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Abstract—Many embedded systems have evolved from simple
bare-metal control systems to highly complex network-connected
systems. These systems increasingly demand rich and feature-full
operating-systems (OS) functionalities. Furthermore, the network
connectedness offers attack vectors that require stronger security
designs. To that end, this paper defines a prototypical RTOS
API called Patina that provides services common in feature-
rich OSes (e.g., Linux) but absent in more trustworthy µ-kernel-
based systems. Examples of such services include communication
channels, timers, event management, and synchronization. Two
Patina implementations are presented, one on Composite and
the other on seL4, each of which is designed based on the
Principle of Least Privilege (PoLP) to increase system security.
This paper describes how each of these µ-kernels affect the PoLP-
based design, as well as discusses security and performance
tradeoffs in the two implementations. Results of comprehensive
evaluations demonstrate that the performance of the PoLP-
based implementation of Patina offers comparable or superior
performance to Linux, while offering heightened isolation.

I. INTRODUCTION

Embedded systems must manage the competing forces of

increasing workload complexity such as autonomous driving,

and the need for strong security due to the criticality of their

functionality. To enable their rich functionality, such systems

are increasingly network connected (e.g., (I)IoT), must handle

diverse input sources (e.g., cameras, lidar, sensors), and must

carry out nuanced control processing tasks. Further, many

services are increasingly being consolidated on a common

computing platform. While such systems offer the promise

of new technologies and features, their network exposure and

advanced software capabilities pose dangerous new attack vec-

tors for cyber criminals. Towards that end, it is imperative that

future embedded systems are built upon secure and trustworthy

OSes that can support demanding real-time workloads.

These workloads are increasingly being migrated from bare-

metal or embedded RTOS systems to more feature-full oper-

ating systems such as Linux. For example, SpaceX famously

controls many of their systems, such as the Falcon rocket and

Dragon capsule, with Linux with the PREEMPT_RT patch [1].

However, large complex monolithic operating systems are
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also subject to more vulnerabilities – borne out by their

constant stream of CVEs [2] – given their massive size and

complexity. For systems that control the physical environment,

such compromises can lead to damage or human harm.

An important security design goal is the Principle of Least

Privilege (PoLP) in which “Every program and every user of

the system should operate using the least set of privileges

necessary to complete the job” [3]. A consequence of this

principle is that the scope of any compromise is restricted only

to the small set of accessible resources from the compromised

functionality. It is often paired with a focus on software

simplicity (economy of mechanism) to provide software that

is more easily certified and resilient to attack. Toward these

goals, µ-kernel-based OSes have limited functionality, and

implement higher-level features as isolated, user-level services.

As such, µ-kernels enable highly trustworthy designs, and

seL4 demonstrates this as the first formally verified OS [4].

However, given the minimalist µ-kernel architecture, com-

mon services must be implemented in userspace. In practice,

it is common for µ-kernels to be employed as a separation

kernel, with most applications executing in virtual machines.

Real-time and embedded applications often avoid complex

APIs such as POSIX, but require a basic interface including

threads, message passing, timer-based activation, and synchro-

nization. These benefit from a trustworthy, simple interface and

implementation, rather than running in a complex VM.

This paper investigates RTOS abstraction layers on top

of µ-kernels that are designed to enforce PoLP within the

abstraction layer to strengthen system security. We call our

RTOS API Patina1, and it is designed to be a prototypical

RTOS API. We designed a new small and simple µ-kernel-

agnostic API that could be efficiently implemented on a variety

of µ-kernels. In comparison, prior OS APIs are either (i)

incredibly low level, forcing developers to deal with undue

complexity (e.g., raw SeL4 or Composite), (ii) bloated and

complex (e.g., POSIX), or (iii) are designed for a single shared

address space (e.g., FreeRTOS). In the remainder of this paper,

we refer to an implementation of this API as a Patina.

A naı̈ve approach to RTOS-API implementation on modern

µ-kernels is to place all RTOS services in a single protection

domain and use IPC-based service invocations. However,

in this design a fault or compromise in any service (e.g.,

communication) could impact all services and/or applications.

Instead, in this paper we focus on RTOS-API implementations
1A patina is a thin layer on top of a surface that is often protective.



(specifically Patina implementations) that separate system

functionality into separate, isolated user-level services, while

focusing on simplicity of implementation. As such, our focus

is enabling more fine-grained granularity of resource access to

RTOS services, thus constraining the impact of any failures.

The core scientific question is if a PoLP-optimized RTOS can

provide real-time, predictable performance, and common-case

performance competitive with existing systems. Significant re-

sults have laid the groundwork for a PoLP RTOS: (1) Mehnert

[5] showed that user-level, isolated system services can pro-

vide response times on the order of kernel-resident logic, and

(2) Slite [6] demonstrates that user-level scheduling can have

similar or better performance to kernel-resident scheduling.

This paper seeks to answer if an RTOS consisting of many

higher-level system services can maintain strong predictability,

while also achieving sufficient average performance. Note that

such a PoLP-driven RTOS can co-exist with virtual machines

to provide legacy execution environments.

To demonstrate both the feasibility of developing PoLP-API

implementations, as well as to compare and contrast design

methodologies, we implemented PoLP-focused Patinas on

two different µ-kernels, Composite and seL4. These different

µ-kernels have differing design philosophies and mechanisms,

which has yielded different Patina designs. Based upon these

two independently developed Patinas, we discuss (i) design

commonalities, (ii) performance and security considerations of

different design decisions and (iii) lessons learned developing

PoLP-focused services on differing µ-kernel architectures.

After describing relevant security challenges (§ II) and back-

ground (§ III), this paper makes the following contributions.

• We describe two independently developed Patinas on two

different µ-kernels, seL4 and Composite. (§ IV)

• We discuss the design and implementation of Patina on

each, guided by the principal of least privilege. (§ IV)

• We evaluate both Patinas with respect to their predictabil-

ity and performance, and find that they provide significant

quantitative benefits in addition to stronger isolation. (§ V)

• We discuss different Patina design decisions in each im-

plementation based on security/performance tradeoffs, as

well as the underlying µ-kernel design. (§ VI)

II. SECURITY CHALLENGES

The PoLP is an important security-design principle. How-

ever, it does not protect against all threats. It is therefore

important to consider the attack vectors and threat models that

the PoLP is designed to address within our OS Patina.

