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ABSTRACT: We present the one-orbital ensemble self-consistent field (OE-SCF), an

alternative orbital-free DFT solver that extends the applicability of DFT to beyond DEM
nanoscale system sizes, retaining the accuracy required to be predictive. OE-SCF treats 1
the Pauli potential as an external potential updating it iteratively, dramatically i
outperforming current solvers because only few iterations are needed to reach i
convergence. OE-SCF enabled us to carry out the largest ab initio simulations for !
silicon-based materials to date by employing only 1 CPU. We computed the energy of Stability
bulk-cut Si nanoparticles as a function of their diameter up to 16 nm, and the polarization ,

and interface charge transfer when a Si slab is sandwiched between two metal slabs where [ OE-SCF
lattice matching mandated a large contact area. Additionally, OE-SCF opens the door to N )
adopting even more accurate functionals in orbital-free DFT simulations while still

tackling large system sizes. / \
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S ince the mid-1960s, scientists have hoped that one day first- typically limited in the accuracy it achieves””'>'” unless
principles device-level and large-scale materials engineering expensive new-generation functionals are employed.””!

would be feasible and widely available such that computational In this work, we propose a new OF-DFT solver, OE-SCF, that
models could in part or totally replace experiments, reaching a is fast, stable, and accurate. Similar to KS-DFT, OE-SCF relies
new level of scientific discovery termed Lab-2.0." This futuristic on an iterative solver so that computationally expensive density
vision can be accomplished only if accurate ab initio quantum functionals are seldom evaluated (only once per self-consistent
mechanical electronic structure methods are computationally field, SCF, cycle). This allows the employment of a new
cheap and can model system sizes beyond the nanoscale. generation of kinetic energy functionals, retaining accuracy
Density functional theory (DFT)>’ is an excellent candidate while removing the need to diagonalize bringing down the
method as it can be realized in algorithms that scale linearly with computational cost considerably compared to either KS-DFT or
system size using either kinetic energy density functionals*™” or conventional OF-DFT.

a combination of appropriate basis sets and approximate In receng_gfears, a new generation of kinetic energy

functionals®* > has enabled OF-DFT to tackle semiconduc-

. 8—11
eigensolvers. However, when DFT models nanoscale o0
,

system sizes, the introduced approximations can limit
accuracy.lz’m The alternative is to require massive computing ; ‘ )
infrastructures.' "> Thus, the promise of reaching Lab-2.0 has so coupled with conventional OF-DFT solvers require the
far been unfulfilled. As will become clear below, the proposed evaluation of several tens or hundreds of convolution integrals
o ) . . .
one-orbital ensemble self-consistent field (OE-SCF) method for eth enerey. evaluation, mahng them con.lputatlcl)nauy
brings a fresh perspective to these problems expensive.”’ Because of this, the new generation of kinetic
. . 20-22 .

To date, there are two kinds of DFT algorithms: Kohn—Sham energy .funcnonals has never been employed in nanoscale

DFT (KS-DFT) and orbital-free DFT (OF-DFT). KS-DFT is simulations.

most common and uses a prescription3 whereby the lowest N, OE_S_CF Fhar}ges this state. of affairs by emp loying new-
. . generation kinetic energy functionals at no additional computa-
eigenvalues (where N, is the number of electrons) of a one-

particle Hamiltonian need to be computed. OF-DFT is tional cost compared to more approximate functionals. It does
. . 16 . so by devising an appropriate SCF procedure. This is a paradigm

prescribed to compute just one state, ° recovering the effect of hift f . . h

the other states with pure density functionals.'” Overall, on one shift for OF-DFT, as it can now probe system sizes that were

hand, KS-DFT is accurate because it computes the non-
interacting kinetic energy functional exactly. It is, however, Received:  March 4, 2021
limited in the system sizes it can approach due to the Accepted: April 16, 2021
computational complexity required to compute the many Published: April 22, 2021
eigenstates.'” On the other hand, OF-DFT is applicable to
large system sizes because the noninteracting kinetic energy is
approximated by a pure density functional. However, it is

tors and even clusters’”** reproducing KS-DFT within a
few hundreds of a meV/atom. Unfortunately, these functionals
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unthinkable before with no need to sequester massive
computational resources or sacrifice the predictivity of the
results. This is precisely the type of development that brings the
realization of Lab-2.0 a step closer.

