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Abstract—The quantum relative entropy is a measure of the
distinguishability of two quantum states, and it is a unifying
concept in quantum information theory: many information mea-
sures such as entropy, conditional entropy, mutual information,
and entanglement measures can be realized from it. As such,
there has been broad interest in generalizing the notion to
further understand its most basic properties, one of which is the
data processing inequality. The quantum f -divergence of Petz
is one generalization of the quantum relative entropy, and it
also leads to other relative entropies, such as the Petz–Rényi
relative entropies. In this contribution, I introduce the optimized
quantum f -divergence as a related generalization of quantum
relative entropy. I prove that it satisfies the data processing
inequality, and the method of proof relies upon the operator
Jensen inequality, similar to Petz’s original approach. Interest-
ingly, the sandwiched Rényi relative entropies are particular
examples of the optimized f -divergence. Thus, one benefit of
this approach is that there is now a single, unified approach
for establishing the data processing inequality for both the Petz–
Rényi and sandwiched Rényi relative entropies, for the full range
of parameters for which it is known to hold.

Full version of this paper is accessible at arXiv:1710.10252

I. INTRODUCTION

The quantum relative entropy [1] is a foundational distin-
guishability measure in quantum information theory (QIT). It
is a function of two quantum states and measures how well
one can tell the two states apart by a quantum-mechanical
experiment. One important reason for why it has found such
widespread application is that it satisfies a data-processing
inequality [2], [3]: it does not increase under the action of a
quantum channel on the two states. This can be interpreted
as saying that two quantum states do not become more
distinguishable if the same quantum channel is applied to
them, and a precise interpretation of this statement in terms of
quantum hypothesis testing is available in [4]–[6]. Quantum
relative entropy generalizes its classical counterpart [7].

The wide interest in relative entropy sparked various re-
searchers to generalize and study it further, in an attempt to
elucidate the fundamental properties that govern its behavior.
One notable generalization is Rényi’s relative entropy [8],
but this was subsequently generalized even further in the
form of the f -divergence [9]–[11]. For probability distribu-
tions {p(x)}x and {q(x)}x and a convex function f , the f -
divergence is defined as

∑
x q(x)f(p(x)/q(x)), in the case

that p(x) = 0 for all x such that q(x) = 0. The resulting
quantity is then non-increasing under the action of a clas-
sical channel r(y|x) that produces the output distributions∑
x r(y|x)p(x) and

∑
x r(y|x)q(x). Some years after these

developments, a quantum generalization of f -divergence ap-

peared in [12], [13] In [12], [13] and a later development
[14], the quantum data-processing inequality was proved in
full generality for arbitrary quantum channels, whenever the
underlying function f is operator convex.

Interestingly, when generalizing a notion from classical to
QIT, there is often more than one way to do so, and sometimes
there could even be an infinite number of ways to do so.
This has to do with the non-commutativity of quantum states.
For example, there are several different ways that one could
generalize the relative entropy to the quantum case, and two
prominent formulas were put forward in [1] and [15]. This
added complexity for the quantum case could potentially be
problematic, but the typical way of determining on which
generalizations we should focus is to show that a given formula
is the answer to a meaningful operational task. The papers [4],
[5] accomplished this for the formula from [1], and since then,
researchers have realized more and more just how foundational
the formula of [1] is. As a consequence, the formula of [1] is
now known as quantum relative entropy.

The situation becomes more intricate when it comes to
quantum generalizations of Rényi relative entropy. For many
years, the Petz–Rényi relative entropy of [12], [13] has been
widely studied and given an operational interpretation [16],
[17], again in the context of quantum hypothesis testing. How-
ever, in recent years, the sandwiched Rényi relative entropy of
[18], [19] has gained prominence, due to its role in establishing
strong converses for communication tasks (see, e.g., [19],
[20]). The result of [21] solidified its fundamental meaning
in QIT, proving that it has an operational interpretation in
the strong converse exponent of quantum hypothesis testing.
As such, the situation is that there are two generalizations of
Rényi relative entropy that should be considered in QIT, due
to their operational role mentioned above.

The same work that introduced the Petz–Rényi relative
entropy also introduced a quantum generalization of the notion
of f -divergence [12], [13] (see also [22]), with the Petz–Rényi
relative entropy being a particular example. Since then, other
quantum f -divergences have appeared [23], [24], now known
as minimal and maximal f -divergences [24], [25]. However,
it has not been known how the sandwiched Rényi relative
entropy fits into the paradigm of quantum f -divergences.