When applying the PoLP within an OS, the privileges and

capabilities of processes and system services are reduced. This

limits what an attacker can do if they are able to compromise

a system process. For example, a compromise of a vehicle

infotainment system should not enable the attacker to hijack

control of the steering of the vehicle.

We therefore consider a threat model in which there is

a potentially malicious user-space process. Such a malicious

process may seek to exfiltrate data, corrupt system integrity,

achieve adversarial remote control, etc. To some degree, a

threat model based on malicious applications may appear to be

admitting defeat at the outset. Clearly, a compromised applica-

tion can adversely impact the system by refusing to perform its

role, e.g., by ignoring service requests or consuming resources

(e.g., CPU cycles) without generating useful output. However,

stopping possible compromise across all system services is an

effectively impossible endeavor. Even formal verification relies

on assumptions that have been shown able to be violated in

the real-world. For example, the Spectre [7] and Rowham-

mer [8] attacks demonstrated the danger of assuming that

hardware behaves according to its specification. In addition,

attacks based on impersonating legitimate operators (e.g., the

credential theft [9]) will not be stopped by bug-free code, since

attackers are operating outside the verification boundary.

This threat model of assuming that a process is potentially

malicious is also supported by a number of different attack

vectors. While there are myriad ways in which an attacker

could compromise a process on the system, they fall into

two broad categories: (i) malicious input, which exploits

vulnerabilities in code, often to hijack control of the victim

process; and (ii) malicious code, such as software installed on

the system that was developed by an untrusted party or subject

to a software supply-chain threat.2 These attack classes demon-

strate the relevance of this threat model, though the specific

mechanism employed by an attacker is inconsequential to our

model. While there are defenses that seek to mitigate some

of these attack techniques, they are not perfect, and attackers

constantly evolve to bypass new and stronger defenses. Such

defenses are complementary to PoLP-based mechanisms.

Additionally, we consider the µ-kernel itself to be benign

and not subject to compromise. µ-kernels are minimal, highly

trusted, and in the case of seL4, formally verified [4]. In our

OS Patinas, there are user-mode services providing system

functionality not implemented by the µ-kernel itself. These

services are considered to be potentially buggy, and therefore

subject to compromise, but benign.

With this threat model and motivation, there are several key

security and performance challenges associated with develop-

ing a PoLP-optimized embedded system:

• Predictability. Least-privilege enforcement must not lead

to temporal violations of real-time requirements. Any least-

privilege policy must result in predictable execution regard-

less of the complexity or nuance of that policy.

• Minimality. Embedded systems are resource-constrained

and lack a substantial margin for the addition of new

capabilities. Least-privilege enforcement must minimize

its impact on legitimate system operations, which often

constitute the vast majority of normal execution.

• Granularity. Privilege, especially with respect to resource

access and shared data structures (e.g., for synchronization)

must be as fine-grained as possible in order to ensure

that any violation of intended application semantics will

be detected and prohibited. However, finer granularities of

enforcement may also make enforcement more intrusive
2Hardware-based threats, such as Rowhammer [8], may also enable process

exploitation, but we consider such threats outside the scope of this work.



(reducing minimality) or require complex checks and meta-

data operations (reducing predictability).

• Recovery. Small components offer the potential to recover

faulty or malicious processes efficiently [10]. However, the

system must be designed to enable such recovery without

otherwise compromising the security of the system.

III. µ-KERNEL BACKGROUND & RELATED WORK

Capability-based models are a strong fit for enforcing PoLP

as they support fine-grained and efficient access control for

kernel resources. Figure 1 depicts different OS structures

among a self-contained RTOS with monolithic support for core

services (a), and two instances of modern µ-kernels (b, c) that

decentralize services while applying the PoLP. Note the focus

in (b) and (c) not only on inter-application isolation, but also

on the PoLP-focused isolation between system services.

A. Background and µ-Kernel Foundations

Capability-based kernels. Modern µ-kernels, inspired by

Eros [11], use capability-based addressing to access all kernel

resources [12]. A capability is an unforgeable token denoting a

principal’s access to a resource. They enable delegating access

to the resource by copying the capability to another principal,

and revoking capabilities previously delegated, thus removing

access to the corresponding kernel resource.

We describe principals that have capabilities as protection

domains that include a virtual address space (provided by page

tables) and the principal’s capability tables. Threads executing

in a protection domain are confined to the resource accesses

allowed by the protection domain. Inter-Process Communi-

cation (IPC) provides inter-protection-domain coordination,

enabling client requests to be handled by logic in a different

protection domain than the client, thus with different privi-

leges. Capability-based access control enables a composable,

efficient means of manipulating the access to kernel resources

and the construction of protection domains. IPC enables the

separation of concerns since protection domains specialize to

provide mediated access to services.

Kernel minimality. The guiding principle for µ-kernels [13]

is minimality. “A concept is tolerated inside the µ-kernel only

if moving it outside the kernel [...] would prevent the imple-

mentation of the system’s required functionality.” µ-kernels

implement device drivers in user level, which requires trans-

lating interrupts into kernel-instigated IPC. System policies

for networking, memory management, and time management

are implemented in user-level protection domains. Of note,

scheduling policy and blocking semantics have traditionally

been bound to the kernel, even in L4 variants.

Exporting policies to user level has a number of benefits. It

enables configurability of core system policies, minimizes the

size of the kernel that must be trusted by all system execution,

and enables the separation of concerns for different policies,

each implemented in different protection domains. In doing

so, it encourages the application of the PoLP.

The removal of memory management (esp. allocation) from

the kernel is of particular note. The user-level management of

kernel memory [14] is safely enabled with kernel-provided

memory retyping facilities. Memory typed as frames are

otherwise unusable, but are tracked using capabilities. They

can be retyped into various forms of kernel memory or

retyped into user-accessible virtual memory. This is safe as

protection domains can use only capability-accessible memory,

and memory can only have a single type (thus protecting kernel

data structures from user-level access).

