Optimizing Fitness-For-Use of Differentially Private Linear
Queries

Yingtai Xiao, Zeyu Ding, Yuxin Wang, Danfeng Zhang, Daniel Kifer
Pennsylvania State University
{yxx5224,dxd437,ykw5163,dbz5017,duk17}@psu.edu

ABSTRACT

In practice, differentially private data releases are designed to sup-
port a variety of applications. A data release is fit for use if it meets
target accuracy requirements for each application. In this paper, we
consider the problem of answering linear queries under differential
privacy subject to per-query accuracy constraints. Existing prac-
tical frameworks like the matrix mechanism do not provide such
fine-grained control (they optimize total error, which allows some
query answers to be more accurate than necessary, at the expense
of other queries that become no longer useful). Thus, we design
a fitness-for-use strategy that adds privacy-preserving Gaussian
noise to query answers. The covariance structure of the noise is
optimized to meet the fine-grained accuracy requirements while
minimizing the cost to privacy.

PVLDB Reference Format:

Yingtai Xiao, Zeyu Ding, Yuxin Wang, Danfeng Zhang, Daniel Kifer.
Optimizing Fitness-For-Use of Differentially Private Linear Queries.
PVLDB, 14(10): 1730 - 1742, 2021.

doi:10.14778/3467861.3467864

1 INTRODUCTION

Differential privacy gives data collectors the ability to publish infor-
mation about sensitive datasets while protecting the confidentiality
of the users who supplied the data. Real-world applications include
OnTheMap [10, 36], Yahoo Password Frequency Lists [4], Facebook
URLs Data [38], and the 2020 Decennial Census of Population and
Housing [2]. Lessons learned from these early applications help
identify deployment challenges that should serve as guides for fu-
ture research. One of these challenges is supporting applications
that end-users care about [21]. It is well-known that no dataset can
support arbitrary applications while providing a meaningful degree
of privacy [15]. Consequently, as shown in theory and in practice,
privacy-preserving data releases must be carefully designed with
intended use-cases in mind. Without such use-cases, a so-called
“general-purpose” data release might not provide sufficient accuracy
for any practical purpose.

Ensuring accuracy for pre-specified use-cases has strong prece-
dents and was common practice even before the adoption of differ-
ential privacy. For example, in the 2010 Decennial Census, the U.S.
Census Bureau released data products such as:

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 10 ISSN 2150-8097.
doi:10.14778/3467861.3467864

1730

e PL 94-171 Summary Files [8] designed to support redistricting.
The information was limited to the total number of people, var-
ious race/ethnicity combinations in each Census block, along
with the number of such people with age 18 or higher.

Advance Group Quarters Summary File [9] containing the num-
ber of people living in group quarters such as correctional in-
stitutions, university housing, and military quarters. One of its
purposes is to help different states comply with their own redis-
tricting laws regarding prisoners [26].

Summary File 1 [7] provides a fixed set of tables that are com-
monly used to allocate federal funds and to support certain types
of social science research.

Thus we consider a setting where a data publisher must release
differentially private query answers to support a given set of N
applications. Each application provides measures of accuracy that,
if met, make the differentially private query answers fit for use.
For example, one of the measures used by the American Commu-
nity Survey (ACS) is margin of error [44], an estimated confidence
interval that is a function of variance.

In this paper, we study the case where the workload consists of
linear queries w1, . . ., wy. Differential privacy does not allow exact
query answers to be released, so the data publisher must release
noisy query answers instead. We consider the following fitness-
for-use criteria: each workload query w; must be answered with
expected squared error < ¢; (where cy,...,cn are user-specified
constants that serve as upper bounds on desired error).

Given these fitness-for-use constraints, the data publisher must
determine whether they can be met under a given privacy budget
and, if so, how to correlate the noise in the query answers in order
to meet these constraints.! We note that earlier applied work on
the matrix mechanism [34, 50, 51] optimized total error rather than
per-query error, and could not guarantee that each query is fit for
use. Theoretical work on the matrix mechanism [20, 40] studied
expected worst-case, instead of per-query, error and, as we discuss
later, it turns out that the same algorithm can optimize them.

We propose a mechanism that adds correlated Gaussian noise to
the query answers. The correlation structure is designed to meet
accuracy constraints while minimizing the privacy cost, and is ob-
tained by solving an optimization problem. We analyze the solution
space and show that although there potentially exist many such
correlation structures, there is a unique solution that allows the
maximal release of additional noisy query answers for free — that is,
some queries that cannot be derived from the differentially private
workload answers can be noisily answered without affecting the
privacy parameters (this is related to personalized privacy [19]).
Our contributions are:

UIf the desired accuracy cannot be met under a given privacy budget, the data collector
could reinterpret the constants c; to represent relative priorities, see Section 3.

https://doi.org/10.14778/3467861.3467864
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3467861.3467864

Table 1: Table of Notation

X: Dataset vector
d: Domain size of the data
W: Workload query matrix.
m: Number of workload queries.
k: Rank of W.
y: True answers to workload queries (y = Wx).
B: Basis matrix with linearly independent rows.
b;: The it column of B.
L: Representation matrix. Note, LB = W.
c Vector of accuracy targets (c1, . . ., cm)-
<R Refined privacy ordering (Definition 5).
prof (%,B) : Privacy profile (Definition 4).
AVYE Privacy cost (Corollary 1).

A novel differentially private mechanism for releasing linear
query answers subject to fitness-for-use constraints (to the best
of our knowledge, this is the first such mechanism). It uses non-
trivial algorithms for optimizing the covariance matrix of the
Gaussian noise that is added to the query answers.

We theoretically study the fitness-for-use problem. Although
there are potentially infinitely many covariance matrices that
can be used to minimize privacy cost while meeting the accu-
racy constraints, we show that there is a unique solution that
allows the data publisher to noisily answer a maximal amount of
additional queries at no extra privacy cost.

We design experiments motivated by real-world use cases to
show the efficacy of our approach.

The outline of this paper is as follows. In Section 2, we present
notation and background material. We formalize the problem in
Section 3. We discuss related work in Section 4. We present theo-
retical results of the solution space in Section 5. We present our
optimization algorithms for the fitness-for-use problem in Section
6. We present experiments in Section 7 and conclusions in Section
8. All proofs can be found in the full version [48] of this paper.

2 NOTATION AND BACKGROUND

We denote vectors as bold lower-case letters (e.g., x), matrices as
bold upper-case (e.g., W), scalars as non-bold lower-case (e.g., c).

Following earlier work on differentially private linear queries
[34, 50, 51], we work with a table whose attributes are categorical
(or have been discretized). As in prior work, we represent such a
table as a vector x of counts. That is, letting {to, t1,...t4_1} be the
set of possible tuples, x[i] is the number of times tuple t; appears
in the table. For example, consider a table on two attributes, adult
(ves/no) and Hispanic (yes/no). We set ty =“not adult, not Hispanic”,
t; =“adult, not Hispanic”, t =“not adult, Hipanic”, t3 =“adult,
Hispanic”. Then x[3] is the number of Hispanic adults in the dataset.

We refer to x as a dataset vector and we say that two dataset
vectors x and x’ are neighboring (denoted as x ~ x’) if x can be
obtained from x’ by adding or subtracting 1 from some component
of x’ (this means ||x — x’||; = 1) - this is the same as adding or
removing 1 person from the underlying table.

1731

A single linear query w is a vector, whose answer is w - x. A set
of m linear queries is represented by an m X d matrix W, where
each row corresponds to a single linear query. The answers to those
queries are obtained by matrix multiplication: Wx. For example,

0101
for the query matrix W = (0 011), the first row is the query for

number of adults in the table1 (lsilnce 0x[0] + 1x[1] + 0x[2] + 1x[3]
sums up over the tuples corresponding to adults); the second row
is the query for number of Hispanic individuals; and the last row is
the query for the total number of people. We summarize notation
in Table 1.

Our privacy mechanisms are compatible with many variations of
differential privacy, including concentrated differential privacy [6]
and Renyi differential privacy [39]. As these are complex definitions,
for simplicity we focus on approximate differential privacy [16, 17],
defined as follows.

DEFINITION 1 ((¢, §)-Differential Privacy [16]). Given privacy pa-
rameters € > 0 and § € (0,1), a randomized algorithm M satisfies
(€, 6)-differential privacy if for all pairs of neighboring dataset vectors
x and x” and all sets S, the following equations hold:

P(M(x) €S) <eP(M(X") €S)+6

Intuitively, differential privacy guarantees that the output distri-
bution of a randomized algorithm is barely affected by any person’s
record being included in the data.

In the case of privacy-preserving linear queries, this version of
differential privacy is commonly achieved by adding independent
Gaussian noise to the query answers Wx. The scale of the noise
depends on the Ly sensitivity of the queries.