In this paper, I modify Petz’s definition of quantum f -
divergence [12], [13], [22], by allowing for a particular op-
timization (see Definition 1 for details of the modification).
As such, I call the resulting quantity the optimized quantum
f -divergence. I prove that it obeys a quantum data processing
inequality, and as such, my perspective is that it deserves to
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be considered as another variant of the quantum f -divergence,
in addition to the original, the minimal, and the maximal.
Interestingly, the sandwiched Rényi relative entropy is directly
related to the optimized quantum f -divergence, thus bringing
the sandwiched quantity into the f -divergence formalism.

One benefit of the results of this paper is that there is now
a single, unified approach for establishing the data-processing
inequality for both the Petz–Rényi relative entropy and the
sandwiched Rényi relative entropy, for the full Rényi parame-
ter ranges for which it is known to hold. This unified approach
is based on Petz’s original approach that employed the operator
Jensen inequality [26], and it is useful for presenting a succint
proof of the data processing inequality for both quantum Rényi
relative entropy families.

In the rest of the paper, I begin by defining the optimized
quantum f -divergence in the next section. In Section III, I
prove that the optimized f -divergence satisfies the quantum
data processing inequality under partial trace whenever the
underlying function f is operator anti-monotone with domain
(0,∞) and range R. The core tool underlying this proof is
the operator Jensen inequality [26]. In Section IV, I show
how the quantum relative entropy and the sandwiched Rényi
relative entropies are directly related to the optimized quantum
f -divergence. Section V then discusses the relation between
Petz’s f -divergence and the optimized one. I finally conclude
in Section VI with a summary.

II. OPTIMIZED QUANTUM f -DIVERGENCE

Let us begin by defining the optimized quantum f -
divergence. Here I focus exclusively on the case of positive
definite operators, and the full version provides details for the
more general case of positive semi-definite operators.

Definition 1 (Optimized quantum f -divergence): Let f be a
function with domain (0,∞) and range R. For positive definite
operators X and Y acting on a Hilbert space HS , we define
the optimized quantum f -divergence as

Q̃f (X‖Y ) ≡ sup
τ>0, Tr{τ}≤1

Q̃f (X‖Y ; τ), (1)

where Q̃f (X‖Y ; τ) is defined for positive definite Y and τ
acting on HS as

Q̃f (X‖Y ; τ) ≡ 〈ϕX |SŜf(τ−1S ⊗ Y T
Ŝ

)|ϕX〉SŜ , (2)

|ϕX〉SŜ ≡ (X
1/2
S ⊗ IŜ)|Γ〉SŜ . (3)

In the above, HŜ is an auxiliary Hilbert space isomorphic to
HS , |Γ〉SŜ ≡

∑|S|
i=1 |i〉S |i〉Ŝ , for orthonormal bases {|i〉S}

|S|
i=1

and {|i〉Ŝ}
|Ŝ|
i=1, and the T superscript indicates transpose with

respect to the basis {|i〉Ŝ}i.
The case of greatest interest for us here is when the

underlying function f is operator anti-monotone; i.e., for
Hermitian operators A and B, the function f is such that
A ≤ B ⇒ f(B) ≤ f(A) (see, e.g., [27]). This property
is rather strong, but there are several functions of interest in
quantum physical applications that obey it (see Section IV).
One critical property of an operator anti-monotone function

with domain (0,∞) and range R is that it is also operator
convex and continuous (see, e.g., [28]). In this case, we have
the following simple proposition, proved in the full version:

Proposition 2: Let f be an operator anti-monotone func-
tion with domain (0,∞) and range R. For positive definite
operators X and Y acting on a Hilbert space HS ,

Q̃f (X‖Y ) = sup
τ>0,Tr{τ}=1

Q̃f (X‖Y ; τ), (4)

and the function Q̃f (X‖Y ; τ) is concave in τ .

