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Quantum Reading Capacity: General
Definition and Bounds

Siddhartha Das and Mark M. Wilde , Senior Member, IEEE

Abstract— Quantum reading refers to the task of reading out
classical information stored in a read-only memory device. In any
such protocol, the transmitter and receiver are in the same physi-
cal location, and the goal of such a protocol is to use these devices
(modeled by independent quantum channels), coupled with a
quantum strategy, to read out as much information as possible
from a memory device, such as a CD or DVD. As a consequence
of the physical setup of quantum reading, the most natural and
general definition for quantum reading capacity should allow for
an adaptive operation after each call to the channel, and this is
how we define quantum reading capacity in this paper. We also
establish several bounds on quantum reading capacity, and
we introduce an environment-parameterized memory cell with
associated environment states, delivering second-order and strong
converse bounds for its quantum reading capacity. We calculate
the quantum reading capacities for some exemplary memory
cells, including a thermal memory cell, a qudit erasure memory
cell, and a qudit depolarizing memory cell. We finally provide an
explicit example to illustrate the advantage of using an adaptive
strategy in the context of zero-error quantum reading capacity.

Index Terms— quantum reading, channel discrimination, adap-
tive strategy, quantum strategy, memory devices.

I. INTRODUCTION

ONE of the primary goals of quantum information theory
is to identify limitations on information processing when

constrained by the laws of quantum mechanics. In general,
quantum information theory uses tools that are universally
applicable to the processing of arbitrary quantum systems,
which include quantum optical systems, superconducting sys-
tems, trapped ions, etc. [1]. The abstract approach to quantum
information allows us to explore how to use the principles
of quantum mechanics for communication or computation
tasks, some of which would not be possible without quantum
mechanics.
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In [2], a communication protocol was introduced in which
a classical message is encoded in a set of unitary operations,
and later on, one can read out the information stored in the
unitary operations by calling them. Over a decade after [2]
was published, this communication model was generalized and
studied under the name “quantum reading” in [3], and it was
applied to the setting of an optical read-only memory. An opti-
cal read-only memory is one of the prototypical examples of
quantum reading, and for this reason, quantum reading has
been mainly considered in the context of optical realizations
like CD-ROMs and DVDs (see [4] and references therein).
In this case, classical bits are encoded in the reflectivity
and phase of memory cells, which can be modeled as a
collection of pure-loss bosonic channels. More generally and
abstractly, a memory cell is a collection of quantum channels,
from which an encoder can select to form codewords for
the encoding of a classical message (see Section II for a
formal definition). Each quantum channel in a codeword,
representing one part of the stored information, is read only
once. In subsequent works [4], [5], the model was extended to
a memory cell consisting of arbitrary quantum channels. In a
quantum reading strategy, one exploits entangled states and
collective measurements to help read out a classical message
stored in a read-only memory device. In many cases, one can
achieve performance better than what can be achieved when
using a classical strategy [3].

Some early developments in quantum reading were based
on a direct application of developments in quantum chan-
nel discrimination [6]–[10] (see also [11]–[14]). However,
the past few years have seen some progress in quantum
reading: there have been developments in defining protocols
for quantum reading (including limited definitions of reading
capacity and zero-error reading capacity), giving upper bounds
on the rates for classical information readout, achievable
rates for memory cells consisting of a particular class of
bosonic channels, and details of a quantum measurement that
can achieve non-trivial rates for memory cells consisting of
a certain class of bosonic channels [3]–[5], [15]–[18]. Most
recently, a task for secure reading of a memory device
against a passive eavesdropper, called private reading, has
been introduced in [19]. The information-theoretic study of
quantum reading is based on considerations coming from
quantum Shannon theory [20], and the most abstract and
general way to define the encoding of a classical mes-
sage in a quantum reading protocol is as mentioned above,
a sequence of quantum channels chosen from a given memory
cell.
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Hitherto, all prior works on quantum reading considered
decoding protocols of the following form: A reader possessing
a transmitter system entangled with an idler system sends the
transmitter system through the coded sequence of quantum
channels. Finally, the reader decodes the message by perform-
ing a collective measurement on the joint state of the output
system and the idler system.

However, the above approach neglects an important consid-
eration: in a quantum reading protocol, the transmitter and
receiver are in the same physical location. We can thus refer
to both devices as a single device called a transceiver. As a
consequence of this physical setup, the most general and
natural definition for quantum reading capacity should allow
for the transceiver to perform an adaptive operation after each
call to the memory, and this is how we define quantum reading
capacity in this paper (see Section IV, as well as Figure 1 for
a depiction of our modified definition of a quantum reading
protocol).

In general, an adaptive strategy can have a significant advan-
tage over a non-adaptive strategy in the context of quantum
channel discrimination [13]. Furthermore, a quantum channel
discrimination protocol employing a non-adaptive strategy is
a special case of one that uses an adaptive strategy. Since
quantum reading bears close connections to quantum channel
discrimination, we should suspect that adaptive operations
could help to increase quantum reading capacity in some cases,
and this is one contribution of the present paper.

We stress that the physical setup of quantum reading is
rather different from that considered in a typical communica-
tion problem (see also [19] for a detailed discussion), in which
the sender and receiver are in different physical locations.
In this latter case, allowing for adaptive operations represents
a different physical model and is thus considered as a different
kind of capacity, typically called a feedback-assisted capacity.
However, as advocated above, the physical setup of quantum
reading necessitates that there should be no such distinction
between capacities: the quantum reading capacity should be
defined as it is here, in such a way as to allow for adaptive
operations.

Another point of concern with prior work on quantum
reading is as follows: so far, all bounds on the quantum
reading rate have been derived in the usual setting of quan-
tum Shannon theory, in which the number of uses of the
channels tends to infinity (also called the i.i.d. setting, where
i.i.d. stands for “independent and identically distributed”).
However, it is important for practical purposes to determine
rates for quantum reading in the non-asymptotic scenario,
i.e., for a finite number of quantum channel uses and a
given error probability for decoding. The information-theoretic
analysis in the non-asymptotic case is motivated by the fact
that in practical scenarios, we have only finite resources at our
disposal [21]–[23].

In this paper, we address some of the concerns mentioned
above by giving the most general and natural definition for
a quantum reading protocol and quantum reading capacity.
We also establish bounds on the rates of quantum reading
for wider classes of memory cells in both the asymptotic
and non-asymptotic cases. First, we define a quantum reading

protocol and quantum reading capacity in the most general
setting possible by allowing for adaptive strategies. We give
weak-converse, single-letter bounds on the rates of quantum
reading protocols that employ either adaptive or non-adaptive
strategies for arbitrary memory cells. We also introduce a
particular kind of memory cell, which we call an environment-
parameterized memory cell with associated environment states
(see Section III for definitions), for which stronger statements
can be made for the rates and capacities in the non-asymptotic
situation of a finite number of uses of the channels. We note
that a particular kind of environment-parameterized memory
cell consists of a collection of channels that are jointly
teleportation simulable with associated resource states (see
Definition 4 and [24], [25] for teleportation simulation, as well
as [26], [27]). Many channels of interest obey these symme-
tries: some examples are erasure, dephasing, thermal, noisy
amplifier, and Pauli channels [24], [27]–[32]. Here we deter-
mine strong converse and second-order bounds on the quantum
reading capacities of environment-parametrized memory cells.
Note that a strong converse rate R is such that the success
probability of a sequence of protocols tends to zero with the
number of channel uses if the actual rate of the protocols
in the sequence exceeds the rate R. Based on an example
from [13, Section 3], we show in Section VII that there exists
a memory cell for which its zero-error reading capacity with
adaptive operations is at least 1

2 , but its zero-error reading
capacity without adaptive operations is equal to zero. This
example emphasizes how reading capacity should be defined
in such a way as to allow for adaptive operations, as stressed
in our paper.

The organization of our paper is as follows. In the next
section, we begin by introducing standard notation, definitions,
and necessary lemmas. We introduce two of the aforemen-
tioned classes of memory cells in Section III. In Section IV,
we give the most general and natural definition of a quantum
reading protocol and quantum reading capacity. Section V
contains our main results, which were briefly summarized in
the previous paragraph. In Section VI, we calculate quantum
reading capacities for a thermal memory cell and for a class of
jointly covariant memory cells, including a qudit erasure mem-
ory cell and a qudit depolarizing memory cell. In Section VII,
we provide an example to illustrate the advantage of adaptive
operations over non-adaptive operations in the context of
zero-error quantum reading capacity. In the final section of
the paper, we conclude and shed some light on possible future
work.

II. PRELIMINARIES

We begin by summarizing some of the standard notation,
definitions, and lemmas that are used in the subsequent sec-
tions of the paper.

A. Quantum States, Measurements, Channels,
and Memory Cells, etc.

Let L(H) denote the algebra of bounded linear operators
acting on a Hilbert space H. The subset of L(H) containing
all positive semi-definite operators is denoted by L+(H).
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We denote the identity operator as I and the identity super-
operator as id. The Hilbert space of a quantum system B
is denoted by HB . The state of a quantum system B is
represented by a density operator ρB , which is a positive
semi-definite operator with unit trace. Let D(HB) denote the
set of all elements ρB ∈ L+(HB) such that Tr{ρB} = 1.
The Hilbert space for a joint system RB is denoted as HR B

where HR B = HR ⊗ HB . The density operator of a joint
system RB is defined as ρR B ∈ D(HR B), and the partial
trace over B gives the reduced density operator for system R,
i.e., TrB{ρR B} = ρR such that ρR ∈ D(HR). The notation
Bn := B1 B2 · · · Bn denotes a joint system consisting of
n subsystems, each of which is isomorphic to Hilbert space
HB . A purification of a density operator ρB ∈ D (HB) is
a pure state ψρE B ∈ D (HE B) such that TrE {ψρE B} = ρB ,
where E is called the purifying system. The state �R B ∈
D (HR B) denotes a bipartite, maximally entangled state, and
πB ∈ D (HB) denotes the maximally mixed state.