DEFINITION 2 (L sensitivity). The Ly sensitivity of a function f,
denoted by Ay (f) is defined as supy_y ||f(x) — f(x')|]2-

If f computes linear query answers (i.e., f(x) = Wx) then we
slightly abuse notation and denote the Ly sensitivity as Ay(W). It
follows [50] that Ay (W) is equal to max; ||W[:, i]||2, where W[, i]
is the i column of W.

The Gaussian Mechanism adds independent noise with variance
o2 to f(x) and releases the resulting noisy query answers. Its dif-
ferential privacy properties are provided by the following theorem.

TuaeoreM 1 (Exact Gaussian Mechanism [3]). Let ® be the cumula-
tive distribution function of the standard Gaussian distribution. Let f
be a (vector-valued) function. Let M be the algorithm that, on input
X, outputs f(x) + z, where z is an m-dimensional vector of indepen-
dent N(0, %) random variables. Then M satisfies (e, §)-differential

privacy if and only if
)< |

cD(Az(f) e M) eo
20 Da(f) 20 Na(f)
Furthermore, this is an increasing function of Az (f)/o.

The importance of this result is that the privacy properties of
the Gaussian mechanism are completely determined by Ay (f)/o
(in fact, this is true for (e, §)-differential privacy, Renyi differen-
tial privacy and concentrated differential privacy). In particular,
decreasing Az(f)/o increases the amount of privacy [3].

Personalized differential privacy [19] refines differential privacy
by letting each domain element have its own privacy parameter.

5>

For example, a domain element r has privacy parameters (¢, §) if
P(M(x) € S) < e°P(M(x’) € S) + ¢ for all S and neighbors x and
x’ that differ by 1 in the count of record r.

3 THE FITNESS-FOR-USE PROBLEM

In this section, we start with an intuitive problem statement and
then mathematically formalize it, while justifying our design choices
along the way. We consider two problems: one that prioritizes accu-
racy and a second that prioritizes privacy. Later we will show that
they are equivalent (the same method yields a solution to both).

When prioritizing accuracy, the workload consists of m linear
queries w1, ..., Wy. Given a vector c of accuracy targets, we seek
to find a mechanism M that produces (¢, §)-differentially private
answers to these queries such that the expected squared error for
each query w; is less than or equal to c[i]. The mechanism should
maximize privacy subject to these accuracy constraints. Maximiz-
ing privacy turns out to be a surprisingly subtle and nontrivial
concept involving (1) the minimization of the privacy parameters e
and J and (2) enabling the data publisher to noisily answer extra
queries at a later point in time at no additional privacy cost; it is dis-
cussed in detail in Section 3.2. When prioritizing privacy, again
we have a workload of m linear queries wy, ..., w, and a vector c.
Given target privacy parameters € and , the goal is to find a mech-
anism M that (1) satisfies (e, §)-differential privacy and (2) finds the
smallest number k > 0 such that each query w; can be privately
answered with accuracy at most kc[i]. Thus c[i] represents the
relative importance of query w; and the goal is to obtain the most
accurate query answers while respecting the privacy constraints
and relative accuracy preferences.

We next discuss additional accuracy-related desiderata (Section
3.1), formalize the maximization of privacy (Section 3.2), and then
fully formalize the fitness-for-use problem (Section 3.3).

3.1 Additional Accuracy Desiderata

We first require that the differentially private mechanism M pro-
duces unbiased noisy query answers (i.e., the expected value of
the noisy query answers equals the true value). Unbiased query
answers allow end-users to compute the expected error of derived
queries. This property is best explained with an example. Suppose
a mechanism M provides noisy counts (with independent noise)
for (1) y1: the number of adults with cancer, and (2) 72: the number
of children with cancer. From these two queries, we can derive an
estimate for the total number of cancer patients as 31 + 32. Suppose
71 has expected squared error ¢; and 7 has expected squared error
c2. What can we say about the expected squared error of 71 + 32?
If both 77 and 3, are unbiased, then the expected squared error of
U1 + y2 equals ¢1 + cz. However, if 77 and 33 are biased, then the
expected squared error of y; + 72 cannot be accurately determined
from the expected errors of 77 and 7.

Since statistical end-users need to be able to estimate the errors
of quantities they derive from noisy workload query answers, we
thus require our mechanism to produce unbiased query answers.

We next require that the noise added to query answers should
be correlated multivariate Gaussian noise N (0,). Gaussian noise
is familiar to statisticians and simplifies their calculations for tasks
such as performing hypothesis tests and computing confidence

1732

intervals [45]. Furthermore, Gaussian noise is often a preferred
distribution for various versions of approximate differential privacy
[1, 6, 18, 39].

For readers familiar with the matrix mechanism [34, 50, 51]
(which optimizes total squared error, not per-query error), it is
important to note that we add correlated noise in a different way.
The matrix mechanism starts with a workload of linear queries W
and solves an optimization problem to get a different collection S of
linear queries, called the strategy matrix. Noisy strategy answers s
are obtained by adding independent noise z to the strategy queries
(ys = Sx+z) and the workload query answers y,, are reconstructed
as follows y,, = WS*ys (where ST is the Moore-Penrose pseudo-
inverse of S [25]). Instead of optimizing for a matrix S and adding
independent Gaussian noise, we fix the matrix and optimize the
correlation structure of the noise (as in [40]). This turns out to be a
more convenient formulation for our problem. Formally,?

DEFINITION 3 (Linear Query Mechanism [20]). Let W be a linear
query workload matrix. Let B and L be matrices such that W = LB
and B has linearly independent rows with the same rank as W (we
call B the basis matrix and L the representation matrix). Let N (0, X)
be the multivariate Gaussian distribution with covariance matrix X.
Then the mechanism M, on input x, outputs L(Bx + N(0,X)).

Note that E[L(Bx+ N(0,%))] = LBx = Wx so the mechanism is
indeed unbiased. The basis matrix B is chosen to be any convenient
matrix after the workload is known (but before the dataset is seen). It
is there for computational convenience - a linear query mechanism
can be represented using any basis matrix we want, as shown in
Theorem 2. Hence we can choose the basis B (and corresponding L)
for which we can speed up matrix operations in our optimization
algorithms. In our work, we typically set B to be the identity matrix
or a linearly independent subset of the workload matrix.

THEOREM 2. Given a workload W and two possible decompositions:
W = L;B; and W = LBy, where the rows of By are linearly inde-
pendent with the same rank as W (and same for By). Let M; (x) =
Li(Bix + N(0,X1)). There exists a X such that the mechanism
M (x) = La(Bax + N(0,%3)) has the same output distribution as
M; for all x.

3.2 Maximizing Privacy

In this section we explain how to compare the privacy properties
of the basic mechanisms from Definition 3, based on their privacy
parameters and additional noisy query answers they can release
for free. We first generalize Theorem 1 to allow correlated noise.

THEOREM 3 (Exact Correlated Gaussian Mechanism). Let f be a func-
tion that returns a vector of query answers. Let M be the mechanism
that, on input x, outputs f(x) + N(0,X). Define the quantity

8s() = max |(£(x0) =)T (f(x0) = fOx)| ()

where the max is over all pairs of neighboring datasets x1 and x3.
Then M satisfies (e,)-differential privacy if and only if:
€ €

M) (M)
Az(f)) eq’(IS0

2 2
%In [20], this is called the factorization mechanism. For their metric, they propose
setting X = I while optimizing B and L. In our work, it is easier to optimize X instead.

52<I>(@)

€, 6 curves.

10—5 4
10—12 4
107194
10726 4
107334
10740

10-47 |

0.0 05 1.0 15 200 2’5 3.0

Figure 1: ¢, curves for different values of A. A Gaussian
Mechanism with A = 0.2 satisfies (¢, §)-differential privacy
for all pairs (¢, §) that lie on or above the red curve.

where ® is the CDF of the standard Gaussian N (0, 1). Furthermore,
this quantity is an increasing function of Ax(f).

Applying Theorem 3 to the linear query mechanisms, we get:

COROLLARY 1. Let M be a linear query mechanism (Definition 3)
with basis matrix B and Gaussian covariance X. Let by, ...,bg be
the columns of B and denote the privacy cost Ayy = max;—; 4

A IbiTZ*Ibi. Then M satisfies (e, 8)-differential privacy if and only if

§>d (ATM - ﬁ) —e€d (—ATM - ﬁ) Furthermore, this quantity

is increasing in Apy.

Any given mechanism M typically satisfies (¢, §)-differential
privacy for infinitely many €, § pairs, which defines a curve in
space [39] (see Figure 1). The importance of Corollary 1 is that this
curve for a linear query mechanism M is completely determined
by the single number Aj; (as defined in Corollary 1). Furthermore,
for any two linear query mechanism M; (x) = L1 (B1x+ N(0,X%1))
and Mz (x) = La(Bax + N(0,X5)), if Ay, < Ay, then the (e, d)
curve for M is strictly below the curve for M. This means that
the set of pairs (e, §) for which M; satisfies differential privacy is a
strict superset of the pairs for which M, satisfies differential privacy
(while if Apg, = Apg, then the (e, §) curves are exactly the same).
For this reason, we call Ay, the privacy cost.?