III. QUANTUM DATA PROCESSING

Our first main objective is to prove that Q̃f (X‖Y ) deserves
the name “f -divergence” or “f -relative entropy,” i.e., that it
is monotone non-increasing under the action of a completely
positive trace-preserving map N :

Q̃f (X‖Y ) ≥ Q̃f (N (X)‖N (Y )). (5)

Such a map N is also called a quantum channel, due to
its purpose in quantum physics as modeling the physical
evolution of the state of a quantum system. In QIT contexts,
the inequality in (5) is known as the quantum data processing
inequality. According to the Stinespring dilation theorem [29],
to every quantum channel NS→B , there exists an isometry
UNS→BE such that

NS→B(XS) = TrE{UNS→BEXS

(
UNS→BE

)†}. (6)

As such, we can prove the inequality in (5) in two steps.
Isometric invariance: First show that

Q̃f (X‖Y ) = Q̃f (UXU†‖UY U†) (7)

for any isometry U and any positive semi-definite X and Y .
This is done in the full version of this work, using the general
definition given there. Monotonicity under partial trace: Then
show that

Q̃f (XAB‖YAB) ≥ Q̃f (XA‖YA) (8)

for positive semi-definite operators XAB and YAB acting
on the tensor-product Hilbert space HA ⊗ HB , with XA =
TrB{XAB} and YA = TrB{YAB}.

We now discuss the second step toward quantum data
processing, mentioned above, and here we focus exclusively
on positive definite operators:

Theorem 3 (Monotonicity under partial trace): Let f be
an operator anti-monotone function with domain (0,∞) and
range R. Given positive definite operators XAB and YAB
acting on the tensor-product Hilbert space HA ⊗ HB , the
optimized quantum f -divergence does not increase under the
action of a partial trace, in the sense that

Q̃f (XAB‖YAB) ≥ Q̃f (XA‖YA), (9)

where XA = TrB{XAB} and YA = TrB{YAB}.

Proof. The quantities of interest are as follows:

Q̃f (XAB‖YAB ; τAB) =

〈ϕXAB |ABÂB̂f(τ−1AB ⊗ Y
T
ÂB̂

)|ϕXAB 〉ABÂB̂ , (10)
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Q̃f (XA‖YA;ωA) = 〈ϕXA |AÂf(ω−1A ⊗ Y
T
Â

)|ϕXA〉AÂ, (11)

where τAB and ωA are invertible density operators and, by
definition,

|ϕXAB 〉ABÂB̂ =
(
X

1/2
AB ⊗ IÂB̂

)
|Γ〉AÂ ⊗ |Γ〉BB̂ . (12)

The following map, acting on an operator ZA, is a quantum
channel known as the Petz recovery channel [30], [31]:

ZA → X
1/2
AB

([
X
−1/2
A ZAX

−1/2
A

]
⊗ IB

)
X

1/2
AB . (13)

It is completely positive because it consists of the serial
concatenation of three completely positive maps: sandwiching
by X

−1/2
A , tensoring in the identity IB , and sandwiching by

X
1/2
AB . It is also trace preserving. The Petz recovery channel

has the property that it perfectly recovers XAB if XA is input
because

XA → X
1/2
AB

([
X
−1/2
A XAX

−1/2
A

]
⊗ IB

)
X

1/2
AB = XAB . (14)

Every completely positive and trace preserving map N has a
Kraus decomposition, which is a set {Ki}i of operators such
that N (·) =

∑
iKi(·)K†i and

∑
iK
†
iKi = I. A standard

construction for an isometric extension of a channel is then
to pick an orthonormal basis {|i〉E}i for an auxiliary Hilbert
space HE and define

V =
∑
i

Ki ⊗ |i〉E . (15)

One can then readily check that N (·) = TrE{V (·)V †} and
V †V = I . For the Petz recovery channel, we can figure out
a Kraus decomposition by expanding the identity operator
IB =

∑|B|
j=1 |j〉〈j|B , with respect to some orthonormal basis

{|j〉B}j , so that

X
1/2
AB

([
X
−1/2
A ωAX

−1/2
A

]
⊗ IB

)
X

1/2
AB

=

|B|∑
j=1

X
1/2
AB

([
X
−1/2
A ωAX

−1/2
A

]
⊗ |j〉〈j|B

)
X

1/2
AB

=

|B|∑
j=1

X
1/2
AB

[
X
−1/2
A ⊗ |j〉B

]
ωA

[
X
−1/2
A ⊗ 〈j|B

]
X

1/2
AB .

