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Inspired by the power of abstraction in information theory, we consider quantum rebound protocols as
a way of providing a unifying perspective to deal with several information-processing tasks related to and
extending quantum channel discrimination to the Shannon-theoretic regime. Such protocols, defined in the most
general quantum-physical way possible, have been considered in the physical context of the Das-Wilde (DW)
model of quantum reading [arXiv:1703.03706]. In [arXiv:1901.05895], it was discussed how such protocols
apply in the different physical context of round-trip communication from one party to another and back. The
common point for all quantum rebound tasks is that the decoder himself has access to both the input and output
of a randomly selected sequence of channels, and the goal is to determine a message encoded into the channel
sequence. As employed in the DW model of quantum reading, the most general quantum-physical strategy that
a decoder can employ is an adaptive strategy, in which general quantum operations are executed before and after
each call to a channel in the sequence. We determine lower and upper bounds on the quantum rebound capacities
in various scenarios of interest, and we also discuss cases in which adaptive schemes provide an advantage over
nonadaptive schemes in zero-error quantum rebound protocols.
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Introduction. One of the great contributions of Shannon
was his famous classical channel capacity theorem [1]. A
classical channel is described mathematically by a conditional
probability matrix {p(y|x)}y,x, which captures the stochastic
nature of a communication medium. Shannon’s channel ca-
pacity theorem tells us that the ultimate rate at which reliable
communication is possible over such a classical channel is
equal to the channel’s mutual information, which is a function
of {p(y|x)}y,x that is easy to compute. The power of his
mathematical approach is engrained in its abstraction: not
only does the theorem apply to a traditional communication
setting in which the two communicating parties are spatially
separated, but it also applies to a noisy storage scenario in
which information can be written to and later read off from
a storage device. Thus, from the perspective of information
theory, there is no compelling reason to differentiate between
these two different physical scenarios, given that the underly-
ing mathematical model can be described in a similar way and
the channel capacity theorem is ultimately just a function of
the underlying conditional probability matrix {p(y|x)}y,x.

Many years after Shannon’s theory was established and
investigated, quantum information theory emerged as a gen-
eralization of Shannon’s theory, with the main goal being to
incorporate the laws of quantum mechanics into Shannon’s
theory in order to establish the ultimate physical limits of
communication (see, e.g., Refs. [2–5] for reviews of the topic).
Interestingly, insights such as teleportation [6] and superdense
coding [7] led to the realization that there are different kinds of
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information that can be transmitted over a quantum commu-
nication channel, as well as different information-processing
tasks [8–13]. Again in quantum information theory, the power
of the approach taken lies in its abstraction. The various
quantum channel capacity theorems are universally applicable
to the processing of arbitrary quantum systems, which include
quantum optical systems, superconducting systems, trapped
ions, etc.

A particular mathematical model for communication in
the quantum setting involves a collection {N x

B′→B}x∈X of
quantum channels (in the parlance, each N x

B′→B is a com-
pletely positive and trace preserving map). The label x in
the alphabet X indicates a particular channel selected from
the collection, and the subscripts B′ and B indicate that the
same entity (called “Bob” here) has access to both the input
and output terminals of the channel. It is important to stress
that each channel can describe any physical process that
modifies the quantum system B′ input by Bob and returns
it back as system B, whether it be a noisy storage device
or a round-trip communication in which B′ goes to another
party, who modifies it and returns it back to Bob as B. Note
that the respective input and output systems B′ and B need
not have the same dimension and could even be labels for
quantum systems described by infinite-dimensional Hilbert
spaces. The alphabet X has cardinality greater than or equal
to two and can even be uncountable. As a generalization of
quantum channel discrimination [14–22], the goal is for Bob
to determine a message encoded into a sequence of channels
selected from the collection by employing a quantum physical
strategy to do so.