Thus one goal for maximizing privacy is to choose mechanisms
M with as small Ay as possible as this will result in the mechanism
satisfying differential privacy with the smallest choices € and §
parameters.

3.2.1 Query answers for Free. Even for two mechanisms that satisfy
differential privacy with exactly the same €, § parameters, it is
still possible to say that one provides more privacy than the other
by comparing them in terms of personalized differential privacy

[19]. To see why, consider the matrices By = ({1 9) and B, =

110
((1) (1) %) and the two mechanisms M;(x) = Bix + N(0,X1) and
M, = Byx + N(0,%3), where ¥; and X, are identity matrices. Note

3Readers familiar with p-zCDP [6] should note that privacy cost is the same as v2p.

1733

that the difference between M; and M, is that M, answers the same
queries as Mj plus an additional query (corresponding to the third
row of Bz). However, from Corollary 1, Aps, = Apg, which means
that they satisfy differential privacy for exactly the same privacy
parameters. But, in terms of personalized differential privacy, the
personalized privacy cost of domain element x[i] under mechanism
M; is the square root of the ith diagonal element of BlTZl’lBl (and
similarly for M), while the overall non-personalized privacy cost is
the max of these (as in Corollary 1). The personalized privacy costs
of x[0] and x[2] under M; are smaller than under M, while the
privacy cost of x[1] is the same under M; and M. Thus it makes
sense to say that My is also less private.* At the same time, we can
say that M; provides more flexibility to the data publisher than M.
There are many possible choices of additional rows (queries) to add
to By without affecting A py, . In fact, these queries can be determined
(and noisily answered) at a later date after noisy answers to the
first two queries in B; are released.

This discussion leads to the concept of a privacy profile (which
captures the personalized privacy costs of the domain elements)
and refined privacy ordering for linear query mechanisms.

DEFINITION 4 (Privacy Profile). Given a Linear Query Mechanism
M(x) = L(Bx+N(0,X)), the privacy profile of M is the d-dimensional
vector [blTZ_lbl, s ng_lbd] (whereb; is the ih column ofB) and
is denoted by prof (X, B) or by prof (M) (a slight abuse of notation).

For example, the privacy profile of M; above is [1, 2, 1] while the
profile for M is [2, 2, 2]. Note that for any linear query mechanism
M, Ajzw is equal to the largest entry in the privacy profile of M.

The privacy profile is invariant to the choice of basis matrix B
as shown in Theorem 4. Thus the privacy profile is an intrinsic
privacy property of a linear query mechanism rather than a specific
parameterization.

THEOREM 4. Let M1 (x) = L1(B1x+N(0,X1)) and Ma(x) = La(Box+
N(0,%2)) be two mechanisms that have the same output distribution
for each x (i.e., they add noise to different basis matrices but achieve
the same results). Then prof (M;) = prof (My).

Given this invariance, we can use the privacy profile to define
a more refined ordering that compares the privacy properties of
linear query mechanisms.

DEFINITION 5 (Refined Privacy Ordering). Given two Linear Query
Mechanisms My (with basis By and covariance matrix X1) and My
(with basis By and covariance matrix Xy), let p1 be the privacy profile
of My when sorted in decreasing order and let py be the sorted privacy
profile of My. We say that M; is at least as private as My, denoted by
M1 <r My if p1 is less than or equal to py according to the dictionary
(lexicographic) order. We also denote this as (X1,B1) <g (Z2,B2). If
the dictionary ordering inequality is strict, we use the notation <g.

Note that if M has sorted privacy profile p, then the first element
of p is equal to Ajzwl. Therefore if Ay, < Ay, then also My <g Mo,
but if Apg, = Ay, it is still possible that M; <g M (hence <g

“Note that with uncorrelated noise, the personalized cost of domain element xi]
degenerates to the Ly norm of the i column of the basis matrix. If different columns
had different norms, prior work on the matrix mechanism added additional queries
until the norms were the same (e.g., using M, instead of M; in our example above).
We believe this practice should be re-examined - if M; satisfies the utility goals, why
force the analyst to commit to an extra query and limiting their future options?

refines our privacy comparisons of mechanisms). Thus, our goal
is to satisfy fitness-for-use constraints while finding the M that is
minimal according to <g. This is equivalent to finding an M that
minimizes Ay (a continuous optimization) and then, among all the
mechanisms that fit this criteria, we want to select a mechanism that
is minimal according to <g (a combinatorial optimization because
of the sorting performed in the privacy profile).

We note that < is a weak ordering ~ that is, we can have two
distinct mechanisms M; and M, such that M; <g My and My <g M;
(i.e., they are two different mechanisms with the same privacy
properties). Nevertheless, we will show in Section 5 that in fact,
there exists a unique solution to the fitness-for-use problem.

3.3 The Formal Fitness-for-use Problem

Given a workload W = LB and a linear query mechanism M(x) =
L(Bx+N(0,X)) = Wx+LN(0,X), the variance of the noisy answer
to the i query of the workload is the i diagonal element of LELY |
Thus, we can formalize the “prioritizing accuracy” and “prioritizing
privacy” problems as follows.

PROBLEM 1 (Prioritizing Accuracy). Let W be an m X d workload
matrix representing m linear queries. Letc = [c1, ..., cm] be accuracy
constraints (such that the noisy answer to the ith query is required to
be unbiased with variance at most c;). Let B and L be matrices such
that W = LB and B has linearly independent rows. Select the covari-
ance X of the Gaussian noise by solving the following constrained
optimization problem:

®)

a, X < argmina
ax

st.bf=7b; < aforalli=1,...,d
and (diag(LZLT))[j] Scjforj=1,...,m

and X is symmetric positive definite.

In case of multiple solutions to Equation 3, choose a X that is min-
imal under the privacy ordering <r. Then release the output of the
mechanism M(x) = L(Bx+ N(0,X)).

Note that in Problem 1, & is going to equal the maximum of
max;—; 4 biTZ_lbi and hence will equal the squared privacy cost,
AJZM, for the resulting mechanism (and hence minimizing it will
minimize the ¢, § privacy parameters).

We can also prioritize privacy, following the intuition at the
beginning of Section 3, as finding the smallest k such that the
variance of query i is at most kc; given a target privacy level.

ProBLEM 2 (Prioritizing Privacy). Under the same setting as Problem
1, given a target value a* for Ai/[(which uniquely defines the €, §
curve), solve the following optimization for X:

k,X < argmink

5

s.t. biTZ_lbi <a*foralli=1,...,d
and (diag(LEL)))[j] < kej forj=1,...,m

and X is symmetric positive definite.

4

In case of multiple solutions to Equation 4, choose a X that is minimal
under the refined privacy ordering <g.

1734

It is interesting to note that we arrived at Problem 2 by trying to
find a mechanism that minimizes per-query error, which mathemat-
ically is the same as minimizing || E[(Wx — M(x))2./c] ||co (Where
./ is pointwise division of vectors). Edmonds et al. [20] and Nikolov
[40] studied mechanisms that minimize outlier error (also known
as joint error): E[||[Wx — M(x))?./c||co]. Their nearly-optimal
algorithm for this metric can also be obtained by solving Equation
4 (which computes an ellipsoid infinity norm [40]) but they did not
study the tie-breaking condition in Problem 2.

The following result shows that a solution to Problem 1 can be
converted into a solution for Problem 2, so for the rest of this paper,
we focus on solving the optimization defined in Problem 1.

THEOREM 5. Let X be a solution to Problem 1. Define the quantities
@ = maxj—;,__4 biTZ_lbi and X = %X. Then X3 is a solution to
Problem 2.

Our mechanism in Section 6 approximates Problem 1 with an
optimization problem that has fewer constraints and avoids discrete
optimization when breaking ties.

4 RELATED WORK

Developing differentially private algorithms under accuracy con-
straints is an underdeveloped area of research. Wu et al. [46] con-
sidered the problem of setting privacy parameters to achieve the
desired level of accuracy in a certain machine learning task like
logistic regression. Our work focuses on linear queries and has
multiple (not just one) accuracy constraints. We consider this to
be the difference between fitness-for-use (optimizing to support
multiple applications within a desired accuracy level) vs. accuracy
constrained differential privacy (optimizing for a single overall
measure of quality).

