
royalsocietypublishing.org/journal/rspa

Research
Cite this article: Oskouei SK, Mancini S,
Wilde MM. 2019 Union bound for quantum
information processing. Proc. R. Soc. A 475:
20180612.
http://dx.doi.org/10.1098/rspa.2018.0612

Received: 7 September 2018
Accepted: 3 December 2018

Subject Areas:
quantum computing, quantum physics

Keywords:
quantum union bound, sequential decoding,
quantum communication

Author for correspondence:
Mark M. Wilde
e-mail: mwilde@gmail.com

Union bound for quantum
information processing
Samad Khabbazi Oskouei1, Stefano Mancini2,3

and Mark M. Wilde4

1Department of Mathematics, Islamic Azad University,
Varamin-Pishva Branch, 33817-7489 Iran
2School of Science and Technology, University of Camerino,
Via M. delle Carceri 9, 62032 Camerino, Italy
3INFN–Sezione Perugia, Via A. Pascoli, 06123 Perugia, Italy
4Hearne Institute for Theoretical Physics, Department of Physics and
Astronomy, Center for Computation and Technology, Louisiana State
University, Baton Rouge, LA 70803, USA

MMW, 0000-0002-3916-4462

In this paper, we prove a quantum union bound that
is relevant when performing a sequence of binary-
outcome quantum measurements on a quantum state.
The quantum union bound proved here involves a
tunable parameter that can be optimized, and this
tunable parameter plays a similar role to a parameter
involved in the Hayashi–Nagaoka inequality
(Hayashi & Nagaoka 2003 IEEE Trans. Inf. Theory
49, 1753–1768. (doi:10.1109/TIT.2003.813556)), used
often in quantum information theory when analysing
the error probability of a square-root measurement.
An advantage of the proof delivered here is that it
is elementary, relying only on basic properties of
projectors, Pythagoras’ theorem, and the Cauchy–
Schwarz inequality. As a non-trivial application of our
quantum union bound, we prove that a sequential
decoding strategy for classical communication
over a quantum channel achieves a lower bound
on the channel’s second-order coding rate. This
demonstrates the advantage of our quantum union
bound in the non-asymptotic regime, in which a
communication channel is called a finite number of
times. We expect that the bound will find a range
of applications in quantum communication theory,
quantum algorithms and quantum complexity theory.

1. Introduction
The union bound, alternatively known as Boole’s
inequality, represents one of the simplest yet non-trivial

2019 The Author(s) Published by the Royal Society. All rights reserved.
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methods for bounding the probability that either one event or another occurs, in terms of the
probabilities of the individual events (e.g. [1]). By induction, the bound applies to the union of
multiple events, and it often provides a good enough bound in a variety of applications whenever
the probabilities of the individual events are small relative to the number of events. Concretely,
given a finite set {Ai}L

i=1 of events, the union bound is the following inequality:

Pr

{ L⋃
i=1

Ai

}
≤

L∑
i=1

Pr{Ai}. (1.1)

By applying DeMorgan’s Law and basic rules of probability theory, we can rewrite the
union bound such that it applies to the probability that an intersection of events does not
occur

1 − Pr

{ L⋂
i=1

Ai

}
≤

L∑
i=1

Pr{Ac
i }, (1.2)

and this is the form in which it is typically employed in applications. Recently, the union bound
has been listed as the second step to try when attempting to ‘upper-bound the probability of
something bad’, with the first step being to determine if the trivial bound of one is reasonable in
a given application [2].

Generalizing the union bound to a quantum-mechanical set-up is non-trivial. A natural setting
in which we would consider this generalization is when the goal is to bound the probability
that two or more successive measurement outcomes do not occur. Concretely, suppose that the
state of a quantum system is given by a density operator ρ. Suppose that there are L projective
quantum measurements {Pi, I − Pi} for i ∈ {1, . . . , L}, where Pi is a projector, thus satisfying Pi = P†

i
and Pi = P2

i by definition. Suppose that the first measurement is performed, followed by the
second measurement, and so on. If the projectors P1, . . . , PL commute, then the probability
that the outcomes P1, . . . , PL do not occur is calculated by applying the Born rule and can be
bounded as

1 − Tr{PLPL−1 · · · P1ρP1 · · · PL−1} ≤
L∑

i=1

Tr{(I − Pi)ρ}, (1.3)

with the bound following essentially from an application of the union bound. However, if the
projectors P1, . . . , PL do not commute, then classical reasoning does not apply and alternative
methods are required.

Recently, Gao proved a quantum union bound [3] that has been useful in a variety of
applications, including quantum communication theory [3–7], quantum algorithms [8–10],
quantum complexity theory [9,11] and Hamiltonian complexity theory [12,13]. Given an arbitrary
set of projectors {Pi}L

i=1, each corresponding to one outcome of a binary-valued measurement,
Gao’s quantum union bound is the following inequality [3, Theorem 1]:

1 − Tr{PLPL−1 · · · P1ρP1 · · · PL−1} ≤ 4
L∑

i=1

Tr{(I − Pi)ρ}. (1.4)

By comparing (1.4) with (1.3), we notice that the only difference is the factor of four in (1.4). The
factor of four is inconsequential for many applications, but, nevertheless, it is natural to wonder
whether this bound can be improved. Furthermore, at least one application in which improving
the factor of four does make a difference is in the context of whether a sequential decoding
strategy can be used to achieve the second-order coding rate for classical communication—we
discuss this application in more detail later.
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2. Summary of results
In this paper, we prove the following quantum union bound.

Theorem 2.1 (Quantum union bound). Let ρ be a density operator acting on a separable Hilbert
space H, let {Pi}L

i=1 be an arbitrary set of projectors, each acting on H, and let c> 0 be an arbitrary positive
constant. Then

1 − Tr{PLPL−1 · · · P1ρP1 · · · PL−1} ≤ (1 + c)Tr{(I − PL)ρ}

+ (2 + c + c−1)
L−1∑
i=2

Tr{(I − Pi)ρ} + (2 + c−1)Tr{(I − P1)ρ}. (2.1)

Our proof of the above theorem is elementary, relying only on basic properties of projectors,
Pythagoras’ theorem and the Cauchy–Schwarz inequality. Furthermore, the theorem directly
applies to states of infinite-dimensional quantum systems and can thus be employed to analyse
practical situations involving not only qubits but also bosonic quantum systems [14]. Similar to
the classical case discussed in the introduction, the quantum union bound of theorem 2.1 provides
a useful bound when the individual probabilities Tr{(I − Pi)ρ} are small relative to the number L
of them, and this scenario occurs, for example, in the application to communication presented
in §5. Furthermore, the tunable parameter c> 0 is a significant advantage of our quantum union
bound, and it is essential in the application mentioned above, in which it really is necessary for
c> 0 to be decreasing with the number of channel uses so that the prefactor in front of the term
Tr{(I − PL)ρ} is as close to one as possible. More generally, one could certainly take an infimum
over the parameter c> 0 in any given application in order to have the upper bound be as tight as
possible.