To describe the details of OE-SCF, let us consider the OF-

DFT Lagrangian, L[n] = E[n] — ﬂ(/n(r) dr — Ne), which is

differentiated to find density functions, n(r), that minimize the
total energy, E[n] = T,[n] + Eyy [n] + [ j,.(r) n(r) dr (T, and
Ey, are the noninteracting kinetic energy and the Hartree
exchange-correlation energies and vy, is the local external
potential), subject to the constraint that the density integrates to
a preset number of electrons, N,. Functional differentiation of
the Lagrangian leads to the Euler equation of OF-DFT which
can be written in a Schrodinger-like form,

ﬁqus(r) = uep(r) (1)
where we introduced the pseudo wave function ¢(r) = /n(r),

u is the chemical potential, and the Hamiltonian is given by

A 1

hop = _EVZ + Vi 11(x) + vplnl(x) + vy (r) 2)
where the Pauli potential is the difference between the total
noninteracting kinetic energy potential and the potential of the
von Weizsacker functional, vp,[n](r) = vp[n](r) —

vaw[n](x),"” where Tyyln]l = <¢‘—%V2‘¢>

Equation 1 originates from the condition of stationarity of the
total energy functional. In KS-DFT, a similar equation is derived
to obtain the occupied and virtual KS orbitals.” Similar to KS-
DFT, we expect the direct use of eq 1 in an SCF iterative
procedure to pose problems of convergence whenever the
Hamiltonian (e.g., in eq 1, the Hamiltonian is the one in eq 2)
has a dense spectrum. Since 1969, in KS-DFT this has been
resolved by simply employin_g ensemble densities via smearing of
the occupation numbers.”” Because smearing requires the
computation of potentially very many states (in a number that
grows linearly with system size), if degeneracy had to appear
during the self-consistent solution of eq 1, then smearing the
occupations would severely deteriorate the OF-DFT’s efhi-
ciency.

In the OF-DFT literature,'””®* eq 1 could not be
numerically solved for any system exce&)t those of limited size,
containing only a few tens of atoms.”* > We found the issue not
to lie in numerical instabilities as previously thought**** but
instead to be due to the so-called level-swapping problem arising
from the degeneracy of frontier states, whereby whenever the
energy ordering of occupied and virtual states is swapped from
one SCF cycle to the next, the SCF procedure cannot
converge.”” We analyze the degeneracy in the spectrum of the
OF-DFT Hamiltonian of eq 2 in Figure 1.

Before introducing our contributions, we should clarify the
role of ensemble N-representability in OF-DFT simulations. In
OF-DFT, by far the most common method for solving for the
electronic structure is the direct minimization of the energy
functional (DEM hereafter) with respect to the total electron
density, namely,

n(r) = arg min{ L[n]}

" (3)
which is insensitive to the features of the spectrum of the OF-
DFT Hamiltonian in eq 2. In those cases when degenerate or
close-to-degenerate levels arise near the frontier orbital (i.e., in
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Figure 1. Energy gap between the lowest two energy levels associated
with the eigenvalues of the OF-DFT Hamiltonian in eq 2 for supercells
of Al and Si bulk systems. The plot is on the log scale, displaying a
monotonically decreasing gap with system size. The LMGP kinetic
energy functional®® was used.

OF-DFT, the very first orbital), the density resulting from the
minimization of eq 3 will be an ensemble density. Thus, it is clear
that in the presence of degeneracy, solving for the OF-DFT
problem with eq 1 can be done only by considering ensemble
densities, a procedure that, as stated before, cannot be
contemplated because it would require computing many
solutions of eq 1, defeating the purpose of using OF-DFT as
an almost linear-scaling method.

Figure 1 shows the monotonically decreasing gap with
increasing system size of bulk Al and Si between the lowest
two energy levels of the OF-DFT Hamiltonian of eq 2. This
explains why for small model systems (e.g., number of atoms less
than 32) this gap is still large enough for the SCF procedure to
converge without problems.” For large system sizes, this gap is
too small, and the level-swapping problem appears to impede
the SCF convergence of the OF-DFT problem. As mentioned, a
typical way around this is to access ensemble N-representable
densities by slightly smearing the occupations across states
within a small window of energy that is still big enough not to
fluctuate too much from one SCF cycle to the next.”” Once
again, this may appear not to be an option for OF-DFT because
smearing would require computing by diagonalization a number
of states that grows linearly with system size, thereby defeating
the purpose of using OF-DFT (i, to avoid the O(N°)
complexity of diagonalizations).

OE-SCF solves the problem by introducing ensemble
densities and including the Pauli potential in an iterative
fashion. OE-SCF’s computational protocol is as follows:

1. Given a guess density at iteration i, n;(r) computes the
Pauli potential, vp,;[n](r).

2. An auxiliary energy functional and the associated
Lagrangian are defined, namely,

Log-sceln, m] = Tyylnl + Ey,[n]
+ [l + @@ de

3. Log.scp is mininized with respect to variations in n(r),
namely,

https://doi.org/10.1021/acs.jpclett.1c00716
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Table 1. Comparing OE-SCF with Other OF-DFT Solvers”

method functional to minimize

DEM Towln] + Buee[n] + Topiln] + [ veu(x) n(x) dr
SCF Towln] + /vm(r) n(r) dr

OE-SCF Tywln] + Egeln] + [ veu(r) n(r) dr

external potential (V) ensemble SCF
Voc(T) yes no
Vitse[ 1] (r) + vpai[ ] (1) + v1oc(r) no yes
Vpaui[1:] () + vioe(r) yes yes

“The external potential at iteration i is to be considered constant during energy minimization. After the minimization is completed, the density-
dependent parts of the external potential are updated, as is done in typical SCF procedures. The acronyms are as follows: DEM, direct energy
minimization; SCF, self-consistent field; and OE-SCF, the newly proposed DFT solver. OE-SCF probes assemble N-representable densities without

the need to compute extra eigenstates through diagonalization.

