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1. Introduction

Friesz and Meimand (2014) and Han et al. (2015a) give differential variational inequality (DVI) formulations of the elastic
demand dynamic user equilibrium (E-DUE) problem. These build on the variational inequality formulation of fixed demand
dynamic user equilibrium found in Friesz et al. (1993) and Friesz et al. (2001), and extended in Friesz et al. (2011) and Friesz
et al. (2013). The DVI formulation of DUE does not make the underlying model better or worse, but it does signal that a
substantial literature for numerical analyses is available and helpful when studying DUE. In particular, (Friesz et al., 2011,
2013; Friesz and Han, 2019; Han et al., 2015a,b; Han et al., 2019) present and test fixed-point DUE algorithms that employ
a minimum norm projection to assure feasibility. This method of computation has proven to be reliable in practice, often
converging to dynamic user equilibria despite the prospect of nonmonotone path delay operators. The lack of monotonicity
of path delay operators has been demonstrated by (Smith and Ghali, 1990; Ghali and Smith, 1993; Mounce, 2006), and
others. In the classical theory of convergence for fixed-point algorithms, sufficient conditions assuring convergence generally
include the requirement that the relevant operator be strongly monotone; this requirement is often imposed to prove the
convergence of other algorithms, as well. As such, DUE computation has lacked a satisfactory theory of convergence.

The dynamic network loading (DNL) phase of DUE calculations gives rise to the path delay operator, which is analogous
to the pay-off function in classical Nash games, and plays a pivotal role in DTA and DUE problems. The properties of the
delay operator are critical to the existence and computation of DUE models. However, it is widely recognized that solutions
of the DNL model, or the delay operator derived therefrom, are not available in closed form; instead, they have to be
numerically determined for each instant of time and traffic conditions via some sort of computational procedure. As a
result, the mathematical properties of the path delay operator remain largely unknown. This has significantly impacted the
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Table 1
a history of monotonicity assumptions.

Paper DUE type Algorithm Convergence Criteria
Huang and Lam (2002) SRDT DUE route-swapping CcC

Lo and Szeto (2002) RC DUE alternating-direction ~ CC

Szeto and Lo (2004) SRDT E-DUE alternating-direction CcC

Szeto and Lo (2006) RC BR-DUE route-swapping CcC

Mounce and Carey (2011) RC-DUE route-swapping LC& M

Friesz et al. (2011) SRDT fixed-point LC & SM

Tian et al. (2012) SRDT DUE route-swapping M

Long et al. (2013) RC DUE extra-gradient PM

Han et al. (2015b) SRDT BR-DUE projection SSQM & D-property
Han et al. (2015a) SRDT E-DUE proximal-point MSWM

Thong et al. (2020) SRDT DUE FBF PM

computation of DUE due to the lack of provable convergence theories, which generally require certain forms of generalized
monotonicity of the delay operators. Table 1 shows some relevant computational algorithms for DUE and their convergence
conditions, most especially the relevant continuity and monotonicity assumptions regarding the delay operator. The reader
is referred to El Farouq (2001) and Han et al. (2015a) for definitions of different types of generalized monotonicity.

In order to provide the context for this paper, we want to take a moment to review the DUE algorithms and their
associated convergence criteria that have appeared in the technical literature heretofore. To do this we first remark that
nearly all proofs of convergence for DUE algorithms make use of Lipschitz continuity. We will need some abbreviations and
acronyms. In particular, the following apply: (1) Lipschitz continuous = LC, (2) monotone = M, (3) strongly monotone = SM,
(4) pseudomonotone = PM, (5) semi-strictly quasimonotone = SSQM, (6) mixed strongly-weakly monotone = MSWM, (7) co-
coercive = CC, (8) simutaneous route-and-departure-time choice = SRDT, (9) route choice = RC, (10) bounded rationality =
BR, (11) elastic demand = E, and (12) forward-backward-forward = FBF.

If a model is not explicitly indicated as incorporating elastic demand, it is based on inelastic demand. Consequently, we
have the Table 1. Note that, in the above table, reference is made to the D-property; it is the property of boundedly rational
user equilibria sometimes imposed in modeling; it requires effective delay to be strictly greater than minimum delay and
is dicussed by Han et al. (2015b), as well as (Han et al., 2019) and (Thong et al., 2020). Note that (Han et al., 2019) and
(Thong et al., 2020) refer to the D-property as the “P-property”. Note also that co-coercive operators are monotone, but
not necessarily strongly monotone. Further note that none of the generalizations of monotonicity presented in Table 1 may
be satisfied by a delay operator that is nonmonotone. From Table 1, the ubiquitous nature of monotonicity in investiga-
tions of DUE algorithm convergence is clear. In this paper, we introduce the notion of weakly monotone operators for the
study of DUE algorithm convergence, taking great care to demonstrate that weakly monotone operators form a very broad
class, one that includes operators neither satisfying the definition of monotonicity nor the various definitions of generalized
monotonicity.