Thus, Kraus operators for the Petz recovery channel are{
X

1/2
AB

[
X
−1/2
A ⊗ |j〉B

]}|B|
j=1

. According to the standard

recipe in (15), we can construct an isometric extension of the
Petz recovery channel as

|B|∑
j=1

X
1/2
AB

[
X
−1/2
A ⊗ |j〉B

]
|j〉B̂ = X

1/2
ABX

−1/2
A

|B|∑
j=1

|j〉B |j〉B̂

= X
1/2
ABX

−1/2
A |Γ〉BB̂ . (16)

We can then extend this isometry to act as an isometry on a
larger space by tensoring it with the identity operator IÂ, and
so we define

VAÂ→AÂBB̂ ≡ X
1/2
AB

[
X
−1/2
A ⊗ IÂ

]
|Γ〉BB̂ . (17)

We can also see that VAÂ→AÂBB̂ acting on |ϕXA〉AÂ gener-
ates |ϕXAB 〉ABÂB̂ : |ϕXAB 〉ABÂB̂ = VAÂ→AÂBB̂ |ϕXA〉AÂ.
This can be interpreted as a generalization of (14) in the
language of QIT: an isometric extension of the Petz recovery
channel perfectly recovers a purification |ϕXAB 〉ABÂB̂ of
XAB from a purification |ϕXA〉AÂ of XA. Since the Petz
recovery channel is indeed a channel, we can pick τAB as
the output state of the Petz recovery channel acting on an
invertible state ωA:

τAB = X
1/2
AB

([
X
−1/2
A ωAX

−1/2
A

]
⊗ IB

)
X

1/2
AB . (18)

Observe that τAB is invertible. Then consider that

V †
(
τ−1AB ⊗ Y

T
ÂB̂

)
V

= 〈Γ|BB̂
(
X
−1/2
A X

1/2
ABτ

−1
ABX

1/2
ABX

−1/2
A ⊗ Y T

ÂB̂

)
|Γ〉BB̂ (19)

= 〈Γ|BB̂
(
ω−1A ⊗ IB ⊗ Y

T
ÂB̂

)
|Γ〉BB̂ (20)

= ω−1A ⊗ 〈Γ|BB̂Y
T
ÂB̂
|Γ〉BB̂ (21)

= ω−1A ⊗ Y
T
Â
. (22)

For the second equality, we used the fact that
X
−1/2
A X

1/2
ABτ

−1
ABX

1/2
ABX

−1/2
A = ω−1A ⊗ IB for the choice of

τAB in (18). With this setup, we can now readily establish
the desired inequality by employing the operator Jensen
inequality [26] and operator convexity of the function f :

Q̃f (XAB‖YAB ; τAB)

= 〈ϕXAB |ABÂB̂f(τ−1AB ⊗ Y
T
ÂB̂

)|ϕXAB 〉ABÂB̂ (23)

= 〈ϕXA |AÂV
†f(τ−1AB ⊗ Y

T
ÂB̂

)V |ϕXA〉AÂ (24)

≥ 〈ϕXA |AÂf(V †[τ−1AB ⊗ Y
T
ÂB̂

]V )|ϕXA〉AÂ (25)

= 〈ϕXA |AÂf(ω−1A ⊗ Y
T
Â

)|ϕXA〉AÂ (26)

= Q̃f (XA‖YA;ωA). (27)

Taking a supremum over τAB such that τAB > 0 and
Tr{τAB} = 1, we conclude that the following inequality holds
for all invertible states ωA:

Q̃f (XAB‖YAB) ≥ Q̃f (XA‖YA;ωA). (28)

After taking a supremum over invertible states ωA, we find
that the inequality in (9) holds when XAB is invertible.

IV. EXAMPLES OF OPTIMIZED QUANTUM f -DIVERGENCES

I now show how several known quantum divergences are
particular examples of an optimized quantum f -divergence,
including the quantum relative entropy [1] and the sandwiched
Rényi relative quasi-entropies [18], [19]. The result will be
that Theorem 3 recovers quantum data processing for the
sandwiched Rényi relative entropies for the full range of
parameters for which it is known to hold. Thus, one benefit of
Theorem 3 and earlier work of [12]–[14] is a single, unified
approach, based on the operator Jensen inequality [26], for
establishing quantum data processing for all of the Petz– and
sandwiched Rényi relative entropies for the full parameter
ranges for which data processing is known to hold.
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A. Quantum relative entropy as optimized quantum f -
divergence