The evolution of a quantum state is described by a quantum
channel. A quantum channel NB �→B is a completely positive,
trace-preserving (CPTP) map N : L+(HB �) → L+(HB). The
Choi state ωR B of a quantum channel NB �→B is defined as

ωR B := (idR ⊗NB �→B)(�R B �). (II.1)

A memory cell {N x }x∈X is defined as a set of quantum
channels; i.e., N x : L+(HB �) → L+(HB) is a quantum
channel for all x ∈ X , where X is an alphabet.

Let UN
B �→B E denote an isometric extension of a quantum

channel NB �→B , which by definition means that

TrE

{
UN

B �→B EρB �
(

UN
B �→B E

)†
}

= NB �→B(ρB �), (II.2)

for all ρB � ∈ D(HB �), along with the following conditions for
UN to be an isometry:

U†
NUN = IB � , and UNU†

N = �B E , (II.3)

where �B E is a projection onto a subspace of the Hilbert
space HB E . A positive operator-valued measure (POVM) is
a collection of positive semi-definite operators {�x}x∈X such
that

∑
x∈X �x = I .

The cumulative distribution function corresponding to the
standard normal random variable is defined as

�(a) :=
∫ a

−∞
1√
2π

exp

(
−1

2
x2
)

dx . (II.4)

Its inverse is also useful for us and is defined as �−1(a) :=
sup {a ∈ R|�(a) ≤ ε}, which reduces to the usual inverse for
ε ∈ (0, 1).

Throughout we denote probability distributions of any ran-
dom variables like X and Y by pX (x) and pY (y), respectively.

B. Entropies and Generalized Divergences

The quantum entropy of a density operator ρB is defined as

H (B)ρ := H (ρB) = − Tr[ρB log2 ρB ]. (II.5)

The conditional quantum entropy H (B �|B)ρ of a density
operator ρB � B of a joint system B �B is defined as

H (B �|B)ρ := H (B �B)ρ − H (B)ρ. (II.6)

The quantum relative entropy of two quantum states is a
measure of their distinguishability. For ρ ∈ D(H) and σ ∈
L+(H), it is defined as [33]

D(ρ	σ) :=
{

Tr{ρ[log2 ρ − log2 σ ]}, supp(ρ) ⊆ supp(σ )
+∞, otherwise.

(II.7)
The quantum relative entropy is non-increasing under the
action of positive trace-preserving maps [34], which is the
statement that D(ρ	σ) ≥ D(N (ρ)	N (σ )) for any two density
operators ρ and σ and a positive trace-preserving map N
(this inequality applies to quantum channels as well [35],
since every completely positive map is also a positive map by
definition). The relative entropy variance V (ρ	σ) of density
operators ρ and σ is defined as [36], [37]

V (ρ	σ) := Tr{ρ [log2 ρ − log2 σ − D(ρ	σ)]2}. (II.8)

The quantum mutual information I (R; B)ρ is a measure of
correlations between quantum systems R and B in a state ρR B .
It is defined as

I (R; B)ρ := inf
σB∈D(HB)

D(ρR B	ρR ⊗ σB) (II.9)

= H (R)ρ + H (B)ρ − H (RB)ρ. (II.10)

The quantum conditional mutual information I (R; B|C)ρ of
a tripartite density operator ρR BC is defined as

I (R; B|C)ρ := H (R|C)ρ + H (B|C)ρ − H (RB|C)ρ.
(II.11)

It is known that quantum entropy, quantum mutual infor-
mation, and conditional quantum mutual information are all
non-negative quantities.

A quantity is called a generalized divergence [39], [40]
if it satisfies the following monotonicity (data-processing)
inequality for all density operators ρ and σ and quantum
channels N :

D(ρ	σ) ≥ D(N (ρ)	N (σ )). (II.12)

As a direct consequence of the above inequality, any gener-
alized divergence satisfies the following two properties for an
isometry U and a state τ [41]:

D(ρ	σ) = D(UρU†	UσU†), (II.13)

D(ρ	σ) = D(ρ ⊗ τ	σ ⊗ τ ). (II.14)

One can define a mutual-information-like quantity for any
quantum state ρR B as

ID(R; B)ρ := inf
σB∈D(HB)

D(ρR B	ρR ⊗ σB). (II.15)

The trace distance between two density operators ρ, σ ∈
D(H) is equal to 	ρ − σ	1, where 	T 	1 = Tr{√T †T }.
The fidelity between two states ρ, σ ∈ D(H) is defined
as F(ρ, σ ) := 	√ρ√

σ	2
1 [38]. The trace distance and the

negative logarithm of the fidelity are particular examples of
generalized divergences.

The sandwiched Rényi relative entropy [41], [42] is denoted
as D̃α(ρ	σ) and defined for ρ ∈ D(H), σ ∈ L+(H), and
∀α ∈ (0, 1) ∪ (1,∞) as

D̃α(ρ	σ) := 1

α − 1
log2 Tr

{(
σ

1−α
2α ρσ

1−α
2α

)α}
, (II.16)
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but it is set to D̃α(ρ	σ) = +∞ for α ∈ (1,∞) if supp(ρ) �
supp(σ ). The sandwiched Rényi relative entropy obeys the
following “monotonicity in α” inequality [42]:

D̃α(ρ	σ) ≤ D̃β(ρ	σ) (II.17)

if α ≤ β, for α, β ∈ (0, 1) ∪ (1,∞). The following lemma
states that the sandwiched Rényi relative entropy D̃α(ρ	σ) is
a particular generalized divergence for certain values of α.

Lemma 1 ([43], [44]). Let NB �→B be a quantum channel
and let ρB � ∈ D(HB �) and σB � ∈ L+(HB �). Then, for all
α ∈ [1/2, 1) ∪ (1,∞), the following inequality holds

D̃α(ρ	σ) ≥ D̃α(N (ρ)	N (σ )). (II.18)

In the limit α → 1, the sandwiched Rényi relative entropy
D̃α(ρ	σ) converges to the quantum relative entropy [41], [42]

lim
α→1

D̃α(ρ	σ) := D1(ρ	σ) = D(ρ	σ). (II.19)

The sandwiched Rényi mutual information Ĩα(R; B)ρ is
defined as [44], [45]

Ĩα(R; B)ρ := min
σB

D̃α(ρR B	ρR ⊗ σB). (II.20)

Another generalized divergence we make use of is the
ε-hypothesis-testing divergence [46], [47], defined as

Dε
h(ρ	σ) :=

− log2 inf
�

{Tr{�σ } : 0 ≤ � ≤ I ∧ Tr{�ρ} ≥ 1 − ε},
(II.21)

for ε ∈ [0, 1] and ρ, σ ∈ D(H).

C. Local Operations and Classical Communication (LOCC)

A round of LOCC (or LOCC channel) between two spa-
tially separated parties Alice A and Bob B consists of an
arbitrarily large, yet finite number of compositions of the
following [24], [48]:

1) Alice performs a quantum instrument [20] on her sys-
tem A. She forwards the classical output x to Bob,
who then performs a quantum channel on system B
conditioned on the classical output x . This sequence of
actions realizes the following quantum channel:∑

x

E x
A ⊗ F x

B, (II.22)

where {E x
A}x is a collection of completely positive, trace

non-increasing maps such that
∑

x E x
A is a quantum

channel and {F x
B}x is a collection of quantum channels.

2) The situation is reversed, with Bob performing a quan-
tum instrument and forwarding the classical output y to
Alice. Alice performs a quantum channel conditioned on
the classical output y. This sequence of actions realizes
the following quantum channel:∑

y

E y
B ⊗ F y

A. (II.23)

D. Channels With Symmetry

Consider a finite group G. For every g ∈ G, let g → UB �(g)
and g → VB(g) be projective unitary representations of g
acting on the input space HB � and the output space HB of
a quantum channel NB �→B , respectively. A quantum channel
NB �→B is covariant with respect to these representations if the
following relation is satisfied [49]–[51]:

NB �→B

(
UB �(g)ρB �U†

B �(g)
)

= VB(g)NB �→B(ρB �)V †
B(g),

(II.24)
for all ρB � ∈ D(HB �) and for all g ∈ G. For an isometric
extension of the above channel N , there exists a unitary
representation WE (g) acting on the environment Hilbert space
HE [50], such that for all g ∈ G

UN
B �→B E

(
UB �(g)ρB �U†

B �(g)
)

=
(VB(g)⊗ WE (g))

[
UN

B �→B E (ρB �)
] (

V †
B(g)⊗ W †

E (g)
)
.

(II.25)

A simple proof of this statement is available in
[19, Appendix A].

In our paper, we define covariant channels in the following
way:
Definition 1 (Covariant channel). A quantum channel is
covariant if it is covariant with respect to a group G which
has a representation U(g), for all g ∈ G, on HB � that is
a unitary one-design; i.e., the map 1

|G|
∑

g∈G U(g)(·)U†(g)
always outputs the maximally mixed state for all input states.

Definition 2 (Teleportation-simulable channel [24], [25], [27]).
A channel NB �→B is teleportation-simulable with associated
resource state ωR B ∈ D (HR B) if there exists an LOCC
channel LR B � B→B such that [25, Eq. (11)]

NB �→B (ρB �) = LR B � B→B (ρB � ⊗ ωR B) , (II.26)

for all ρB � ∈ D (HB �), and the bipartite cut of the LOCC
channel is RB �|B. A particular example of an LOCC channel
could be a generalized teleportation protocol [52].

The following lemma from [53, Section 7] extends the
developments in [52], [54], [55]. See also [31, Appendix A]
for a short proof of the following lemma.

Lemma 2 ([53]). All covariant channels (Definition 1) are
teleportation-simulable with respect to the resource state
NB �→B(�R B �).

III. ENVIRONMENT-PARAMETERIZED MEMORY CELLS

We now introduce a broad class of memory cells that we
call environment-parameterized memory cells with associated
environment states, and we discuss two classes of memory
cells that are particular kinds of environment-parameterized
memory cells. Consider an alphabet X := {1, . . . , |X |}, where
|X | is some positive integer.