Our presentation in this paper shows that the distinct notions of weak monotonicity and strong monotonicity allow a
proof of convergence for E-DUE fixed-point algorithms when there are appropriate relationships among key parameters. This
paper does not present extensive numerical tests or comparisons of algorithms; rather, a single directly relevant numerical
example is provided. Pertinent numerical experiments have been previously reported in Han et al. (2015a). It is the intent of
this manuscript to provide a proof of convergence for fixed-point DUE algorithms when the notion of a strongly monotone
decreasing operator is applied to inverse demand functions, and path delay operators are viewed as weakly monotone. The
concept of weak monotonicity is not widely familiar and has seldom been previously used in the study of traffic equilibria.
In fact operators that are weakly monotone need not be monotone. Indeed, a weakly monotone operator or function may
be locally monotone increasing and locally monotone decreasing in adjacent but not identical locales. Friesz et al. (2011),
in an appendix, give what is likely the first example of such a function in the context of dynamic user equilibrium. It is
our contention that path delay operators pertinent to DUE modeling may be characterized as weakly monotone in good
conscience, provided they are Lipschitz continuous.

2. Mathematical notation and background

Throughout this paper, the time interval of analysis is a single commuting period expressed as [tg, t;] C % where t; >
to, and both ty and t; are fixed, with ty < t;. We let P be the set of all paths utilized by travelers. For each p e P, we
associate the path departure rate (in vehicles per unit time) hy(-) : [to, tf] — %4, which is a function of departure time
t € [to, ty], where %, denotes the set of non-negative real numbers. Each path departure rate hy(t) is interpreted as a path
flow measured at the entrance of the first link of the relevant path. We next define h(-) = {hy(-) : p € P} to be a vector of
departure rates, which is viewed as a vector-valued function of t, the departure time.!

1 For notational convenience, when no confusion will result, we will sometimes use h instead of h(-) to denote the vector of path departure rates.
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We let [2[to, tr] be the space of square-integrable functions defined on the interval [to, tf], and Li[to, tg] its subset
consisting of non-negative functions. We stipulate that each path departure rate is square integrable: h,(-) € Li[to, tr] and
h(-) e (L[to, t;])IP!, where (L?[to, t])I”! is the |P|-fold product of the Hilbert space L2[to, t;], and (L% [to. t7])!"! is its subset
consisting of non-negative path departure vectors. The inner product on the Hilbert space (Lz[to, tf])”" is defined as

(', 1?) = /t[f (" ©) PO de = Z/ttf RL(t) - h3(t) d (1)

peP © 0
where the superscript T denotes the transpose of vectors. Moreover, the norm
1/2
lulle = (u, u)" (2)

is induced by the inner product (1).
Here, as in all DUE modeling, the single most crucial ingredient is the path delay operator, which maps a given vector of
departure rates h to a vector of path travel times. More precisely, we let

Dy(t, h)  Vtelty, tf]], VpeP

be the path travel time of a driver departing at time t and following path p, given the departure rates associated with
all the paths in the network, which are expressed by h above. We then define the path delay operator D(-) by letting
D(h) = {Dp(-, h) : p € P}, which is a vector of time-dependent path travel times D,(t, h). Moreover, we use D(-) to denote
an operator, defined on (L%r[to, tf])”", that maps a vector valued function h(-) to another vector-valued function {D,(-, h) :
p € P}. In summary,

D: (o, tr])™ — (Llto, t])"™ @)

h(-) = {hp(). pe P} D(h)={Dy(- h). peP} (4)

The effective path delay operator W is similarly defined, except that the effective path delay embodies arrival penalties, in
addition to path travel time. As such, the effective path delay is a more general notion of “travel cost” than path delay. The
effective delay operator is defined as

v (Li[to, tf])”)l — (Li[to, tf])|7’| (5)

h(-) = {hp(). pe Pt W(h) ={¥p(. h), peP} (6)
where

Wp(t, h) = Dy(t, h) +F[t+Dy(t.h) —A)]  Vtelto. tf]l, VpeP (7)

where A is the desired arrival time and A < t7. In (7), the term F[t +Dp(t, h) fA)] assesses a nonnegative penalty whenever

t+Dy(t. h) # A (8)

since t + Dp(t, h) is the clock time at which departing traffic arrives at the destination of path p € P. Note that, for conve-
nience, A is assumed to be independent of path or origin-destination pair. However, that assumption is easy to relax, and
the consequent generalization is a trivial extension of our presentation.

We interpret Wy (t, h) as the perceived travel cost of drivers departing at time t following path p given the vector of
path departure rates h. We stipulate that for all p € P, the function W,(-, h) is measurable, almost everywhere positive, and
square integrable. Furthermore, we use the notation

W(t,h) = {Wp(-. h): peP}e(L[to. tf])"
to express the complete vector of effective path delays.

In order to develop an appropriate notion of minimum travel cost in the measure-theoretic context, we require the
concept of essential infimum. In particular, for any measurable function g: [to, t;] — 9, the essential infimum of g(-) on
[to. tf] is given by

essinf{g(s) : s e [to, tf]} = sup{xe9n: meas{seto, t;]: g(s) <x} = 0} (9)

where meas represents the (Lebesgue) measure. Note that for each x > essinf{g(s) : s € [tp, tf]} it must be true by definition
that

meas(s € [to, tf]: f(s) <x} >0

Let us define the essential infimum of the effective path delay, which depends on the path departure rate vector h, as
follows:

vp(h) = essinf{W,(t, h): tefto, 7]} > 0 VpeP (10)
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The minimum travel cost for a given OD pair (i, j) is, thus, defined as

vij(h) = min{v,(h): peP;} > 0 V(i j)ew (11)
By definition, v;;(h) is the minimum travel cost for OD pair (i, j) among all associated route choices and departure time
choices.