My = arg min{ Lo sceln, ml}

" (8)

which, following the reasoning reported after eq 3, will yield an
ensemble density whenever the underlying Hamiltonian features
(quasi)degeneracy. For clarity, the underlying Hamiltonian in
this case is

A 1
hOF = _ZVZ + I}ch[n](r) + I/Pauli[ni](r) + I}loc(r)
external potential at iteration i (6)
4. Steps 1—3 are repeated until convergence is achieved
(e.g, IE[n;] — E[n,,]l < 107° Hartree for three
consecutive cycles).

As indicated in eq 6 as well as in Table 1, in OE-SCF the
external potential includes the local (pseudo)potential and the
Pauli potential (at iteration i) which contains the most expensive
energy term in OF-DFT when new-generation kinetic energy
functionals are employed (i.e., the nonlocal part). In this way,
OE-SCF needs to evaluate the Pauli potential only once for each
SCF cycle. A strong motivation for our work is given by a similar
procedure,” which was shown to be successful for bulk systems
when the WGC functional®" is employed.

Before presenting results from OE-SCF, let us enumerate the
computational details. All OF-DFT computations presented in
this work are carried out with DFTpy.*® A kinetic energy cutoff
of 600 eV is employed in all OF-DFT calculations except for
interfaces and surfaces, where we used a larger cutoff of 1200 eV.
We adopt the following exchange—correlation functionals: local
density approximation (LDA)>* for all bulks, clusters, and
surface energies and revised Perdew—Burke—Ernzerhof (re-
vPBE)*” for interfaces. Reference KS-DFT results are calculated
with the same pseudopotentials as used for OF-DFT (i.e., local
pseudopotentials (LPPs),”**" see the Supporting Information
for additional details) as well as nonlocal ultrasoft pseudopo-
tentials (USPP).*° The calculations with USPPs are carried out
with Quantum-ESPRESSO (QE)”” with a 70 Ry kinetic energy
cutoff for the wave functions. The KS-DFT calculations with
LPPs are performed by CASTEP®® with a 1000 eV cutoff,
ensuring that the total energies converge within 1 meV/atom.
We adopt the truncated Newton method for the direct energy
minimization (DEM) algorithm used to minimize L[n] and
Log.scpln, n;]. The details of this method can be found in
section 2.3 of ref 25.

In Table 2, we show that the number of Pauli potential calls
for the commonly adopted DEM method grows with system
size, while for OE-SCF, the number of potential calls is much
reduced and is also insensitive to system size. In OE-SCF, the
von Weizsacker and the Hartree exchange-correlation potentials
are invoked as often as in the DEM method. However, they are
computationally affordable if (semi)local xc functionals are
adopted (as is most often the case).
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Table 2. Total Number of Pauli Potentials and Energy Calls
during a Single-Point Calculation for Bulk Aluminum and
Silicon”

aluminum silicon
no. of atoms DEM OE-SCF DEM OE-SCF
8 41 10 67 20
32 41 10 67 20
128 59 13 92 13
512 200 12 211 13
2048 595 8 531 10

“For OE-SCF, the number of calls is equal to the number of SCF
cycles needed to reach self-consistency. The LMGP nonlocal kinetic
energy functional was employed.

We have studied ways in which density mixing can be used to
accelerate the convergence of OE-SCF. We have implemented a
density mixing method analogous to Pulay’s DIIS.”” However,
for the systems considered in this work, we notice only a small
improvement when density mixing is included, so we decided
not to feature results from density-mixing-aided OE-SCF. It is
possible that the need for mixing is system-dependent. Thus, we
will keep density mixing in OE-SCF’s implementation in the
DFTpy software.”®

The number of FFT calls for OE-SCF follows the same trend
as for the potential calls, i.e,, it is almost constant for varying
system sizes as shown in Tables S1 and S2. From the timings
reported in Figure 2, it is clear that OE-SCF is superior to DEM,
cutting the timing down by orders of magnitude in comparison
to the current state of the art, maintaining linear scalability with
system sizes.