Our quantum union bound represents a strict improvement over that of Gao’s in (1.4). Indeed,
by setting c = 1 and then loosening the above bound further, we recover Gao’s. Our quantum
union bound can also be compared with the Hayashi–Nagaoka (HN) inequality from [15,
Lemma 2], which is often used to analyse the error probability of the square-root measurement.
The HN inequality also features a tunable parameter c> 0, and this is one of the main reasons
why quantum information theory has recently advanced in the direction of characterizing
second-order asymptotics for communication tasks [16–24]. Our quantum union bound provides
essentially the same trade-off given by the HN inequality, but just slightly improved, in the sense
that the prefactor for the term Tr{(I − PL)ρ} is 1 + c, while the prefactor for L − 2 other terms is
2 + c + c−1 and the prefactor for the term Tr{(I − P1)ρ} is 2 + c−1, the last prefactor representing
the improvement.

In the previous paragraphs, we focused exclusively on the comparison of theorem 2.1 with
Gao’s bound in (1.4). However, there are other works that preceded Gao’s, which we recall now.
Aaronson [25] established a quantum union bound, with applications in quantum complexity
theory. Giovannetti et al. [26] analysed the error probability of a sequential decoding strategy
and proved that it can achieve the Holevo information of a quantum channel for classical
communication. The work of [26] then inspired Sen [27], who established another quantum union
bound (also called ‘non-commutative union bound’) of the following form:

1 − Tr{PLPL−1 · · · P1ρP1 · · · PL−1} ≤ 2

√√√√ L∑
i=1

Tr{(I − Pi)ρ}. (2.2)

Wilde [28] subsequently generalized the result of [27] beyond projectors, such that it would hold
for a set of operators {Λi}L

i=1, each of which satisfies 0 ≤Λi ≤ I. Then Gao’s bound in (1.4) appeared
after [28]. Clearly, Gao’s bound was a significant improvement over (2.2), eliminating the square
root at the cost of a doubling of the prefactor.

To demonstrate an application in which theorem 2.1 is useful, we show how a sequential
decoding strategy achieves a lower bound on the second-order coding rate for classical
communication over a quantum channel. We consider the cases in which there is entanglement
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assistance as well as no assistance, and our result here also covers the important case when
the channel takes input density operators acting on a separable Hilbert space to output density
operators acting on a separable Hilbert space. An advantage of our proof is that it is arguably
simpler than other approaches that could be taken to solve this problem, with our proof relying
on a method called position-based coding [29], as well as sequential decoding [26–28], and an
error analysis that uses theorem 2.1. Our proof can be compared with the proof from [30,31], in
which it was shown how to achieve the capacity for energy-constrained classical communication
(i.e. the first-order coding rate), and we advocate here that our proof is considerably simpler.

We organize the rest of our paper as follows. In §3, we provide a proof of theorem 2.1. In
§4, we consider the generalization of theorem 2.1 to positive operator-valued measures (POVMs).
Section 5 discusses the application to obtaining a lower bound on the second-order coding rate for
classical communication. In §6, we conclude with a summary and discuss some open directions
for future research.

3. Proof of theorem 2.1
We prove our main result, theorem 2.1, by establishing the following more general result:

Theorem 3.1. Let H be a separable Hilbert space, let |ψ〉 ∈H, let {Pi}L
i=1 be a finite set of projectors

acting on H, and let c> 0. Then

‖|ψ〉‖2
2 − ∥∥PLPL−1 · · · P1|ψ〉∥∥2

2 ≤ (1 + c) ‖(I − PL) |ψ〉‖2
2

+ (2 + c + c−1)
L−1∑
i=2

‖(I − Pi) |ψ〉‖2
2 + (2 + c−1) ‖(I − P1) |ψ〉‖2

2 . (3.1)

Theorem 2.1 is a direct consequence of theorem 3.1. Indeed, a density operator ρ acting on a
separable Hilbert space has a spectral decomposition as follows:

ρ =
∑
j∈J

pj|ψj〉〈ψj|, (3.2)

where the index set J is countable, {pj}j∈J is a probability distribution, and {|ψj〉}j∈J is an
orthonormal set of eigenvectors [32]. Applying theorem 3.1, we find that

1 − Tr{PLPL−1 · · · P1|ψj〉〈ψj|P1 · · · PL−1}
= ∥∥|ψj〉

∥∥2
2 − ∥∥PLPL−1 · · · P1|ψj〉

∥∥2
2 (3.3)

≤ (1 + c)
∥∥(I − PL) |ψj〉

∥∥2
2 + (2 + c + c−1)

L−1∑
i=2

∥∥(I − Pi) |ψj〉
∥∥2

2

+ (2 + c−1)
∥∥(I − P1) |ψj〉

∥∥2
2 (3.4)

= (1 + c)Tr{(I − PL) |ψj〉〈ψj|} + (2 + c + c−1)
L−1∑
i=2

Tr{(I − Pi)|ψj〉〈ψj|}

(2 + c−1) + Tr{(I − P1) |ψj〉〈ψj|}. (3.5)

The reduction from theorem 2.1 to theorem 3.1 follows by averaging over the distribution {pj}j∈J .
So now we shift our focus to proving theorem 3.1, and we do so with the aid of several lemmas.

To simplify the notation, hereafter we employ the following shorthand:

‖· · · ‖ ≡ ‖· · · |ψ〉‖2 , (3.6)

〈· · · 〉 ≡ 〈ψ | · · · |ψ〉 (3.7)

and Qi ≡ I − Pi. (3.8)
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The convention we take with the shorthand 〈A〉 for a non-Hermitian operator A is that 〈A〉 = 〈ψ |ϕ〉
where |ϕ〉 = A|ψ〉. Furthermore, we also assume without loss of generality that the vector |ψ〉 in
theorem 3.1 is a unit vector. Clearly, this assumption can be easily released by scaling the resulting
inequality by an arbitrary positive number.

First recall that, due to the idempotence of projectors, we have the following identities holding
for all i ∈ {1, 2, . . . , L}:

〈QiPi−1 · · · P1〉 = 〈QiQiPi−1 · · · P1〉, 〈P1 · · · Pi〉 = 〈P1 · · · PiPi〉, (3.9)

under the convention that Pi−1 · · · P1 = P1 · · · Pi−1 = I for i = 1.

Lemma 3.2. For a set {Pi}L
i=1 of projectors acting on a separable Hilbert space H, a unit vector |ψ〉 ∈H,

and employing the shorthand in (3.6)–(3.8), we have the following identities:

L∑
i=1

〈QiPi−1 · · · P1〉 = 1 − 〈PL · · · P1〉, (3.10)

L∑
i=1

〈P1 · · · Pi−1Qi〉 = 1 − 〈P1 · · · PL〉, (3.11)

L∑
i=1

〈P1 · · · Pi−1QiPi−1 · · · P1〉 = 1 − 〈P1 · · · PL · · · P1〉 (3.12)

and 1 −
√

〈PL〉
√

〈P1 · · · PL · · · P1〉 ≤
L∑

i=1

√
〈Qi〉

√
〈P1 · · · Pi−1QiPi−1 · · · P1〉, (3.13)

under the convention that Pi−1 · · · P1 = P1 · · · Pi−1 = I for i = 1.