Definition 3 (Environment-parameterized memory
cell). A memory cell EX = {E x

B �→B}x∈X is
environment-parametrized with associated environment
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states {θ x
E }x∈X if there exists a fixed interaction channel

FB �E→B such that for all input states ρB � and ∀x ∈ X

E x
B �→B(ρB �) = FB �E→B (ρB � ⊗ θ x

E ). (III.1)

This notion is related to the notion of programmable
channels, used in the context of quantum computation [28].
We should clarify that any memory cell {E x

B �→B}x∈X is
environment-parametrized in a trivial way, i.e., with trivial
associated environment states. To see this, one can set

θ x
E = |x��x |E , (III.2)

FB �E→B(·) =
∑

x

�x |(·)E |x�EE x
B �→B(·)B � . (III.3)

However, one of the main goals of our paper is to establish
upper bounds on reading rates of memory cells, and the
above construction gives trivial bounds. Thus, when employing
the concept of environment-parametrized memory cells, one
seeks to find associated environment states θ x

E that have the
least distinguishability as possible while still being able to
realize the memory cell via a common interaction chan-
nel FB �E→B . We provide several non-trivial examples of
environment-parametrized memory cells in Section VI.

Definition 4 (Jointly teleportation-simulable memory
cell). A memory cell TX = {N x

B �→B}x∈X is jointly
teleportation-simulable with associated resource states
{ωx

R B}x∈X if there exists an LOCC channel LB � R B→B such
that, for all input states ρB � and ∀x ∈ X

N x
B �→B(ρB �) = LB � R B→B(ρB � ⊗ ωx

R B), (III.4)

where the LOCC channel input is with respect to the
bipartition RB �|B.

Definition 5 (Jointly covariant memory cell). A memory cell
MX = {Rx

B �→B}x∈X is jointly covariant if there exists a
group G such that for all x ∈ X , the channel Rx is a covariant
channel with respect to the group G (cf., Definition 1).

Proposition 1. Any jointly covariant memory cell MX =
{Rx

B �→B}x∈X is jointly teleportation-simulable with respect to
the set {Rx

B �→B(�R B �)}x∈X of resource states.

Proof. For a jointly covariant memory cell with respect
to a group G, all the channels Rx

B �→B are jointly
teleportation-simulable with respect to the resource states
Rx

B �→B(�R B �) by using a fixed POVM {Eg
B �� R}g∈G , sim-

ilar to that defined in [31, Equation (A.4), Appendix A].
See [31, Appendix A] for an explicit proof.

Remark 1. Any jointly teleportation-simulable memory
cell with associated resource states {ωx

R B}x∈X is
environment-parametrized with {ωx

R B}x∈X being the
associated environment states, an observation that is a
direct consequence of definitions. This implies that all jointly
covariant memory cells are also environment-parametrized
with associated environment states {Rx

B �→B(�R B �)}x∈X .

Fig. 1. The figure depicts a quantum reading protocol that calls a memory cell
three times to decode the message m as m̂. See the discussion in Section IV
for a detailed description of a quantum reading protocol.

IV. QUANTUM READING PROTOCOLS AND

QUANTUM READING CAPACITY

In a quantum reading protocol, we consider an encoder and
a reader (decoder). An encoder is one who encodes a message
onto a physical device that is delivered to Bob, a receiver,
whose task it is to read the message. We also refer to Bob as
the reader. The quantum reading task comprises the estimation
of a message encoded in the form of a sequence of quantum
channels chosen from a given memory cell {N x

B �→B}x∈X ,
where X is an alphabet. In the most general setting considered
in our paper, the reader can use an adaptive strategy for
quantum reading.

Both the encoder and the reader agree upon a memory cell
SX = {N x

B �→B}x∈X before executing the reading protocol.
We consider a classical message set M = {1, 2, . . . , |M|},
and let M be an associated system denoting a classical register
for the message. The encoder encodes a message m ∈ M
using a codeword xn(m) = (x1(m), x2(m), . . . , xn(m)) of
length n, where xi (m) ∈ X for all i ∈ {1, 2, . . . , n}. Each
quantum channel in a codeword, each of which represents
one part of the stored information, is only read once. Each
codeword identifies with a corresponding sequence of quantum
channels chosen from the memory cell SX :(

N x1(m)
B �

1→B1
,N x2(m)

B �
2→B2

, . . . ,N xn(m)
B �

n→Bn

)
. (IV.1)

An adaptive decoding strategy JSX makes n calls to
the memory cell SX . It is specified in terms of a trans-
mitter state ρR1 B �

1
, a set of adaptive, interleaved chan-

nels {Ai
Ri Bi→Ri+1 B �

i+1
}n−1
i=1 , and a final quantum measurement

{�m̂
Rn Bn

}m̂∈M that outputs an estimate m̂ of the message m.
The strategy begins with Bob preparing the input state ρR1 B �

1

and sending the B �
1 system into the channel N x1(m)

B �
1→B1

. The

channel outputs the system B1, which is available to Bob.
He adjoins the system B1 to the system R1 and applies the
channel A1

R1 B1→R2 B �
2
. The channel Ai

Ri Bi→Ri+1 B �
i+1

is called
adaptive because it can take an action conditioned on the
information in the system Bi , which itself might contain partial
information about the message m. Then, he sends the system
B �

2 into the second use of the channel N x2(m)
B �

2→B2
, which outputs

a system B2. The process of successively using the channels
interleaved by the adaptive channels continues n − 2 more
times, which results in the final output systems Rn and Bn with
Bob. Next, he performs a measurement {�m̂

Rn Bn
}m̂∈M on the

output state ρRn Bn , and the measurement outputs an estimate
m̂ of the original message m. See Figure 1 for a depiction of
a quantum reading protocol.
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It is apparent that a non-adaptive strategy is a special case
of an adaptive strategy in which the reader does not perform
any adaptive channels and instead uses ρR B �n as the transmitter
state with each B �

i system passing through the corresponding
channel N xi (m)

B �
i→Bi

and R being an idler system. The final step
in such a non-adaptive strategy is to perform a decoding
measurement on the joint system RBn .

As we argued previously, it is natural to consider the use of
an adaptive strategy for a quantum reading protocol because
the channel input and output systems are in the same physical
location. In a quantum reading protocol, the reader assumes
the role of both the transmitter and receiver.

Definition 6 (Quantum reading protocol). An (n, R, ε) quan-
tum reading protocol for a memory cell SX is defined by an
encoding map E : M → X×n and an adaptive strategy JSX
with measurement {�m̂

Rn Bn
}m̂∈M. The protocol is such that the

average success probability is at least 1−ε, where ε ∈ (0, 1):

1 − ε ≤ 1 − perr :=
1

|M|
∑

m

Tr
{
�
(m)
Rn Bn

(
N xn(m)

B �
n→Bn

◦ An−1
Rn−1 Bn−1→Rn B �

n
◦

· · · ◦ A1
R1 B1→R2 B �

2
◦ N x1(m)

B �
1→B1

)
(ρR1 B �

1)
}
. (IV.2)

The rate R of a given (n, R, ε) quantum reading protocol is
equal to the number of bits read per channel use:

R := 1

n
log2 |M|. (IV.3)

To arrive at a definition of quantum reading capacity,
we demand that there exist a sequence of reading protocols,
indexed by n, for which the error probability pe → 0 as
n → ∞ at a fixed rate R. In more detail, consider the
following definitions:

Definition 7 (Achievable rate). A rate R is called achievable
if for all ε ∈ (0, 1], δ > 0, and sufficiently large n, there exists
an (n, R − δ, ε) code.

Definition 8 (Quantum reading capacity). The quantum read-
ing capacity C(SX ) of a memory cell SX is defined as the
supremum of all achievable rates.

We also provide the following formal definitions for strong
converse rates and the strong converse reading capacity:

Definition 9 (Strong converse rate). A rate R is called a strong
converse rate if for all ε ∈ [0, 1), δ > 0, and sufficiently large
n, there does not exist an (n, R + δ, ε) code.

Definition 10 (Strong converse quantum reading capacity).
The strong converse quantum reading capacity C̃(SX ) of a
memory cell SX is defined as the infimum of all strong
converse rates.

The following inequality is a direct consequence of the
definitions:

C(SX ) ≤ C̃(SX ). (IV.4)

Fig. 2. The figure depicts how a quantum reading protocol of an
environment-parametrized memory cell with associated environment states
{θ x

E }x∈X can be rewritten as a protocol that tries to decode the message m

from the environment states θ xn (m)
En . All of the operations inside the dashed

lines can be understood as a measurement on the states θ xn (m)
En .

V. FUNDAMENTAL LIMITS ON QUANTUM

READING CAPACITIES

In this section, we establish second-order and strong con-
verse bounds for any environment-parametrized memory cell
with associated environment states (Definition 3). We also
establish general weak converse (upper) bounds on various
reading capacities.

A. Converse Bounds for Environment-Parametrized
Memory Cells

In this section, we provide upper bounds on the
performance of quantum reading of environment-parametrized
memory cells with associated environment states.
To begin with, let us consider an (n, R, ε) quantum
reading protocol of an environment-parametrized
memory cell EX = {E x }x∈X , as given in Definition 3.
The structure of reading protocols involving adaptive
channels simplifies immensely for memory cells that are
teleportation simulable and more generally environment-
parametrized. This is a consequence of observations
made in [24, Section V], [27, Theorem 14 and Remark 11],
and [56]. For such memory cells, a quantum reading protocol
can be simulated by one in which every channel use is
replaced by the encoder preparing the environment state
θ

xi (m)
E from (III.1) and then interacting the channel input with

the interaction channel FB �E→B . Critically, each interaction
channel FB �E→B is independent of the message m ∈ M. Let

θ
xn(m)
En :=

n⊗
i=1

θ
xi (m)
E (V.1)

denote the environment state needed for the simulation of
all n of the channel uses in the quantum reading protocol.
This leads to the translation of a general quantum reading
protocol to one in which all of the rounds of adaptive
channels can be delayed until the very end of the proto-
col, such that the resulting protocol is a non-adaptive quan-
tum reading protocol. The following proposition, holding for
any environment-parametrized memory cell with associated
environment states, is a direct consequence of observations
made in [24, Section V], [27, Theorem 14 and Remark 11],
and [56]. We thus omit a detailed proof, but Figure 2 clar-
ifies the main idea: any quantum reading protocol of an
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environment-parametrized memory cell can be rewritten as
in Figure 2. Inspecting the figure, we see that the proto-
col can be understood as a non-adaptive decoding of the
environment states θ xn(m)

En , with the decoding measurement
constrained to contain the interaction channel FB �E→B inter-
leaved between arbitrary adaptive channels. Thus, Proposi-
tion 2 establishes that an adaptive strategy used for decoding
an environment-parametrized memory cell can be reduced
to a particular non-adaptive decoding of the environment
states θ xn(m)

En .