Benefits of isolation. The errant effects of a faulty or compro-

mised service in monolithic RTOSes (Figure 1(a)) can impact

all applications. In contrast, both Patina implementations

move system services into separate protection domains. A

failure in one is constrained to its logic, data structures, and

any service requests. For example, a failure in the channel

service, being used to supply navigational commands from a

radio to high-level drone software, will not directly impact

a critical safety-of-flight device driver that keeps the drone

flying. Though beyond the scope of this research, such recov-

ery or reset mechanisms (e.g., using exception models [15],

interface-driven recovery [10], or redundant execution [16])

are fundamentally dependent on isolation.

B. Related work

Predictable µ-kernel implementation. µ-kernels are a natural

choice for real-time and embedded systems as the increased

isolation they provide is an asset for high-confidence com-

putation. Previous work [5] demonstrates that the latency of

translating interrupts into user level IPC is not prohibitive

while [17] demonstrates that interrupt-scheduling policy can

also be provided at user level. Composite has demonstrated

the ability to scale predictability guarantees up to multi-

core systems [18]. Blackham [19] demonstrates the automated

WCET calculation of a µ-kernel. Unfortunately, prior research

has not demonstrated that the end-to-end predictability of a

multi-protection-domain RTOS is possible and reasonable.

Component-based Environments. The SawMill multi-server

OS [20] built on L4, and the FLUX OSKit [21] decompose

existing monolithic systems into their constituent parts, and

execute them in (potentially) isolated protection domains.

Similarly, Composite is a component-based OS capable

of supporting webserver functionality in around 25 compo-

nents [22], though without the focus on RTOS functionality or

predictability. Camkes [23] is a component-based development

environment for seL4 used to construct the initial set of

protection domains, kernel resources, and connections among

them. OS personalities in Workplace OS [24], GrailOS [25],

and Exokernel [26] are custom implementations of existing OS

abstractions (e.g., POSIX, Win32). In this work, we define

a new OS abstraction, Patina, and implement two Patina

personalities on different µ-kernels. Our focus is on the design

of these implementations and how applying PoLP design

principles provides isolation and impacts performance.

L4Re [27] and Nova [28] are runtime environments with

a strong focus on providing facilities for multiplexing I/O

and memory across virtual machines while providing per-VM





TABLE I: Patina API

API area API Functions Description

Process
and Thread
Management

process_create(), process_exit(), process_get_exit_status()

thread_create(), thread_set_params(), thread_kill(),

thread_exit(), thread_get_exit_status()

Create processes and threads, terminate
them, configure them, and retrieve exit sta-
tus codes

Channels channel_create(), channel_destroy(), channel_get_recv(),

channel_get_send(), channel_retrieve_recv(),

channel_retrieve_send(), channel_close(), channel_send(),

channel_recv()

Create channels that can be either “named”
or “unnamed”. These channels have dedi-
cated send and receive sides that must be
explicitly opened or retrieved. These sides,
then, allow sending or receiving

Timers
and Time

timer_precision(), timer_create(), timer_free(),

timer_start_oneshot(), timer_start_periodic(),

timer_cancel()

time_current(), time_create(), time_add(), time_sub()

Oneshot and periodic timers that can be
canceled. API also exposes the current time
and provides functions to manipulate time
values

Synchronization semaphore_create(), semaphore_destroy(), semaphore_take(),

semaphore_try_take(), semaphore_give()

mutex_create(), mutex_destroy(), mutex_lock(),

mutex_try_lock(), mutex_unlock()

Standard semaphores and mutexes
with take/lock, try take/try lock, and
give/unlock operations. Mutexes support
priority inheritance and (optionally)
recursive locking

Event Handling event_create(), event_delete(), event_add(),

event_remove(), event_wait(), event_poll()

Create/delete event handlers, add or remove
event sources, and wait or poll for events.
Event sources include timers (fired), chan-
nels (ready to receive, ready to send), pro-
cesses (exited), and others

Memory
Management

mem_alloc_pages(), mem_free_pages(),

mem_shared_create_named(), mem_shared_destroy_named(),

mem_shared_map_named(), mem_shared_create_anon(),

mem_shared_destroy_anon(), mem_shared_map_anon()

Allocate and release pages of memory as
well as create both “named” and “anony-
mous” shared memory regions and map
them into processes

I/O io_print() Output to a shared UART or console

execution properties as it would if it were executing in only

a single component. This has a very important side effect: a

scheduler component must define the blocking and synchro-

nization policies. The scheduler’s data-structures, logic, and

policy define CPU allocation and synchronization.

For synchronous IPC, including thread-migration-based in-

vocations, C’s execution is tied to S’s as C won’t reactivate

until S returns. Thread migration ensures that schedulers

maintain a consistent scheduling context (priority, budget, etc.)

while executing across the system. However, this poses a chal-

lenge: shared-resource access within S must be synchronized

between client requests (as in Figure 2(b)). As a result, the

blocking API that Composite schedulers export is designed

to integrate predictable resource-sharing protocols by default.

The combination of thread-migration-based IPC and efficient,

predictable synchronization enables local reasoning about

full-system predictability. Patina components implement their

functionality following traditional real-time system principles:

ensuring bounded execution, and sharing resources, without

explicit consideration of the composition of components.

seL4 Patina Design. We implement a Patina on top of the

seL4 kernel to take advantage of the integrity and confidential-

ity guarantees seL4 provides. In particular, seL4’s verification

ensures that data can only be read or written with permission

and that the kernel implements its specification correctly [4],

[31]–[34]. These powerful guarantees eliminate entire classes

of bugs including memory-safety issues, undefined behavior,

missing permissions checks, and even logic bugs.

Since seL4 provides only a complex API consisting of iso-

lation, scheduling, and communication primitives, our Patina

implements a set of user-space services and abstractions to

simplify key operations. Each of these services consists of a

thread in its own protection domain, including both capabil-

ities and virtual memory. Note that protection domains are

fundamentally processes in our seL4 Patina. Two services

are central to the entire rest of the system: the loader service

and the capability service. The loader service handles the

creation and management of processes and threads, including

transparently constructing and configuring capability tables,

page tables, and thread objects and providing the ability to load

a process from an ELF file. The capability service manages

unallocated memory for other parts of the system, holding

all untyped memory in the system, and allocating capabilities

from this memory for the rest of the system. The rest of the

Patina is implemented as a number of services, or dedicated

processes, that build on these two core services, each providing

a different aspect of the API, like events, timers, or channels.