Proof. The following identities are straightforward:

1 = 〈Q1〉 + 〈Q2P1〉 + · · · + 〈QL−1PL−2 · · · P1〉 + 〈QLPL−1 · · · P1〉 + 〈PLPL−1 · · · P1〉, (3.14)

1 = 〈Q1〉 + 〈P1Q2〉 + · · · + 〈P1 · · · PL−2QL−1〉 + 〈P1 · · · PL−1QL〉 + 〈P1 · · · PL−1PL〉 (3.15)

and 1 = 〈Q1〉 + 〈P1Q2P1〉 + · · · + 〈P1 · · · PL−2QL−1PL−2 · · · P1〉
+ 〈P1 · · · PL−1QLPL−1 · · · P1〉 + 〈P1 · · · PL−1PLPL−1 · · · P1〉. (3.16)

Consequently, from the equalities in (3.14)–(3.16), we obtain (3.10)–(3.12), respectively. The
following equality is a direct consequence of (3.14) and (3.9):

1 = 〈Q1〉 + 〈Q2Q2P1〉 + · · · + 〈QL−1QL−1PL−2 · · · P1〉 + 〈QLQLPL−1 · · · P1〉 + 〈PLPLPL−1 · · · P1〉.
(3.17)

By applying the Cauchy–Schwarz inequality to (3.17), we find that

1 ≤ 〈Q1〉 +
√

〈Q2〉
√

〈P1Q2P1〉 + · · · +
√

〈QL〉
√

〈P1 · · · PL−1QLPL−1 · · · P1〉
+
√

〈PL〉
√

〈P1 · · · PL−1PLPL−1 · · · P1〉, (3.18)

from which (3.13) immediately follows. �

Lemma 3.3. For a set {Pi}L
i=1 of projectors acting on a separable Hilbert space H, a unit vector |ψ〉 ∈H,

and employing the shorthand in (3.6)–(3.8), the following inequality holds for L ≥ 2:

L∑
i=1

∥∥Qi(I − Pi−1 · · · P1)
∥∥2 ≤

L−1∑
i=1

‖Qi‖2 , (3.19)
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under the convention that Pi−1 · · · P1 = P1 · · · Pi−1 = I for i = 1. Equivalently,

L∑
i=2

∥∥Qi(I − Pi−1 · · · P1)
∥∥2 ≤

L−1∑
i=1

‖Qi‖2 , (3.20)

due to the aforementioned convention.

Proof. Consider the following chain of equalities:

L∑
i=1

∥∥Qi(I − Pi−1 · · · P1)
∥∥2 =

L∑
i=1

∥∥Qi − QiPi−1 · · · P1
∥∥2

=
L∑

i=1

(
‖Qi‖2 − 〈QiPi−1 · · · P1〉 − 〈P1 · · · Pi−1Qi〉 + 〈P1 · · · Pi−1QiPi−1 · · · P1〉

)
(3.21)

=
( L∑

i=1

‖Qi‖2

)
− 1 + 〈PL · · · P1〉 − 1 + 〈P1 · · · PL〉 + 1 − 〈P1 · · · PL · · · P1〉 (3.22)

=
( L∑

i=1

‖Qi‖2

)
− 1 + 〈PLPLPL−1 · · · P1〉 + 〈P1 · · · PL−1PLPL〉 − 〈P1 · · · PL · · · P1〉. (3.23)

To obtain (3.21), we used the identities in (3.9). Next, to get (3.22), the identities in (3.10)–(3.12) of
lemma 3.2 were used. Continuing, we have that

Equation (3.23) ≤
( L∑

i=1

‖Qi‖2

)
− 1 − 〈P1 · · · PL · · · P1〉 + 2

√
〈PL〉

√
〈P1 · · · PL · · · P1〉 (3.24)

=
( L∑

i=1

‖Qi‖2

)
− 1 + 〈PL〉 −

(√
〈PL〉 −

√
〈P1 · · · PL · · · P1〉

)2
(3.25)

≤
( L∑

i=1

‖Qi‖2

)
− ‖QL‖2 =

L−1∑
i=1

‖Qi‖2 . (3.26)

To obtain (3.24), the Cauchy–Schwarz inequality was employed. �

We are now in a position to prove theorem 3.1.

Proof of theorem 3.1. Consider that

1 − ‖PL · · · P1‖2 = 1 − 〈P1 · · · PL · · · P1〉 + 2
(

1 −
√

〈PL〉
√

〈P1 · · · PL · · · P1〉
)

− 2
(

1 −
√

〈PL〉
√

〈P1 · · · PL · · · P1〉
)

(3.27)

= 2
(

1 −
√

〈PL〉
√

〈P1 · · · PL · · · P1〉
)

−
(√

〈PL〉 −
√

〈P1 · · · PL · · · P1〉
)2 − 1 + 〈PL〉. (3.28)

Continuing, we have that

Equation (3.28) ≤ −‖QL‖2 + 2
(

1 −
√

〈PL〉
√

〈P1 · · · PL · · · P1〉
)

(3.29)

≤ − ‖QL‖2 + 2
L∑

i=1

√
〈Qi〉

√
〈P1 · · · Pi−1QiPi−1 · · · P1〉 (3.30)

≤ − ‖QL‖2 + 2
L∑

i=1

√
〈Qi〉

(‖Qi‖ + ∥∥Qi(I − Pi−1 · · · P1)
∥∥) . (3.31)
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First, (3.29) is obtained by observing that

−
(√

〈PL〉 −
√

〈P1 · · · PL · · · P1〉
)2 − 1 + 〈PL〉 ≤ −1 + 〈PL〉 = −‖QL‖2. (3.32)

Next, (3.30) follows from (3.13) of lemma 3.2. Then, (3.31) is a consequence of the triangle
inequality √

〈P1 · · · Pi−1QiPi−1 · · · P1〉 = ‖QiPi−1 · · · P1‖ (3.33)

= ‖Qi(−I + I − Pi−1 · · · P1)‖ (3.34)

≤ ‖Qi‖ + ‖Qi(I − Pi−1 · · · P1)‖, (3.35)

under the convention that Pi−1 · · · P1 = I for i = 1. Continuing, we have that

Equation (3.31) = −‖QL‖2 + 2
L∑

i=1

‖Qi‖2 + 2
L∑

i=1

(‖Qi‖
∥∥Qi(I − Pi−1 · · · P1)

∥∥) (3.36)

= −‖QL‖2 + 2
L∑

i=1

‖Qi‖2 + 2
L∑

i=2

(‖Qi‖
∥∥Qi(I − Pi−1 · · · P1)

∥∥) (3.37)