Proposition 2 (Adaptive-to-non-adaptive reduction). Let
EX = {E x

B �→B}x∈X be an environment-parametrized memory
cell with an associated set of environment states {θ x

E}x∈X and
a fixed interaction channel FB �E→B, as given in Definition 3.
Then any quantum reading protocol as stated in Definition 6,
which uses an adaptive strategy JEX , can be simulated as
a non-adaptive quantum reading protocol, in the following
sense:

Tr
{
�m̂

En Bn

(
E xn(m)

B �
n→Bn

◦ An−1
En−1 Bn−1→En B �

n
◦

· · · ◦ A1
E1 B1→E2 B �

2
◦ E x1(m)

B �
1→B1

)
(ρE1 B �

1
)
}

= Tr

{
�m̂

En (

n⊗
i=1

θ
xi (m)
E )

}
, (V.2)

for some POVM {�m̂
En }m̂∈M that depends on JEX .

Using the observation in Proposition 2, we now show how
to arrive at upper bounds on the performance of any reading
protocol that uses an environment-parametrized memory cell
with associated environment states {θ x

E }x∈X .
Our proof strategy is to employ a generalized divergence

(recall (II.12)) to make a comparison between the states
involved in the actual reading protocol and one in which
the memory cell is fixed as Ê := {PB �→B}, containing only
a single channel with environment state θ̂E and interaction
channel FB �E→B . The latter reading protocol contains no
information about the message m. Observe that the augmented
memory cell {EX , Ê} is environment-parametrized with asso-
ciated environment states {{θ x

E }x∈X , θ̂E }.
One of the main steps that we use in our proof is as follows.

Consider the following states:

σM M̂ =
∑

m∈M,
m̂∈M

1

|M| |m��m|M ⊗ pM̂|M
(
m̂|m) |m̂��m̂|M̂ , (V.3)

τM M̂ =
∑

m∈M

1

|M| |m��m|M ⊗ τ̂M̂ , (V.4)

where we suppose that pM̂ |M (m̂|m) is a distribution that results
after the final decoding step of an (n, R, ε) quantum reading
protocol, while τ̂M̂ is a fixed state. By applying the comparator
test {�M M̂ , IM M̂ −�M M̂ }, defined by

�M M̂ :=
∑

m

|m��m|M ⊗ |m��m|M̂ , (V.5)

and using definitions, we arrive at the following inequalities
that hold for an arbitrary (n, R, ε) quantum reading protocol:

Tr{�M M̂σM M̂ } ≥ 1 − ε, (V.6)

Tr{�M M̂τM M̂ } = 1

|M| . (V.7)

Then by applying the definition of the ε-hypothesis-testing
divergence (recall (II.21)), we arrive at the following bound,
which is a critical first step for us to establish second-order
and strong converse bounds:

Dε
h

(
σM M̂	τM M̂

) ≥ log2 |M|. (V.8)

In the converse proof that follows, the main idea for arriving
at an upper bound on performance is to make a comparison
between the case in which the message m is encoded in a
sequence of quantum channels and the case in which it is not.

1) Second-Order Asymptotics and Strong Converse: In this
section, we derive second-order asymptotics and strong con-
verse bounds for environment-parametrized memory cells with
associated environment states. We begin by deriving a relation
between the quantum reading rate and the hypothesis testing
divergence.

Lemma 3. The following bound holds for an (n, R, ε) reading
protocol that uses an environment-parametrized memory cell
with associated environment states {θ x

E }x∈X , as stated in
Definition 3:

log2 |M| = n R ≤ sup
pXn

inf
θ̂

Dε
h(θXn En 	θ̂Xn En ), (V.9)

where

θXn En :=
∑

xn∈X n

pXn(xn)|xn��xn |Xn ⊗ θ xn

En , (V.10)

θ̂Xn En :=
∑

xn∈X n

pXn(xn)|xn��xn |Xn ⊗ θ̂⊗n
E . (V.11)

and xn := x1x2 · · · xn and θ xn

En =⊗n
i=1 θ

xi
E .

Proof. Our proof begins by applying the observation from
Proposition 2, which allows us to reduce any adaptive protocol
to a non-adaptive one. If the encoder chooses the message m
uniformly at random and places it in a system M , the output
state in (V.3) after Bob’s decoding measurement in the actual
protocol is

σM M̂ =
∑
m,m̂

1

|M| |m��m|M ⊗ Tr
{
�m̂

En θ
xn(m)
En

}
|m̂��m̂|M̂ ,

(V.12)

where

θ
xn(m)
En :=

n⊗
i=1

θ
xi (m)
E . (V.13)

The success probability psucc := 1 − perr is defined as

psucc := 1

|M|
∑

m∈M
Tr
{
�m

En θ
xn(m)
En

}
. (V.14)
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The output state in (V.4) after Bob’s decoding measurement
in a reading protocol that uses the memory cell Ê is

τM M̂ =
∑

m

1

|M| |m��m|M ⊗
∑

m̂

Tr
{
�m̂

En θ̂
⊗n
E

}
|m̂��m̂|M̂ .

(V.15)
Then we can proceed with bounding a generalized divergence
as follows:

D({psucc, 1 − psucc}	{1/|M|, 1 − 1/|M|})
≤ D

(
σM M̂	τM M̂

)
(V.16)

≤ D(θM En 	θ̂M En ), (V.17)

where

θM En :=
∑

m

1

|M| |m��m|M ⊗ θ
xn(m)
En , (V.18)

θ̂M En :=
∑

m

1

|M| |m��m|M ⊗ θ̂⊗n
E . (V.19)

The first inequality follows from applying the comparator test
in (V.5) to σM M̂ and τM M̂ . The second inequality follows
from the data-processing inequality in (II.12) as the final
measurement is a quantum channel. Since the above bound
holds for all θ̂E , we conclude that

D({psucc, 1 − psucc}	{1/|M|, 1 − 1/|M|}) ≤
inf
θ̂

D(θM En 	θ̂M En ). (V.20)

Now optimizing over all input distributions, we arrive at the
following general bound:

D({psucc, 1 − psucc}	{1/|M|, 1 − 1/|M|}) ≤
sup
pXn

inf
θ̂

D(θXn En 	θ̂Xn En ). (V.21)

Observe that the lower bound contains the relevant perfor-
mance parameters such as success probability and number of
messages, while the upper bound is an information quantity,
depending exclusively on the memory cell EX .

Substituting the hypothesis testing divergence in
the above and applying (V.8), we find the following
bound for an (n, R, ε) reading protocol that uses an
environment-parametrized memory cell with associated
environment states {θ x

E }x∈X :

log2 |M| = n R ≤ sup
pXn

inf
θ̂

Dε
h(θXn En 	θ̂Xn En ). (V.22)

This concludes the proof.

A direct consequence of Lemma 3 and [57, Theorem 4] is
the following proposition:
Proposition 3. For an (n, R, ε) quantum reading protocol
for an environment-parametrized memory cell EX = {E x}x∈X
with associated environment states {θ x

E }x∈X (as stated in
Definition 3), the following inequality holds

R ≤ max
pX

I (X; E)θ+
√

Vε(EX )
n

�−1(ε)+O

(
log n

n

)
, (V.23)

where
θX E =

∑
x∈X

pX (x)|x��x |X ⊗ θ x
E , (V.24)

and

Vε(EX ) =
{

minpX ∈P(E) V (θX E	θX ⊗ θE ), ε ∈ (0, 1/2]
maxpX ∈P(E) V (θX E	θX ⊗ θE ), ε ∈ (1/2, 1)

(V.25)
where P(E) denotes a set {pX } of probability distributions
that achieve the maximum in maxpX I (X; E)θ .

Proposition 4. The success probability psucc of any (n, R, ε)
quantum reading protocol for an environment-parametrized
memory cell EX with associated environment states {θ x

E }x∈X
is bounded from above as

psucc ≤ 2
−n supα>1

(
1− 1

α

)
(R− Ĩα(EX )), (V.26)

where
Ĩα(EX ) = max

pX
Ĩα(X; E)θ , (V.27)

for θX E as defined in (V.24).

Proof. A proof follows by combining the bound in (V.21) with
the main result of [41] (see also [58] for arguments about
extending the range of α from (1, 2] to (1,∞)).

Theorem 1. The strong converse quantum reading capac-
ity of any environment-parametrized memory cell EX =
{N x

B �→B}x∈X with associated environment states {θ x
E }x∈X ,

as given in Definition 3, is bounded from above as

C̃(EX ) ≤ max
pX

I (X; E)θ , (V.28)

where θX E is defined in (V.24).

Proof. The statement follows from Proposition 3, by taking
the limit n → ∞. Alternatively, the statement can also be
concluded from Definition 8 and Proposition 4, by taking the
limit α → 1.

Direct consequences of the above theorems and Remark 1
are the following corollaries:
Corollary 1. For any (n, R, ε) quantum reading protocol
and jointly teleportation-simulable memory cell TX with asso-
ciated resource states {ωx

R B}x∈X as stated in Definition 2,
the reading rate R is bounded from above as

R ≤ max
pX

I (X; RB)ω +
√

Vε(TX )
n

�−1(ε)+ O
(

log n

n

)
,

(V.29)
where

ωX R B =
∑
x∈X

pX (x)|x��x |X ⊗ ωx
R B (V.30)

and

Vε(TX ) ={
minpX ∈P(T ) V (ωX R B	ωX ⊗ ωR B), ε ∈ (0, 1/2]
maxpX ∈P(T ) V (ωX R B	ωX ⊗ ωR B), ε ∈ (1/2, 1)

(V.31)
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In the above, P(T ) denotes a set {pX } of probability distrib-
utions that are optimal for maxpX I (X; RB)ω.