The Matrix Mechanism [34, 37, 50] answers linear queries while
trying to minimize the sum squared error of the queries (rather
than per-query fitness for use error). Instead of answering the work-
load matrix directly, it solves an optimization problem to find a
different set of queries, called the strategy matrix. It adds indepen-
dent noise to query answers obtained from the strategy matrix
and then recovers the answer to workload queries from the noisy
strategy queries. The major challenge of Matrix Mechanism is that
the optimization problem is hard to solve. Multiple mechanisms
[33, 37, 51, 52] have been proposed to reformulate or approximate
the Matrix Mechanism optimization problem. For pure differential
privacy (i.e., § = 0), the solution is often sub-optimal because of
non-convexity. Yuan et al. [50] propose a convex problem formu-
lation for (e, §)-differential privacy and provided the first known
optimal instance of the matrix mechanism. Although their work
solves the total error minimization problem, the strategy may fail
to satisfy accuracy constraints for every query. Prior to the matrix
mechanism, the search for query strategies was done by hand, often
using hierarchical/lattice-based queries (e.g., [14, 29, 43, 47]) and
later by selecting an optimal strategy from a limited set of choices
(e.g., [33, 43, 49]). The Matrix-Variate Gaussian (MVG) Mechanism
[12] is an extension in a different direction that is used to answer
matrix-valued queries, such as computing the covariance matrix
of the data. It does not perform optimization to decide how to best
answer a workload query.

Work related to the factorization mechanism [20, 40], is most
closely related to ours. Starting from a different error metric, they
arrived at a similar optimization to Problem 2. They focus on the-
oretical optimality properties, while we focus on special-purpose
algorithms for the optimziation problems, hence approximately
optimizing our fitness-for-use and their joint error criteria.

The Laplace and Gaussian mechanisms [17, 18] are the most
common building blocks for differential privacy algorithms, adding
noise from the Laplace or Gaussian noise to provide (¢, 0)-differential
privacy and (e, §)-differential privacy, respectively. Other distribu-
tions are also possible (e.g., [11, 22-24, 35]) and their usage depends
on application requirements (specific privacy definition and mea-
sure of error).

Our work and the matrix/factorization mechanism work are ex-
amples of data-independent mechanisms - the queries and noise
structure does not depend on the data. There are many other works
that focus on data-dependent mechanisms [13, 27, 30-32, 42], where
the queries receiving the noise depend on the data. These mech-
anisms reserve some privacy budget for estimating properties of
the data that help choose which queries to ask. For example, the
DAWA Algorithm [32] first privately learns a partitioning of the
domain into buckets that suits the input data well and then pri-
vately estimates counts for each bucket. While these algorithm may
perform well on certain dataset, they can often be outperformed on
other datasets by data-independent mechanisms [28]. A significant
disadvantage of data-dependent algorithms is that they cannot pro-
vide closed-form error estimates for query answers (in many cases,
they cannot provide any accurate error estimates). Furthermore,
data-dependent methods also often produce biased query answers,
which can be undesirable for subsequent analysis, as discussed in
Section 3.1.

5 THEORETICAL ANALYSIS

In this section, we theoretically analyze the solution to Problem
1. We prove uniqueness results for the solution and derive results
that simplify the algorithm construction (for Section 6). We first
show that optimizing per-query error targets is a fundamentally
different problem than optimizing for total squared error, as was
done in prior work (e.g., [34, 43, 50, 51]). Our results show that there
are natural problems where algorithms that optimize for sum of
squared errors can have maximum per-query errors that are O(Vd)
times larger than optimal (d is the domain size).

5.1 Analytical Case Study

Suppose the dataset is represented by an d-dimensional vector
x = [x1,...,x4]T. Let the workload matrix consists of identity
queries (i.e., for each i, what is the value of x;) and the total sum
query. Its matrix representation is:

1 0 0 0

0 1 0 0
W=

0 0 O

1 1 1

1735

We compare closed-form solutions for sum-squared-error and fitness-
for-use optimizations for the case where all per-query variance
targets are set to y. Solutions to both problems can be interpreted
as adding correlated noise to x as follows: z = x + N(0,X) and
then releasing Wz. By convexity of the sum-squared-error [50] and
fitness-for-use (Section 5.2) problems, and since all x[i] are treated
symmetrically by W, the covariance matrices for both problems
should treat the domain elements symmetrically. That is, the corre-
lation between the noise added to x[i] and x[j] (i.e., 2[i, j]) should
be the same as the correlation between the noise added to x[i’] and
x[j’]. Thus X (and consequently %~!) should have the form:

by

a? +dab

where a and b are scalars and 1 is the column vector of ones. The
eigenvalues are a + bd (with eigenvector 1) and a (for all vectors
orthogonal to the vector 1). Hence positive definiteness requires
a > 0 and a + bd > 0. The variance for each of the first d queries is

a+b. For the sum query it is 1721 = da + d?b. The squared privacy
a+(d-1)b
a’+dab -

1
> =al+b117 > l=C1-
a

e
cost is Zi’i =
5.1.1 Sum-squared-error Optimization. Thus, the optimization prob-
lem for sum squared error given a privacy cost f is:

arg min d(a+b) + (da+d*b) (5)

a,
a+(d-1)b 2
——— =f“and a>0 and a+bd >0
a® +dab P
THEOREM 6. Ford > 5, the solution to Equation 5 is:
-3+d 1
ai=——
(-1+d)—Vi+d/?
(-3+d) (2—\/1+d)

1
((—1 +d) - «/m) (—1 —d+ (-1 +d)\/m) P

5.1.2 Fitness-for-use Optimization. Fitness-for-use optimization
with target variance y for all queries can be written as:

C a+(d-1)b
argmin —————
ab a? +dab

(6)

st. a+b<y and ad+bd®> <y and a>0 and a+bd >0

THEOREM 7. When d > 5, the solution to Equation 6 is a = (%)}/,

b=—(%)y, with squared privacy cost % %

5.1.3 Comparison. To compare the two mechanisms, we can make
—2d 1

. . . 2
their privacy costs equal by setting f* = 55 v
THEOREM 8. When the two mechanisms have the same privacy cost,
the maximum ratio of query variance to its desired variance bound y
is O(Vd) for sum-squared-error and 1 for fitness-for-use.

This result shows that sum-squared-error optimization and fitness-
for-use optimization produce very different solutions, hence fitness-
for-use optimization is needed for applications that demand per-
query accuracy constraints.

5.2 Properties of the Problem and Solution

We next theoretically analyze the problem and its solution space.
The first result is convexity of the optimization problem.

THEOREM 9. The optimization problem in Equation 3 is convex.

Some convex optimization problems have no solutions because
they are not closed. As a simple example, consider arg min x> +x s.t.,
x > 0. The value x = 0 is ruled out by the constraint and no positive
value of x can be optimal (i.e. dividing a candidate solution by 2
always improves the objective function). A similar concern holds
for positive definite matrices — the set of positive definite matrices
is not closed, but the set of positive semi-definite matrices is closed.
The next result shows that even if we allowed X to be positive semi-
definite (hence guaranteeing an optimal solution exists), optimal
solutions will still be positive definite.

THEOREM 10. If the fitness-for-use variance targets c; are all positive
then optimization problem in Equation 3 (Problem 1) is feasible and
all optimal solutions for X have smallest eigenvalue > y for some
fixed y > 0 (i.e., they are symmetric positive definite).

Problem 1 asks us to solve the optimization problem in Equation
3 and if there are multiple optimal solutions, pick one such =¥ that
is minimal under the refined privacy ordering <g. In principle, since
this is a weak ordering (i.e., two distinct mechanisms can have the
same exact privacy properties), one can expect there to exist many
such minimal solutions with equivalent privacy properties.

Surprisingly, it turns out that there is a unique solution. The
main idea of the proof is to first show that all solutions to Equation
3 that are minimal under <g have the same exact privacy profile
(the refined privacy ordering guarantees that the sorted privacy
profiles are the same, but we show that for solutions of Equation 3,
the entire privacy profiles are exactly the same). This places at least
k constraints on the covariance matrix X for such solutions. Note
that ¥ has k(k + 1) /2 parameters in all, so, in general, two matrices
with the same privacy profile do not have to be identical. However,
our proof then shows that if two matrices have the same privacy
profile and are solutions to Equation 3, then they must in fact be
the same matrix.

THEOREM 11. In Problem 1, there exists a unique minimal (under the
privacy ordering <g) solution.

6 ALGORITHMS

In this section, we present an algorithm to solve the fitness-for-
use problem (Problem 1). Since a major component of Problem 1
includes a constrained convex optimization problem, a reasonable
choice is to implement an interior point method [41]. However,
given the number of constraints involved, we found that such an
algorithm would require a significant amount of complexity to
ensure scalability, numerical stability, and a feasible initialization
for the algorithm to start at. Instead, we closely approximate it
with a series of unconstrained optimization problems that are much
easier to implement and initialize. For low-dimensional problems,
both the interior point method and our approximation returned
nearly identical results.

In Section 6.1, we present our reformulation/approximation of
the problem. Then, in Section 6.2, we provide a Newton-based algo-
rithm with line search for solving it. We use a trick from the matrix

1736

mechanism optimization [34] to avoid computing a large Hessian
matrix. Then in Section 6.3 we present initialization strategies that
help speed up convergence.