≤ −‖QL‖2 + 2
L∑

i=1

‖Qi‖2 +
L∑

i=2

(
c ‖Qi‖2 + c−1 ∥∥Qi(I − Pi−1 · · · P1)

∥∥2
)

(3.38)

≤ −‖QL‖2 + 2
L∑

i=1

‖Qi‖2 + c
L∑

i=2

‖Qi‖2 + c−1
L−1∑
i=1

‖Qi‖2 (3.39)

≤ (1 + c) ‖QL‖2 + (2 + c−1) ‖Q1‖2 + (2 + c + c−1)
L−1∑
i=2

‖Qi‖2 . (3.40)

Equation (3.37) follows from the convention that Pi−1 · · · P1 = I for i = 1. Equation (3.38) is a
consequence of the inequality 2xy ≤ cx2 + c−1y2, holding for x, y ∈ R and c> 0. Finally, (3.39) is
obtained by using lemma 3.3. �

4. Generalization to positive operator-valued measures
Just as the bound from [27] was generalized in [28, Section 3] from projectors to positive semi-
definite operators having eigenvalues between zero and one, we can do the same here. This
generalization is useful for applications, and we discuss one such application in the next section.

We now give an extension of the quantum union bound in theorem 2.1 that applies for general
measurements. The main idea behind it is the well-known Naimark extension theorem, following
the approach from [28, Section 3].

Lemma 4.1. Let ρ be a positive semi-definite operator acting on a separable Hilbert space HS, let {Λi}L
i=1

denote a set of positive semi-definite operators such that 0 ≤Λi ≤ I for all i ∈ {1, . . . , L}, and let c> 0. Then
the following quantum union bound holds

Tr{ρ} − Tr{ΠΛL · · ·ΠΛ1 (ρ ⊗ |0̄〉〈0̄|PL )ΠΛ1 · · ·ΠΛL} ≤ (1 + c)Tr{(I −ΛL)ρ}

+ (2 + c + c−1)
L−1∑
i=2

Tr {(I −Λi) σ } + (2 + c−1)Tr{(I −Λ1)ρ}, (4.1)

where |0̄〉PL ≡ |0〉P1 ⊗ · · · ⊗ |0〉PL is an auxiliary state of L qubit probe systems and ΠΛi is a projector
defined as ΠΛi ≡ U†

i PiUi, for some unitary Ui and projector Pi such that

Tr{ΠΛi (ρ ⊗ |0̄〉〈0̄|PL )} = Tr{Λiρ}. (4.2)
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Proof. This extension of theorem 2.1 follows easily by employing the Naimark extension
theorem. Concretely, to each operator Λi, we associate the following unitary:

USPi ≡
√

IS − (Λi)S ⊗ [|0〉〈0|Pi + |1〉〈1|Pi

]+
√

(Λi)S ⊗ [|1〉〈0|Pi − |0〉〈1|Pi

]
. (4.3)

Then defining the projectors ΠΛi ≡ U†
SPi

(IS ⊗ |1〉〈1|Pi )USPi , a straightforward calculation gives
that Tr{ΠΛi (ρ ⊗ |0̄〉〈0̄|PL )} = Tr{ΛiρS}. Observe that the operator ΠΛi is an orthogonal projector
(because it is Hermitian and idempotent), so that theorem 2.1 applies to each of these operators.
Then (4.1) follows. �

5. Lower bound on the second-order coding rate for classical communication
One application of our main result, theorem 2.1, is in achieving the second-order coding rate
for classical communication. As we stated earlier, this area of quantum information theory has
advanced in recent years [16–24], with one of the main reasons being the availability of the tunable
parameter c> 0 in the Hayashi–Nagaoka inequality [15, Lemma 2]. That is, one can let c> 0 vary,
to become closer to zero, as the number of channel uses increases.

An advantage of our theorem 2.1 is that it applies directly to the case of states and projectors
that act on an infinite-dimensional, separable Hilbert space. Thus, the theorem can be applied
directly in order to achieve a lower bound on the second-order coding rate for classical
communication. To our knowledge, prior to our work here, Wilde et al. [20] presented the only
case in which lower bounds on the second-order coding rates have been considered in this general
case, and there the analysis was limited to channels that accept a classical input and output a pure
quantum state. The situation that we analyse here is thus more general.

(a) Information quantities
Before we begin with the application, let us recall some information quantities that are essential
in the analysis. Let H denote a separable Hilbert space, and let D(H) denote the set of density
operators acting on H (positive, semi-definite operators with trace equal to one). Let spectral
decompositions of ρ, σ ∈D(H) be given as

ρ =
∑
x∈X

λxPx and σ =
∑
y∈Y

μyQy, (5.1)

where X and Y are countable index sets, {λx}x∈X and {μy}y∈Y are probability distributions with
λx,μy ≥ 0 for all x ∈X and y ∈Y and

∑
x∈X λx =∑y∈Y μy = 1, and {Px}x∈X and {Qy}y∈Y are sets

of projections such that
∑

x∈X Px =∑y∈Y Qy = I.
The hypothesis testing relative entropy Dε

H(ρ ‖ σ ) is defined for ε ∈ [0, 1] as [33,34]

Dε
H(ρ ‖ σ ) ≡ − log2 inf

Λ
{Tr{Λσ } : Tr{Λρ} ≥ 1 − ε ∧ 0 ≤Λ≤ I} . (5.2)

The quantum relative entropy [35], the quantum relative entropy variance [16,36,37], and the T
quantity [16,36,37] are defined as

D(ρ ‖ σ ) ≡
∑

x∈X ,y∈Y
λx Tr{PxQy} log2

(
λx

μy

)
, (5.3)

V(ρ ‖ σ ) ≡
∑

x∈X ,y∈Y
λx Tr{PxQy}

[
log2

(
λx

μy

)
− D(ρ ‖ σ )

]2
, (5.4)

and T(ρ ‖ σ ) ≡
∑

x∈X ,y∈Y
λx Tr{PxQy}

∣∣∣∣log2

(
λx

μy

)
− D(ρ ‖ σ )

∣∣∣∣3 . (5.5)

For states ρ and σ satisfying

D(ρ ‖ σ ), V(ρ ‖ σ ), T(ρ ‖ σ )<∞, V(ρ ‖ σ )> 0, (5.6)
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the following expansion holds for the hypothesis testing relative entropy for ε ∈ (0, 1) and a
sufficiently large positive integer n:

Dε
H(ρ⊗n ‖ σ⊗n) = nD(ρ ‖ σ ) +

√
nV(ρ ‖ σ )Φ−1(ε) + O(log n), (5.7)

where

Φ(a) ≡ 1√
2π

∫ a

−∞
dx exp

(
−x2

2

)
, Φ−1(ε) ≡ sup {a ∈ R |Φ(a) ≤ ε} . (5.8)

The equality in (5.7) was proven for finite-dimensional states ρ and σ in [16,36]. For the case
of states acting on infinite-dimensional, separable Hilbert spaces, the inequality ≤ in (5.7) was
proven in [38] and [37, Appendix C]. In appendix A, we prove the inequality ≥ in (5.7). The proof
that we detail follows the development in [38, Appendix C] very closely, which is in turn based
on [36, Section 3.2].