Corollary 2. The strong converse quantum reading capacity
of any jointly teleportation-simulable memory cell TX =
{N x

B �→B}x∈X associated with a set {ωx
R B} of resource states

is bounded from above as

C̃(TX ) ≤ max
pX

I (X; RB)ω, (V.32)

where
ωX R B =

∑
x∈X

pX (x)|x��x |X ⊗ ωx
R B . (V.33)

The capacity bounds given above are tight for a wide variety
of channels, as clarified in the following remark:

Remark 2. The quantum reading capacity is achieved for a
jointly teleportation-simulable memory cell TX when, for all
x ∈ X , ωx

R B is equal to the Choi state of the channel N x
B �→B.

More precisely, the upper bound in Corollary 1 is achieved in
such a case by invoking [57, Theorem 4].

B. Weak Converse Bound for a Non-Adaptive
Reading Protocol

In this section, we establish a general weak converse when
the strategy employed is non-adaptive. Consider a state ρM R B �n
of the form

ρM R B �n = 1

|M|
∑

m

|m��m|M ⊗ ρR B �n . (V.34)

Suppose that ρR B �n is purified by the pure state ψRS B �n . Bob
passes the transmitter state ρR B �n through a codeword sequence
N xn(m)

B �n→Bn := ⊗n
i=1 N

xi (m)
B �

i→Bi
, where the choice m depends on

the classical value m in the register M . Let

UN xn (m)

B �n→Bn En :=
n⊗

i=1

UN xi (m)

B �
i→Bi Ei

, (V.35)

where UN xi (m)

B �
i→Bi Ei

denotes an isometric quantum channel

extending N xi (m)
B �

i→Bi
, for all i ∈ {1, 2, . . . n}. After the isometric

channel acts, the overall state is as follows:
σM RS Bn En = 1

|M|
∑

m

|m��m|M ⊗ UN xn (m)

B �n→Bn En (ψRS B �n) .

(V.36)
Let σ �

M M̂
= DR Bn→M̂ (σM R Bn ) be the output state at the end

of protocol after the decoding measurement D is performed
by Bob. Let �M M̂ denote the maximally classically correlated
state:

�M M̂ := 1

|M|
∑

m∈M
|m��m|M ⊗ |m��m|M̂ . (V.37)

Proposition 5. The non-adaptive reading capacity of any
quantum memory cell SX = {N x

B �→B}X is bounded from
above as

Cnon-adaptive(SX ) ≤ sup
pX ,φRB�

I (X R; B)τ , (V.38)

where

τX R B =
∑

x

pX (x)|x��x |X ⊗ N x
B �→B(φR B �), (V.39)

and it suffices for φR B � to be a pure state such that system R
is isomorphic to system B �.

Proof. For any (n, R, ε) quantum reading protocol using a
non-adaptive strategy, we have that

1

2

∥∥∥�M M̂ − σ �
M M̂

∥∥∥
1

≤ ε. (V.40)

Then consider the following chain of inequalities:

log2 |M|
= I (M; M̂)� (V.41)

≤ I (M; M̂)σ � + f (n, ε) (V.42)

≤ I (M; RSBn)σ + f (n, ε) (V.43)

= I (M; RS)σ + I (M; Bn |RS)σ + f (n, ε) (V.44)

= I (M; Bn |RS)σ + f (n, ε) (V.45)

= H (Bn|RS)σ − H (Bn|RSM)σ + f (n, ε) (V.46)

= H (Bn|RS)σ + H (Bn|En M)σ + f (n, ε) (V.47)

The first inequality follows from the uniform continuity of
conditional entropy [59], [60], where f (n, ε) is a function of n
and the error probability ε such that limε→0 limn→∞ f (n,ε)

n =
0 [20]. The second inequality follows from data processing.
The second equality follows from the chain rule for the mutual
information. The third equality follows because the reduced
state of systems M and RS is a product state. The fifth
equality follows from the duality of the conditional entropy.
Continuing, we have that

Eq. (V.47)

≤
n∑

i=1

[H (Bi |RS)σ + H (Bi |Ei M)σ ] + f (n, ε) (V.48)

=
n∑

i=1

[
H (Bi |RS)σ − H (Bi |RSB �[n]\{i} M)σ

]
+ f (n, ε)

(V.49)

=
n∑

i=1

I (M B �[n]\{i}; Bi |RS)σ + f (n, ε) (V.50)

≤
n∑

i=1

I (M B �[n]\{i} RS; Bi )σ + f (n, ε) (V.51)

= nI (M R�; B|Q)σ + f (n, ε) (V.52)

≤ n sup
pX ,φR̃ B�

I (X R̃; B)τ + f (n, ε). (V.53)

The first inequality follows from strong subadditivity of quan-
tum entropy [61], [62]. The final inequality follows because
the average can never exceed the maximum. In the above,
B �[n]\{i} denotes the joint system B �

1 B �
2 · · · B �

i−1 B �
i+1 · · · B �

n ,
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such that system B �
i is excluded. Furthermore,

σM Q R� B =
1

|M|
1

n

|M|∑
m=1

n∑
i=1

|m��m|M ⊗ |i��i |Q ⊗ N xi (m)
B �

i→Bi
(σRS B �

i B �[n]\i
),

(V.54)

where we have introduced an auxiliary classical register Q,
and R� := RSB �[n]\i . Also,

τX R̃ B =
∑

x

pX (x)|x��x |X ⊗ N x
B �→B(φR̃B �). (V.55)

Now we argue that it is sufficient to take φR̃B � to be a
pure state. Suppose that φR̂ B � is a mixed state and let R�� be a
purifying system for it. Then by the data-processing inequality,
we have that

I (X R̂; B)τ ≤ I (X R̂ R��; B)τ , (V.56)

where τX R̂R�� B is a state of the form in (V.55). The statement
in the theorem about the reference system follows from the
Schmidt decomposition and the fact that the reference system
purifies the system B � being input to the channel.

C. Weak Converse Bound for a Quantum Reading Protocol

In this section, we establish a general weak converse bound
for the quantum reading capacity of an arbitrary memory cell.

Theorem 2. The quantum reading capacity of a quantum
memory cell SX = {N x

B �→B}X is bounded from above as

C(SX ) ≤ sup
ρX RB�

[
I (X; B|R)ω − I (X; B �|R)ρ

]
, (V.57)

where

ωX R B =
∑

x

pX (x)|x��x |X ⊗ N x
B �→B(ρ

x
R B �), (V.58)

ρX R B � =
∑

x

pX (x)|x��x |X ⊗ ρx
R B � , (V.59)

and the dimension of the Hilbert space HR can be unbounded.

Remark 3. We should clarify that the upper bound in (V.57)
is non-negative. A particular choice of the input state ρX R B � is

ρX R B � =
∑

x

pX (x)|x��x |X ⊗ ρR B � . (V.60)

Then in this case,

I (X; B|R)ω − I (X; B �|R)ρ = I (X; RB)ω − I (X; RB �)ρ
= I (X; RB)ω ≥ 0, (V.61)

with ωX R B = ∑
x pX (x)|x��x |X ⊗ N x

B �→B(ρR B �). Thus,
we can conclude that

sup
ρX RB�

[
I (X; B|R)ω − I (X; B �|R)ρ

] ≥ 0. (V.62)

Proof of Theorem 2. For any (n, R, ε) quantum reading pro-
tocol as stated in Definition 6, we have

1

2

∥∥∥�M M̂ − σ �
M M̂

∥∥∥
1

≤ ε, (V.63)

where �M M̂ is a maximally classically correlated state as
in (V.37) and

σ �
M M̂

= DRn Bn→M̂

(
σ n

M Rn Bn

)
(V.64)

is the output state at the end of the protocol after Bob performs
the final decoding measurement. We denote the input state
before the i th call of the channel as

ρi
M Ri B �

i
= 1

|M|
∑

m∈M
|m��m|M ⊗ A(i−1)

Ri−1 Bi−1→Ri B �
i
◦

N xi−1(m)
B �

i−1→Bi−1
◦ · · · · · · ◦ N x2(m)

B �
2→B2

◦
A(1)

R1 B1→R2 B �
2
◦ N x1(m)

B �
1→B1

(ρR1 B �
1
), (V.65)

and we denote the output state after the i th call of the
channel as

ωi
M Ri Bi

= 1

|M|
∑

m∈M
|m��m|M ⊗ N xi (m)

B �
i→Bi

◦

A(i−1)
Ri−1 Bi−1→Ri B �

i
◦ N xi−1(m)

B �
i−1→Bi−1

◦ · · · · · · ◦ N x2(m)
B �

2→B2
◦

A(1)
R1 B1→R2 B �

2
◦ N x1(m)

B �
1→B1

(ρR1 B �
1
). (V.66)

The initial part of our proof follows steps similar to those
in the proof of Proposition 5.

log2 |M|
= I (M; M̂)� (V.67)

≤ I (M; M̂)σ � + f (n, ε) (V.68)

≤ I (M; Rn Bn)σ n + f (n, ε) (V.69)

= I (M; Rn Bn)ωn − I (M; R1 B �
1)ρ1 + f (n, ε) (V.70)

= I (M; Rn Bn)ωn − I (M; Rn B �
n)ρn

+ I (M; Rn B �
n)ρn − I (M; Rn−1 B �

n−1)ρn−1

+ I (M; Rn−1 B �
n−1)ρn−1 − · · · − I (M; R2 B �

2)ρ2

+ I (M; R2 B �
2)ρ2 − I (M; R1 B �

1)ρ1 + f (n, ε) (V.71)

≤ I (M; Rn Bn)ωn − I (M; Rn B �
n)ρn

+ I (M; Rn−1 Bn−1)ωn−1 − I (M; Rn−1 B �
n−1)ρn−1

+ I (M; Rn−2 Bn−2)ωn−2 − · · · − I (M; R2 B �
2)ρ2

+ I (M; R1 B1)ω1 − I (M; R1 B �
1)ρ1 + f (n, ε) (V.72)