6.1 Problem Reformulation

Two of the main features of Problem 1 are optimizing the max of
the privacy cost while dealing with the variance constraints. Our
first step towards converting this to an unconstrained optimiza-
tion problem is to bring the variance constraints into the objective
function. We do this by noting that our variance constraints can be
rephrased as a max constraint:

VT

ol
] VXV

VX

Vj,ijv]T <cj &= V] <1 & max 1

J

<
Cj Cj

where v; is the j™ row of the matrix L (recall W = LB) and
¢ =[c1,...,cm] are the desired variance upper bounds. This obser-
vation raises the following question: instead of optimizing privacy
cost subject to variance constraints, what if we optimize privacy
cost plus max variance in the objective function (and then rescale
3 so that the accuracy constraints are met)? This results in the

following problem, which we show is equivalent to Problem 1.

PROBLEM 3. Under the same setting as Problem 1, let v; be thej”’ row
of the representation matrix L. Solve the following optimization:

)

s.t. X is symmetric positive definite.
Among all optimal solutions, choose a X* that is minimal accord-
ing to the privacy ordering <g, and then output 3* [y, where y =
ij*vr

J
€j

ol
\]ZVj

. Ty—11..
Z<—argmzmmiax(bi2 b,) (7)

+ max

J Cj

max j

THEOREM 12. The optimal solution to Problem 1 is the same as the
optimal solution to Problem 3.

Next, we can use a common trick [51] for continuous approxima-
tion of the max function, known as the soft max: sm; (as,,am) =
% log(Y; €'%), where t is a smoothing parameter. As t — oo, the
soft max converges to the max function. We can apply this trick to
both maxes in Problem 3. Now, the nice thing about the soft max
function is that it also approximates the refined privacy ordering.
Specifically, if X1 <g X, then clearly when ¢ is large enough,

1 _ 1 _
7 log(zi: exp(t * biTZ1 b)) < 7 log(zi: exp(t * biTZZ b))
Plugging the soft max function in place of the max in Problem 3,
we finally arrive at our approximation problem:

PrROBLEM 4. Given parameters t; and tz, under the same setting as
Problem 1, solve the following optimization problem:

* .1 Ty—1y, .
¥F — arg min E log Zl: exp(t; *b; Z77b;) 3)
T
1 VJ-ZVJ.
+—1lo g *
ty & ; Cj

s.t. X is symmetric positive definite.

s T
v]Zvj

and then output X* [y, where y = max; S

Our algorithm solves Equation 8 as a sequence of optimization
problems that gradually increase t; and t;.

THEOREM 13. The optimization Problem 4 is convex.

Although we focus on controlling per-query error, we note that
some data publishers may wish to strike a balance between achiev-
ing the per-query error targets and minimizing total squared error.
This is easy to achieve by addinga +13}; v ijjT term to the objec-
tive function of Problem 4, where A is a weight indicating relative
importance of total squared error. This modification changes the
objective function gradient by +4 3} ; v jvJT.. This modification to the
gradient computation is the only change needed by our algorithm
(in Section 6.2) to handle this hybrid setting.

6.2 The Optimization Algorithm

We use Newton’s Method with Conjugate Gradient approximation
to the Hessian to solve Problem 4 (Algorithm 1). For a given value
of t; and t2, we use an iterative algorithm to solve the optimization
problem in Equation 8 to convergence to get an intermediate value
Zi, t,- Then, starting from Z;, ;,, we again iteratively solve Equa-
tion 8 but with a larger value of #; and t,. We repeat this process
until convergence. Each sub-problem uses Conjugate Gradient [41]
to find an update direction for X without materializing the large
Hessian matrix. We then use backtracking line search to find a step
size for this direction that ensures that the updated ¥ improves
over the previous iteration and is still positive definite.

Algorithm 1: Optimize(B, L, c)
Input: Basis matrix B, reconstruction matrix L, accuracy
constraints c;
Output: Solution ¥;
1 Initialize X =X, t1 =1, t2 = 1;
2 for iter = 1 to MAXITER do
3 s = ConjugateGradient(Z, B, L, ¢);
4 6 =(s,VF(2));
// Stopping Criteria
5 if |8| < NTTOL then

6 gap = (d+m)/t1;

7 if gap < TOL then

8 L break;

9 11 =MU=xt, ty=MU =ty
10 a = LineSearch(Z, v);

11 Y=X+asx*s;

12 Return X

In Algorithm 1, MAXITER is the maximum number of iterations
to use, while NTTOL, TOL are tolerance parameters. Larger toler-
ance values make the program stop faster at a slightly less accurate
solution. MU is the factor we use to rescale #; and ;. Typical values
we used are MU € {2,5,10}. In Line 3, we get an approximate
Newton direction and then we use Line 4 to see if this direction can
provide sufficient decrease (here VF is the gradient of the objective

1737

function). If not, the sub-problem is over and we update #; and t;
(Line 9) to continue with the next sub-problem. Otherwise, we find
a good step size for the search direction (Line 10) and then update
Y (Line 11).

6.2.1 Gradient and Hessian Computation. The gradient and Hes-

sian of the objective function F can be derived in closed form. Let

gi(%) = bT=7Mbi, Gi(11,%) = exp (11 + BTZ by), hy(3) =

T
ijvj

c;

iy
v Zvj

Hj(tz,Z) = exp (tz % L

). Noting that the matrix ¥ is symmet-

ric, we can calculate the gradient and Hessian of the functions f;
and g; as follows:

Vgi(2) = -3 b;bl z7! (9)
Vigi(2) = -Vg:i(2) X7 - 37 @ Vgi(%) (10)
T .
Vhi(Z) = M) (11)
Cj
VZhi(Z) =0 (12)

Then the gradient and Hessian of the objective function F(X) can

be calculated as follows.

2 (Gi(t,X)Vgi (X))
2 Gi(1,X)

2 (Hj(t2,) Vh;())
2 Hj(t2,%)

VE(Z) = (13)
t1 3; (Gi(t1,2) (V2gi (%) + Vgi (%) ® Vgi (%))
2iGi(t1,%)
12 (Gi(t1, 2)Vgi (%)) ® 3, (Gi(11,2)Vgi ()
(2 Gi(11,%))?

to Zj (Hj(tz,Z) (th(Z) ® th(Z)))

+
2 Hj(t2,2)
ty Zj (Hj(tz,Z)th(Z)) ® Zj (Hj(tz,Z)th(Z))

(2 1509)

V2E(Z) =

(14)

Here ® is the Kronecker product. Because of the Kronecker product,
multiplication of the Hessian by a search direction can be done
without materializing the Hessian itself. Specifically, we use the

well-known property (A ® B) vec (C) = vec (BCAT) that is fre-
quently exploited in the matrix mechanism literature [37, 52]. We
let HessTimesVec denote the function that exploits this trick to effi-

ciently compute the multiplication Hp of the Hessian (of objective
function F) by a search direction without explicitly computing H.

6.2.2 Conjugate Gradient. Algorithm 1 finds a search direction
using the Conjugate Gradient algorithm, which is commonly used
for large scale optimization [41]. The main idea is that Newton’s
method uses second-order Taylor expansion to approximate F(X)
and would like to compute the search direction by solving

1
s = argmin 5sTsz(Z)s +s VF(Z) (15)

whose solution is —H? VF, where H = V2F is the Hessian. However,
the size of Hessian matrix is d? x d? (where d is the size of the
domain of possible tuples in our case). This is intractably large,
but fortunately, only approximate solutions to Equation 15 are

Algorithm 2: ConjugateGradient(Z, B, L, c)
Input: Variable ¥, basis matrix B, index matrix L, accuracy
constraints c;
Output: Search direction s;
1 Initialize s = 0,r = —VF(X), p =1, rsold = (r,1) ;
2 for i =1 to MAXCG do
Hp = HessTimesVec(p) ;

3

_ rsold _ _ — .
4 —m,s—s+a*p,r—r—a*Hp,rsnew—(r,r),
5 if rsnew <TOL2 then
6 L break;

_— Irsnew — — .
7 b=, p=r+bx*p, rsold = rsnew;

s Returns

necessary for optimization, and this is what conjugate gradient
does [41]. Algorithm 2 provides the pseudocode for our application
(recall that HessTimesVec is the function that efficiently computes
the product of the Hessian times a vector by taking advantage of
the Kronecker products in Equation 14). We note that Yuan et al.
[52] used 5 conjugate gradient iterations in their matrix mechanism
application. Similarly we use 5 iterations (MAXCG = 5) in Line
2. We also terminate the loop early if there is very little change,
checked in Line 5 (we use TOL2 = 10719).

6.2.3 Step Size. Once the conjugate graident algorithm returns a
search direction, we need to find a step size « to use to update X in
Algorithm 1. For this we use the standard backtracking line search
[41], whose application to our problem is shown in Algorithm 3. It
makes sure that the step size is small enough (but not too small) so
that it will (1) result in a positive definite matrix and (2) the objective
function will decrease sufficiently. We use Cholesky decomposition
to check for positive definiteness. The parameter o determines how
much the objective function need to decrease before breaking the
iteration, a typical setting is o = 0.01.