Unlike Composite, each thread in seL4 is bound to its

protection domain and communication is performed via IPC,

where the sending thread is blocked and the receiving thread

made runnable. In particular, seL4 IPC is rendezvous-style

IPC and thus synchronous and blocking. Additionally, the

scheduling of threads and control over blocking is baked into

the seL4 kernel and not configurable by user space (as shown

in Figure 1c). While this makes reasoning about full-system

predictability more complex, the seL4 kernel is designed with

a fixed-priority scheduler to enable real-time performance.

B. Patina API Overview

In this section we present an overview of our Patina API,

summarized in Table I, emphasizing its expressiveness, while

also touching on its implementation in Composite and seL4.



Timers. Timers enable time-triggered activations and can be

one-shot or periodic. Timer activation occurs in the form of an

event that will be delivered through the event-handling API.

In Composite, user-level schedulers have the ability to

program one-shot timers (within their TCap budget [35]),

thus allowing the scheduler to implement timers and control

preemption. The timer manager tracks Patina software timers,

and triggers expired timer events via the event component. In

seL4, we implement a timer service that uses a dedicated hard-

ware timer to generate interrupts. This timer service manages

a timer wheel to track software timers and communicates with

the event service to generate timer events.

Channels. Channels provide buffered data transfer of mes-

sages between endpoints that may be in separate processes.

Channels may be either named, allowing them to be addressed

globally, or unnamed, requiring them to be shared explicitly.

By default, read and write operations are non-blocking, but

blocking reads and writes may be optionally implemented.

This default behavior avoids inter-application synchronization

and encourages blocking awaiting multiple notifications.

In Composite, channels are implemented using a shared-

memory wait-free message queue to avoid blocking syn-

chronization. The channel manager sets up and tears down

these channels while a library provides the message-queue

implementation. In seL4, channels exist in a dedicated channel

service and all read/write operations are performed as IPC

messages to this channel service.

Event Handling. The Patina event-handling API enables a

caller to be edge-notified of one or more events in either a

blocking or non-blocking manner. Events are generated by

other Patina resources in response to events (e.g., a timer

firing). By adding one or more of these resources to an event

handler, a thread can wait for events on those resources, much

like the select() and epoll() system calls.

In Composite, a dedicated event-manager component hands

event-notification endpoints to event listeners and event-

triggering endpoints to event sources. The event manager

ensures event ordering. In seL4, a dedicated event service

hands notification endpoints to event listeners. Event sources

perform an IPC to this service to trigger an event.

Synchronization. Patina provides synchronization in the form

of both mutexes and semaphores. For predictability, Patina

mutexes support priority inheritance (PI) [36].

As Patina currently focuses on single-core systems,3 both

Patinas provide blocking-synchronization variants, rather than

spin-based. Composite exposes a scheduler-provided abstrac-

tion for blocking that decouples fast-path (uncontended lock)

access, from blocking, similar to Futexes [37], [38] (see

synchronization in both an application library and service in

Figure 1(b)). The seL4 Patina uses a separate synchronization

server that leverages the client’s blocking IPC to halt the thread

requesting a lock, while replying only to the highest-priority

blocked thread to allocate the lock. We discuss synchronization

in the seL4 Patina in greater detail in §IV-D.

3Mainline seL4 does not include verified multicore support.

Thread Management. The Patina execution abstraction is

threads, and conventional (pthread-like) APIs for setting

parameters, exiting, and joining on them are supported. In our

Composite Patina, this is implemented in the scheduler while

our seL4 Patina implements it in the loader service.

Memory Management. Memory can be dynamically allo-

cated and released and shared memory is supported. Shared

memory may be either named, allowing it to be addressed

globally, or unnamed, requiring it to be explicitly shared.

In Composite, static memory (data and bss, read-only

data, code, etc.) is provided at boot time by the constructor

component, which is responsible for creating not only ap-

plication components, but also the service components, and

does not expose APIs for application interaction. After boot,

the capability manager is in charge of providing dynamic

allocations, and exposes memory-management APIs, including

those for shared memory. In seL4, the kernel sets up memory

for the initial loader and capability services. All dynamic

memory after that point is allocated by the loader service,

in collaboration with the capability service. In particular, the

loader service exposes memory-management APIs, including

those for shared memory, to applications.

C. PoLP Design in the Composite Patina

Here we explain the primary mechanisms by which we

support and enforce least privilege in the Composite Patina,

while providing efficient and predictable functionality.

Authority decentralization in the Composite Patina. Au-

thority is distributed throughout the components of the system

as shown in Figure 1(b) by applying the separation of concerns

to break the system software into pluggable, mutually isolated

components, each responsible for different resources.

The Composite Patina adds a service component for each

abstract resource: a channel manager, event manager, timer

manager, and scheduler. Service components that manage

kernel resources have access only to the subset of appro-

priate resources. These include the scheduler (that dispatches

threads), the capability manager (that defines delegation and

revocation policies), and the constructor (that creates/loads

the graph of components). This has the benefit that key

components relied on by many others focus on simplicity.

The PoLP guides the design by enabling only the scheduler

to dispatch threads, only the constructor to have access to

the static memory allocations of each component (code and

data), and only the capability manager to have access to

untyped memory for dynamic allocation to other components.

Figure 1(b) shows how capability-management policy is dis-

tributed between (1) process creation in the constructor, and

(2) dynamic management in the capability manager.

Components cannot alter their capability access and instead

rely on the capability manager to pass resources and revoke

access to them. In contrast to L4-style µ-kernels that define

capability delegation and revocation policies in the kernel, the

capability manager defines the dynamic capability delegation

and revocation policies for kernel resources.



The constructor is the only component created by the kernel

at boot-up, and it is responsible for loading all other compo-

nents. It starts with access to all system kernel resources (i.e.,

all memory) and distributes them among components based on

a static specification of components and their dependencies.

Importantly, the constructor creates the initial component

images (including all non-dynamic memory) and the initial set

of capabilities. Thus, only the constructor has access to static

component memory, decoupling this static privilege from the

dynamic memory and resource management in the capability

manager. The constructor also creates the synchronous invoca-

tion capabilities that enable invocations between components.