3. Definition of E-DUE

We introduce the trip matrix (Ql-]- 1 (1, j) e W), where each Q;; € %, is the (elastic) travel demand between the origin-
destination (OD) pair (i, j) € W, and W is the set of all origin-destination pairs. The flow conservation constraints read

Y [Thyyde = 0 VG ew (12)

DePij fo

where (12) consists of Lebesgue integrals, and P;; C P is the set of paths connecting OD pair (i, j) € W. In the elastic de-
mand case, the travel demand between OD pair (i, j) is assumed to be expressed as the following invertible function

Qj = Gjlv] V(G j)ew
where v = {v;;(h) : (i, j) e W} is the vector of OD specific minimum travel costs v;;(h) defined in (10), (11). We note that
Q;j is the unknown travel demand between (i, j) that must ultimately be achieved by the end of the time horizon ¢ = ty.

We will find it convenient to form the complete vector of travel demands by concatenating the OD-specific travel demands
to obtain

Q= (Q: G.ew) = (Gylvl: G j)ew)enl
which defines a mapping from v to Q that, when invertible, gives rise to the inverse demand function:

O:a - a Q e v
where

v = (UU 3 ))e W) and v; = 0;[Q] (13)
Notice that the inverse demand function defined in (13) is non-separable in the sense that each minimum OD travel cost v;;
is jointly determined by the entire vector of elastic demands Q = (Qij (1, )) e W).

Accordingly, we employ the following feasible set of departure flows when the travel demand between each origin-
destination pair is endogenous.

~ ty

A = {(h, Qtr))=0: )" | hy(t)dt = Q(ty) VG, j)ewy c (L[to, tf])”" x R (14)
PEP;j to

where (Lz[to, tf]>|7’| x ®M is the direct product of the |P|-fold product of Hilbert spaces, and the |W|-dimensional Eu-

clidean space consisting of vectors of elastic travel demands.
With the preceding preparation, we are in a place where the simultaneous route-and-departure-time dynamic user equi-
librium with elastic demand can be rigorously defined, as follows:

Definition 1. (Dynamic user equilibrium with elastic demand) A pair (h*, Q*) e A is said to be a dynamic user equilib-
rium with elastic demand if for all (i, j) e W,

hi(t) > 0, pePy = Wy(t, h*) = (-),,-[Q*(tf)] for almost every t € [to, tf] (15)

Q*(tr) > 0= Wy(t, h") = ©;[Q*(ty)]  for almost every t € [to, t;], Vpe P (16)
4. The differential variational inequality formulation of E-DUE

To facilitate the differential variational inequality representation of E-DUE problems, it is convenient to re-state the con-
straints (14) as an initial value problem, as follows.

.

peb;j

dQ; :
A= {(h,Q(tf)) 2 0:2%G _ S h), 0t =0 Vi) e w} < (2[to. 1)), (17)

Here, unlike in Section 3, Q;;(-) is treated as a time-varying quantity representing the cumulative departures (number of
vehicles) between OD pair (i, j) up to time t € [tp, tf]. Each Q;; (tf) is an unknown state value at the terminal time t; to be
found endogenously for all (i, j) e W.
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Consider the subset A of the Hilbert space (L?[to, tf])lpl and the subset 5!"! of the finite-dimensional space %", with
h e (L2[to, tf])lp| and Q(tf) e 5l"l. We will investigate this differential variational inequality:

(Wt h).h =) = (O[Q" ()] Qty) = Q*(t))2 2 0
hhreac(2t.])”, Q(t). Q(t) e 1l

that arises in the study of dynamic user equilibrium with elastic travel demand, where

(18)

ty
(W(t.h*). h=h")p =Y | Wt h*) (h—h)dt
pep”to
* * * T *
(©[Q ()] Qltr) = (1)), = O[Q ()] [Q(tr) - Q*(tr)]
The function ®(Q) is a vector of inverse elastic travel demand functions. The desired differential variational inequality, in
summation notation, is

[ty i Y Oy (t)][e) - Qi) 20 (19)
pep Vo (i.j)ew

where
(h.Q(ty)). (h*.Q*(t5)) € A

We refer to (19) as DVI(W¥, ®, A). Note that when no confusion will occur we will sometimes use Q(tf) and Q interchange-
ably; the important thing to note is that the fundamental demand variables are Q(tf).

5. Monotonicity and lipshitz continuity

As we commented in the introduction of this paper, it is widely known that the effective travel delay operators needed
in DUE modeling are potentially nonmonotonic. In this paper, we will assume that the vector effective path delay operator
is weakly monotone increasing, and employ the following definition:

Definition 2. As presented in El Farouq (2001), a weakly monotone increasing operator W (t, h) is an operator that obeys
the following inequality:

(W1 — w2 k' —h?), > —1-Kg||h' —h?||> Ky >0 (20)
for all feasible h! and h2.