Let τ be an invertible state and X and Y positive definite.
Let X = X/Tr{X}. Pick the function f(x) = − log x, which
is an operator anti-monotone function with domain (0,∞) and
range R, and we find that

1

Tr{X}
〈ϕX |SŜ

[
− log(τ−1S ⊗ Y T

Ŝ
)
]
|ϕX〉SŜ

= 〈ϕX |SŜ
[
log(τS)⊗ IŜ − IS ⊗ log Y T

Ŝ

]
|ϕX〉SŜ (29)

= 〈ϕX |SŜ log(τS)⊗ IŜ |ϕ
X〉SŜ

− 〈ϕX |SŜIS ⊗ log
(
Y T
Ŝ

)
|ϕX〉SŜ (30)

= Tr{X log τ} − Tr{X log Y } (31)

≤ Tr{X logX} − Tr{X log Y } = D(X‖Y ). (32)

The inequality is a consequence of Klein’s inequality [32]
(see also [33]), establishing that the optimal τ is set to X .
So we find that Q̃− log(·)(X‖Y ) = Tr{X}D(X‖Y ), where
the quantum relative entropy D(X‖Y ) is defined as [1]
D(X‖Y ) = Tr{X

[
logX − log Y

]
}.

B. Sandwiched Rényi relative quasi-entropy as optimized
quantum f -divergence

Take τ , X , and Y as defined in Section IV-A. For α ∈
[1/2, 1), pick the function f(x) = −x(1−α)/α, which is
an operator anti-monotone function with domain (0,∞) and
range R. Note that this is a reparametrization of −xβ for
β ∈ (0, 1]. I now show that

Q̃−(·)(1−α)/α(X‖Y ) = −
∥∥∥Y (1−α)/2αXY (1−α)/2α

∥∥∥
α
, (33)

which is the known expression for sandwiched quasi-entropy
for α ∈ [1/2, 1) [18], [19]. To see this, consider that

− 〈ϕX |SŜ
[
τ−1S ⊗ Y T

Ŝ

](1−α)/α |ϕX〉SŜ
= −〈ϕX |SŜτ

(α−1)/α
S ⊗

(
Y T
Ŝ

)(1−α)/α |ϕX〉SŜ
= −〈Γ|SŜX

1/2
S τ

(α−1)/α
S X

1/2
S ⊗

(
Y T
Ŝ

)(1−α)/α |Γ〉SŜ
= −Tr

{
X1/2τ (α−1)/αX1/2Y (1−α)/α

}
= −Tr

{
X1/2Y (1−α)/αX1/2τ (α−1)/α

}
. (34)

Now optimizing over invertible states τ and employing Hölder
duality, in the form of the reverse Hölder inequality and as
observed in [18], we find that

sup
τ>0,

Tr{τ}=1

[
−Tr

{
X1/2Y

1−α
α X1/2τ

α−1
α

}]
= −

∥∥∥X1/2Y (1−α)/αX1/2
∥∥∥
α
, (35)

where for positive semi-definite Z, we define ‖Z‖α =

[Tr{Zα}]1/α. We then get that

Q̃−(·)(1−α)/α(X‖Y ) = −
∥∥∥X1/2Y (1−α)/αX1/2

∥∥∥
α

(36)

= −
∥∥∥Y (1−α)/2αXY (1−α)/2α

∥∥∥
α
, (37)

which is the sandwiched Rényi relative quasi-entropy for the
range α ∈ [1/2, 1). The sandwiched Rényi relative entropy
itself is defined up to a normalization factor as [18], [19]

D̃α(X‖Y ) =
α

α− 1
log
∥∥∥Y (1−α)/2αXY (1−α)/2α

∥∥∥
α
. (38)

Thus, Theorem 3 implies quantum data processing for
the sandwiched Rényi relative entropy D̃α(XAB‖YAB) ≥
D̃α(XA‖YA), for the parameter range α ∈ [1/2, 1), which
is a result previously established in [34].