This setting has been studied in various forms and physical
instantiations in the literature, starting with the seminal work
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FIG. 1. The DW model of quantum reading from Ref. [28].
Beyond the physical setup of quantum reading, this can also be
understood in the most abstract sense as a quantum rebound pro-
tocol, in which a call to the channel collection or “channel box”
{N x

B′→B}x∈X is made three times and the most general quantum
strategy for decoding the message m is employed.

of Ref. [23] from nearly twenty years ago. In the setting
of Ref. [23], the collection of channels was restricted to
be a collection of unitary channels. The physical scenario
considered in Ref. [23] was given the name “communication
capacity of quantum computation,” and the goal is for a
computational device to determine a message encoded into
one of the unitary channels. Interestingly, it was proposed as
an information-theoretic method for determining bounds on
the performance of quantum algorithms. Over a decade after
the contribution of Ref. [23], the model of quantum reading
and quantum reading codes were proposed in Refs. [24] and
[25,26], respectively, inspired by the proposal of quantum
illumination from Ref. [27] (see also Refs. [18,19]). In this
setting, the collection of channels was allowed to be more
general, consisting of completely positive, trace-preserving
maps. The physical model considered corresponds to reading
out information stored in a classical digital memory, such as
a CD or DVD. Quantum physical strategies were allowed,
and like what was found in the seminal work on quantum
channel discrimination [18,19], using entanglement and joint
measurements allowed for higher rates of readout.

The work on quantum reading culminated most recently
with a general definition of a quantum reading protocol and
the related quantum reading capacity, given in Ref. [28]
(hereafter, called “DW model” of quantum reading). In the
DW model of quantum reading, the reader prepares an ar-
bitrary (possibly entangled) quantum state at the start of the
protocol, performs adaptive channels between every call to the
unknown channels, and finally performs a joint measurement
in order to retrieve the encoded message. The DW model of
quantum reading is depicted in Fig. 1. This model captures all
former and in fact all possible strategies for quantum reading.
Several results regarding lower and upper bounds on the rates
of quantum reading protocols and quantum reading capacity
were established in Ref. [28].

It was also stressed in Ref. [29] how the results of Ref. [28]
apply to physical scenarios other than quantum reading, in-
cluding one in which there is a round-trip communication
from one party to another, i.e., in which the channel N x

B′→B
is implemented physically with the involvement of another
party C as N x

B′→B = LC→B ◦ Mx
C′→C ◦ PB′→C′ . Here the chan-

nel PB′→C′ describes the forward link from Bob to Charlie,
Mx

C′→C describes a local channel that Charlie applies, and
LC→B describes the backward link from Charlie to Bob. This
kind of setting had been studied previously in Refs. [30–35]
(in the context of secure communication), and Ref. [29] con-

nected the DW model of quantum reading to this round-trip
communication setting.

Inspired by the spirit of abstraction initiated by Shannon in
the context of information theory, in this paper a “quantum
rebound protocol” refers to any physical scenario and any
protocol that decodes information encoded into a collection
{N x

B′→B}x of channels (the channels can be finite or infinite
dimensional). This includes all physical scenarios discussed
above, i.e., communication capacity of quantum computation,
quantum reading, and round-trip communication protocols.
The name is apt, describing exactly how such protocols op-
erate from the perspective of a person who has access to both
the input B′ and output B of the channel. Indeed, Bob inputs
one share of a state into the input port B′, the channel N x

B′→B
is applied, and then system B is returned to Bob, just as it is
with a rebound.

The present paper is a companion to our existing paper
[28], with its purpose being twofold: (1) to clarify that the
results of Ref. [28] should be interpreted in the abstract,
information-theoretic way (i.e., as general quantum rebound
protocols and not merely as quantum reading ones applied to
that physical context), and (2) to discuss in short-paper form
the main contributions of Ref. [28].