A side effect of this is that the inter-component control flow

(i.e., the control flow between components) is constrained

solely by the constructor, providing a form of inter-component

Control Flow Integrity [39] (CFI). To strengthen this CFI, after

initialization of the capability manager, the constructor is not

executed again (aside from for faults).

System simplification via custom resource management.

As Composite components can be tailored to a specific set

of requirements, we focus on economy of mechanism to

implement Patina. Though §?? discusses this quantitatively

for all services, below we discuss three examples.

First, blockpoints are the only blocking abstraction in Com-

posite and are provided by the scheduler. A blockpoint is

similar to a condition variable in that it enables threads to

block or to wake up a single thread or all threads blocked on

a blockpoint. However, unlike condition variables, they do not

require mutexes, and are instead intended to work with lock-

free data structures. Indeed, the implementations of mutexes,

semaphores, and channels require blocking synchronization.

Each of the data structures that back these abstractions use

atomic instructions to coordinate (e.g., to set the owner of

a mutex with a compare-and-swap instruction) and integrate

with blockpoints as follows:

1) repetitively execute the following,

2) take a checkpoint of the abstraction’s blockpoint,

3) update the data structure atomically, and if we do not need

to block (e.g., we take the critical section or can dequeue

from a channel), break out of step 1’s loop,4

4) otherwise block on the abstraction’s blockpoint.

Another thread can wakeup others blocking on the blockpoint

by later triggering the blockpoint. The “lost wakeup” race

condition motivated the creation of blockpoints. If preemptions

lead to the trigger happening between steps 3 and 4, we have

a lost wakeup, and the blocking thread might never awake.

Blockpoints avoid this race condition by separately track-

ing a blockpoint epoch in the library, and in the scheduler.

Operations performed on the blockpoint increment the epoch,

thus the scheduler can detect lost wakeups as the epoch passed

with the operation will be less than that in the scheduler.

4Note that, despite the “retry loop,” a thread will execute the retry loop
at most once per higher-priority thread that changes the state of the backing
resource. Thus, to ensure predictability, the small overhead of a retry can be
accounted for similar to context switch costs in a timing analysis.

Blockpoints also express dependencies between threads.

When one thread blocks, it can express that it is waiting for

(dependent on) another (e.g., a mutex holder). This enables

the scheduler to perform PI properly.

The blockpoint API aims to solve a similar problem to that

solved by Linux Futexes [37], [38]: providing fast, library-

based coordination when blocking is not necessary and a

means to avoid lost wakeups when blocking is necessary.

Blockpoints do so with significantly less complexity by iden-

tifying each blockpoint with an opaque id rather than a

physical address and not requiring that the scheduler access the

blockpoint memory. The result of this intentional design is that

the scheduler’s blockpoint implementation is only 103 C Lines

of Code (LoC), with the client library being another 105 LoC,

while futex.{h,c} are over 1850 LoC and intertwined with

the virtual memory subsystem. Customizing blockpoints to the

requirements of Patina avoids the PoLP-violating intertwining

of virtual memory and scheduling while maintaining strong

average-case performance.

Second, the capability manager defines resource-access del-

egation and revocation enabling it to be vastly simplified by

designing explicitly for the limited sharing relationship of

Patina. Traditional (in-kernel delegation/derivation) structures

track all delegations (and retypes) in a tree, and recursively

remove a subtree of delegations on revocation. Channels use

shared memory between two applications, which requires

page allocation and two delegations. The Composite Patina

specializes the data-structure that tracks resource delegations

by statically allocating it based on the maximum number of

allowed delegations. The simplicity of this implementation –

the capability manager’s logic is less than 700 LoC – avoids

dynamic memory allocation, has only bounded loops, and

enables the use of a lock-free structure to avoid mutex-based

synchronization. This is important as the very lowest-level

components cannot leverage the services of the scheduler.

Third, channels in the Composite Patina use memory

shared directly between applications. We arrived at this design

after assessing three different channel implementations. A de-

sign constraint is that Composite IPC passes only a register-

set between components with a synchronous invocation. The

first design passes all channel data to the channel manager

using many invocations, each passing a few words of data.

This design is simple and does not require shared memory,

but is slow due to the many invocations. The second design

uses shared memory between client channel libraries and the

channel manager to pass data. This design trades simplicity

for performance and centers trust in the channel manager.

Our final design uses direct shared memory for passing data

between applications. This has the benefit of removing the

channel manager from fast-path operations. Toward the PoLP,

this design vastly simplifies the manager as it provides only

channel setup and tear-down. However, it does expose appli-

cations to mutually shared memory, which is a wide interface

that requires a complex functional correctness analysis.

The shared memory is used only for a bounded, static, wait-

free ring buffer and uses no pointers. All library accesses



to the ring buffer are explicitly bounds-checked to prevent

errant accesses, and data is copied in and out of the buffer so,

outside of the channel code, data access is only to non-shared

memory. However, malicious applications can directly modify

any buffer entry along with the head and tail offsets. Note

that maliciously modifying data in the buffer is in many cases

equivalent to normal API operations (e.g., sending corrupted

data). There is one exception: a compromised application

can corrupt messages in the channel that were sent before

compromise but have not yet been received. The Composite

Patina accepts this risk as receivers must sanitize and validate

channel messages they receive regardless, and thus must

handle a broader range of corrupted messages.

As recoverability of the system in the face of adversaries is

a core design goal of Patina, all manager components track

allocations made to other components. A fault or compromise

in an application requires that each service be notified of the

failure, at which point it can reclaim all associated resources.

Predictability in the Composite Patina. The Composite

Patina is focused both on predictability and on minimizing

task interference. Thread-migration-based IPC is the enabling

feature. Figure 2(b) demonstrates that invocations to a service

component S are conducted in the same scheduling context as

executed in C. Thus, all execution in S is prioritized to that of

the client thread, but must consider concurrent client requests.

The Composite Patina uses two techniques to avoid this

interference: (1) most service components have simple data

structures in which new abstract resources (e.g., channels and

events) are created, but then not modified (or modified using

only wait-free structures) using the techniques in parsec [40],

[41], thus avoiding the need for mutual exclusion, and (2) for

the timer and scheduler services that require more complex

structures (runqueues, and timeout heaps), we use predictable

mutexes with PI provided by efficient, blockpoint-based locks.