The second equality follows because the state ρ1 is product
between systems M and R1 B �

1. The third equality follows
by adding and subtracting equal information quantities. The
third inequality follows from the data-processing inequality:
mutual information is non-increasing under the local action of
quantum channels. Continuing, we have that

Eq. (V.72)

=
n∑

i=1

[
I (M; Ri Bi )ωi − I (M; Ri B �

i )ρi

]+ f (n, ε) (V.73)

=
n∑

i=1

[
I (M; Bi |Ri )ωi − I (M; B �

i |Ri )ρi

]+ f (n, ε) (V.74)

= n
[
I (M; B|RQ)ω − I (M; B �|RQ)ρ

]+ f (n, ε) (V.75)

≤ n sup
ρX RB�

[
I (X; B|R)ω − I (X; B �|R)ρ

]+ f (n, ε), (V.76)
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The second equality follows from the chain rule for conditional
mutual information. The third equality follows by defining the
following states:

ωQ M R B =
n∑

i=1

1

n
|i��i |Q ⊗ ωi

M Ri Bi
, (V.77)

ρQ M R B � =
n∑

i=1

1

n
|i��i |Q ⊗ ρi

M Ri B �
i
. (V.78)

The final inequality follows by defining the following states:
ωX R B =

∑
x

pX (x)|x��x |X ⊗ N x
B �→B(ρ

x
R B �), (V.79)

ρX R B � =
∑

x

pX (x)|x��x |X ⊗ ρx
R B � , (V.80)

and realizing that the states ωQ M R B and ρQ M R B � are particular
examples of the states ωX R B and ρX R B � , respectively, with
the identifications M → X and Q R → R. Putting everything
together, we find that

1

n
log2 |M| ≤ sup

ρX RB�

[
I (X; B|R)ω − I (X; B �|R)ρ

]
+ 1

n
f (n, ε) (V.81)

Taking the limit as n → ∞ and then as ε → 0 concludes the
proof.

Now we develop a general upper bound on the
energy-constrained quantum reading capacity of a beamsplitter
memory cell BX = {Bx}x∈X , where x ∈ X represents the
transmissivity η and phase φ of the beamsplitter Bx [63,
Eqns. (5)–(6)]. This bound has implications for the reading
protocols considered in [17].

Let Ĥ denote the familiar â†â number observable and
let NS ∈ [0,∞). The energy-constrained reading capacity
C(BX , Ĥ , NS) of a beamsplitter memory cell BX is defined in
the obvious way, such that the average energy of the input to
each call of the memory is bounded from above by NS ≥ 0.
This definition implies that the function we optimize in the
capacity upper bound has the following constraint: for any
input ensemble {pX (x), ρx

R B � }:

Tr

{
Ĥ
∫

pX (x)ρ
x
B �

}
≤ NS . (V.82)

Since the energy of the output state of Bx does not depend on
the phase φ, we can drop the dependence of x on φ and take
x = η for our discussion. For a memory cell BX , the energy
of the output state is constrained as

Tr

{∑
x∈X

pX (x)Bx(ρx
B �)Ĥ

}
=
∑
x∈X

pX (x)Tr
{
Bx(ρx

B �)Ĥ
}

(V.83)

=
∑
x∈X

pX (x)ηTr
{
ρx

B � Ĥ
}

(V.84)

≤ NS , (V.85)

where the second equality holds because the transmissivity of
each Bx is η ∈ [0, 1].

We can then state the following result:
Corollary 3. The energy-constrained reading capacity of a
beamsplitter memory cell BX = {Bx}x∈X is bounded from
above as

C(BX , Ĥ , NS) ≤ 2g(NS), (V.86)

where θNS is a thermal state (VI.33) such that Tr{ĤθNS } =
NS and g(y) := (y + 1) log(y + 1)− y log y.

Proof. From a straightforward extension of Theorem 2, which
takes into account the energy constraint, we find that

C(SX , Ĥ , NS)

≤ sup
{pX (x),ρ

x
RB� }:

EX {Tr{ĤρX
B� }}≤NS

I (X; B|R)ω − I (X; B �|R)ρ (V.87)

≤ sup
{pX (x),ρ

x
RB� }:

EX {Tr{ĤρX
B� }}≤NS

I (X; B|R)ρ (V.88)

≤ sup
{pX (x),ρ

x
RB� }:

EX {Tr{ĤρX
B� }}≤NS

2H (B)ρ (V.89)

≤ 2H (θNS ) (V.90)

= 2g(NS). (V.91)

The first inequality follows from the extension of Theorem 2.
The second inequality follows from non-negativity of the
conditional quantum mutual information. The third inequality
follows from a standard entropy bound for the conditional
quantum mutual information. The fourth inequality follows
because the thermal state of mean energy NS has the maximum
entropy under a fixed energy constraint (see, e.g., [64]). The
final equality follows because the observable Ĥ is the familiar
â†â number observable, for which the entropy of its thermal
state of mean photon number NS is given by g(NS).

Remark 4. It follows that

Cnon-adaptive(BX , Ĥ , NS) ≤ 2g(NS) (V.92)

because

Cnon-adaptive(BX , Ĥ , NS ) ≤ C(BX , Ĥ , NS ), (V.93)

by the definition of the energy-constrained quantum reading
capacity of a memory cell BX .

VI. EXAMPLES OF ENVIRONMENT-
PARAMETRIZED MEMORY CELLS

In this section, we calculate the quantum reading capacities
of several environment-parametrized memory cells, including
a thermal memory cell, and a jointly covariant memory cell
formed from a channel N and a group G with respect to which
N is covariant. Examples of such a jointly covariant memory
cell include qudit erasure and depolarizing memory cells
formed respectively from erasure and depolarizing channels.
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A. Jointly Covariant Memory Cell: N cov
G

In this section, we show that the quantum reading capacity
of a memory cell N cov

G as given in Definition 11 below is
equal to the entanglement-assisted classical capacity of the
underlying channel N . Our result makes use of the fact that the
entanglement-assisted classical capacity of a covariant channel
T is equal to I (R; B)T (�) [65], [66]. Furthermore, we use
this result to evaluate the quantum reading capacity of a qudit
erasure memory cell (Definition 12) and a qudit depolarizing
memory cell (Definition 13).

Definition 11 (N cov
G ). Let N be a covariant channel with

respect to a group G as in Definition 1. We define the memory
cell N cov

G as
N cov

G = {NB �→B ◦ Ug
B �
}

g∈G , (VI.1)

where Ug
B � := UB �(g)(·)U†

B �(g). It follows from (II.24) that

NB �→B ◦ Ug
B � = Vg

B ◦ NB �→B , (VI.2)

where Vg
B := VB(g)(·)V †

B(g). It also follows that N cov
G is a

jointly covariant memory cell.

Theorem 3. The quantum reading capacity C(N cov
G ) of the

jointly covariant memory cell N cov
G = {

NB �→B ◦ Ug
B �
}

g∈G,
as in Definition 11, is equal to the entanglement-assisted
classical capacity of N :

C(N cov
G ) = I (R; B)N (�), (VI.3)

where N (�) := NB �→B(�R B �) and �R B � ∈ D(HR B �) is a
maximally entangled state.

Proof. Our proof consists of two parts: the converse part and
the achievability part. We first show the converse part:

C
(
N cov

G

) ≤ I (R; B)N (�). (VI.4)

From Remark 2, we conclude that the quantum reading
capacity of N cov

G is as follows:
C
(
N cov

G

) = max
pG

I (G; RB)ω, (VI.5)

where
ωG R B :=

∑
g∈G

pG(g)|g��g|G ⊗ ω
g
R B, (VI.6)

such that {|g�}g∈G forms an orthonormal basis on HG and

∀g ∈ G : ωg
R B = (NB �→B ◦ Ug

B �)(�R B �). (VI.7)

Let us fix pG . Then

I (G; RB)ω

= H

⎛⎝∑
g∈G

pG(g)ω
g
R B

⎞⎠−
∑
g∈G

pG(g)H (ω
g
R B) (VI.8)

= H

⎛⎝∑
g∈G

pG(g)(Vg
B ◦ NB �→B)(�R B �)

⎞⎠
−
∑
g∈G

pG(g)H ((Vg
B ◦ NB �→B)(�R B �)) (VI.9)

=
∑
g�∈G

1

|G| H

⎛⎝∑
g∈G

pG(g)(Vg�
B ◦ Vg

B ◦ NB �→B)(�R B �)

⎞⎠
− H (NB �→B(�R B �)) (VI.10)

≤ H

⎛⎝ 1

|G|
∑

g,g�∈G

pG(g)(Vg�
B ◦ Vg

B ◦ NB �→B)(�R B �)

⎞⎠
− H (NB �→B(�R B �)) (VI.11)

= H

⎛⎝NB �→B

⎛⎝ 1

|G|
∑
g�∈G

Ug�
B �

⎛⎝∑
g∈G

pG(g)Ug
B �(�R B �)

⎞⎠⎞⎠⎞⎠
− H (NB �→B(�R B �)) (VI.12)

= H (NB �→B(πR ⊗ πB �))− H (NB �→B(�R B �)) (VI.13)

= H (πR)+ H (NB �→B(πB))− H (NB �→B(�R B �))
(VI.14)

= I (R; B)N (�). (VI.15)

The second equality follows from (VI.2). The third equal-
ity follows because entropy is invariant with respect to
unitary or isometric channels. The first inequality follows
from the concavity of entropy. The fourth equality follows
from (VI.2). The fifth equality follows from Definition 1.
The sixth equality follows because entropy is additive for
product states. Since the above upper bound holds for any pG ,
it follows that

C
(
N cov

G

) = max
pG

I (G; RB)ω ≤ I (R; B)N (�). (VI.16)

To prove the achievability part, we take pG to be a uniform
distribution, i.e., pG ∼ 1

|G| . Putting pG ∼ 1
|G| in (VI.9),

we find the following lower bound:
C
(
N cov

G

) ≥ I (G; RB)ω = I (R; B)N (�). (VI.17)

Thus, from (VI.16) and (VI.17) we conclude the statement of
the theorem.