OE-SCF reproduces the excellent results of new-generation
kinetic energy functionals previously obtained by DEM for

(@ * -+ -DEM | 25F () -+ -DEM | "
~30r ' —e OE-SCF / 1 —e— OE-SCF
<= 7 20F ’

2 » :
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Figure 2. Wall times for a single-point calculation of (a) Si clusters and
(b) Si bulk supercells. DEM is the commonly adopted direct energy
minimization method in OF-DFT simulations. OE-SCF is the newly
proposed DFT solver. Timings for Al clusters and bulk supercells are
available in the Supporting Information.** The LMGP kinetic energy
functional®® was used.
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Figure 3. Total energies of 100 random structures of Siyo, clusters
obtained by OE-SCF in comparison with the reference KS-DFT results
with either USPPs®® or LPPs.** The latter pseudopotentials are also
employed in OE-SCF.

energies (which in this work are always computed with the
LMGP nonlocal kinetic energy functional) against KS-DFT for
100 random structures of 200-atom silicon clusters. The random
Si cluster structures are generated by CALYPSO*'~* with the
restriction that the minimum interatomic distance is 2.2 A*” and
its nearest-neighboring periodic images are more than 12 A apart
to ensure the creation of physically feasible structures.

As expected, Figure 3 and Table S4 show that OE-SCF’s
energies lie essentially on top of KS-DFT with LPP
pseudopotentials and very close to KS-DFT with USPP
pseudopotentials. To better understand how well OE-SCF
ranks the 100 random Si cluster structures, we report in Table S4
the ranking residual standard error (RSE). This is a measure of
the error from the trendlines plotted in Figure 3 (i.e., deviation
from the perfect ranking score). We find that OE-SCF’s RSE is
95/75/66 meV for Sijg/200/300- We remark that the slopes of the
ranking trend line for KS-DFT (LPP) are exactly the same as
OE-SCF, and its RSE is 68/54/54 meV. This shows that the
majority of OE-SCF’s RSE value is not due to the kinetic energy
functional employed but rather due to the inherent differences
between LPPs and USPPs. To further quantify the predictivity
and accuracy of our approach, we computed surface energies for
Si, Mg, and Al and compared them against those measured by
various experiments. As shown in Table S5, OE-SCF reproduces
the experimental results semiquantitatively in line with the
expected accuracy of a DFT method.

To showcase the ability of OE-SCF to approach nanoscale
systems, we compute the electronic structure of bare and
hydrogen-passivated Si nanoparticles (Si-NPs) of several sizes
(up to 102 501 Si atoms) and a polyhedral shape. The atomic
coordinates of these Si-NPs can be found in the Supporting
Information. Figure 4 also showcases a plot of the Si-NP’s total
energy per Si atom converging to the Si bulk value according to a
power law. This reproduces previous studies™"*> up to 7 nm and
extends them all the way up to convergence. With OE-SCF, not
only is it possible to verify the correctness of the empirical power
law but we also do so by employing a single CPU! In Figure S3,
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(dashed orange curve with circles, OE-SCF; solid green curve, empirical
formula taken from ref 44). The inset shows the largest Si nanoparticle
considered containing 102 501 Si atoms.

we also show that the energy needed to passivate the Si-NPs
used in the study of Figure 4 also decays according to a similar
power law. This indicates that the decay law should also apply to
hydrogen-passivated Si-NPs and not only to bare Si-NPs.

As a second example, we inspect the electronic structure of
interfaces between unreconstructed bare and hydrogen-
passivated Si(111) surfaces and Al and Mg metals. We wish to
highlight the usefulness of OE-SCF when interfaces are
considered. It is often difficult to use DFT methods to describe
interfaces because the crystal pacing of one surface rarely
matches that of another surface.*® With that, large slab sizes,
most times outside DFT’s realm of applicability, need to be
considered to avoid introducing artificial strain into the system.

Figure Sa shows the interface considered consisting of six
layers of the Si(111) surface passivated by hydrogen atoms (the
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Figure 5. Si—metal interfaces. (a) Al(111) (top), Si(111) (middle),
and Mg(100) (bottom, see also Figures S4 and SS for other
configurations) which also feature the isosurface plot of the polarization
density, nPOl(r), defined by subtracting the electron densities of the
isolated Mg, Si, and Al slabs from the total electron density of the
system for Si—Al and Si—Mg, respectively. (b, c) Interface plane cuts
depicting isovalues of the polarization density. (b) Perfectly sym-
metrical interface polarization density. (c) Lattices of Mg(100) and
Si(111) differ.
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bare Si(111) surface is available in Figure S4) with seven layers
of Al(111) on top and seven layers of Mg(100) at the bottom.
(The interface with Mg(001) is available in Figure SS.) The
figure also shows the interface polarization density, n, (i.e., the
charge density difference between the formed interface and the
isolated slabs). As we can see from Figure Sa and more clearly in
the interface plane cuts in Figure Sb,c, the interface polarization
density results in the buildup of electrons at the interface. This is
consistent with the physics of semiconductor interfaces*” and
the formation of interface electron gases.”® We went further and
computed the charge of the interface by simply computing the

) 1
integral C; = Z/I I, (r)l dr, where n,q = 1 — 1y — ny, — ng;, A

is the surface area, and the integration domains, I, include either
of the interfaces. The values are Cgyy, = 1.04(1.10) eA™? and
Cgal = 1.14(1.40) eA™ (unpassivated Si interfaces are in
parentheses), showing the slight increase in induced polarization
when Si has dangling bonds compared to the hydrogen-
passivated surface. Even though a similar increase is expected as
is known for other types of interfaces,”® we will further analyze
this system, including better sampling of the nuclear
configurations in follow-up simulations.