All paths in all services are carefully engineered to be bounded

(no unbounded loops, no recursion) to support WCET reason-

ing. We also avoid all nested locking in the system components

so a PI-aware timing analysis is straightforward.

D. PoLP Design in the seL4 Patina

The seL4 Patina also seeks to apply the PoLP to its design,

although how that occurs in practice differs significantly from

the Composite Patina. In this section we examine the primary

design decisions for PoLP in our seL4 Patina.

Authority decentralization in the seL4 Patina. Authority in

the seL4 Patina is distributed throughout the components of

the system as shown in Figure 1c by applying the separation of

concerns to break the system into separate protection domains

(i.e., processes) each responsible for different resources. Much

like the Composite Patina, there is one service process per

Patina resource: a channel service, event service, timer ser-

vice, and a synchronization service, as well as a loader service,

which is responsible for processes, threads, and memory.

Our seL4 Patina also decentralizes authority by introducing

self-contained processes, a novel feature found in no other

system we are aware of. To be self-contained means that no
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Fig. 3: Self-Contained Processes in the seL4 Patina

other part of the system has access to a process’s capabilities,

memory, or identity, including the memory-management code,

process-management code, and loader. Other parts of the sys-

tem can only access this information if the process explicitly

requests some operation be performed. This design minimizes

privilege by ensuring that no single element of the system has

access to all memory or all capability tables or all threads in

the system (outside of the formally verified seL4 kernel).

Self-contained processes are valuable for high-reliability

systems because they reduce the trusted computing base (TCB)

once a process is running and help ensure the ability to

recover from failures. In particular, they ensure that even the

component that created a process, initialized its address space,

or provided its capabilities cannot subsequently modify those

capabilities. Thus, once a self-contained process is running

and has allocated sufficient memory, it can continue running

without needing to place future trust in other elements of the

system. This is in contrast to monolithic kernels (e.g., Linux)

in which the kernel still retains access to all memory and can

arbitrarily remap or unmap memory out from under a process.

The development of self-contained processes was possible

primarily because seL4 does not have a process abstraction,

but only threads, address spaces, and capability spaces. As

a result, we were free to design a process abstraction from

scratch. This abstraction consists of one or more threads,

a virtual address space, a capability space, metadata, and

identity, as depicted in Figure 3. The core of a process is its

capability space, which both contains a capability to itself and

contains capabilities for all the other elements of the process.

It is by ensuring that the only capability to this capability

space is in itself that the seL4 Patina ensures self-contained

processes. Many capabilities are required for virtual memory,

including page-frame capabilities, page-table capabilities, and

page-directory capabilities, as well as capability-table space to

store all of these capabilities. This is complicated by the fact

that seL4 capabilities allow the owner to modify an object but

not query it,5 necessitating metadata, stored on more pages, to

determine where page capabilities are mapped, etc. Identity

is achieved by badging all IPC endpoints in the process’s

capability space – the only way it can communicate with the
5This comes from the information flow guarantees of the seL4 kernel; the

ability to query configuration would expose a trivial storage side channel [32].



outside world – such that the process’s process ID will be

unforgeably conveyed with any IPC messages.

Restoring minimal control via escrow processes. While self-

contained processes have many benefits, they have one major

downside: they allow malicious processes the same strong

isolation guarantees afforded other processes. In particular, a

self-contained process can resist attempts to terminate it, can

prevent its resources from being reclaimed, and can modify

its capability space or metadata and then request operations

requiring the seL4 Patina to parse these structures. Since

seL4 capabilities cannot be re-identified once moved, the

seL4 Patina has a way to assert limited control over untrusted

processes that may be, or could become, malicious.

This limited control consists of two parts: (1) the ability

to force controlled termination of an untrusted process, and

(2) the ability to prevent untrusted processes from modifying

their capability space or metadata arbitrarily. Note that this

is much narrower than the modifications that can be made to

any process in traditional systems; in particular, memory maps

cannot be changed nor can capabilities be added or removed.

The seL4 Patina provides this control using escrow pro-

cesses. An escrow process is a trusted process whose sole role

is to manage the capability space (and all the capabilities and

metadata stored inside) of an untrusted process. In essence the

escrow process hold a process’s capability space “in escrow”

making any required modifications on behalf of the process

while ensuring that those modifications are done correctly and

providing a way to command the process. Note that there

is one escrow process for each untrusted process to avoid

centralizing these capabilities in a single service.

The escrow-process executable is part of the core of the

seL4 Patina and is a self-contained process itself. It is

designed to hold the capability space of a single untrusted

process and perform all legitimate modifications of that capa-

bility space on behalf of that process. As a result, requests to

other services that require a process’s capability space must

first be sent to the escrow process, to get the capability space,

and then sent on to the desired service. Examples of operations

requiring the capability space include: starting a new thread,

allocating memory pages, and creating an event handler.

Interface complexity. Because the threat model for Patina

includes malicious processes, as discussed in §II, the internal

interfaces between components are particularly important, as

they represent attack surface. A variety of different designs for

these interfaces are possible, with varying levels of complexity

and efficiency. However, a particularly important concern is

how well the interface maintains correct behavior in the face

of a malicious party. This is often tied to the complexity,

or wideness, of the interface: wide interfaces tend to have

shared state and implicit protocols about how to update that

state while narrow interfaces tend to have partitioned state and

explicit protocols about how to communicate state changes.

As an example, consider a correct process communicating

over a buffered message queue (e.g., a Patina channel) with

a compromised, malicious process. As discussed in § IV-C, a

shared memory implementation contains a wide interface with

a number of variables representing the state of the channel.

This state needs to be updated using an implicit protocol

that the adversary is free to ignore by, for example, placing

one message in the queue but claiming to have placed 100

messages in the queue. The code to check for and safely handle

these kinds of issues is complex and frequently incorrect,

leading to vulnerabilities. Our Composite Patina frequently

uses these wide, shared memory interfaces and then provides

extensive correctness analysis to ensure safety.