(b) Communication codes
We now recall what we mean by a code for classical communication and one for entanglement-
assisted classical communication, starting with the former. Note that classical communication
was considered for the asymptotic case in [39,40]. Suppose that a channel NA→B connects a
sender Alice to a receiver Bob. For positive integers n and M, and ε ∈ [0, 1], an (n, M, ε) code for
classical communication consists of a set {ρm

An }m∈M of quantum states, which are called quantum
codewords, and where |M| = M. It also consists of a decoding POVM {Λm

Bn}m∈M and satisfies the
following condition:

1
M

∑
m∈M

Tr{(IBn −Λm
Bn

)N⊗n
A→B(ρm

An )} ≤ ε, (5.9)

which we interpret as saying that the average error probability is no larger than ε, when using
the quantum codewords and decoding POVM described above. The non-asymptotic classical
capacity of NA→B, denoted by C(NA→B, n, ε) is equal to the largest value of 1

n log2 M (bits per
channel use) for which there exists an (n, M, ε) code as described above.

Entanglement-assisted classical communication is defined similarly, but one allows for Alice
and Bob to share an arbitrary quantum state ΨA′B′ before communication begins. Note that
entanglement-assisted classical communication was considered for the asymptotic case in [41–43].
For positive integers n and M, and ε ∈ [0, 1], an (n, M, ε) code for entanglement-assisted classical
communication consists of the resource state ΨA′B′ , a set {Em

A′→An}m∈M of encoding channels,
where |M| = M. It also consists of a decoding POVM {Λm

BnB′ }m∈M and satisfies the following
condition:

1
M

∑
m∈M

Tr{(IBnB′ −Λm
BnB′
)N⊗n

A→B(Em
A′→An (ΨA′B′ ))} ≤ ε, (5.10)

which we interpret as saying that the average error probability is no larger than ε, when using the
entanglement-assisted code described above. The non-asymptotic entanglement-assisted classical
capacity of NA→B, denoted by CEA(NA→B, n, ε) is equal to the largest value of 1

n log2 M (bits per
channel use) for which there exists an (n, M, ε) entanglement-assisted code as described above.

(c) Lower bound on second-order coding rate
Defining the ε-mutual information of a bipartite state τCD as

IεH(C; D)τ ≡ Dε
H(τCD ‖ τC ⊗ τD), (5.11)

the following inequality was proven recently in [44, Theorem 8] for the finite-dimensional case,
improving upon a prior result from [19]:

CEA(NA→B, 1, ε) ≥ Iε−ηH (R; B)ζ − log2

(
4ε
η2

)
, (5.12)
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where ε ∈ (0, 1), η ∈ (0, ε), ζRB ≡NA→B(ρRA), and ρRA is a bipartite state. The techniques employed
in the proof of [44, Theorem 8] were position-based coding [29] and the Hayashi–Nagaoka
inequality [15, Lemma 2]. Note that the position-based coding method can be understood as
a variation of the well known and studied coding technique called pulse position modulation
[45,46]. We now generalize the inequality in (5.12) to the infinite-dimensional case by applying
theorem 2.1, along with position-based coding [29] and the sequential decoding strategy
from [28].

Theorem 5.1. Let HA, HB and HR be separable Hilbert spaces. Let NA→B be a quantum channel,
taking D(HA) to D(HB). Then the following bound holds:

CEA(NA→B, 1, ε) ≥ Iε−ηH (R; B)ζ − log2

(
4ε
η2

)
, (5.13)

where ε ∈ (0, 1), η ∈ (0, ε), ζRB ≡NA→B(ρRA), and ρRA ∈D(HR ⊗ HA) is a bipartite state.

Proof. Let ΛRB be a measurement operator (i.e., 0 ≤ΛRB ≤ IRB) satisfying

Tr{(IRB −ΛRB)NA→B(ρRA)} ≤ ε − η. (5.14)

To this operator ΛRB is associated a unitary URBP, defined as

URBP ≡
√

IRB −ΛRB ⊗ [|0〉〈0|P + |1〉〈1|P] +
√
ΛRB ⊗ [|1〉〈0|P − |0〉〈1|P] . (5.15)

Then defining the projectors

ΠRBP ≡ U†
RBP (IRB ⊗ |1〉〈1|P)URBP (5.16)

and

Π̂RBP ≡ IRBP −ΠRBP = U†
RBP (IRB ⊗ |0〉〈0|P)URBP, (5.17)

the inequality in (5.14) and a simple calculation imply that

Tr{(IRBP −ΠRBP)NA→B(ρRA) ⊗ |0〉〈0|P} ≤ ε − η. (5.18)

This kind of construction and equality is known as the Naimark extension theorem.
The position-based coding strategy then proceeds as follows. We let Alice and Bob share M

copies of the resource state ρRA, where Bob has the R systems and Alice the A systems. If Alice
would like to transmit message m ∈M, then she simply selects the mth A system, and sends it
through the channel NA→B. The marginal state of Bob’s systems is then as follows:

ρR1 ⊗ · · · ⊗ ρRm−1 ⊗ NAm→B(ρRmAm ) ⊗ ρRm+1 ⊗ · · · ⊗ ρRM . (5.19)

Bob then uses a sequential decoding strategy to determine which message Alice transmitted. He
introduces M auxiliary probe systems in the state |0〉〈0|, so that Bob’s overall state is now

ωm
RMBPM ≡ ρR1 ⊗ · · · ⊗ ρRm−1 ⊗ NAm→B(ρRmAm ) ⊗ ρRm+1

⊗ · · · ⊗ ρRM ⊗ |0〉〈0|P1 ⊗ · · · ⊗ |0〉〈0|PM . (5.20)

He then performs the binary measurements {ΠRiBPi , Π̂RiBPi } sequentially, in the order i = 1, i = 2,
etc. With this strategy, the probability that he decodes the mth message correctly is given by

Tr{ΠRmBPmΠ̂Rm−1BPm−1 . . . Π̂R1BP1ω
m
RMBPMΠ̂R1BP1 . . . Π̂Rm−1BPm−1}. (5.21)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

31
 O

ct
ob

er
 2

02
1 



11

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20180612

...........................................................