In conclusion, we developed a new DFT solver, called OE-
SCEF, that leverages recent advances in OF-DFT development to
output a computationally cheap and accurate ab initio electronic
structure method. The key aspect of OE-SCF is its ability to still
make use of an SCF-like solver capable of sampling ensemble N-
representable electron densities while avoiding the diagonaliza-
tion of the Hamiltonian. We showcase OE-SCF’s computational
linear scalability with system sizes well into the hundreds of
thousands of atoms for clusters and bulk systems employing
merely a single CPU. Finally, OE-SCF’s predictivity is tested by
computing for the first time with an ab initio method the energy
decay law with Si nanoparticles having realistic sizes (of up to 16
nm in diameter). We also confirm the decay law which to date
had been tested only with ab initio methods for nanoparticles of
up to 7 nm in size. Additionally, we showcase examples of Si—
metal interfaces where matching crystal pacing is often a show-
stopper due to the large simulation cells needed to represent the
inherent periodicity of the interface. We compute the interface-
induced polarization and interfacial charge transfer predicting
slightly larger charge transfer for the interfaces with the
unpassivated Si surface.

We have provided important preliminary results indicating
that the proposed OE-SCF method will replace the universally
adopted DEM method as the solver of choice in orbital-free
DEFT software due to its superior stability and computational
time to solution. Simultaneously, because OE-SCF needs to
evaluate complex functionals only a dozen times regardless of
the system size, it will enable the formulation and deployment of
even more complex density functionals than currently available
for use in predictive beyond-nanoscale DFT simulations.

B ASSOCIATED CONTENT

© Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c00716.

Additional computational details; structures; and supple-
mentary figures and tables (PDF)

4138

B AUTHOR INFORMATION

Corresponding Authors

Xuecheng Shao — Department of Chemistry, Rutgers University,
Newark, New Jersey 07102, United States;
Email: xuecheng.shao@rutgers.edu

Wenhui Mi — Department of Chemistry, Rutgers University,
Newark, New Jersey 07102, United States; ® orcid.org/
0000-0002-1612-5292; Email: wenhui.mi@rutgers.edu

Michele Pavanello — Department of Chemistry and
Department of Physics, Rutgers University, Newark, New Jersey
07102, United States; ® orcid.org/0000-0001-8294-7481;
Email: m.pavanello@rutgers.edu

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpclett.1c00716

Notes
The authors declare no competing financial interest.

B ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under grants nos. CHE-1553993 and OAC-
1931473. We thank the Office of Advanced Research
Computing at Rutgers for providing access to the Amarel
cluster. X.S. acknowledges the Molecular Sciences Software
Institute for support through a Software Investment Fellowship.

B REFERENCES

(1) Gould, T. Welcome to Lab 2.0 where computers replace experimental
science.; https://theconversation.com/welcome-to-lab-2-0-where-
computers-replace-experimental-science-57271, The Conversation,
2016

(2) Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev.
1964, 136, B864.

(3) Kohn, W,; Sham, L. ]J. Self-Consistent Equations Including
Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133.

(4) Wang, Y. A; Carter, E. A. In Theoretical Methods in Condensed
Phase Chemistry; Schwartz, S. D., Ed.; Kluwer: Dordrecht, 2000; pp
117—-184.

(5) Witt, W. C.; Beatriz, G.; Dieterich, J. M.; Carter, E. A. Orbital-free
density functional theory for materials research. J. Mater. Res. 2018, 33,
777-79S.

(6) Shao, X;; Xu, Q.; Wang, S.; Lv, J.; Wang, Y.; Ma, Y. Large-scale ab
initio simulations for periodic system. Comput. Phys. Commun. 2018,
233, 78-83.

(7) Hung, L,; Carter, E. A. Accurate simulations of metals at the
mesoscale: Explicit treatment of 1 million atoms with quantum
mechanics. Chem. Phys. Lett. 2009, 475, 163—170.

(8) Goedecker, S. Linear scaling electronic structure methods. Rev.
Mod. Phys. 1999, 71, 108S.

(9) Bowler, D. R.; Miyazaki, T. O(N) Methods in Electronic Structure
Calculations. Rep. Prog. Phys. 2012, 75, 036503.

(10) Liou, K.-H.; Yang, C.; Chelikowsky, J. R. Scalable implementa-
tion of polynomial filtering for density functional theory calculation in
PARSEC. Comput. Phys. Commun. 2020, 254, 107330.