Quantum rebound protocol. Let N := {N x
B′→B}x∈X be a

collection of quantum channels, such that the Hilbert spaces of
quantum systems B′ and B are described by separable Hilbert
spaces. A quantum rebound protocol involves two parties: one
party we call “Alice,” who selects which message she would
like to encode using the channels, and “Bob,” who has access
to both the input systems labeled by B′ and the output systems
labeled by B. An (n, R, ε) quantum rebound protocol proceeds
as follows:

Both Alice and Bob agree upon message alphabet M of
size M, as well as an n-letter codebook (channel sequence)
{N xn(m)}m∈M , where

N xn(m) := (N x1(m),N x2(m), . . . ,N xn(m) ), (1)

and xi(m) ∈ X . All quantum channels N x
B′→B take states of

quantum system B′ as input and output states of quantum
system B. Alice applies the channel sequence N xn

based on
the message m ∈ M that she wants to communicate to Bob.

The most general strategy that Bob can adopt for decoding
the message m is to transmit a state ρR1B′

1
through the first

call N x1 and then perform an adaptive channel A(1)
R1B1→R1B′

2

after the call N x1 (ρR1B′
1
), where B′

i � B′ for all i ∈ [n] :=
{1, 2, . . . , n}. He then calls the second channel in the se-
quence, which acts on the output of the previous step. He
repeats these steps until he finishes calling all of the encoding
channels in a codeword sequence and finally performs a
decoding measurement {�(m)

RnBn
}m∈M, where {�(m)

RnBn
}m∈M is a

positive-operator-value measure (POVM), i.e.,
∑

m �
(m)
RnBn

=
IRnBn and �

(m)
RnBn

� 0 for all m ∈ M . See Fig. 1 for a visual
depiction of a quantum rebound protocol when n = 3. Note
that the adaptive channels are independent of the codeword
sequence and are decided a priori based on the codebook. The
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protocol is such that the average success probability is at least
1 − ε, for ε ∈ (0, 1),

1 − ε � 1 − p(n)
err := 1

M

∑
m

Tr
{
�

(m)
RnBn

ρ
(m)
RnBn

}
, (2)

ρ
(m)
RnBn

:= N xn(m)
B′

n→Bn
◦ A(n−1)

Rn−1Bn−1→RnB′
n
◦ · · ·

◦A1
R1B1→R2B′

2
◦ N x1(m)

B′
1→B1

(ρR1B′
1
). (3)

The rate R of a given (n, R, ε) quantum rebound protocol
is equal to the number of bits read per channel use: R :=
1
n log2 M. As emphasized previously, an (n, R, ε) quantum
rebound protocol is no different in the information-theoretic
sense from a DW protocol for quantum reading [28], with the
only “difference” being that the name quantum reading is tied
to a particular physical context.

In the above, we have described a nonasymptotic quan-
tum rebound protocol. To go to the asymptotic setting (in
the Shannon-theoretic sense), we demand that there exists a
sequence of (n, R, ε) quantum rebound protocols, indexed by
n, for which ε → 0 as n → ∞ at a fixed rate R. A rate R is
called achievable if ∀ ε ∈ (0, 1), δ > 0, and sufficiently large
n, there exists an (n, R − δ, ε) quantum rebound protocol. The
quantum rebound capacity C(N ) of the channel collection
N is defined as the supremum of all achievable rates.

As observed in Ref. [28], it is apparent that a nonadaptive
strategy is a special case of an adaptive strategy, in which the
decoder does not perform any adaptive channels and instead
uses ρRB′n as the transmitter state with each B′

i system passing
through the corresponding channel N xi (m)

B′
i→Bi

and R being an
idler system. The final step in such a nonadaptive strategy is
to perform a decoding measurement on the composite system
RBn.

Environment-parametrized and environment-seizable col-
lections. Towards the goal of understanding and establishing
limits on quantum rebound capacities, it is of interest to
identify quantum channel collections for which we can place
an upper bound on their quantum rebound capacities. For
environment-seizable channel collections, as defined below, it
follows that adaptive strategies do not increase the quantum
rebound capacity, such that they can be achieved by using
nonadaptive strategies. For the larger class of environment-
parametrized collections, defined below as well, one can
exploit their structure to obtain upper bounds on their quantum
rebound capacities [28].