Now we state two corollaries, which are direct consequences
of the above theorem. These corollaries establish the quan-
tum reading capacities for jointly covariant memory cells
formed from the erasure channel and depolarizing channel
with respect to the Heisenberg–Weyl group H, as discussed
below.

Let us first introduce some basic notations and defini-
tions related to qudit systems. A system represented with a
d-dimensional Hilbert space is called a qudit system.

Let JB � = {| j�B �} j∈{0,...,d−1} be a computational orthonor-
mal basis of HB � such that dim(HB �) = d . There exists a
unitary operator called the cyclic shift operator X (k) that acts
on the orthonormal states as follows:

∀| j�B � ∈ JB � : X (k)| j� = |k ⊕ j�, (VI.18)

where ⊕ is a cyclic addition operator, i.e., k ⊕ j :=
(k+ j)mod d . There also exists another unitary operator called
the phase operator Z(l) that acts on the qudit computational
basis states as

∀| j�B � ∈ JB � : Z(l)| j� = exp

(
ι2πl j

d

)
| j�. (VI.19)
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The d2 operators {X (k)Z(l)}k,l∈{0,...,d−1} are known as the
Heisenberg–Weyl operators. Let σ(k, l) := X (k)Z(l). The
maximally entangled state �R B � of qudit systems RB � is
given as

|��R B � := 1√
d

d−1∑
j=0

| j�R| j�B �, (VI.20)

and we define

|�k,l �R B � := (IR ⊗ σ k,l
B � )|��R B � . (VI.21)

The d2 states {|�k,l�R B � }k,l∈{0,...,d−1} form a complete, ortho-
normal basis:

��k1,l1 |�k2,l2� = δk1,k2δl1,l2 , (VI.22)
d−1∑

k,l=0

|�k,l���k,l |R B � = IR B � . (VI.23)

Let W be a discrete set such that |W| = d2. There
exists a one-to-one mapping {(k, l)}k,l∈{0,d−1} ↔ {w}w∈W .
For example, we can use the following map: w = k + d · l for
W = {0, . . . , d2 − 1}. This allows us to define σw := σ(k, l)
and �wR B � := �k,l

R B � . Let the set of d2 Heisenberg–Weyl
operators be denoted as

H := {σw}w∈W = {X (k)Z(l)}k,l∈{0,...,d−1}, (VI.24)

and we refer to H as the Heisenberg–Weyl group.

Definition 12 (Qudit erasure memory cell). The qudit erasure
memory cell Qq

X = {Qq,x
B �→B

}
x∈X , |X | = d2, consists of the

following qudit channels:
Qq,x(·) = Qq(σ x (·) (σ x)†), (VI.25)

where Qq is a qudit erasure channel [67]:

Qq(ρB �) = (1 − q)ρ + q|e��e| (VI.26)

such that q ∈ [0, 1], dim(HB �) = d, |e��e| is some state
orthogonal to the support of any input state ρ, and ∀x ∈
X : σ x ∈ H are the Heisenberg–Weyl operators as given
in (VI.24). Observe that Qq

X is jointly covariant with respect
to the Heisenberg–Weyl group H because the qudit erasure
channel Qq is covariant with respect to H.

Definition 13 (Qudit depolarizing memory cell). The qudit
depolarizing memory cell Dq

X = {
Dq,x

B �→B

}
x∈X , |X | = d2,

consists of qudit channels

Dq,x (·) = Dq
(
σ x (·) (σ x)†) (VI.27)

where Dq is a qudit depolarizing channel:
Dq (ρ) = (1 − q)ρ + qπ, (VI.28)

where q ∈ [0, d2

d2−1
], dim(HB �) = d and ∀x ∈ X : σ x ∈

H are the Heisenberg–Weyl operators as given in (VI.24).
Observe that Dq

X is jointly covariant with respect to the
Heisenberg–Weyl group H because the qudit depolarizing
channel Dq is covariant with respect to H.

As a consequence of Theorem 3, we immediately find the
quantum reading capacities of the above memory cells:

Corollary 4. The quantum reading capacity C(Qq
X ) of the

qudit erasure memory cell Qq
X (Definition 12) is equal to

the entanglement-assisted classical capacity of the erasure
channel Qq [65]:

C(Qq
X ) = 2(1 − q) log2 d. (VI.29)

Corollary 5. The quantum reading capacity C(Dq
X ) of the

qudit depolarizing memory cell Dq
X (Definition 13) is equal

to the entanglement-assisted classical capacity of the depolar-
izing channel Dq [65]:

C(Dq
X ) = 2 log2 d +

(
1 − q + q

d2

)
log2

(
1 − q + q

d2

)
+ (d2 − 1)

q

d2 log2

( q

d2

)
. (VI.30)

B. A Thermal Memory Cell

Let us consider an example of a thermal memory cell
EX ,η = {E x,η}x , which is an environment-parametrized mem-
ory cell consisting of thermal channels E x,η with known
transmissivity parameter η ∈ [0, 1] and unknown excess noise
x [32]. Let â, b̂, ê, ê� be the respective field-mode annihilation
operators for Bob’s input, Bob’s output, the environment’s
input, and the environment’s output of these channels. The
interaction channel in this case is a fixed unitary UB �E→B E �
corresponding to a beamsplitter interaction, defined from the
following Heisenberg input-output relations:

b̂ = √
ηâ +√1 − ηê, (VI.31)

ê� = −√1 − ηâ + √
ηê. (VI.32)

The environmental mode ê of a thermal channel E x,η is
prepared in a thermal state θ x := θ(NB = x) of mean photon
number NB ≥ 0:

θ(NB ) := 1

NB + 1

∞∑
k=0

(
NB

NB + 1

)k

|k��k|, (VI.33)

where {|k�}k∈N is the orthonormal, photonic number-state
basis. Parameter x is the excess noise of the thermal chan-
nel E x,η. It can be noted that for x = 0, θ x reduces to a vacuum
state and the channel E x,η is called the pure-loss channel.

Proposition 6. The quantum reading capacity C(EX ,η) of the
thermal memory cell EX ,η = {E x,η}x (as described above) is
equal to

C(EX ,η) = sup
pX

[
H (θ)−

∫
dx pX (x)H (θ

x)

]
, (VI.34)

where pX is a probability distribution for the parameter x and
θ = ∫ dx pX (x)θ x .

Proof. We begin by proving the achievability part, which
corresponds to the inequality

C(EX ,η) ≥ I (X; E)θ , (VI.35)

where θX E = ∫
dx pX (x)|x��x |X ⊗ θ x

E . The main
idea for the achievability part builds on the results
of [32, Eqns. (38)–(48)].
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The two-mode squeezed vacuum state is equivalent to a
purification of the thermal state in (VI.33) and is defined as

∣∣∣φTMS(NS)
〉

R B � := 1√
NS + 1

∞∑
k=0

[
NS

NS + 1

] k
2 |k�R |k�B � .

(VI.36)
When sending the B � system of this state through the channel
E x,η

B �→B , the output state is as follows:

ω
x,η
R B(NS) := (idR ⊗E x,η

B �→B)
(
φTMS

R B � (NS)
)

(VI.37)

= TrE � {UB �E→B E �
(
φTMS

R B � (NS)⊗ θ x
E

)
}, (VI.38)

where UB �E→B E � (·) := UB �E→B E � (·)U†
B �E→B E � , and the aver-

age output state is as follows, when the channel E x,η
B �→B being

applied is chosen with probability pX (x):∑
x∈X

pX (x)ω
x,η
R B(NS)

=
∑
x∈X

pX (x)TrE �
{
UB �E→B E �

(
φR B �(NS)⊗ θ x

E

)}
(VI.39)

= TrE �

{
UB �E→B E �

(
φR B �(NS)⊗

∑
x∈X

pX (x)θ
x
E

)}
.

(VI.40)

Let us define the following classical–quantum state:
ω
η
X R B(NS) =

∑
x∈X

pX (x)|x��x |X ⊗ ω
x,η
R B , (VI.41)

and consider that

I (X; RB)ωη(NS ) =∑
x∈X

pX (x)D

(
ω

x,η
R B(NS)

∥∥∥∥∥∑
x∈X

pX (x)ω
x,η
R B(NS)

)
. (VI.42)

The Wigner characteristic function covariance matrix [68]
for ωx,η

R B(NS ) in (VI.37) is as follows:

Vωx,η(NS) =

⎡⎢⎢⎣
a c 0 0
c b 0 0
0 0 a −c
0 0 −c b

⎤⎥⎥⎦ , (VI.43)

where

a = ηNS + (1 − η) x + 1

2
, (VI.44)

b = NS + 1

2
, (VI.45)

c = √ηNS(NS + 1). (VI.46)

Let us consider the following symplectic
transformation [32]:

Sη(NS) =

⎡⎢⎢⎣
γ+ −γ− 0 0

−γ− γ+ 0 0
0 0 γ+ γ−
0 0 γ− γ+

⎤⎥⎥⎦ , (VI.47)

where

γ+ =
√

1 + NS

1 + (1 − η)NS
, γ− =

√
ηNS

1 + (1 − η)NS
.

(VI.48)

The action of the symplectic matrix Sη(NS) on the covari-
ance matrix Vωx,η(NS) gives

V̂ωx,η(NS ) := Sη(NS)Vωx,η(NS )

(
Sη(NS)

)T (VI.49)

=

⎡⎢⎢⎣
as −cs 0 0

−cs bs 0 0
0 0 as cs

0 0 cs bs

⎤⎥⎥⎦ , (VI.50)

where

as = x + 1

2
+ O

(
1

NS

)
, (VI.51)

bs = (1 − η) NS + ηx + 1

2
+ O

(
1

NS

)
, (VI.52)

cs = √
ηx + O

(
1

NS

)
. (VI.53)

Thus, by applying this transformation to ωx,η(NS) and tracing
out the second mode, we are left with a state that becomes
indistinguishable from a thermal state of mean photon number
x in the limit as NS → ∞. Note that this occurs independent
of the value of the transmissivity η.