(11) Sena, A. M. P,; Miyazaki, T.; Bowler, D. R. Linear Scaling
Constrained Density Functional Theory in CONQUEST. ]. Chem.
Theory Comput. 2011, 7, 884—889.

(12) Gonzilez, D. J.; Gonzilez, L. E,; Lépez, J. M,; Stott, M. J.
Dynamical properties of liquid Al near melting: An orbital-free
molecular dynamics study. Phys. Rev. B: Condens. Matter Mater. Phys.
2002, 65, 184201.

(13) Wang, L.-W.; Teter, M. P. Kinetic-energy functional of the
electron density. Phys. Rev. B: Condens. Matter Mater. Phys. 1992, 45,
13196—13220.

https://doi.org/10.1021/acs.jpclett.1c00716
J. Phys. Chem. Lett. 2021, 12, 4134—4139


http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.1c00716/suppl_file/jz1c00716_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.1c00716/suppl_file/jz1c00716_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c00716?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.1c00716/suppl_file/jz1c00716_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xuecheng+Shao"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:xuecheng.shao@rutgers.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wenhui+Mi"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-1612-5292
http://orcid.org/0000-0002-1612-5292
mailto:wenhui.mi@rutgers.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Michele+Pavanello"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0001-8294-7481
mailto:m.pavanello@rutgers.edu
https://pubs.acs.org/doi/10.1021/acs.jpclett.1c00716?ref=pdf
https://theconversation.com/welcome-to-lab-2-0-where-computers-replace-experimental-science-57271
https://theconversation.com/welcome-to-lab-2-0-where-computers-replace-experimental-science-57271
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1557/jmr.2017.462
https://doi.org/10.1557/jmr.2017.462
https://doi.org/10.1016/j.cpc.2018.07.009
https://doi.org/10.1016/j.cpc.2018.07.009
https://doi.org/10.1016/j.cplett.2009.04.059
https://doi.org/10.1016/j.cplett.2009.04.059
https://doi.org/10.1016/j.cplett.2009.04.059
https://doi.org/10.1103/RevModPhys.71.1085
https://doi.org/10.1088/0034-4885/75/3/036503
https://doi.org/10.1088/0034-4885/75/3/036503
https://doi.org/10.1016/j.cpc.2020.107330
https://doi.org/10.1016/j.cpc.2020.107330
https://doi.org/10.1016/j.cpc.2020.107330
https://doi.org/10.1021/ct100601n
https://doi.org/10.1021/ct100601n
https://doi.org/10.1103/PhysRevB.65.184201
https://doi.org/10.1103/PhysRevB.65.184201
https://doi.org/10.1103/PhysRevB.45.13196
https://doi.org/10.1103/PhysRevB.45.13196
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.1c00716?rel=cite-as&ref=PDF&jav=VoR

The Journal of Physical Chemistry Letters

pubs.acs.org/JPCL

(14) Wesolowski, T. A.; Shedge, S; Zhou, X. Frozen-Density
Embedding Strategy for Multilevel Simulations of Electronic Structure.
Chem. Rev. 20185, 115, 5891—5928.

(15) Nakata, A.; Baker, J. S.; Mujahed, S. Y.; Poulton, J. T. L.; Arapan,
S.; Lin, ].; Raza, Z.; Yadav, S.; Truflandier, L.; Miyazaki, T; et al. Large
scale and linear scaling DFT with the CONQUEST code. J. Chem. Phys.
2020, 152, 164112.

(16) Fermi, E. Un Metodo Statistico per la Determinazione di alcune
Prioprieta dell’Atomo. Rend. Accad. Naz. Lincei 1927, 6, 602—607.

(17) Karasiev, V. V.; Trickey, S. B. Issues and challenges in orbital-free
density functional calculations. Comput. Phys. Commun. 2012, 183,
2519-2527.

(18) Moussa, J. E.; Baczewski, A. D. Assessment of localized and
randomized algorithms for electronic structure. Electron. Struct. 2019, 1,
033001.

(19) Wang, Y. A;; Govind, N.; Carter, E. A. Orbital-free kinetic-energy
density functionals with a density-dependent kernel. Phys. Rev. B:
Condens. Matter Mater. Phys. 1999, 60, 16350—16358.

(20) Mi, W,; Pavanello, M. Orbital-Free DFT Correctly Models
Quantum Dots When Asymptotics, Nonlocality and Nonhomogeneity
Are Accounted For. Phys. Rev. B: Condens. Matter Mater. Phys. 2019,
100, 041108S.

(21) Huang, C.; Carter, E. A. Nonlocal orbital-free kinetic energy
density functional for semiconductors. Phys. Rev. B: Condens. Matter
Mater. Phys. 2010, 81, 045206.