A collection E = {Ex
B′→B}x∈X of quantum channels is

called environment parametrized with associated environment
states {θ x

E }x∈X [28] if there exists a fixed channel FB′E→B

such that for all input states ρB′ , the channel Ex
B′→B can be

simulated as [36] (cf. Refs. [37–39])

Ex
B′→B(ρB′ ) = FB′E→B

(
ρB′ ⊗ θ x

E

)
. (4)

An environment-parametrized collection E with associated
environment states {θ x

E }x∈X is called environment seizable
[40] if there exists a fixed input state σRB′ and a fixed channel
SRB→E such that for all x ∈ X

SRB→E
(
Ex

B′→B(σRB′ )
) = θ x

E . (5)

In this way, for such environment-seizable channels, one can
seize the background environment state θ x

E with a pre- and

FIG. 2. The figure depicts how a quantum rebound protocol for
an environment-parametrized collection with associated environment
states {θ x

E }x∈X can be rewritten as a protocol that tries to decode the
message m from the environment states θ

xn (m)
En . All of the operations

inside the dashed lines can be understood as a measurement on the
states θ

xn (m)
En .

postprocessing of the channel Ex
B′→B. Thus, it is possible to

obtain, in a single swoop, the only object θ x
E distinguishing

one channel from another in the collection.
Reduction of rebound protocols for environment-

parametrized collections. In what follows, we show how
the structure of general quantum rebound protocols simplify
for environment-parametrized channel collections. Let us
consider an (n, R, ε) quantum rebound protocol for an
environment-parametrized collection E with associated
environment states {θ x

E }x∈X . As shown in Ref. [28], the
structure of general rebound protocols simplifies immensely
for an environment-parametrized channel collection. This
is a consequence of observations made in Refs. [37],
Sec. V] and [41] in quantum communication theory and
in Ref. [42] in quantum estimation theory. For such an
environment-parametrized collection, a quantum rebound
protocol can be simulated by one in which every channel
use is replaced by a preparation of the environment state
θ

xi (m)
E from Eq. (4) and then interacting the channel input with

the interaction channel FB′E→B. Critically, each interaction
channel FB′E→B is fixed and independent of the message
m ∈ M. Let

θ
xn(m)
En :=

n⊗
i=1

θ
xi (m)
E (6)

denote the environment state needed for the simulation of all n
of the channel uses in the codeword sequence of the protocol.
This leads to the translation of a general quantum rebound
protocol to one in which all of the rounds of adaptive channels
can be delayed until the very end of the protocol, such that the
resulting protocol is a nonadaptive quantum rebound protocol.
Figure 2 displays the reduction.

Thus, any (n, R, ε) quantum rebound protocol for an
environment-parametrized collection E can be simulated as
a nonadaptive protocol, in the following sense:

Tr{�m̂(Exn(m) ◦ A(n−1) ◦ · · · ◦ A(1) ◦ Ex1(m) )(ρR1B′
1
)}

= Tr

{
�m̂

En

(
n⊗

i=1

θ
xi (m)
E

)}
, (7)

for some POVM {�m̂
En}m̂∈M that depends only on the

choice of the initial state, the adaptive channels, and the
final measurement of the original rebound protocol. This
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adaptive-to-nonadaptive reduction of a quantum rebound pro-
tocol is the same as the adaptive-to-nonadaptive reduction
established in the DW model of quantum reading [28].