Algorithm 3: LineSearch(Z, s)

Input: Variable ¥, search direction s;

Output: Step size «;
1 feurr = F(2), flast = feurr, 25 =%, j =1, f =0.5;
2 while true do
a=p j=j+1, Tnew =Tpig + @ 5,
fcurr = F(Znew) ;
if X;e4 < 0 then

continue;

if feurr < flast + a * o * (s, VF(X)) then
L break;

3

s Return o

6.3 Initialization

Optimization algorithms need a good initialization in order to con-
verge reasonably well. However, specifying a correlation structure
for Gaussian noise is typically not an intuitive approach for data

1738

publishers. Instead, data publishers may feel more comfortable
specifying a query matrix Q (with linearly independent rows) to
which it may be reasonable (as a first approximation) to add inde-
pendent noise. That would result in an initial suboptimal mecha-
nism My(x) = WQ*(Qx + N (0, %)) [34], where Q% is the Moore-
Penrose pseudo-inverse of Q [25] — that is, this suggested mecha-
nism would add independent noise to Qx and then recover workload
query answers by multiplying the result by WQ™.

We do not run this mechanism, instead we derive a Gaussian cor-
relation X from it. The covariance matrix for that mechanism would
be a?WQ* (WQ*)T. Noting that W = LB, this can be written as
o?LBQ* (LBQ™)T. This is equivalent to adding N (0, 02Q*(Q*)T)
noise to Bx and hence we can set the initial ¥ to be 62Q*(Q*)7.

Next we need to choose a small enough value for ¢ so that
the initial covariance matrix £ = ¢2Q*(Q*)T would satisfy the
fitness-for-use constraints. We do this by choosing

2 Cj

o =

‘min *0.99
Jj=1-d jth element of diag (LQJr HT LT)

Our optimizer (Algorithm 1) starts with this ¥ and iteratively im-
proves it.

We can also offer guidance about the setting for Q in cases
where the data publisher does not have a good guess. A simple
strategy is to set Q = I in fact, this is the setting we use for our
experiments (to show that our algorithms can succeed without
specialized knowledge about the problem). It is also possible to set
Q to be the result of Matrix Mechanism algorithms such as [52].

7 EXPERIMENTS

In these experiments, our proposed algorithm is referred to as SM-
II (for the two applications of soft max). We compare against the
following algorithms. Input Perturbation (IP) adds independent
Gaussian noise directly to the data vector. The optimal Matrix
Mechanism Convex Optimization Algorithm (CA) [50] minimizes
sum-squared error under (¢, §)-differential privacy. Since queries
can have different relative importance, we also consider two varia-
tions of CA. wCA-I weights each query by the inverse of its target
variance (so queries that need low variance have higher weight
in the objective function) and wCA-II weights each query by the
inverse of the square root of the variance. We also consider the
Hierarchical Mechanism (HM) [29, 43] as it is good for some work-
loads. Specifically, HM uses a strategy matrix H which represents
a tree structure with optimal branching factor [43]. We also con-
sidered the Gaussian Mechanism (GM), which adds independent
Gaussian noise to the workload query answers. However, it gener-
ally performed worse than IP and always significantly worse than
CA, so we dropped it from the tables to save space. We do not
compare with alternative Matrix Mechanism algorithms like Low-
Rank Mechanism [51], Adaptive Mechanism [33] and Exponential
Smoothing Mechanism [51] because the CA baseline is optimal for
Matrix Mechanism [50] under (e, §)-differential privacy.

We compare these algorithms on a variety of workloads based
on their performance at the same privacy cost. Our algorithm SM-
II finds the minimal privacy cost needed to satisfy the accuracy
constraints. We then set the other algorithms to use this privacy

Table 2: Privacy cost comparison between SM-II and interior
point method. Note that IP did not scale well, thus limiting
the size of d.

d 2 4 8 16 64
Interior Point | 1.33 | 1.76 | 2.28 | 2.91 | 4.46
SM-II 1.33 | 1.76 | 2.28 | 291 | 4.46

cost and we check by how much they exceed the pre-specified
variance requirements (i.e., to what degree are they sub-optimal
for the fitness-for-use problem). Note that these algorithms are all
data-independent, so the variance can be computed in closed form
and will be the same for any pair of datasets that have the same
dimensionality and domain size. One can also compare privacy cost
needed to reach the target variance as follows. If, given the same
privacy cost, Method 1 exceeds its target variance by a factor of
x1 and Method 2 exceeds it by x; (which is what our experiments
show), then if they were both given enough privacy cost to meet
their target variance goals, the ratio of privacy cost for Method 1
to that of Method 2 is 4/x1/x2 (this follows from Theorem 5).

We follow Section 6.3 to initialize our algorithm by setting the
initialization parameter Q = I (the d X d identity matrix). For basis
matrices B, we use two choices: B = I or B = U, where U is an upper
triangle matrix (U[i, j] = 1if i < j and U[4, j] = 0 otherwise).

All experiments are performed on a machine with an Intel i7-
9750H 2.60GHz CPU and 16GBytes RAM.

7.1 Evaluating Design Choices

We made two key design choices for our algorithm. The first was
to approximate the constrained optimization in Problem 1 with
the soft max optimization in Problem 4. Then we used a Newton-
style method to solve it instead of something simpler like gradient
descent. We evaluate the effect of these choices here.

7.1.1 The Soft Max Approximation. For small problems, we can
directly solve Problem 1 by implementing an interior point method
[5] and so we can compare the resulting privacy cost with the one
returned by our soft max approximation SM-IL. For this experiment,
we considered prefix-range queries over an ordered domain of size d.
These are one-sided range queries (i.e., the sum of the first 2 records,
the sum of the first 3 records) from which all one-dimensional range
query answers can be computed by subtraction of two one-sided
range queries. Thus the workload W is a lower triangular matrix
where the lower triangle consists of ones. The result is shown in
Table 2 and shows excellent agreement. Note that d = 64 is the limit
for our interior point solver, while with SM-II we can easily scale
to d = 1024 on a relatively weak machine (using a server-grade
machine or a GPU can improve scalability even more). We note that
extreme scalability, like in the high-dimensional matrix mechanism
[37], is an area of future work and we believe that a combination
of the ideas from [37] and our work can make this possible, by
breaking a large optimizaton problem into smaller pieces and using
our SM-II method to optimize each smaller piece.

7.1.2 SM-II vs. Gradient Descent. As far as optimizers go, SM-II is
relatively simple, but not as simple as the very popular gradient
descent (GD). To justify the added complexity, we compared these

1739

Table 3: Convergence time for SM-II vs. Gradient Descent
(GD) in seconds. Even at small scales, gradient descent is
vastly inferior.

d 2 4 8 16
GD | 7.02 | 44.90 | 198,52 | 264.36
SM-II | 0.027 | 0.055 | 0.053 | 0.058
k=4

30

25

20

15

Max Ratio

10

d=100 d=200 d=300 d=400 d=500 d=600 d=700 d=800 d=900 d=1000

CA WCA-| e WCA-|| el SM-11

Figure 2: Comparison for different d when k = 4.

two optimizers for solving Problem 4. We used the same setup as
in Section 7.1.1 and the results are shown in Table 3. Clearly the
use of SM-II is justified as gradient descent does not converge fast
enough even at small problem sizes.

7.2 The Identity-Sum Workload

In Section 5.1, we considered the workload consisting of the identity
query and the sum query, with equal target variance. We further
explore this example to illustrate further surprising behavior of
algorithms that optimize for sum-squared-error (so for just this
experiment we focus on CA, wCA-I, wCA-II). Specifically, it is be-
lieved that in sum-squared error optimization, weighting queries by
the inverse of their desired variance helps improve their individual
accuracy. We show that this is not always the case.

In these experiments, the identity query has target variance 1,
but we will vary the sum query’s target variance, which we denote
by the variable k.

In Figure 2, we set k = 4 and vary the domain size d. As expected,
SM-II outperforms the others. What is surprising is that wCA-I
and wCA-II perform worse than CA because this means that the
typical recommended weighting strategy actually makes things
worse (the sum query exceeds its target variance by a larger ratio).
For reference, we derive the optimal analytical solutions for these
methods on this workload in the appendix of the full version of our
paper [48].

Figure 3 fixes d at 256 and varies k (starting from k = 1). Again
we see the same qualitative effects as in Figure 2.

7.3 PL-94

PL94-171 [8] is a Census dataset used for redistricting. In 2010, it
contained the following variables:

e voting-age: a binary variable where 0 indicates someone is 17
years old and under, while 1 indicates 18 or over.

d=256
14

12

Max Ratio

N A O ®

k=8 k=10 k=12 k=14 k=16

WCA-| === wCA-I| SM-II

Figure 3: Comparison for different k when d = 256.

Table 4: Max variance ratio on PL94 with uniform targets.