(22) Xu, Q; Lv, J.; Wang, Y.; Ma, Y. Nonlocal kinetic energy density
functionals for isolated systems obtained via local density approx-
imation kernels. Phys. Rev. B: Condens. Matter Mater. Phys. 2020, 101,
045110.

(23) Mi, W.; Genova, A.; Pavanello, M. Nonlocal kinetic energy
functionals by functional integration. J. Chem. Phys. 2018, 148, 184107.

(24) Chen, M; Xia, J.; Huang, C.; Dieterich, J. M.; Hung, L.; Shin, L;
Carter, E. A. Introducing PROFESS 3.0: An advanced program for
orbital-free density functional theory molecular dynamics simulations.
Comput. Phys. Commun. 2015, 190, 228—230.

(25) Mi, W,; Shao, X;; Su, C.; Zhou, Y.; Zhang, S.; Li, Q.; Wang, H,;
Zhang, L.; Miao, M.; Wang, Y.; et al. ATLAS: A real-space finite-
difference implementation of orbital-free density functional theory.
Comput. Phys. Commun. 2016, 200, 87—95.

(26) Shao, X.; Jiang, K.; Mi, W.; Genova, A.; Pavanello, M. DFTpy: An
efficient and object-oriented platform for orbital-free DFT simulations.
Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2021, 11, No. e1482.

(27) Slater, J. C.; Mann, J. B.; Wilson, T. M.; Wood, J. H. Nonintegral
Occupation Numbers in Transition Atoms in Crystals. Phys. Rev. 1969,
184, 672—694.

(28) Lehtomiki, J.; Makkonen, I; Caro, M. A.; Harju, A.; Lopez-
Acevedo, O. Orbital-free density functional theory implementation
with the projector augmented-wave method. J. Chem. Phys. 2014, 141,
234102.

(29) Espinosa Leal, L. A.; Karpenko, A.; Caro, M. A.; Lopez-Acevedo,
O. Optimizing a parametrized Thomas-Fermi—Dirac-Weizsacker
density functional for atoms. Phys. Chem. Chem. Phys. 201S, 17,
31463—-31471.

(30) Ghosh, S.; Suryanarayana, P. Higher-order finite-difference
formulation of periodic Orbital-free Density Functional Theory. J.
Comput. Phys. 2016, 307, 634—652.

(31) Wang, Y. A;; Govind, N.; Carter, E. A. Orbital-free kinetic-energy
density functionals with a density-dependent kernel. Phys. Rev. B:
Condens. Matter Mater. Phys. 1999, 60, 16350.

(32) Perdew, J. P.; Zunger, A. Self-Interaction Correction To Density-
Functional Approximations For Many-Electron Systems. Phys. Rev. B:
Condens. Matter Mater. Phys. 1981, 23, 5048.

(33) Zhang, Y.; Yang, W. Comment on “Generalized Gradient
Approximation Made Simple. Phys. Rev. Lett. 1998, 80, 890.

(34) Huang, C.; Carter, E. A. Transferable local pseudopotentials for
magnesium, aluminum and silicon. Phys. Chem. Chem. Phys. 2008, 10,
7109.

4139

(35) Mi, W.; Zhang, S.; Wang, Y.; Ma, Y.; Miao, M. First-principle
optimal local pseudopotentials construction via optimized effective
potential method. J. Chem. Phys. 2016, 144, 134108.

(36) Dal Corso, A. Pseudopotentials periodic table: From H to Pu.
Comput. Mater. Sci. 2014, 95, 337—-350.

(37) Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R;
Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, L;
et al. QUANTUM ESPRESSO: a modular and open-source software
project for quantum simulations of materials. J. Phys.: Condens. Matter
2009, 21, 395502.

(38) Clark, S.J.; Segall, M. D.; Pickard, C.J.; Hasnip, P. J.; Probert, M.
J.; Refson, K.; Payne, M. First principles methods using CASTEP. Z.
Kristallogr. - Cryst. Mater. 20085, 220, 567—570.

(39) Pulay, P. Convergence Acceleration of Iterative Sequences. The
Case of SCF Iteration. Chem. Phys. Lett. 1980, 73, 393—398.

(40) See the Supporting Information for additional tables and figures.

(41) Wang, Y.; Lv, J.; Zhu, L.; Ma, Y. CALYPSO: A method for crystal
structure prediction. Comput. Phys. Commun. 2012, 183, 2063—2070.

(42) Wang, Y.; Ly, J.; Zhu, L.; Ma, Y. Crystal structure prediction via
particle-swarm optimization. Phys. Rev. B: Condens. Matter Mater. Phys.
2010, 82, 094116.

(43) Lv, J; Wang, Y,; Zhu, L; Ma, Y. Particle-swarm structure
prediction on clusters. J. Chem. Phys. 2012, 137, 084104.

(44) Zhao, Y,; Kim, Y.-H,; Du, M.-H.; Zhang, S. First-Principles
Prediction of Icosahedral Quantum Dots for Tetravalent Semi-
conductors. Phys. Rev. Lett. 2004, 93, 015502.