5.1. Numerical example of a weakly monotone function

It should be noted that weakly monotone increasing operators need not be monotone increasing; in fact they can take
the form of sinusoidal curves and monotone decreasing curves, as well as undulating curves whose peaks and valleys are of
arbitrary magnitudes. An example of a weakly monotone function that illustrates these characteristics now follows. Consider
this function defined on the stipulated set:

F=65+x*—2x3cos2x suchthat O0<x<4

Its associated graph is (Fig. 1).
In the context of this simple example, the condition that governs whether F(x) is weakly monotone increasing is the
following
[F(x') = F(x*)](x" =x%) = =1 Ko |x" — %2 ”2 Ky >0 (21)

By inspection, F(x) is monotone increasing from x = 0 to about x = 2, while F(x) is monotone decreasing from about x = 2
to about x = 3.3. In fact, the constrained local minima and maxima of this problem, relative to 0 < x < 4, belong to the set

§$=1{0.00,1.95,3.33, 4.00}

Let us test whether pairs of points from the set S obey the definition of some type of monotonicity. The relevant calculations
are presented in Table 2.
The left-hand side (LHS) of the monotonicity definition, namely

LHS = [F(x") — F(x*) ] (x" = %%),
makes it apparent that the function F(x) is not strongly monotone. However, if we choose a constant Ky such that

191.90 99.70
11.11 7 1.91

Ko > max [ } = 52.50,
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050 0.5 1.0 1.5 2.0 25 3.0 3.5 4.0 4.5

Fig. 1. Example function F(x).

Table 2

Calculations related to weakly monotone example.
x! x2 F(x')  F(x?) F(x')-F(x) x'-x |x'-x2 ”2 LHS
000 195 65.00 7957 -14.57 -1.95 3.81 28.42
000 333 65.00 7.42 57.58 -3.35 11.11 -191.90
0.00 4.00 65.00 99.62 -—34.62 —4.00 16.00 138.50
195 333 7957 742 72.15 -1.38 1.91 -99.70
195 400 7957 99.62 -20.06 -2.05 4.20 41.10
333 400 7.42 99.62  -92.21 -0.67 0.45 61.55

then F(x) satisfies the definition of weakly monotone increasing. In particular, if we pick Ky = 55, then we have
[F(x) - FG) (¢ ) = Ko ¢ | = =55 '

and all the feasible solution pairs from the table satisfy this inequality, thereby confirming F (x) is merely weakly monotone
and not monotone. In other words, weakly monotone operators constitute a very broad class of operators; that class appears
to be much broader than any considered previously in the study of DUE algorithm convergence.

5.2. Weak and strong monotonicity

In this section, as well as subsequently, we will make use of the following shorthand:
W(t, ht) = wk
@(Qk) = Ok
As we noted in the introduction, it is widely known that the effective travel delay operators used in DUE modeling are

potentially nonmonotonic. In this paper, we will assume the effective path delay operator is weakly monotone increasing.
We will also assume that the inverse demand function is strongly monotone decreasing. That is

(0" 6.0 (1) - Q*(t))e = -1 -Kol[Q' (i) - () [} Ko >0 @2

for all feasible Q! and Q2. Such an assumption about inverse demand functions is behaviorally sound, assuring, in principle,
that inverse demands “fall rapidly.”
It follows from (20) and (22) that

(W' — w2 h' —h?), — (' - 02, Q' (ty) — Q%(ty))e = —1-Ky | —h? ||i +Ko Q' (tr) — Q*(ty) ||§ (23)
Y. Q' (1) (. Q*(t7)) € A (24)
It will be important to recall that Ky and Kg are strictly positive scalars.
5.3. Lipschitz continuity
We assume these forms of Lipschitz continuity for delay and inverse travel demand:
Wl w2|® <K |kt - n2|
H HLZ = 1” HLZ (', Q' (&), (2. Q*(ty)) € A (25)

|e! - 02|} <k Q' (t) - Q' (t)
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with

K, >0
We also assume the Lipschitz continuity of Q with respect to h:

[Q' () ~ @) | <Kol —r2 " (.Q'(1r)). (. Q*(t7)) < A (26)
with

Ko>0 (27)

6. Guidance for selecting Ky, K;, K, Ky and K¢

In this section, we show the following:

1. Ko may be calculated explicitly.
2. If W(t, h) is Lipschitz continuous with constant Kj, then it is also weakly monotone with constant Ky = Kj.
3. Working with a linear form of the inverse demand function leads to a lower bound for Kg.
4. For mild regularity conditions, a unique solution of DVI(W, ®, A) will exist and the set of feasible solutions A is compact.
5. Item 4 immediately above assures the following extremal problems have unambiguous formulations and solutions:
(a) An optimal control problem in Mayer form whose solution is an upper bound for Kg.
(b) An optimal control problem in Mayer form whose solution is a lower bound for K.