1P
36.56

HM
13.93

CA
3.99

wCA-1
3.99

wCA-II
3.99

SM-II
1.00

Mechanism
PL94

ethnicity: a binary variable used to indicate if someone is His-
panic (value 1) or not (value 0).

race: this is a variable with 63 possible values. The OMB race
categories in this file in 2010 were White, Black or African Ameri-
can, American Indian and Alaska Native, Asian, Native Hawaiian
and Other Pacific Islander, and Some Other Race. An individual is
able to select any non-empty subset of races, giving a total of 63
possible values.

These variables create a (2, 2, 63) histogram which can be flattened
into a 252-dimension vector.

For this experiment, we created a workload consisting of mul-
tiple marginals. These were a) voting-age marginal (i.e., number
of voting-age people and number of non-voting-age people); b)
ethnicity marginal; c) the number of people in each OMB category
who selected only one race; d) for each combination of 2 or more
races, the number of people who selected that combination; e) the
identity query (i.e., for each demographic combination, how many
people fit into it). As we are not aware of any public error targets,
we will assume all queries are equally important and set all variance
targets to 1. The basis matrix is B = U (upper triangular matrix).

We found the minimal privacy cost needed to match these vari-
ance bounds using SM-II and set that as the privacy cost for all
algorithms. Then we measured the maximum ratio of query vari-
ance to target variance for each method. The results are shown in
Table 4. We see that input perturbation performs the worst. The
matrix mechanism optimized for total error (CA) is much better,
but it still has a maximum variance ratio of 3.99 times larger than
optimal. This means that the matrix mechanism is more accurate
than necessary for some queries at the expense of missing the target
bound for other queries. Meanwhile, SM-II can match the desired
bounds for each query, which is what it is designed to do. In terms
of sum squared error, which is what CA is optimized for, the error
for SM-I is 2.07 times that of CA.

7.4 Range Queries

We next consider one-dimensional range queries. Here we follow
a similar setting to [51]. We vary d, the number of items in an

1740

Table 5: Maximum ratio of achieved variance to target vari-
ance on Range Queries with uniform accuracy targets.

Mechanism P HM | CA | wCA-I | wCA-II | SM-II
d=64 10.63 | 2.84 | 1.27 1.27 1.27 1.00
d=128 17.45 | 3.48 | 1.25 1.25 1.25 1.00
d =256 28.43 | 3.90 | 1.29 1.29 1.29 1.00
d =512 47.36 | 4.68 | 1.23 1.23 1.23 1.00

d=1024 77.26 | 542 | 1.24 1.24 1.24 1.00

Table 6: Maximum ratio of achieved variance to target vari-
ance on Range Queries with random accuracy targets.

Mechanism P HM | CA | wCA-I | wCA-II | SM-II
d=64 16.04 | 4.63 | 2.53 1.62 1.98 1.00
d=128 21.28 | 5.87 | 2.14 1.49 1.75 1.00
d =256 41.76 | 6.05 | 1.91 1.45 1.69 1.00
d=512 71.51 | 7.35 | 1.80 1.46 1.52 1.00

d=1024 109.34 | 7.68 | 1.69 1.43 1.49 1.00

Table 7: Maximum achieved variance to target variance ratio
on Random Queries with a Uniform target variance.

Mechanism | IP HM | CA | wCA-I | wCA-II | SM-II
d=064 1.14 | 2.29 | 1.14 1.14 1.14 1.00
d=128 1.14 | 2.29 | 1.07 1.07 1.07 1.00
d =256 1.14 | 3.39 | 1.06 1.06 1.06 1.00
d=512 1.15 | 3.40 | 1.05 1.05 1.05 1.00

d =1024 1.15 | 3.41 | 1.04 1.04 1.04 1.00

ordered domain. The workload is composed of 2 * d random range
queries, where the end-points of each query are sampled uniformly
at random. We compare two settings, (1) the uniform cases where
the target variance bound is equal to 1 for each query, and (2)
the random case where the target variance bound for each query
is randomly sampled from a uniform(1, 10) distribution. In the
experiments we vary the domain size d € {64, 128, 256,512, 1024},
and use the basis matrix B = U (upper triangular matrix).

Again, we find the minimum privacy cost using SM-II, set each
algorithm to use that privacy cost and then compute the maximum
variance to target variance ratio for each method. The results for
the uniform targets are shown in Table 5, with SM-II achieving
~ 25% improvement over the best competitor. The results for the
random targets are shown in Table 6, with SM-II improving by at
least 40% over competitors. In the uniform case, the sum squared
error of SM-II ranges from 1.04 to 1.09 times that of CA, depending
on the value of d.

7.5 Random Queries

We next consider a random query workload similar to the setting
n [51]. Here for each entry in each d-dimensional query vector,
we flip a coin with P(heads) = 0.2. If it lands heads, the entry is
set to 1, otherwise it is set to —1. Again we consider two scenarios.
(1) the uniform cases where the target variance bound is equal to 1

Table 8: Maximum achieved variance to target variance ratio

on Random Queries with a Random target variance.

Mechanism | IP | HM | CA | wCA-I | wCA-II | SM-II
d=64 258 | 7.44 | 2.43 1.15 1.61 1.00
d=128 2.82 | 8.28 | 2.58 1.18 1.72 1.00
d =256 2.82 | 8.36 | 2.58 1.17 1.70 1.00
d =512 2.79 | 8.27 | 2.51 1.16 1.68 1.00

d=1024 2.76 | 8.17 | 2.49 1.16 1.67 1.00

Table 9: Maximum achieved variance to target variance ratio

for Age pyramids with uniform accuracy targets.

Mechanism

1P

HM

CA

wCA-I

wCA-II

SM-II

AGE

32.49

6.2

1.58

1.58

1.58

1.00

for each query, and (2) the random case where the target variance
bound for each query is randomly sampled from a uniform(1, 10)
distribution. We vary d € {64, 128, 256,512, 1024}, and the number
of queries is m = 2 * d. The basis matrix is B = L.

Table 7 lists the maximum variance ratio among all queries under
the same privacy cost for different methods for the uniform scenario.
Table 8 shows the corresponding results for random targets. In
both cases, the best competitor is not much worse than SM-II. We
speculate that this is because the queries do not have much structure
that can be exploited to reduce privacy cost. In terms of sum squared
error, for the case of uniform target variances, the total error of
SM-II was at most 1.005 times that of CA.

7.6 Age Pyramids

Demographers often study the distribution of ages in a population
by gender. We consider a dataset schema similar to the Census,
where gender is a binary attribute and there are 116 ages (0-115).
The range queries we consider are prefix queries (i.e., age € [0, x] for
all x) and age € [18, 115] (the voting age population). The workload
consists of (1) range queries for males, (2) range queries for females,
(3) range queries for all. We set uniform target variance bounds of
1. We use the basis matrix B = U (upper triangular). Table 9 shows
the maximum ratio of achieved variance to target variance for each
algorithm, with SM-II clearly outperforming the competitors by at
least 58%. Meanwhile the sum squared error of SM-II is 1.07 times
that of CA.

7.7 Marginals

We next consider histograms H on r variables, where each variable
can take on one of t values, resulting in a domain size of d =
t". We consider the workload consisting of all one-way and two-
way marginals with uniform target variance of 1. For this set of
experiments, we set r = 3 and varied the values of t. We used
the basis matrix is B = I for SM-II. Table 10 shows the maximum
target variance ratio of different algorithms. SM-II outperforms the
competitors, especially as ¢ increases. The ratio of sum squared
error of SM-II to CA ranged from 1.1 (¢ = 2) to 1.34 (¢ = 16).

1741

Table 10: Maximum achieved variance to target variance ra-
tio on Marginal Queries whenr =3

Mechanism 1P HM CA | wCA-I | wCA-II | SM-II
t=2 1.82 3.02 1.14 1.14 1.14 1.00
t=4 4.55 10.28 1.42 1.42 1.42 1.00
t=6 8.6 21.38 1.66 1.66 1.66 1.00
t=8 14.03 | 36.72 1.88 1.88 1.88 1.00
t=10 20.84 | 56.23 | 2.08 2.08 2.08 1.00
t=12 28.76 | 78.96 | 2.25 2.25 2.25 1.00
t=14 38.17 | 106.22 | 2.41 2.41 2.41 1.00
t=16 48.85 | 137.41 | 2.57 2.57 2.57 1.00

Table 11: Maximum achieved variance to target variance ra-
tio on WRelated Queries with a Uniform target variance.