Applying theorem 2.1, we can bound the complementary (error) probability as

pe(m) ≡ 1 − Tr
{
ΠRmBPmΠ̂Rm−1BPm−1 · · · Π̂R1BP1ω

m
RMBPMΠ̂R1BP1 · · · Π̂Rm−1BPm−1

}
(5.22)

≤ (1 + c)Tr{Π̂RmBPmω
m
RMBPM } + (2 + c + c−1)

m−1∑
i=1

Tr
{
ΠRiBPiω

m
RMBPM

}
(5.23)

= (1 + c)Tr{(IRB −ΛRB)NA→B(ρRA)} + (2 + c + c−1)(m − 1)Tr{ΛRB[ρR ⊗ NA→B(ρA)]}
(5.24)

≤ (1 + c)(ε − η) + (2 + c + c−1)MTr{ΛRB [ρR ⊗ NA→B(ρA)]}, (5.25)

where c> 0. Since the whole development above holds for all measurement operators ΛRB

satisfying (5.14), we can take an infimum over all of them to obtain the following uniform bound
on the error probability when sending an arbitrary message m ∈M:

pe(m) ≤ (1 + c) (ε − η)+ (2 + c + c−1)M2−Iε−ηH (R;B)ζ . (5.26)

Picking c = η/(2ε − η) and taking M such that

log2 M = Iε−ηH (R; B)ζ − log2

(
4ε
η2

)
(5.27)

then implies that pe(m) ≤ ε for all m ∈M. Since we have shown the existence of a (1, M, ε)
entanglement-assisted code, where M satisfies (5.27), this concludes the proof. �

Remark 5.2. It is worthwhile to note that the code above has an error probability less than ε for
every message m ∈M, and so the error criterion is maximal error probability and not just average
error probability.

The above result also implies rates that are achievable for unassisted classical communication,
by combining theorem 5.1 with an analysis nearly identical to that given in [24, Section 3.3]. In
particular, we could allow Alice and Bob to share many copies of the following classical–quantum
state before communication begins:

ρXA ≡
∑
x∈X

p(x)|x〉〈x|X ⊗ ρx
A, (5.28)

where HX and HA are separable Hilbert spaces, X is a countable index set, {p(x)}x∈X is a
probability distribution, {|x〉X}x∈X is a set of orthonormal states, and {ρx

A}x∈X is a set of states.
This state then plays the role of the resource state ρRA in the proof of theorem 5.1. However, the
above state is a classical–quantum state, and as such, the code can be derandomized. Specifically,
to do so, we can employ the analysis given in [24, Section 3.3], but replacing the square-root
measurement there with the sequential decoding strategy. This leads to the following result,
which generalizes one of the main results of [34] to the infinite-dimensional case:

Corollary 5.3. Let HA, HB, and HX be separable Hilbert spaces. Let NA→B be a quantum channel,
taking D(HA) to D(HB). Then the following bound holds:

C(NA→B, 1, ε) ≥ Iε−ηH (X; B)ζ − log2

(
4ε
η2

)
, (5.29)

where ε ∈ (0, 1), η ∈ (0, ε), ζXB ≡NA→B(ρXA), and ρXA ∈D(HX ⊗ HA) is a bipartite, classical–quantum
state of the form in (5.28).

(d) Energy constraints
It is common in the theory of communication over infinite-dimensional channels [30,31,47] to
impose energy constraints on the space of inputs. If we do not so, then the capacities can be
infinite. The definitions of these energy-constrained non-asymptotic capacities are the same as we
discussed previously, except that we impose energy constraints on the channel input states.
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Before defining them, let us first recall the notion of an energy observable [47,48]:

Definition 5.4 (Energy observable). For a Hilbert space H, let G ∈L+(H) denote a positive
semi-definite operator, defined in terms of its action on a vector |ψ〉 as

G|ψ〉 =
∞∑

j=1

gj|ej〉〈ej|ψ〉, (5.30)

for |ψ〉 such that
∑∞

j=1 gj|〈ej|ψ〉|2 <∞. In the above, {|ej〉}j is an orthonormal basis and {gj}j is a
sequence of non-negative, real numbers. Then {|ej〉}j is an eigenbasis for G with corresponding
eigenvalues {gj}j.

Definition 5.5. The nth extension Ḡn of an energy observable G is defined as

Ḡn ≡ 1
n

[G ⊗ I ⊗ · · · ⊗ I + · · · + I ⊗ · · · ⊗ I ⊗ G] , (5.31)

where n is the number of factors in each tensor product above.

Then the non-asymptotic, energy-constrained classical capacity C(NA→B, G, P, n, ε) is defined
exactly as it was previously in §5b, except that we demand that

1
M

∑
m∈M

Tr{Ḡnρ
m
An } ≤ P, (5.32)

for a real P ∈ [0, ∞). Similarly, the non-asymptotic, energy-constrained entanglement-assisted
classical capacity CEA(NA→B, G, P, n, ε) is defined exactly as it was previously in §5b, except that
we demand that

1
M

∑
m∈M

Tr{(Ḡn ⊗ IB′ )Em
A′→An (ΨA′B′ )} ≤ P. (5.33)

One could alternatively demand that the energy constraint hold for every codeword, not just on
average. Note that we recover the usual notion of capacity (unconstrained) by taking G = I and
setting P = 1.

An advantage of the approach given in the proof of theorem 5.1 is that we easily obtain a lower
bound on the second-order coding rate for energy-constrained entanglement-assisted classical
communication over a quantum channel:

Theorem 5.6. Let HA, HB, and HR be separable Hilbert spaces. Let ε ∈ (0, 1). Let G be an energy
observable, and let P ∈ [0, ∞). Let NA→B be a quantum channel, taking D(HA) to D(HB). Then the
following bound holds:

CEA(NA→B, G, P, n, ε) ≥ I(R; B)ζ +
√

1
n

V(R; B)ζΦ−1(ε) + O
(

1
n

log n
)

, (5.34)

where ζRB ≡NA→B(ρRA) and ρRA ∈D(HR ⊗ HA) is a bipartite state such that

I(R; B)ζ , V(R; B)ζ , T(R; B)ζ <∞, V(R; B)ζ > 0, (5.35)

and Tr{GρA} ≤ P. In the above, we have the mutual information, mutual information variance and another
quantity:

I(R; B)ζ ≡ D(ζRB ‖ ζR ⊗ ζB), V(R; B)ζ ≡ V(ζRB ‖ ζR ⊗ ζB), T(R; B)ζ ≡ T(ζRB ‖ ζR ⊗ ζB). (5.36)

Proof. Let ζRA be a state satisfying the conditions stated above. Then the claim follows by
applying theorem 5.1, picking η= 1/

√
n, and invoking the expansion in (5.7). �

The proof given above is quite simple once all of the relevant components are in place (namely,
the quantum union bound from theorem 2.1, position-based coding [29], and the expansion in
(5.7)). This is to be contrasted with the approach taken in [30,31], in which the energy-constrained
entanglement-assisted classical capacity was identified. Not only can we argue to have a simpler
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approach for the achievability part, but our method also delivers a lower bound on the second-
order coding rate. An important open question remaining however is to determine whether this
lower bound on the second-order coding rate is tight. To our knowledge, this tightness has only
been shown for finite-dimensional channels that are covariant [19].