The above results assist in selecting numerical values for key monotonicity and Lipschitz constants presented in this paper.
Lipschitz continuity for Q with respect to h is the subject of the following result:

Theorem 1. The functional

ty
Q(h) = I"hdt,

to
where I' is the path-OD incidence matrix, is Lipschitz continuous with constant Ky, that is,
2

|Q“— Q| < Kohk — e (28)
Ko >0 (29)
Moreover, Ky may be calculated directly.
Proof. The Cauchy-Schwarz inequality states that for any vectors u and v of an inner product space it is true that
[{u, v)| < [ful] - [[v]]
Consider the following:
v=1 Vtelt.t;] VpeP;andu=h*—h
Then, by the Cauchy-Schwartz inequality, we have
ty
> [ —rheydr| < [ —n' |- v
DeP;j fo
(@ = Q)| = [0 = h" |- vl
ty
lvli=woi= |3 [ zde= Pyl @ - o))}
peP;j fo
|k — Q| = [|R*—n"| - Pyl - (&5 - t))?
So we select
VEKij = (Pl (¢ —6))? > 0 (30)

VKo = max /K : (i, j) e W (31)

with the consequence that

|Q' - @[} <ko|n' -12|;, Ko=0, (32)

which is recognized as a Lipschitz continuity condition. O
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Clearly, (31) provides a means for determining K. Furthermore, the following result provides a sufficient condition for
weak monotonicity:

Lemma 1. Let W (t, h) be a Lipschitz continuous map defined on a subset A of the topological vector space V, with Lipschitz
constant L. Then W (t, h) is weakly monotone increasing with constant L. That is,

(W W2 h )y = —1- K | R K >0 VAL h2eA
holds for all h', h? € A. Moreover, Ky = K;.
Proof. Clearly we have A ¢V = (I2][to, t7])!Pl. By the Cauchy-Schwartz inequality, we have
(W' — w2 h' —h?)y > -1 W' =2 . ||n' — |
—1-K; |h' = h? “2 (33)

%

v

Selecting the Lipschitz constant in inequality (25) will induce a value for Ky. In particular, Ky = K;, as is apparent upon
comparing (33) with (20). This proof originates with Han et al. (2015a). O

Lower Bound for Kg. We seek, in this example, guidance in selecting the Lipschitz constant Kg. Let us assume inverse
demand is linear and separable:

0ij(Q) =A;; —B;jQ; V(@i j)ew
It follows that Lipschitz continuity would require
(A—BQ'—A—BQ? A—BQ' —A—-BQ? < Kg
(BQ' - BQ*. BQ' - BQ?) < Ko
(B(Q' - Q?).B(Q' - Q%))
> (B)" (24 - Q”)(Qf o)
(i.j)
> (By) (@) - 03)°
(i.j)
bo- Q' - @[ < Ko|Q' - @?[°
bo < Kg

Q' -’
-

IA

IA

IA

where

bo_mm{( ) @, ])GW}
Lemma 2. When (50) holds any solution of (19) is unique.
Proof. We will see in Section 8 that

(W' — W2 h —h2)y, — (O —©2,Q" —Q%); > A||h] _R2 ”zz +B“Q1 —Q2 “2

V(r'.Q"). (h*.Q%) € A

with A and B strictly positive. Therefore

(W — w2 h' —h?) — (0" - 0%,Q' Q%) > 0 (34)
provided

h' £h?> and Q! # Q2

In other words, the strongly monotone increasing operator

v
F= (_1@) (35)

is also strictly monotone increasing, thereby assuring

h*
(x) )

is an unique equilibrium solution of (19). O
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We now introduce a result pertaining to compactness that is a prequisite to finding Ky in finite time. That result is the
following:
Lemma 3. The set A is compact if the following conditions hold:
1. The arrival penalty function F(-) appearing in (7) is continuous on [to, tf] and satisfies
F(ta) —F(t1) > A(ta —t1) Vio <ty <ty <ty (37)

for some A > —1

2. The first-in-first-out (FIFO) queue discipline is obeyed at the path level. In addition, each link in the network has a finite
exit flow capacity.

3. For any sequence of departure rate vectors {h"(-)},~; that are uniformly bounded point wise by a positive constant and
converge weakly to h* ¢ (L2 [to, tf])“J‘, the corresponding effective path delays Wy (-, h") converge to W,(-, h*) uniformly
for all pe P.

Proof. See Han et al. (2015a). O

Theorem 2. Assuming the set A is compact and © is strictly deceasing, an upper bound for Kg may be found by solving the
following optimal control problem in Mayer form:

max ( ©(@(t)) - o[ ()] 2) - Q*(rm) )

le(t) - 1))’

st. (h.Q(tf)). (h*.Q*(tr)) € A (39)

Proof. The constant Kg obeys (22). It follows that

_(©(Q") -0(e?).0' -

Q' - Q2|

Therefore, the desired upper bound obeys

Up = max (_ (©Q(t)) - o (t)]: Q(tg) -¢ (tf))> > Ko

Q(tr) - (1)

st. (h.Q(ty)). (. Q*(t)) € A

> Ke

where

(h*. Q" (tr)) (40)
is the equilibrium solution. The upper bound Kg exists and is unambiguous because (1) an equilibrium solution exists and
is unique, assuring the objective function (38) is well defined; and (2) a solution of (38), (39) is assured because A is

compact and the objective is continuous on A. In the practical application of (39), one must provide an approximation to
the equilibrium solution (40). O