Bounds on quantum rebound capacity. Using the above
observation, we now arrive at upper bounds on the perfor-
mance of any rebound protocol that uses an environment-
parametrized collection. Our proof strategy is to employ a
generalized divergence [43] to make a comparison between
the states involved in the actual rebound protocol and one
in which the collection Ê := {ÊB′→B} of encoding channels
has a fixed, single element with environment state θ̂E and the
same interaction channel FB′E→B as in the original collection.
The latter rebound protocol contains no information about
the message m. Also, observe that the augmented collection
{E , Ê} is environment parametrized with associated environ-
ment states {{θ x

E }x∈X , θ̂E }.
For an (n, R, ε) quantum rebound protocol that uses an

environment-parametrized collection E , as defined in Eq. (4),
the following upper bound applies to the rate R [28, Lemma
3]:

log2 M = nR � sup
pXn

inf
θ̂

Dε
h(θX nEn‖θ̂X nEn ), (8)

where M = |M | and Dε
h(ρ‖σ ) is a generalized divergence

called ε-hypothesis-testing divergence [44,45], defined for
quantum states ρ, σ and for ε ∈ [0, 1] as

Dε
h(ρ‖σ ) := − log2 inf

�:0���I∧Tr {�ρ}�1−ε
Tr {�σ }, (9)

θX nEn :=
∑

xn∈X n

pX n (xn)|xn〉〈xn|X n ⊗ θ xn

En , (10)

θ̂X nEn :=
∑

xn∈X n

pX n (xn)|xn〉〈xn|X n ⊗ θ̂⊗n
E , (11)

where θX nEn and θ̂X nEn are classical–quantum states.
Another generalized divergence of interest is the quantum

relative entropy D(ρ‖σ ), defined for quantum states ρ, σ as
D(ρ‖σ ) := Tr{ρ[log2 ρ − log2 σ ]} [46], which leads to the
quantum mutual information I (A; B)ρ for a quantum state
ρAB, defined as I (A; B)ρ := D(ρAB‖ρA ⊗ ρB), where ρA :=
TrB(ρAB).

A direct consequence of Eq. (8) and Ref. [47, Theorem 4] is
the following theorem (see Ref. [28, Theorem 1] for a detailed
proof):

Theorem 1. The quantum rebound capacity C(E ) of an
environment-parametrized collection E with associated envi-
ronment states {θ x

E }x∈X , as defined in Eq. (4), is bounded from
above as

C(E ) � sup
pX

I (X ; E )θ , (12)

where θXE := ∑
x∈X pX (x)|x〉〈x|X ⊗ θ x

E is a classical–
quantum state.

Environment-seizable collections. When the channel col-
lection is environment seizable, as defined in Eq. (5), the
upper bound in Theorem 1 is achievable, so that we have
C(E ) = suppX

I (X ; E )θ . This equality follows by observing
that a strategy for achieving the rate suppX

I (X ; E )θ is to seize
every environment state θ x

E for each call to the channel via
the pre- and postprocessing from the definition in Eq. (5), and
then to employ the achievability part of Ref. [47, Theorem 4]

(in the asymptotic case, we can invoke the well-known result
from Refs. [48,49]).

A particular example of an environment-seizable collection
occurs when the channel collection N = {N x

B′→B}x is jointly
covariant [28], which results in the environment states being
in fact the channel’s Choi states N x

B′→B(	RB′ ), where 	RB′

denotes a maximally entangled state, and the fixed interaction
channel is a local operations and classical communication
(LOCC) channel LB′RB→B, taken with respect to the bipartition
RB′ : B of the input systems.

Before defining such channel collections, we recall the
notion of a covariant channel [3,50,51]. Consider a finite
group G of size |G|. For every g ∈ G, let g → UB′ (g) and
g → VB(g) be projective unitary representations acting on the
input space of B′ and the output space of B of a quantum
channel GB′→B, respectively. The channel GB′→B is covariant
with respect to these representations if the following relation
is satisfied for all input states ρB′ and for all g ∈ G:(

GB′→B ◦ Ug
B′

)
(ρB′ ) = (

Vg
B ◦ GB′→B

)
(ρB′ ), (13)

Ug
B′ (·) := UB′ (g)(·)U †

B′ (g), (14)

Vg
B(·) := VB(g)(·)V †

B (g). (15)

In this paper, a quantum channel GB′→B is covariant if it is
covariant with respect to a group G which has a representation
U (g), for all g ∈ G, that is a unitary one-design on the channel
input system B′; i.e., the map 1

|G|
∑

g∈G U (g)(·)U †(g) always
outputs the maximally mixed state for all input states.