The symplectic transformation Sη(NS) can be realized by a
two-mode squeezer, which corresponds to a unitary transfor-
mation acting on the tensor-product Hilbert space. Letting the
unitary transformation be of the form WR B→E B , then V̂ωx,η(NS )

represents the covariance matrix of the state ωx,η
E B(NS ).

We use the formula for fidelity between two thermal
states [32, Equation 34] and the relation between trace norm
and fidelity [20, Theorem 9.3.1] to conclude that

lim
NS→∞

∥∥ωx,η
E (NS)− θ x

E

∥∥
1

≤ lim
NS→∞

√
1 − F

(
ωx

E (NS), θ
x
E

) = 0. (VI.54)

From the convexity of trace norm, we find that∥∥∥∥∥∑
x∈X

pX (x)ω
x
E (NS)−

∑
x∈X

pX (x)θ
x
E

∥∥∥∥∥
1

≤
∑
x∈X

pX (x)
∥∥ωx

E (NS)− θ x
E

∥∥
1 , (VI.55)

which in turn implies that

lim
NS→∞

∥∥∥∥∥∑
x∈X

pX (x)ω
x
E (NS)−

∑
x∈X

pX (x)θ
x
E

∥∥∥∥∥
1

= 0. (VI.56)

Invoking the result of [32, Equation 28] and the lower
semi-continuity of relative entropy, we get that

lim
NS→∞ D

(
ω

x,η
R B(NS)

∥∥∥∥∥∑
x∈X

pX (x)ω
x,η
R B(NS)

)

= D

(
θ x

E

∥∥∥∥∥∑
x∈X

pX (x)θ
x
E

)
. (VI.57)
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Thus, from the above relations, we find that

lim
NS→∞ I (X; RB)ωη(NS ) = I (X; E)θ , (VI.58)

where

θX E =
∑
x∈X

pX (x)|x��x |X ⊗ θ x
E , (VI.59)

for θ x
E defined in Equation (VI.38). This shows that I (X; E)θ

is an achievable rate for any pX .
The converse part of the proof, which corresponds to the

inequality

C(EX ,η) ≤ max
pX

I (X; E)θ , (VI.60)

follows directly from Theorem 1.

VII. ZERO-ERROR QUANTUM READING CAPACITY

In an (n, R, ε) quantum reading protocol (Definition 6)
for a memory cell SX = {Mx

B �→B}x∈X , one can demand
the error probability to vanish, i.e., ε = 0. In this section,
we define zero-error quantum reading protocols and the
zero-error quantum reading capacity for any memory cell.
We provide an explicit example of a memory cell for which
a quantum reading protocol using an adaptive strategy has a
clear advantage over a quantum reading protocol that uses a
non-adaptive strategy.

Definition 14 (Zero-error quantum reading protocol).
A zero-error quantum reading protocol of a memory cell SX
is a particular (n, R, ε) quantum reading protocol for which
ε = 0.

Definition 15 (Zero-error quantum reading capacity). The
zero-error quantum reading capacity Z(SX ) of a memory cell
SX is defined as the largest rate R such that there exists a
zero-error reading protocol.

A zero-error non-adaptive quantum reading protocol of a
memory cell is a special case of a zero-error quantum reading
protocol in which the reader uses a non-adaptive strategy to
decode the message.

A. Advantage of an Adaptive Strategy Over
a Non-Adaptive Strategy

In this section, we employ the main example from [13]
to illustrate the advantage of an adaptive zero-error quantum
reading protocol over a non-adaptive zero-error quantum read-
ing protocol.

Let us consider a memory cell BX = {Mx
B �→B}x∈X , X =

{1, 2}, consisting of the following quantum channels that map
two qubits to a single qubit, acting as

Mx(·) =
5∑

j=1

Ax
j (·)
(

Ax
j

)†
, x ∈ X , (VII.1)

where

A1
1 = |0��00|, A1

2 = |0��01|, (VII.2)

A1
3 = |0��10|, A1

4 = 1√
2
|0��11|, (VII.3)

A1
5 = 1√

2
|1��11|, A2

1 = |+��00|, (VII.4)

A2
2 = |+��01|, A2

3 = |1��1 + |, (VII.5)

A2
4 = 1√

2
|0��1 − |, A2

5 = 1√
2
|1��1 − |, (VII.6)

and the standard bases for the channel inputs and outputs are
{|00�, |01�, |10�, |11�} and {|0�, |1�}, respectively.

It follows from [13] that it is possible to discriminate
perfectly these two channels using an adaptive strategy that
makes two calls to the unknown channel Mx . This implies
that the encoder can encode two classical messages (one bit)
into two uses of the quantum channels from BX such that
Bob can perfectly read the message, i.e., with zero error. Thus,
we can conclude that the zero-error quantum reading capacity
of BX is bounded from below by 1

2 (one bit per two channel
uses).

Closely following the arguments of [13, Section 4], we can
show that non-adaptive strategies can never realize perfect
discrimination of the sequences Mxn

B �n→Bn and Myn

B �n→Bn , for
any finite number n of channel uses if xn �= yn . Equivalently,
for xn �= yn

	Mxn

B �n→Bn − Myn

B �n→Bn 	� < 2 (VII.7)

for all n ∈ N, where 	 · 	� is the diamond norm (defined
in [13, Equation 1]). Thus, the zero-error non-adaptive quan-
tum reading capacity of BX is equal to zero.

To prove the above claim, we proceed with a proof by
contradiction along the lines of that given in [13, Section 4].
We need to show that for any finite n ∈ N, if xn �= yn , then
there does not exist any state σR B �n such that the two sequences
Mxn

B �n→Bn and Myn

B �n→Bn can be perfectly discriminated. Note
that perfect discrimination is possible if and only if there exists
a state σR B �n such that

Tr
{
Mxn

B �n→Bn (σR B �n )Myn

B �n→Bn (σR B �n )
}

= 0, (VII.8)

which is the same as the condition

Mxn

B �n→Bn (σR B �n )Myn

B �n→Bn (σR B �n ) = 0, (VII.9)

and in turn the same as

Tr

{√
Mxn

B �n→Bn (σR B �n )
√
Myn

B �n→Bn (σR B �n )

}
= 0. (VII.10)

Let us suppose that there exists a state σR B �n such that
(VII.8) holds. The data processing inequality for the quantity
above [69], [70] then implies that (VII.8) holds for some
pure state ψR B �n . Then, by carefully following the steps
from [13, Section 4], (VII.8) implies that for any set of com-
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plex coefficients {αx,y
j,k ∈ C : 1 ≤ j, k ≤ 5, x, y ∈ X }

�ψ|R B �n
[

IR ⊗
∑

1≤ j,k≤5 : i∈[n]
α

x1,y1
j1,k1

· · · αxn,yn
jn,kn

(
B �y1

j1

)† ×

B �x1
k1

⊗ · · · ⊗
(

B �yn
jn

)†
B �xn

kn

]
|ψ�R B �n = 0. (VII.11)

Let us choose the coefficients {αx,y
j,k ∈ C : 1 ≤ j, k ≤ 5, x, y ∈

X } as follows:
α

x,y
1,1 = α

x,y
2,2 = √

2, (VII.12)

α
x,y
3,5 = α

x,y
4,3 = 1, (VII.13)

α
x,y
4,4 = −2

√
2, (VII.14)

otherwise αx,y
j,k = 0, (VII.15)

for x �= y and α
x,y
j,k = δ j,k for x = y, where, if j = k

then δ j,k = 1, else δ j,k = 0. For the above choice of the
coefficients, it follows that

IR ⊗
∑

1≤ j,k≤5 : i∈[n]
α

x1,y1
j1,k1

· · · αxn ,yn
jn,kn

(
Ay1

j1

)† ×

Ax1
k1

⊗ · · · ⊗
(

Ayn
jn

)†
Axn

kn

= IR ⊗ Px1,y1 ⊗ · · · ⊗ Pxn ,yn (VII.16)

where for i ∈ [n]
Pxi ,yi =

{
P > 0, xi �= yi

I > 0, otherwise,
(VII.17)

and P = |00��00|+ |01��01|+ |11��11|+ |1−��1 −|. Observe
that the operator IR ⊗ Px1,y1 ⊗ · · · ⊗ Pxn ,yn is positive
definite. This means that there cannot exist any state that
satisfies (VII.11), and as a consequence (VII.8), and this
concludes the proof.

From the above discussion, we conclude that the zero-error
quantum reading capacity of the memory cell BX is bounded
from below by 1

2 whereas the zero-error non-adaptive quantum
reading capacity is equal to zero.

VIII. CONCLUSION

In this paper, we have provided the most general and natural
definitions for quantum reading protocols and quantum read-
ing capacities. We have introduced environment-parametrized
memory cells for quantum reading, which are sets of quan-
tum channels obeying certain symmetries. We have pro-
vided upper bounds on the quantum reading capacity and
the non-adaptive quantum reading capacity of an arbi-
trary memory cell. We have also provided strong converse
and second-order bounds on quantum reading capacities of
environment-parametrized memory cells. We have calculated
quantum reading capacities for a thermal memory cell, a qudit
erasure memory cell, and a qudit depolarizing memory cell.
Finally, we have shown the advantage of an adaptive strategy
over a non-adaptive strategy in the context of zero-error
quantum reading capacity of a memory cell.

We note that it is possible to use the methods developed here
to obtain bounds on the quantum reading capacities of memory
cells based on amplifying bosonic channels, in the same spirit

as the results of a thermal memory cell (the argument follows
from [32]).

A natural question following from the developments in
this paper is whether there exists a memory cell for which
the quantum reading capacity is larger than what one could
achieve by using a non-adaptive strategy. As discussed above,
we have provided a positive answer to this question in the
setting of zero error. However, the question remains open for
the case of Shannon-theoretic capacity (i.e., with arbitrarily
small error). We suspect that this question will have a positive
answer, and we strongly suspect it will be the case in the set-
ting of non-asymptotic capacity, our latter suspicion being due
to the fact that feedback is known to help in non-asymptotic
settings for communication (see, e.g., [71]). We leave the
investigation of this question for future work.
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