Theorem 3. Assuming the set A is compact, a lower bound for the Lipschitz constant K, may be determined by solving this
optimal control problem of Mayer form:

2
o lefe)]-e[e (ffz)]||5 st Qe (1)
ot Q(ty) - () [

Proof. Condition (25) may be stated as

le@9-er; _
Jes-el;
from which it is immediate that a lower bound L, for K, may be found by solving
.\ 2
RPN [ 10%) G ) [ )
ot efy) - @)l
where
do;;
A= {(h. ©=0: B _ 50, Q) =0 Vi ew
pep;
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The lower bound L, exists and is unambiguous because (h*, Q*) exists and is unique, while A is compact, assuring the
objective function of (42) is well defined. In the practical application of (42), one must provide an approximate equilibrium
demand vector Q* (tf). O

7. Combined implications of weakly monotone delay, strongly monotone inverse demand and Lipschitz continuity

Let us now undertake to restate expression (23) in a fashion that will be helpful in proving convergence in the next
section. We introduce the scalar n obeying
O<n<1 (43)
Using n we may rewrite (20) as
(W W2 b — k%), — (O — ©2,Q — Q2);

< Ky |0 = 1|7, + nKo | Q' — Q7|2 + (1 - Ko | Q" - @2 (44)
< Ky |0 = b7, + nKoKo |1 — b7, + (1 = Ko | Q" - @2 (45)
= (NKoKe — Ko) [ h* = 1|7, + (1 = mKe | Q' - Q| (46)
= Al —h [, +BlQ @[ (47)

In (47), we have used these parameter definitions to simplify our notation:
A= (nKoKg — Ky) > 0 (48)
B=(1-n)Ke >0, (49)

where the strict inequality in (48) is an assumption that is now being introduced, and will hold through the remainder of
our presentation. The strict inequality in (49) follows from (43) and the strictly positive nature of Ky, Kg and Ky. That is,
we have this statement

(W — W2 bl —R2), — (O'—©2,Q" —Q%); > A||h1 _R2 ”iz +B“Q1 — Q2 “i
v(r'.Q"), (h*.Q%) € A (50)

assuring the operator

v
F= <_1'®> (51)

is strongly monotone increasing.
8. Fixed-point contraction and convergence

It is well known that the differential variational inequality describing DUE may be stated as a fixed-point problem in-
volving the minimum norm projection operator, giving rise to this algorithm:

hi1 hk — W (¢, h¥)
(Qk+1> ZPA|:QI<+O[®(Q1<)] (52)

where P, (.) is the minimum norm projection operator and « is a strictly positive scalar; that is,
a>0

In the context of DUE, this algorithm has been studied numerically by (Friesz and Mookherjee, 2006; Friesz et al., 2011;
Friesz et al., 2013; Friesz and Meimand, 2014) and (Han et al., 2015a; Han et al., 2015b), and has proven very effective in
numerical tests; see in particular the large-scale numerical studies found in Han et al. (2019). We next demonstrate that the
assumptions of weakly monotone increasing path delay and strongly monotone decreasing inverse travel demand allow us
to establish that algorithm (52) is, in fact, based on a contraction mapping. That demonstration will rely on the following
strong convergence theorem:

Theorem 4. Strong convergence of modified fixed point algorithm. Consider M : V — V, where V is a Hilbert space. The sequence
generated by
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XkH = ﬂkz+ (1 - IBk)M(Xk) (53)
converges strongly to a fixed point x* of M; that is
klim (x*}—x* and x*=M(x*),
when M is nonexpansive, z € V is an arbitrary point and
@ B el0.1]
(i) limg_ . Br=0
(i) Y20 By = oo
(i) limy, oo (B — Be1) (B) ™! = 0.

Proof. This result is generally attributed to Halpern (1967), although he used vastly different notation. A generalization,
whose proof is much more readable is due to Bauschke (1996). Although concerned with a different problem class in
Banach spaces, the paper by Xu (2003) gives an informative summary of Theorem 4 and related results stemming from
Halpern (1967). O

Our main result is the following:

Theorem 5. The modified fixed-point algorithm

hk+1 Z Ak
Qi) = Br 2)* (1= BM(h*, Q%) (54)

is strongly convergent, where

Z= (Zh) e A
2Q
is an arbitrary feasible point and

h—aW(t, h)
Q+a®(Q)

is nonexpansive for an appropriate choice of parameters associated with monotonicity, Lipschitz continuity, and the fixed-point
formulation itself.