(45) Zhou, Y.; Saad, Y.; Tiago, M. L.; Chelikowsky, J. R. Parallel self-
consistent-field calculations via Chebyshev-filtered subspace acceler-
ation. Phys. Rev. E 2006, 74, 066704.

(46) Farmanbar, M.; Brocks, G. First-principles study of van der Waals
interactions and lattice mismatch atMoS2/metalinterfaces. Phys. Rev. B:
Condens. Matter Mater. Phys. 2016, 93, 085304.

(47) Franciosi, A. Heterojunction band offset engineering. Surf. Sci.
Rep. 1996, 25, 1—140.

(48) Rotenberg, E.; Koh, H.; Rossnagel, K.; Yeom, H.; Schifer, J.;
Krenzer, B.; Rocha, M.; Kevan, S. Indium 7X 3 on Si (111): a nearly free
electron metal in two dimensions. Phys. Rev. Lett. 2003, 91, 246404.

https://doi.org/10.1021/acs.jpclett.1c00716
J. Phys. Chem. Lett. 2021, 12, 4134—4139


https://doi.org/10.1021/cr500502v
https://doi.org/10.1021/cr500502v
https://doi.org/10.1063/5.0005074
https://doi.org/10.1063/5.0005074
https://doi.org/10.1016/j.cpc.2012.06.016
https://doi.org/10.1016/j.cpc.2012.06.016
https://doi.org/10.1088/2516-1075/ab2022
https://doi.org/10.1088/2516-1075/ab2022
https://doi.org/10.1103/PhysRevB.60.16350
https://doi.org/10.1103/PhysRevB.60.16350
https://doi.org/10.1103/PhysRevB.100.041105
https://doi.org/10.1103/PhysRevB.100.041105
https://doi.org/10.1103/PhysRevB.100.041105
https://doi.org/10.1103/PhysRevB.81.045206
https://doi.org/10.1103/PhysRevB.81.045206
https://doi.org/10.1103/PhysRevB.101.045110
https://doi.org/10.1103/PhysRevB.101.045110
https://doi.org/10.1103/PhysRevB.101.045110
https://doi.org/10.1063/1.5023926
https://doi.org/10.1063/1.5023926
https://doi.org/10.1016/j.cpc.2014.12.021
https://doi.org/10.1016/j.cpc.2014.12.021
https://doi.org/10.1016/j.cpc.2015.11.004
https://doi.org/10.1016/j.cpc.2015.11.004
https://doi.org/10.1002/wcms.1482
https://doi.org/10.1002/wcms.1482
https://doi.org/10.1103/PhysRev.184.672
https://doi.org/10.1103/PhysRev.184.672
https://doi.org/10.1063/1.4903450
https://doi.org/10.1063/1.4903450
https://doi.org/10.1039/C5CP01211B
https://doi.org/10.1039/C5CP01211B
https://doi.org/10.1016/j.jcp.2015.12.027
https://doi.org/10.1016/j.jcp.2015.12.027
https://doi.org/10.1103/PhysRevB.60.16350
https://doi.org/10.1103/PhysRevB.60.16350
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevLett.80.890
https://doi.org/10.1103/PhysRevLett.80.890
https://doi.org/10.1039/b810407g
https://doi.org/10.1039/b810407g
https://doi.org/10.1063/1.4944989
https://doi.org/10.1063/1.4944989
https://doi.org/10.1063/1.4944989
https://doi.org/10.1016/j.commatsci.2014.07.043
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1524/zkri.220.5.567.65075
https://doi.org/10.1016/0009-2614(80)80396-4
https://doi.org/10.1016/0009-2614(80)80396-4
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.1c00716/suppl_file/jz1c00716_si_001.pdf
https://doi.org/10.1016/j.cpc.2012.05.008
https://doi.org/10.1016/j.cpc.2012.05.008
https://doi.org/10.1103/PhysRevB.82.094116
https://doi.org/10.1103/PhysRevB.82.094116
https://doi.org/10.1063/1.4746757
https://doi.org/10.1063/1.4746757
https://doi.org/10.1103/PhysRevLett.93.015502
https://doi.org/10.1103/PhysRevLett.93.015502
https://doi.org/10.1103/PhysRevLett.93.015502
https://doi.org/10.1103/PhysRevE.74.066704
https://doi.org/10.1103/PhysRevE.74.066704
https://doi.org/10.1103/PhysRevE.74.066704
https://doi.org/10.1103/PhysRevB.93.085304
https://doi.org/10.1103/PhysRevB.93.085304
https://doi.org/10.1016/0167-5729(95)00008-9
https://doi.org/10.1103/PhysRevLett.91.246404
https://doi.org/10.1103/PhysRevLett.91.246404
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.1c00716?rel=cite-as&ref=PDF&jav=VoR