In contrast, our seL4 Patina relies on narrower interfaces

that can take advantage of the seL4 kernel’s formally verified

IPC path to ensure safety from malicious parties. In particular,

the seL4 kernel supports IPC messages up to about 480

bytes, by using a special memory page as an IPC buffer,

and this implementation is formally verified. For example,

in the seL4 Patina, channels are implemented by storing

the message queue in the channel service (inaccessible to

processes directly) and using seL4 IPC to communicate with

the channel service to send and receive messages. This places

the state in the channel service, keeps the data communicated

via IPC incredibly simple – operation type, channel id, and

message data – and maximally leverages the kernel’s formal

verification. On the other hand, it does introduce more over-

head – several additional data copies and two instead of one

IPC calls – compared to a shared memory approach. This kind

of architecture is also used for mutexes, event handling, etc.

Predictability in the seL4 Patina. The seL4 Patina also

places emphasis on predictability. However, its ability to

provide predictability and minimize interference among tasks

is constrained by the seL4 kernel, which is opinionated about

scheduling and blocking, defining a rigid policy in the kernel.

seL4 only provides a fixed-priority scheduler and provides

no mechanism to determine a thread’s current priority. Thus,

we statically prioritize services over user applications. The

service priorities are carefully chosen, with services that in-

teract with hardware the highest, followed by the event service,

loader, capability service, and the other Patina services.

Recent versions of seL4 [42], [43] support execution-time

budgets and the ability to donate part of a thread’s budget to

another thread. We did not use these extensions in our seL4

Patina, because without thread migration attaching a budget to

a service risks that service exceeding its budget early, starving

other higher-priority requests. Donating time from requestors

does not solve this problem, because there is not certainty that

a requestor’s time will go towards its own request.

We also explored the creation of a user-level scheduler, as

demonstrated in [44], that would manipulate thread priorities

to effectively control scheduling. Unfortunately, all designs we

were able to devise resulted in the centralization of all thread

capabilities and required the user-level scheduler to interpose

on nearly all system calls and service interactions, doubling

the amount of IPC and corresponding overhead.

Adding PI support for mutexes in the seL4 Patina syn-

chronization service was complicated. seL4 has notification

capabilities that appear to be well suited for synchronization,

with a wait operation that blocks a thread and a signal



operation to unblock a single waiting thread. Unfortunately,

the wait-queue design is FIFO, not priority based, and does not

support PI. As a result, we developed an alternative blocking

mechanism for mutexes that enables PI. This mechanism

leverages the IPC reply capability generated by a two-way IPC

call. Essentially, mutex lock and unlock operations become

IPC calls to the synchronization service, which does not reply

to the IPC, releasing the thread, until that thread owns the

mutex. To provide PI, a copy of each thread’s thread capability

must be supplied to the synchronization service prior to the

first lock operation by that thread. Then, when a higher-priority

thread blocks on a mutex, the service can increase the owning

thread’s priority temporarily using its thread capability.

V. EVALUATION

In this section, we evaluate both Patina implementations to

characterize their performance and predictability. In particular,

in our evaluation, we seek to: (1) assess the latency of

time-triggered activations using the Patina API for real-time

computation, (2) evaluate the performance and predictability

of Patina operations with functionality that spans multiple,

isolated services, and (3) use Linux with the PREEMPT_RT

patch as a baseline for a system with strong average-case

performance, and, in many domains, acceptable predictability.

These results should enable us to ascertain if systems designed

for the PoLP can achieve strong, predictable performance.

A. Methodology and Experimental Setup

For our evaluation, we use the popular Zynq-7000 XC7Z020

SoC, which includes a dual-core Arm Cortex-A9 processor

running at 667 MHz and a Xilinx FPGA. We use only a single

core for this evaluation, and do not use the FPGA at all. We

use gcc version 8.3.0 (Debian 8.3.0-2) for arm-linux-gnueabi-

gcc and evaluate against Linux kernel version 5.4.61-rt37. Our

seL4 Patina was built with rustc version nightly-2020-05-

31. All systems use the built-in UART to output results.

Unless otherwise noted, each result is computed from

10,000 test runs. In our seL4 Patina, the user-level timer

device backing the timer manager is disabled to avoid inter-

ference (on runs that do not use the timer), though the kernel’s

timer is not modified. In our Composite Patina and in Linux,

we avoid using timers, but do not disable the kernel timer, thus

timer interference is present in some results. We take many

samples so that the impact of this interference is minimized,

though the maximum measured readings likely include its

impact. We filter out the first sample on all systems.

B. Analysis

Table II summarizes our results, and Fig. 4 shows Cumu-

lative Distribution Functions (CDFs) for Patina operations:

mutex locking, timer expiration, and channel communication.

Core System Overheads. Each system exhibits core over-

heads for system operations such as thread context switches.

Additionally, IPC overhead in both µ-kernels is critical, as

Patina functionality is provided by services that are composed

using IPC. These overheads are important to understand the

overheads of different Patina functionalities.

Discussion. Both µ-kernels have IPC on the order of Linux

system calls (measured with close(999)), which demon-

strates a basic feasibility of a multi-process, PoLP-focused

system. Native seL4 round-trip IPC takes 660 cycles, so the

seL4 Patina which includes serialization and deserialization

adds only around 50% overhead. seL4’s thread switch latency

is quite low (almost an order of magnitude faster than Linux’s),

and has tight bounds. Composite IPC is faster than seL4’s,

but thread switches through the user-level scheduler incur

more overhead. Note that Slite [6] removes many of these

overheads by avoiding kernel interactions on thread switches,

but we have not ported it to this platform yet. Further points

of comparison are available through data gathered from other

common RTOSes, such as QNX [45].

We also provide extensive comparisons between Linux and

the two implementations of Patina in Table II. In particular,

we compare Linux against not only equivalent Patina oper-

ations, but also, in the top row of Table II, against the raw

µ-kernel performance for context switching and IPC. These

system outputs quantitatively demonstrate performance with

and without Patina support. As these metrics are the basic

building blocks for more complex system components, they

are fitting as core comparison values.

Event handling is a core operation in the Patina API.

To evaluate its performance, we add a debugging API to

allow applications to trigger events. We measure the latency

between this trigger and when the event-wait operation returns.

This gives us an indication of how much overhead the event

subsystem adds to the other measurements. There is no Linux

equivalent of this measurement, as there is no direct way to

raise an event, thus all means of measurement would also

include another system abstraction (e.g., writing to a pipe).