We note here that the bound in theorem 5.6 applies to the practically relevant case of bosonic
Gaussian channels [14]. The energy-constrained entanglement-assisted classical capacity of these
channels was identified in [30,31,49,50]. The additive-noise, thermal and amplifier channels are
of major interest for applications, as stressed in [47,51]. It is known that the energy-constrained,
entanglement-assisted capacity formula for these channels is achieved by a two-mode squeezed
vacuum state, whose reduction to the channel input system has an average photon number
meeting the desired photon number constraint. Thus, we could evaluate the lower bound in
theorem 5.6 by taking ρRA therein to be the two-mode squeezed vacuum and then applying the
formula from [52] to evaluate the mutual information variance V(R; B)ζ , while noting that the
quantity T(R; B)ζ is finite for any finite-energy state, as proven in [37, Appendix D].

We end this section on a different note, by remarking that the same argument as above
gives a non-trivial lower bound on the second-order coding rate for energy-constrained classical
communication with randomness assistance. However, it remains open to determine whether this
rate is achievable without the assistance of randomness. It is also open to extend the result to a
continuous (uncountable) index set X . We suspect that these extensions should be possible but
leave it for future work.

6. Conclusion
In this paper, we proved theorem 2.1, which improves Gao’s quantum union bound to include
a tunable parameter c> 0 that plays a role similar to the tunable parameter available in the
Hayashi–Nagaoka inequality from [15, Lemma 2]. An advantage of the proof of theorem 2.1 is
that it is elementary, relying only on basic properties of projectors, Pythagoras’ theorem, and the
Cauchy–Schwarz inequality. Owing to our improvement, the quantum union bound can now be
employed in a wider variety of scenarios. As an example application, we showed how to achieve
a lower bound on the second-order coding rate for classical communication over a quantum
channel by employing a sequential decoding strategy.

For future directions, we think it would be interesting to determine whether the improved
bound in theorem 2.1 would find application in areas including quantum algorithms [8–10],
quantum complexity theory [9,11] and Hamiltonian complexity theory [12,13]. We also wonder
whether theorem 2.1 could be useful outside of quantum information, for example, in the analysis
of projection algorithms [55].
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Appendix A. Proof of the inequality≥ in equation (5.7)
The goal of this appendix is to prove the inequality ≥ in (5.7). The proof follows the development
in appendix C of [38] very closely, which is in turn based on [36, Section 3.2].

Consider quantum states ρ and σ acting on a separable Hilbert space H, with spectral
decompositions as given in (5.1). Observe that each Px is finite-dimensional, as a consequence
of the fact that ρ is trace class. Indeed, were it not the case, then Tr{Px} would be infinite, and ρ
could thus not be trace class. By the same reasoning, each Qy is finite-dimensional.
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By defining a random variable Z taking values log2(λx/μy) with probability p(x, y) ≡
λxTr{PxQy}, observe that

D(ρ ‖ σ ) = E{Z}, V(ρ ‖ σ ) = Var{Z}, T(ρ ‖ σ ) = E

{
|Z − E{Z}|3

}
, (A 1)

where D(ρ ‖ σ ), V(ρ ‖ σ ), and T(ρ ‖ σ ) are defined in (5.3)–(5.5).

Lemma A.1. Let ρ and σ denote states acting on a separable Hilbert space H. Let L> 0. Then there
exists a measurement operator TL (i.e. 0 ≤ TL ≤ I) such that

Tr{TLρ} ≥ Pr{Z ≥ log2 L}, Tr{TLσ } ≤ 1
L

, (A 2)

where Z is the random variable defined just before (A 1).

Proof. Let us define the positive semi-definite operator T̃L as

T̃L ≡
∑

x,y:L≤λx/μy

QyPxQy. (A 3)

By inspection, this operator is positive semi-definite. The measurement operator TL is then
defined to be the projection onto the support of T̃L. Let |ψ〉 be a unit vector such that Px|ψ〉 = |ψ〉
for some x. It follows that |ψ〉〈ψ | ≤ Px. Then, for any μy such that L ≤ λx/μy, we have, from the
definition of T̃L, that |ψ〉〈ψ | ≤ T̃L. This in turn implies that Qy|ψ〉 ∈ supp(T̃L). From this, we then
conclude that

Qy|ψ〉〈ψ |Qy∥∥Qy|ψ〉∥∥2 ≤ TL. (A 4)

Furthermore, we have that {Qy|ψ〉}y forms a family of orthogonal vectors. Then the following
inequality holds ∑

y:L≤λx/μy

Qy|ψ〉〈ψ |Qy∥∥Qy|ψ〉∥∥2 ≤ TL. (A 5)

From this, we conclude that

Tr{TL|ψ〉〈ψ |} ≥ Tr

⎧⎨
⎩

∑
y:L≤λx/μy

Qy|ψ〉〈ψ |Qy∥∥Qy|ψ〉∥∥2 |ψ〉〈ψ |
⎫⎬
⎭=

∑
y:L≤λx/μy

Tr

{
Qy|ψ〉〈ψ |Qy∥∥Qy|ψ〉∥∥2 |ψ〉〈ψ |

}
(A 6)

=
∑

y:L≤λx/μy

∥∥Qy|ψ〉∥∥4∥∥Qy|ψ〉∥∥2 =
∑

y:L≤λx/μy

∥∥Qy|ψ〉∥∥2 =
∑

y:L≤λx/μy

Tr{Qy|ψ〉〈ψ |Qy}. (A 7)

Now, recall that Px is a finite-dimensional projector for each x. (As stated above, if Px were not
finite-dimensional, then this would contradict the assumption that ρ is trace class.) Furthermore,
we can write it as Px =∑Tr{Px}

l=1 |ψx,l〉〈ψx,l|, for some orthonormal set {|ψx,l〉}Tr{Px}
l=1 . Then the

development in (A 6) and (A 7) implies that

Tr{TLPx} ≥
∑

y:L≤λx/μy

Tr{QyPxQy} =
∑

y:L≤λx/μy

Tr{QyPx}. (A 8)

We can then use this to conclude that

Tr{TLρ} =
∑

x
λxTr{TLPx} ≥

∑
x,y:L≤λx/μy

λxTr{QyPx} (A 9)

=
∑

x,y:log2 L≤log2(λx/μy)

λxTr{QyPx} = Pr{Z ≥ log2 L}, (A 10)

where the second equality uses the fact that log2 : (0, ∞) → (−∞, ∞) is invertible, and the last line
follows from the definition of the random variable Z, given just before (A 1).
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What remains is to place an upper bound on Tr{TLσ }. Observe that for all x and y, the following
equivalence holds:

ran(QyPx) = supp(QyPxQy), (A 11)

where ran denotes the range of an operator. For some x, define the following subspace:

S̃x ≡
∨

y:L≤λx/μy

ran(QyPx) =
∨

y:L≤λx/μy

supp(QyPxQy), (A 12)

where the operation ∨ realizes a space formed as the union of subspaces. Due to the fact that
Px is finite-dimensional, it follows that the subspace S̃x is finite-dimensional. We now employ a
Gram–Schmidt orthogonalization procedure for these subspaces. First order the eigenvalues of ρ
as λ1 >λ2 > · · · . Now define a family {Sx}x of subspaces of the whole Hilbert space H as