M(h. Q) :PA[ (55)

Proof. We note that
Yk+1 = || (hk-%—l, Qk+1) _ (h*, Q*)

Al hF = Wk h* — W ?
T I\Qk+ @k ) T\ QF +a®*

| =k w)\ |
- Qk—Q* —l—Ot(@k—@*)

= -

| 2

= 20U W Rk ) o W
+[Qt - @' +20(0% - ©". Q" - Q') +a? | ©F —
—2a[(WK - W B — ) - (©F - ©7, Q4 — Q)]
+ || B~ he R oLk (56)

Using the Lipschitz continuity assumptions (25), together with the monotonicity assumptions (20) and (22), we obtain the
following from (56):

Ve < 2afalnt -]+ BQ' - @[]

2
E

PR LA protfor-er

2
E

HrE = |7+ KB = |+ Q- Q7D + ?Ke | Q- Q7
= (1-20A+0?K) | B = 7|, + (1 - 20B + 0?K2) | Q4 - Q7 (57)
We assure that each iteration of the algorithm is a contraction by enforcing
Ykt < yk, (58)
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which is guaranteed by requiring
1-20A+ 0K < 1

1-2aB+ o’k < 1

which may be restated as

a’K, < 2aA (59)

a’K, < 2aB (60)
We now use definitions (48) and (49) to restate (59) and (60) as

a?K; < 20 (nKoKg — Ky) (61)

a’Ky < 2a(1—n)Kg (62)
Thus, a list of all parametric inequalities we have invoked is the following

K\[; < 771(01(@ (63)

M < nKoKe (64)

ok

- < (1-mKe (65)

1>1n>0 (66)

Expression (63) is the previously introduced assumption (48). However, it should be noted (64) requires
K;
Ky < % + Ky < 1KoKo,

thereby making clear that (63) is redundant when (64) is enforced. As a consequence, our sufficiency conditions assuring
convergence are (63), (64), (65) and (66). These conditions may be simplified by noting that Lemma 1 tells us that Ky = Kj.
It follows that

w < nKoKe (67)
O‘TKZ < (1 =nKe (68)
1>n>0 (69)

O
9. Numerical example

Let us consider the network associated with Table 3. That network is depicted in Fig. 2 We employed the E-DUE fixed-
point algorithm presented by Han et al. (2015a). The software instantiation of the E-DUE algorithm is based on an extension
of the fixed-demand software employed by Han et al. (2019), when the latter is modified to treat elastic demand. The
(Han et al., 2019) software is available to the public at https://github.com/DrKeHan/DTA. It includes a dynamic network
loading (DNL) model based on LWR theory that determines effective path delay W (t, h) for use with a E-DUE solver.

Table 3
Network Topology.

arc  node pair  from node  to node

a (1,2) 1 2
@ (2.3) 2 3
a (2.4) 2 4
a (3.4 3 4
as  (3.5) 3 5
a  (4,5) 4 5
a;  (5.6) 5 6
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ot

(]

6
Fig. 2. Graph considered.

9.1. Detailed accounting of parameters

A single OD pair (1, 6) is modeled with the linear inverse demand function

O15 =a—bQss (70)
where
a=1200 71)
1
b= 555 (72)

The functional form (70) and the parameters (71) and (72) are identical to that used in Han et al. (2015a). Other parameters
employed are the following:

Ko=19x10" Ky =K =180 K, =10"° (73)
Ko = — (74)
© = 2000
1
a=50 n= 5 (75)

Hereafter, we drop the subscripts for demand and inverse demand, since there is only one OD pair. Thus, we may write
Lipschitz continuity condition (25) as

[(@—bQ") - (a—bQ?)]" < Kx(Q' - Q%) (76)
which is easily seen to yield

®)*(Q' - Q%) <Kk (Q' - @)’ (77)
which tells us that

b)* <K, (78)
Since we have K, = 10-6, we see that the choice

b<1073 (79)

is permissible, and it is easy to show binding of the strongly monotone decreasing inequality for inverse demand will result.
It should also be noted that the constants (73)-(75) satisfy inequalities (63), (64). In particular
oKy +2Ky 50 x 180+ 2 x 180

i - i — 4680.0 (80)
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nKoKe = % x 1.9 x 107 x 20% = 4750.0 (81)
4680.0 < 4750.0 = M < nKoKe (82)
O‘TKZ _50x107 X;Ofs —2.5x 107 (83)
(1 =Ko = L1 55,105 (84)
22000
25%x107° <25%x 107° = %Kz < (1=n)Ke (85)
Thus, we are certain that
M < nKoKe (86)
O (1o (87)

and conclude that the parameters employed for this example satisfy the sufficiency conditions we have derived.

9.2. Numerical results

After 3000 iterations of the fixed-point algorithm, we obtain the information found in Tables 4-6. Naturally, these data
support the weakly monotone increasing nature of the path delay operators and the strongly monotone decreasing nature
of the inverse demand functions. That is

S L S B Ly ] (88)

(0 -©%.Q' - Q%) < -1-Ko Q' - Q| >

By inspection, it is easy to see that (88) and (89) are satisfied for each pair of iterates considered in Table 4 when appropriate
Ko > 0 and Ky > O are selected, as explained above. It is especially important to observe that the path delay operators are
weakly monotone increasing but not monotone over most of the 3000 iterations considered.

As such, Table 5 shows that use of the concept of weakly monotone increasing to describe path delays that are not
monotone can in fact be accompanied by h-convergence and Q-convergence. Moreover, Table 5 demonstrates that inverse
demand functions remain strongly monotone decreasing along the trajectory of computed demands, as must happen under
the convergence theory we have presented in this manuscript.

It should likewise be noted that Table 6 shows Lipschitz continuity is satisfied at each iteration for ® and W. Lips-
chitz continuity is guarantied to hold for the demand functional Q(h) by virtue of the calculations (76)—(79) appearing in
Section 9.1.