For α ∈ (1,∞], pick the function f(x) = x(1−α)/α, which
is an operator anti-monotone function with domain (0,∞) and
range R. Note that this is a reparametrization of xβ for β ∈
[−1, 0). I now show that

Q̃(·)(1−α)/α(X‖Y ) =
∥∥∥Y (1−α)/2αXY (1−α)/2α

∥∥∥
α
, (39)

which is the known expression for sandwiched Rényi relative
quasi-entropy for α ∈ (1,∞] [18], [19]. To see this, consider
that the same development as above gives that

〈ϕX |SŜ(τ−1S ⊗ Y T
Ŝ

)(1−α)/α|ϕX〉SŜ
= Tr

{
X1/2Y (1−α)/αX1/2τ (α−1)/α

}
. (40)

Again employing Hölder duality, as observed in [18], we find

sup
τ>0,Tr{τ}=1

Tr
{
X1/2Y (1−α)/αX1/2τ (α−1)/α

}
=
∥∥∥X1/2Y (1−α)/αX1/2

∥∥∥
α
, (41)

We then get that

Q̃(·)(1−α)/α(X‖Y ) =
∥∥∥X1/2Y (1−α)/αX1/2

∥∥∥
α

(42)

=
∥∥∥Y (1−α)/2αXY (1−α)/2α

∥∥∥
α
, (43)

where the equalities hold as observed in [18]. The sandwiched
Rényi relative entropy itself is defined up to a normalization
factor as in (38) [18], [19]. Thus, Theorem 3 implies quantum
data processing for the sandwiched Rényi relative entropy
D̃α(XAB‖YAB) ≥ D̃α(XA‖YA), for the parameter range
α ∈ (1,∞], which is a result previously established in full
by [21], [34], [35] and for α ∈ (1, 2] by [18], [19].

V. ON PETZ’S QUANTUM f -DIVERGENCE

I now discuss in more detail the relation between the
optimized quantum f -divergence and Petz’s f -divergence from
[12], [13]. In brief, we find that the Petz f -divergence can be
recovered by replacing τ in Definition 1 with X .

Definition 4 (Petz quantum f -divergence): Let f be a
continuous function with domain (0,∞) and range R. For
positive definite operators X and Y acting on a Hilbert space
HS , the Petz quantum f -divergence is defined as

Qf (X‖Y ) ≡ 〈ϕX |SŜf
(
X−1S ⊗ Y

T
Ŝ

)
|ϕX〉SŜ , (44)

where the notation is the same as in Definition 1.
One main concern is about quantum data processing with

the Petz f -divergence. To show this, we take f to be an
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operator anti-monotone function with domain (0,∞) and
range R. As discussed in Section III, one can establish data
processing by showing isometric invariance and monotonicity
under partial trace. Isometric invariance of Qf (X‖Y ) follows
from the same proof as given in the full version and was also
shown in [14]. Monotonicity of Qf (XAB‖YAB) under partial
trace for positive definite XAB and YAB follows from the
operator Jensen inequality [12], [13].

Special and interesting cases of the Petz f -divergence are
found by taking f(x) = − log x, f(x) = −xβ for β ∈ (0, 1],
and f(x) = xβ for β ∈ [−1, 0). Each of these functions are
operator anti-monotone with domain (0,∞) and range R. As
shown in [12], [13], all of the following quantities obey the
data processing inequality:

Q− log(·)(X‖Y ) = Tr{X}D(X‖Y ), (45)

Q−(·)β (X‖Y ) = −Tr{X1−βY β}, for β ∈ (0, 1], (46)

Q(·)β (X‖Y ) = Tr{X1−βY β}, for β ∈ [−1, 0). (47)

By a reparametrization α = 1−β, the latter two quantities are
directly related to the Petz Rényi relative entropy Dα(X‖Y ) ≡
1

α−1 log Tr{XαY 1−α}. Thus, the data processing inequality
holds for Dα(X‖Y ) for α ∈ [0, 1) ∪ (1, 2] [13], [14].

VI. CONCLUSION

The main contribution of the present work is the definition
of the optimized quantum f -divergence and the proof that the
data processing inequality holds for it whenever the function
f is operator anti-monotone with domain (0,∞) and range R.
The proof of the data processing inequality relies on the op-
erator Jensen inequality [26], and it bears some similarities to
the original approach from [12]–[14]. Furthermore, I showed
how the sandwiched Rényi relative entropies are particular
examples of the optimized quantum f -divergence. As such,
one benefit of this paper is that there is now a single, unified
approach, based on the operator Jensen inequality [26], for
establishing the data processing inequality for the Petz–Rényi
and sandwiched Rényi relative entropies, for the full range of
parameters for which it is known to hold.
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