S1 ≡ S̃1, Sx ≡
( x∨

i=1

S̃i

)
∧
(x−1∨

i=1

S̃i

)⊥
for x ≥ 2, (A 13)

where the operation ∧ corresponds to the intersection of subspaces. The subspaces Sx are
mutually orthogonal by construction. Furthermore, by the procedure given above, the following
holds for any positive integer w ≥ 1:

w∨
x=1

S̃x =
w∨

x=1

Sx. (A 14)

By definition, TL is the projection onto the following subspace:∨
x,y:L≤λx/μy

supp(QyPxQy) =
∨

y:L≤λx/μy

ran(QyPx) =
∨

x
S̃x =

∨
x

Sx =
⊕

x
Sx. (A 15)

Thus, it follows that TL can be written as TL =∑x PSx , where PSx is the projection onto Sx. By the
procedure given above, we have that Sx ⊆ S̃x, and from the definition of S̃x, we find that

Tr{PSx} ≤ Tr{PS̃x
} ≤ Tr{Px}. (A 16)

We then find that

Tr{TLσ } =
∑
y,x
μyTr{QyPSx} =

∑
y,x:L≤λx/μy

μyTr{QyPSx} (A 17)

≤ 1
L

∑
y,x:L≤λx/μy

λxTr{QyPSx} ≤ 1
L

∑
y,x
λxTr{QyPSx} (A 18)

= 1
L

∑
x
λxTr{PSx} ≤ 1

L

∑
x
λxTr{Px} = 1

L
Tr{ρ} = 1

L
. (A 19)

In the above, the second equality follows because QyPSx = 0 unless L ≤ λx/μy (from the definition
of the space Sx and the fact that Sx ⊆ S̃x). The third equality follows from

∑
y Qy = I, and the third

inequality follows from (A 16). �

We now apply the above lemma to the i.i.d. states ρ⊗n and σ⊗n, with spectral decompositions

ρ⊗n =
∑
xn

λxn Pxn , σ⊗n =
∑
yn

μyn Qyn , (A 20)

where xn = (x1, . . . , xn), yn = (y1, . . . , yn), λxn = λx1 × · · · × λxn , μyn =μy1 × · · · × μyn , Pxn = Px1 ⊗
· · · ⊗ Pxn , and Qyn = Qy1 ⊗ · · · ⊗ Qyn . Then the i.i.d. random sequence Zn ≡ (Z1, . . . , Zn) takes the
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values

log2

(
λxn

μyn

)
=

n∑
i=1

log2

(
λxi

μyi

)
, (A 21)

with probability

p(xn, yn) = λxn Tr{Pxn Qyn } =
n∏

i=1

λxi Tr{Pxi Qyi }. (A 22)

The Berry–Essen theorem [53,54] states that if A1, . . . , An are i.i.d. random variables such that
E{A1} = 0, E{|A1|2} ≡ τ 2 ∈ (0, ∞), and E{|A1|3} ≡ω <∞, then∣∣∣∣Pr

{
Bn

√
n

τ
≤ x
}

−Φ(x)
∣∣∣∣≤ Cω

τ 3√n
, (A 23)

where x ∈ R, Φ(x) ≡ [2π ]−1/2 ∫x
−∞ dy exp(−y2/2), Bn ≡ (1/n)

∑n
i=1 Ai, and C is the Berry–Esseen

constant satisfying 0.40973 ≤ C ≤ 0.4784.

Proposition A.2. Let ρ and σ denote states acting on a separable Hilbert space H. Suppose that
D(ρ ‖ σ ), V(ρ ‖ σ ), T(ρ ‖ σ )<∞ and V(ρ ‖ σ )> 0. Suppose n is sufficiently large such that ε − C ·
T(ρ ‖ σ )/

√
n[V(ρ ‖ σ )]3 > 0. Then

Dε
H(ρ⊗n ‖ σ⊗n) ≥ nD(ρ ‖ σ ) +

√
nV(ρ ‖ σ )Φ−1

⎛
⎝ε − C · T(ρ ‖ σ )√

n [V(ρ ‖ σ )]3

⎞
⎠ (A 24)

= nD(ρ ‖ σ ) +
√

nV(ρ ‖ σ )Φ−1 (ε)+ O(1). (A 25)

Proof. Applying the Berry–Esseen theorem to the random sequence Z1 − D(ρ ‖ σ ), . . . , Zn −
D(ρ ‖ σ ), with Zi defined in (A 21) and (A 22), we find that∣∣∣∣Pr

{
Z̄n
√

n
V(ρ ‖ σ )

≤ x
}

−Φ(x)
∣∣∣∣≤ C · T(ρ ‖ σ )√

n[V(ρ ‖ σ )]3
, (A 26)

where Z̄n ≡ (1/n)
∑n

i=1[Zi − D(ρ ‖ σ )], which implies that

Pr

{ n∑
i=1

Zi ≤ nD(ρ ‖ σ ) + x
√

nV(ρ ‖ σ )

}
≤Φ(x) + C · T(ρ ‖ σ )√

n [V(ρ ‖ σ )]3
. (A 27)

Picking x =Φ−1(ε − C · T(ρ ‖ σ )/
√

n[V(ρ ‖ σ )]3), this becomes

Pr

⎧⎨
⎩

n∑
i=1

Zi ≤ nD(ρ ‖ σ ) +
√

nV(ρ ‖ σ )Φ−1

⎛
⎝ε − C · T(ρ ‖ σ )√

n [V(ρ ‖ σ )]3

⎞
⎠
⎫⎬
⎭≤ ε. (A 28)

Choosing L such that

log2 L = nD(ρ ‖ σ ) +
√

nV(ρ ‖ σ )Φ−1

⎛
⎝ε − C · T(ρ ‖ σ )√

n [V(ρ ‖ σ )]3

⎞
⎠ (A 29)

and applying lemma A.1, we find that

Tr{Tnρ⊗n} ≥ Pr

{ n∑
i=1

Zi ≥ log2 L

}
= 1 − Pr

{ n∑
i=1

Zi ≤ log2 L

}
≥ 1 − ε,

while

Tr{Tnσ⊗n} ≤ 1
L

= e−[nD(ρ ‖ σ )+
√

nV(ρ ‖ σ )Φ−1(ε−C·T(ρ ‖ σ )/
√

n[V(ρ ‖ σ )]3)]. (A 30)
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This implies that

− log2 Tr{Tnσ⊗n} ≥ nD(ρ ‖ σ ) +
√

nV(ρ ‖ σ )Φ−1

⎛
⎝ε − C · T(ρ ‖ σ )√

n [V(ρ ‖ σ )]3

⎞
⎠ . (A 31)

Since Dε
H(ρ⊗n ‖ σ⊗n) involves an optimization over all possible measurement operators Tn

satisfying Tr{Tnρ⊗n} ≥ 1 − ε, we conclude the bound in (A 24). The equality after (A 24) follows
from expanding Φ−1 at the point ε using Lagrange’s mean value theorem. �
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