) � nPEA(N ) + f (ε, δ, M).� (100)

We now divide both sides of the last inequality by n and take the limits n → ∞, and ε, δ → 0:

CEP(N ) � lim
ε,δ→0

lim inf
n→∞

[
PEA(N ) +

1
n

f (ε, δ, M)]� (101)

= PEA(N ).� (102)

Hence, the lower bound in (48) and the upper bound in (102) imply that

CEP(N ) = PEA(N ).� (103)

This concludes the proof.� ■ 

4.  Examples of degraded quantum broadcast channels

In this section, we consider EA private communication over two specific instances of degraded 
quantum broadcast channels. Moreover, we establish an operational meaning for the condi-
tional quantum mutual information of a quantum broadcast channel, as a dynamic counterpart 
of the prior result from [SWW17].

4.1.  When Eve has access to the pre-shared entanglement and some part of Bob’s  
laboratory

We consider a special case of the protocol considered in section 3, as shown in figure 1. Alice 
would like to transmit a classical message m from a set M ≡ {1, ..., M}, to Bob via a quantum 
channel NA→BE , where Bob’s lab is separated into two parts. Bob has access to both parts, 
but we assume that the second part of the Bob’s lab (E) is insecure—a malicious third party 
Eve has access to this second part. Moreover, Alice and Bob pre-share arbitrary entanglement 
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to assist their communication. The quantum channel NA→BE  is a special case of previously 
defined degraded quantum broadcast channel, where we identify B = BE and E = E. Hence, 
the degradable channel from B to E is simply the partial trace over the B system.

We define an (M, ε, δ) code to be a set of encoding channels and a decoding POVM 
{Em

A→A′ ,Λm
RBE}m, such that

	 1.	�the classical messages can be reliably decoded by Bob,

max
m∈M

pe(m) � ε,� (104)

		 where pe(m) = Tr{(I − Λm
RBE)ρ

m
RBE}, ρm

RBE ≡ NA′→BE(EA→A′(ΨRA)), and
	 2.	�each classical message is δ-secure:

1
2
‖ρm

RE − σRE‖1 � δ, ∀m ∈ M,� (105)

		 where σRE  is some constant state.

Corollary 7.  Let NA→BE  be an arbitrary quantum broadcast channel. Then the EA private 
capacity for the scenario discussed above is given by conditional quantum mutual information 
of the channel NA→BE ,

CEP(N ) = CMI(N ),� (106)

where CMI(N ) is defined as

CMI(N ) = max
φRA

I(R; B|E)ω ,� (107)

φRA is a pure bipartite state, and ωRBE = NA→BE(φRA).

Proof.  Let B = BE and E = E. Then NA→BE  is a degraded quantum broadcast channel, 
such that the partial trace over system B is the degrading channel from B to E. Using this in 
theorem 6, we get

CEP(N ) = max
φRA

[I(R; BE)ω − I(R; E)ω] = max
φRA

I(R; B|E)ω ,� (108)

where the last equality follows from the definition of conditional quantum mutual  
information.� ■ 

Figure 1.  The information-processing task for EA private communication via a two-
receiver broadcast channel. Bob, who has access to the systems R, B and E, can reliably 
decode the transmitted message. However, Eve, who has access systems R and E, can 
only get negligible information about Alice’s message.
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4.2.  When Eve has access to the pre-shared entanglement and no access  
to Bob’s laboratory

In this section, we consider another special case of the protocol considered in section 3, as 
shown in figure 2. Similarly, Alice would like to securely transmit a classical message m, cho-
sen from a set M ≡ {1, ..., M}, to Bob via a quantum channel NA→BE . We assume that there 
is an eavesdropper who can access systems R and E. We also suppose now that there exists a 
degrading channel from B to E.

We now define an (M, ε, δ) code to be a set of encoding channels and a decoding POVM 
{Em

A ,Λm
RB}m, such that

	 1.	�the classical messages can be reliably decoded by Bob,

max
m∈M

pe(m) � ε,� (109)

		 where pe(m) = Tr{(I − Λm
RB)ρ

m
RB} and ρm

RBE ≡ NA′→BE(Em
A→A′(ΨRA)),

	 2.	�each classical message is δ-secure:

1
2
‖ρm

RE − σRE‖1 � δ, ∀m ∈ M,� (110)

		 where σRE  is some constant state.

Corollary 8.  Let NA→BE  be a degraded quantum broadcast channel as defined above. Then 
the EA private capacity is given by

max
φRA

[I(R; B)ω − I(R; E)ω],
� (111)

where φRA is any pure quantum state and ωRBE = NA→BE(φRA).

Proof.  In this case, B = B and E = E. Applying theorem 6, we find that 
CEA(N ) = maxφRA [I(R; B)ω − I(R; E)ω].� ■ 

5.  Conclusion

In this work, we considered EA private communication over quantum broadcast quantum 
channels. We established a lower bound on the one-shot EA capacity based on the recent 
techniques of position-based coding [AJW17] and convex splitting [ADJ17]. We also 

Figure 2.  The information-processing task for EA private communication through a 
quantum channel N . Bob, who has access to the systems R and B, can reliably decode 
the transmitted message. However, Eve, who has access systems R and E, can only get 
negligible information about Alice’s message.
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established an upper bound on the one-shot EA private capacity by combining various results 
on the min- and max-entropy. We defined a quantum broadcast channel to be degraded when 
there is a quantum channel mapping from Bob’s systems to Eve’s systems. Using lower and 
upper bounds on the one-shot EA private capacity, we proved a single-letter EA capacity 
formula for degraded quantum broadcast channels. As special cases, we found capacities 
of EA private communication over two-receiver degraded broadcast channels. Especially in 
the first case, we not only proved a single-letter capacity formula, but also established an 
operational meaning to conditional quantum mutual information of a quantum broadcast 
channel. One possible future direction is to investigate whether our upper bound is also 
a strong converse upper bound. Another intriguing idea is to generalize our results to the 
scenario of secret sharing.
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