Channels. Patina provides sized channels for communication

between processes. Here we evaluate the latency from when

a message is sent to when it is received, both for the case

when the sender is higher priority than the receiver, and when

it is lower. Note that the seL4 Patina does not implement

the optional blocking channel API. In Linux, we evaluated

both pipes and sockets (both UNIX Domain sockets and UDP

sockets) and concluded that pipes have the least overhead,

so we compare Patina channels against Linux pipe overheads

here. Higher-priority senders uniformly exhibit more overhead

as they must block to execute the low-priority receiver.

Discussion. The average overhead of the Composite Patina

is less than that of Linux, and the measured worst case

costs for channel operations for the seL4 Patina are close

to those in Linux. These results show that PoLP-based Patina

implementations can be competitive with Linux.

Timers. Awaiting a timer expiration in Patina involves the

timer device, the timer manager, and the event manager to

convey the timeout event to the application. In Linux, we

evaluate multiple methods for measuring timer-propagation

latency, including using signals with a handler that simply

writes into a pipe (the common, re-entrant means of handling

signals) that is read by a target thread, and using a timerfd





demonstrates that a PoLP-based Patina design is a reasonable

and appealing direction for high-criticality embedded systems.

VI. DISCUSSION

In this section, we reflect on our two Patinas, both built

with a PoLP emphasis, but with different foci and restrictions.

We discuss how these differences expose trade-offs in design

and performance between the two implementations.

Policy defined by kernel vs user space. One of the major

differences between our Patina implementations is that the

Composite kernel pushes all policy, including scheduling and

resource delegation and revocation, to user space. In contrast,

seL4 defines scheduling and resource policies in the kernel.

seL4’s choice to define policy in the kernel initially sim-

plifies the system; no user-space scheduler is required before

multiple applications can be run, for instance. However, re-

solving situations where seL4’s policies do not provide what

is expected for the Patina API can be complex. For instance,

seL4 provides a notification capability that seems well-suited

for creating mutexes and semaphores, but because it does not

provide priority inheritance, our seL4 Patina had to take

a different approach that was less efficient. This is a major

reason that the seL4 Patina mutexes and semaphores do not

have a fast uncontended case and why the Composite Patina

mutexes and semaphores are faster. This mismatch between

seL4 policy and Patina expectations also arises with respect

to memory management and seL4’s policy that capabilities

cannot be used to query the current state of a capability.

This results in our seL4 Patina needing to track memory

and capability metadata separately, which requires over 8, 000

lines of code, compared to the under 700 lines required by the

Composite Patina, as shown in Table III.

Placing scheduling policy at user-level enables timing-

policy customization and constrains the access of the scheduler

to that appropriate for scheduling (consistent with the PoLP).

However, this imposes overheads for scheduler-component

invocations. The Composite Patina demonstrates increased

context-switching overheads over seL4, but, interestingly,

similar magnitude overheads to Linux. This demonstrates the

practicality of user-level scheduling.

Analysis-simplicity vs. performance-focused designs. In

§IV-C, we discussed an analysis of the functional correctness

and the impacts of a compromise on the channel implemen-

tation in the Composite Patina. This is trade-off made by

the two Patina implementations. The seL4 Patina uses the

kernel’s facilities for passing data along with IPCs and uses

the channel manager to control all channel logic. In leveraging

the kernel’s verified paths for copying a fixed, bounded data

amount, this implementation focuses on high confidence. The

downside of this approach is in overhead, as shown in §V-B.

In contrast, the Composite Patina uses shared memory for

data movement between communicating applications. This im-

proves performance compared to Linux. However, the shared-

memory approach to data sharing complicates the functional-

correctness analysis (the wide-API must consider any combi-

nation of loads and stores as discussed in §IV-C).

Predictability of Patina implementations. Despite their dif-

ferences, both of our Patina implementations provide perfor-

mance on par with Linux, if not better. This is unintuitive given

the larger structural costs in our PoLP-focused Patinas due to

isolation, and given Linux’s strong emphasis on average-case

performance. These results indicate that despite the focus on

strong isolation and the PoLP, our Patina implementations

demonstrate surprisingly competitive performance.

More importantly, the predictability of the Patina results

is key for embedded and real-time systems. Both Patinas

demonstrated very stable, predictable performance for key

Patina functionality, with minimal tail latencies, as illustrated

in Figure 4. Previous results have demonstrated that real-

time predictability with competitive bounds can be achieved

with user-level interrupt handling [5], even with a user-level

interrupt-scheduling policy [17], and that user-level scheduling

can have practically competitive performance [6]. We believe

that we have advanced the arguments for security-focused

RTOSes by demonstrating that the increased security and

isolation from a multi-protection domain RTOS does not come

at the cost of prohibitive overheads or higher latencies.

Benefit of Patina. The primary benefits of Patina is two

fold. First, Patina abstracts the low-level API provided by

µ-kernels. For instance, to create and start a new thread under

seL4, capabilities must be created from untyped memory for

memory such as the stack, and IPC buffer(s). Page directories

and page tables must be created and managed, the scheduling

priority must be set, and initial register values initialized.

Composite exposes a similarly low-level API that also makes

starting a thread a complex, multi-step operation. In contrast,

Patina provides one call to handle this setup.

Second, this work argues that Patina implementations

should be designed to separate the API implementation into

many separate protection domains. While this introduces mi-

nor overheads, as illustrated in our evaluations, it decouples the

different aspects of the API and prevents a fault in a single part

of the API implementation from compromising all API calls

across all applications. For example, a failure in the channel

or event management services will not necessarily impact a

high-criticality device driver. Isolation is also fundamental to

being able to recover from such failures.

VII. CONCLUSION

We have presented the concept of OS Patinas, which

provide feature-full OS abstractions on top of a µ-kernel. To

demonstrate the feasibility and performance of OS Patinas,

we independently implemented two Patinas, one on Com-

posite and one on seL4, each guided by the PoLP. Past work

has shown that shifting system services and scheduling policy

from the kernel to user level can be implemented efficiently

but this is the first attempt to apply the PoLP on the scale of an

entire RTOS API. In exploring Patina designs on two separate

µ-kernels, we have found that performance is comparable and

in many cases even supersedes that of monolithic kernels. Our

PoLP-based implementations also provide strong isolation.
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