Finally, a channel collection G = {Gx
B′→B}x is jointly co-

variant if each channel Gx
B′→B in the collection G is covariant

with respect to the group G. A particular class of jointly
covariant channel collections is given by

G = {
GB′→B ◦ Ug

B′
}

g∈G, (16)

where GB′→B is a covariant channel, as defined above. For such
jointly covariant channel collections, we have the following
[28, Theorem 3]:

Theorem 2. Let G be a jointly covariant channel collection
as defined in Ref. (16). Then the quantum rebound capacity
C(G ) of the channel collection G is equal to the entanglement-
assisted classical capacity [52,53] of the underlying quantum
channel GB′→B:

C(G) = I (R; B)G(	), (17)

where G(	) := GB′→B(	RB′ ) and 	RB′ is a maximally entan-
gled state.

Zero-error rebound protocols. Briefly, we mention here
that an (n, R, ε = 0) quantum rebound protocol is called a
zero-error quantum rebound protocol. By building on results
in zero-error channel discrimination [54,55], it was shown
in Ref. [28] that there exist channel collections for which a
general rebound protocol achieves a higher rate of commu-
nication than a nonadaptive one, when it is required for the
communication to be zero error.

Dense coding capacity. In a recent posting [56], the dense
coding capacity was defined in such a way as to generalize
earlier work on this topic [8–13]. The communication problem
formulated there is a particular instance of the DW model
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of quantum reading [28] and thus is immediately seen to be
a particular kind of quantum rebound protocol as discussed
here. Also, the physical context of round-trip communication
for the setting of Ref. [56] was already discussed in Ref. [29]
and connected therein to the DW model of quantum reading
from Ref. [28]. The technical contributions of Ref. [56] are
Eqs. (11), (12), and (14) in Ref. [56], which were established
in Theorem 1, Remark 3, and in Theorem 3 of Ref. [28],
respectively.

Conclusion. In this paper, we have considered quantum re-
bound protocols as a way to capture any physical scenario and
any information-processing protocol that decodes information
encoded into a collection {N x

B′→B}x of quantum channels. As
done in Ref. [28] for quantum reading, we have provided a
general and natural definition for quantum rebound capacity
by considering that the input and output systems of each
channel in the collection are accessible to the same party
and arbitrary pre- and postprocessing of each channel use is
allowed. We have established an upper bound on the quantum
rebound capacity for an environment-parametrized channel
collection, which is achievable when the channel collection
is environment seizable. We also determined the quantum
rebound capacities for jointly covariant channel collections.

A natural question following from the developments in
Ref. [28] is whether there exists a channel collection for which
the quantum rebound capacity is strictly larger than what one
could achieve by using a nonadaptive strategy. As discussed
above, we have provided a positive answer to this question
in the setting of zero error. However, the question remains

open for the case of Shannon-theoretic capacity (i.e., with
arbitrarily small error). We suspect that this question will
have a positive answer, and we strongly suspect it will be
the case in the setting of nonasymptotic capacity, our latter
suspicion being due to the fact that feedback is known to
help in nonasymptotic settings for communication (see, e.g.,
Ref. [57]). We leave the investigation of this question for
future work.

Finally, private rebound protocols consist of communi-
cating information privately via a collection {N x

B′→BE }x of
quantum wiretap channels. Again, these describe arbitrary
physical scenarios in which the decoder has access to both
the input and output systems B′ and B, respectively, while an
eavesdropper or wiretapper has access to the system E , and
the goal is to have reliable communication to the decoder
Bob that is private from the eavesdropper. Such protocols
were investigated extensively in Refs. [58,59], where lower
and upper bounds on communication rates were obtained. The
protocols from Refs. [58,59] capture not only private reading
(defined in Refs. [58,59]), but also private round-trip commu-
nication protocols such as those discussed in Refs. [30–33]
and floodlight quantum key distribution [34,35], as discussed
in Ref. [29].
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