Table 4
Weakly monotone increasing path delay.

teration [T RK|7, (W1 oW oY) = 1K R R
45 02247188923  —0.0127187380 > —40.449400614
46 0.2202878088  —0.0114198099 > ~39.651805584
47 02168996439 ~0.0121536923 > ~39.041935902
48 0.2134158305  —0.0180469126 > —38.41484949
49 02110561700  —0.0135039437 > ~37.9901106
50 0.2083248243  —0.0092566072 > -37.498468374
51 0.2017359652  —0.0104878449 > —36312473736
52 0.1968534081  —0.0028041714 > -35.433613458
53 0.1939490297  0.0326045172 > -34.910825346
54 0.1887019708  0.0179895322 > -33.966354744
55 0.1828054340  0.0296159458 > —32.90497812
2995 0.0003519890  0.0000000000 > -0.06335802
2996 0.0003480617  —0.0000355291 > ~0.062651106
2997 0.0003494352  —0.0000162041 > —0.062898336
2998 0.0003502586  —0.0000190425 > —0.063046548
2999 0.0003512823  0.0001507855 > -0.063230814
3000 0.0003479694  0.0000000000 > —0.062634492
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Table 5

Strongly monotone decreasing inverse demand.
iteration Qs - Q| (©'-©2,Q' - Q%) < 1Kol @< - Q¥
45 10.6520894759 —0.0053260447 = —0.0053260447
46 12.8269835301 —0.0064134918 = —0.0064134918
47 15.1667854323 —0.0075833927 = —0.0075833927
48 17.9056922848 —0.0089528461 = —0.0089528461
49 20.2340244245 —0.0101170122 = —-0.0101170122
50 22.7588646616 —0.0113794323 = —0.0113794323
51 26.1158431516 —0.0130579216 = —-0.0130579216
52 29.5682802229 —0.0147841401 = —0.0147841401
53 31.3269735684 —0.0156634868 = —0.0156634868
54 31.6595743201 —0.0158297872 = —0.0158297872
55 31.8269224961 —0.0159134612 —0.0159134612
2995 0.0000011411 —0.0000000006 = —0.0000000006
2996 0.0000243106 —0.0000000122 = —0.0000000122
2997 0.0000456727 —0.0000000228 = —0.0000000228
2998 0.0000283339 —0.0000000142 = —0.0000000142
2999 0.0000460290 —0.0000000230 = —0.0000000230
3000 0.0000145411 —0.0000000073 —0.0000000073

Table 6

Norms and Lipschitz continuity.
s L PR 1 Lt P (ot PO ) R
45 0.9054300600 < 40.4494006061 0.0000026630 < 0.0000106521
46 0.8692152192 < 39.6518055850 0.0000032067 < 0.0000128270
47 0.8646272586 < 39.0419359009 0.0000037917 < 0.0000151668
48 0.8988220638 < 38.4148494817 0.0000044764 < 0.0000179057
49 0.9154531800 < 37.9901106034 0.0000050585 < 0.0000202340
50 0.8463232350 < 37.4984683777 0.0000056897 < 0.0000227589
51 0.8044808940 < 36.3124737285 0.0000065290 < 0.0000261158
52 0.7637130018 < 35.4336134583 0.0000073921 < 0.0000295683
53 0.8793214308 < 34.9108253479 0.0000078317 < 0.0000313270
54 0.8514692964 < 33.9663547387 0.0000079149 < 0.0000316596
55 0.8262911124 < 32.9049781256 0.0000079567 < 0.0000318269
2995 0.0000000000 < 0.0633580197 0.0000000000 < 0.0000000000
2996 0.0038003526 < 0.0626511065 0.0000000000 < 0.0000000000
2997 0.0032272614 < 0.0628983384 0.0000000000 < 0.0000000000
2998 0.0043042374 < 0.0630465564 0.0000000000 < 0.0000000000
2999 0.0075097260 < 0.0632308130 0.0000000000 < 0.0000000000
3000 0.0000000000 < 0.0626344979 0.0000000000 < 0.0000000000
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Fig. 3. Convergence in Q.
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Fig. 4. DUE solution for a single path.

Note also that Fig. 3 presents the iterations converging to the equilibrium demand. Fig. 4 presents an illustrative DUE
solution for one particular path. We see that departure rates increase when a local minimum of effective path delay emerges.
Note also that in the approximate time interval [310, 475] the departure rate is never zero, although it is at times very small.

10. Conclusions

We have shown that convergence of an elementary class of algorithms (namely, fixed-point algorithms based on the
minimum norm projection) for solving DVIs maybe assured when delay operators are weakly monotone increasing, demand
fuctions are strongly monotone decreasing, and departure rates are bounded. These restrictions are met when we have ap-
propriate Lipschitz continuity. weak monotonicity of the delay operator, and strongly monotone decreasing inverse demand
functions. Other algorithms whose proofs of convergence depend on (strongly) monotone increasing path delay operators
might be provably convergent for E-DUE using the ideas we have presented in this paper.

Declaration of Competing Interest

This is a revision of our original submission. The new title is “Convergence of Fixed-Point Algorithms for Elastic Demand
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