Mechanism | IP HM | CA | wCA-I | wCA-II | SM-II
d=064 3.51 | 9.59 1.31 1.31 1.31 1.00
d=128 4.16 | 11.16 | 1.31 1.31 1.31 1.00
d =256 4.28 | 12.60 | 1.19 1.19 1.19 1.00
d =512 3.62 | 10.46 | 1.12 1.12 1.12 1.00

d=1024 3.50 | 10.05 | 1.07 1.07 1.07 1.00

7.8 WRelated Queries

We next consider the one-dimensional WRelated workload of [51].
The workload matrix is W = CA. Here matrix C has size m X s and
matrix A has size s X d, each follows the Gaussian(0, 1) distribution.
In the experiment we set m = d/2, s = d/2. Due to space constraints,
we only show results for the uniform target variance bound of 1. We
vary the domain size d € {64, 128, 256,512, 1024}, and use the basis
matrix B = L. The results in Table 11 shows SM-II outperforming
competitors by around 31% on the smaller domain sizes. The ratio
of total squared error for SM-II to that of CA was at most 1.08

8 CONCLUSIONS AND FUTURE WORK

In this work we introduce the fitness-for-use problem, where the
goal is to calculate minimal privacy cost under accuracy constraints
for each query. After theoretical analysis of the problem, we pro-
posed an algorithm named SM-II to solve it. While our algorithm
used variance as the accuracy measure for each query, other ap-
plications may require their own specific accuracy measures. This
consideration leads to two important directions for future work.
The first is to create optimized differentially private algorithms
that meet fitness-for-use goals under measures other than squared
error. The second direction is to achieve the same kind of extreme
scalability as the high-dimensional matrix mechanism [37] that
provided a tradeoff between optimality and scalability.

ACKNOWLEDGMENTS

This work was supported by NSF Awards CNS-1702760 and CNS-
1931686. We are grateful to Aleksandar Nikolov for discussions
about factorization mechanisms.

REFERENCES

(1]

(2]

[3

(4]

[13]

[20]

[23]

[24

[25]
[26]

[27]

[28

Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,
Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy. In
CCS.

John Abowd. 2018. The U.S. Census Bureau Adopts Differential Privacy. KDD
Invited Talk.

Borja Balle and Yu-Xiang Wang. 2018. Improving the Gaussian Mechanism for
Differential Privacy: Analytical Calibration and Optimal Denoising. In Interna-
tional Conference on Machine Learning, [CML.

Jeremiah Blocki, Anupam Datta, and Joseph Bonneau. 2016. Differentially Private
Password Frequency Lists. In 23rd Annual Network and Distributed System Security
Symposium, NDSS 2016, San Diego, California, USA, February 21-24, 2016. The
Internet Society.

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. 2004. Convex opti-
mization. Cambridge university press.

Mark Bun and Thomas Steinke. 2016. Concentrated Differential Privacy: Sim-
plifications, Extensions, and Lower Bounds. In Proceedings, Part I, of the 14th
International Conference on Theory of Cryptography - Volume 9985.

US. Census Bureau. [n.d.]. Decennial Census: 2010 Summary Files. https:
//www.census.gov/mp/www/cat/decennial_census_2010/.

U.S. Census Bureau. 2010. PL 94-171 Redistricting Data. https://www.census.gov/
programs-surveys/decennial-census/about/rdo/summary-files.html.

U.S. Census Bureau. 2011. Advance Group Quarters Summary File. https://www.
census.gov/prod/cen2010/doc/ggsf.pdf.

U. S. Census Bureau. [n.d.]. On The Map: Longitudinal Employer-
Household Dynamics. https://lehd.ces.census.gov/applications/help/onthemap.
html#!confidentiality _protection.

Clement L Canonne, Gautam Kamath, and Thomas Steinke. 2020. The Discrete
Gaussian for Differential Privacy. In NeurIPS.

Thee Chanyaswad, Alex Dytso, H Vincent Poor, and Prateek Mittal. 2018. Mvg
mechanism: Differential privacy under matrix-valued query. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security.
230-246.

Graham Cormode, Cecilia Procopiuc, Divesh Srivastava, Entong Shen, and Ting
Yu. 2012. Differentially private spatial decompositions. In 2012 IEEE 28th Interna-
tional Conference on Data Engineering. IEEE, 20-31.

Bolin Ding, Marianne Winslett, Jiawei Han, and Zhenhui Li. 2011. Differentially
Private Data Cubes: Optimizing Noise Sources and Consistency. In Proceedings
of the 2011 ACM SIGMOD International Conference on Management of Data.

Irit Dinur and Kobbi Nissim. 2003. Revealing information while preserving
privacy. In PODS.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. 2006. Our Data, Ourselves: Privacy via Distributed Noise Generation.
In EUROCRYPT. 486-503.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrat-
ing Noise to Sensitivity in Private Data Analysis.. In TCC.

Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Differen-
tial Privacy. Foundations and Trends in Theoretical Computer Science 9, 3-4 (2014),
211-407. https://doi.org/10.1561/0400000042

Hamid Ebadi, David Sands, and Gerardo Schneider. 2015. Differential Privacy:
Now It’s Getting Personal. In POPL.

Alexander Edmonds, Aleksandar Nikolov, and Jonathan Ullman. 2020. The
power of factorization mechanisms in local and central differential privacy. In
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing.
425-438.

Simson L. Garfinkel, John M. Abowd, and Sarah Powazek. 2018. Issues Encoun-
tered Deploying Differential Privacy. In Proceedings of the 2018 Workshop on
Privacy in the Electronic Society.

Quan Geng, Wei Ding, Ruiqi Guo, and Sanjiv Kumar. 2020. Tight analysis of
privacy and utility tradeoff in approximate differential privacy. In International
Conference on Artificial Intelligence and Statistics. 89-99.

Quan Geng and Pramod Viswanath. 2015. The optimal noise-adding mechanism
in differential privacy. IEEE Transactions on Information Theory 62, 2 (2015),
925-951.

Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. 2009. Universally
Utility-Maximizing Privacy Mechanisms. In Proceedings of the Forty-First Annual
ACM Symposium on Theory of Computing.

Gene H. Golub and Charles F. Van Loan. 1996. Matrix Computations (third ed.).
The Johns Hopkins University Press.

Robert Groves. 2010. So, How do You Handle Prisons? https://www.census.gov/
newsroom/blogs/director/2010/03/so-how-do-you-handle-prisons.html.
Moritz Hardt, Katrina Ligett, and Frank Mcsherry. 2012. A Simple and Prac-
tical Algorithm for Differentially Private Data Release. In Advances in Neural
Information Processing Systems.

Michael Hay, Ashwin Machanavajjhala, Gerome Miklau, Yan Chen, Dan Zhang,
and George Bissias. 2016. Exploring Privacy-Accuracy Tradeoffs Using DPComp.
In Proceedings of the 2016 International Conference on Management of Data.

1742

[29

[30

[31

[33

[34

[35

[36

[38

[39

[40

[41

[42

[43

[44]

[45

[46]

N
)

(48

[49

[50

o
=

[52

Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. 2010. Boosting the
Accuracy of Differentially Private Histograms Through Consistency. Proceedings
of the VLDB Endowment 3, 1 (2010).

Georgios Kellaris and Stavros Papadopoulos. 2013. Practical differential privacy
via grouping and smoothing. Proceedings of the VLDB Endowment 6, 5 (2013),
301-312.

Tos Kotsogiannis, Ashwin Machanavajjhala, Michael Hay, and Gerome Mik-
lau. 2017. Pythia: Data dependent differentially private algorithm selection. In
Proceedings of the 2017 ACM International Conference on Management of Data.
1323-1337.

Chao Li, Michael Hay, Gerome Miklau, and Yue Wang. 2014. A Data-and
Workload-Aware Algorithm for Range Queries Under Differential Privacy. Pro-
ceedings of the VLDB Endowment 7, 5 (2014).

Chao Li and Gerome Miklau. 2012. An Adaptive Mechanism for Accurate Query
Answering under Differential Privacy. Proceedings of the VLDB Endowment 5, 6
(2012).

Chao Li, Gerome Miklau, Michael Hay, Andrew Mcgregor, and Vibhor Ras-
togi. 2015. The Matrix Mechanism: Optimizing Linear Counting Queries un-
der Differential Privacy. The VLDB Journal 24, 6 (Dec. 2015), 757-781. https:
//doi.org/10.1007/s00778-015-0398-x

Fang Liu. 2018. Generalized gaussian mechanism for differential privacy. IEEE
Transactions on Knowledge and Data Engineering 31, 4 (2018), 747-756.

Ashwin Machanavajjhala, Daniel Kifer, John Abowd, Johannes Gehrke, and Lars
Vilhuber. 2008. Privacy: From Theory to Practice On the Map. In Proceedings of
the IEEE International Conference on Data Engineering (ICDE). 277-286.

Ryan McKenna, Gerome Miklau, Michael Hay, and Ashwin Machanavajjhala.
2018. Optimizing error of high-dimensional statistical queries under differential
privacy. Proceedings of the VLDB Endowment 11, 10 (2018).

Solomon Messing, Christina DeGregorio, Bennett Hillenbrand, Gary King, Saurav
Mahanti, Zagreb Mukerjee, Chaya Nayak, Nate Persily, Bogdan State, and Arjun
Wilkins. 2020. Facebook Privacy-Protected Full URLs Data Set. https://doi.org/
10.7910/DVN/TDOAPG

Ilya Mironov. 2017. Rényi Differential Privacy. In 30th IEEE Computer Security
Foundations Symposium, CSF 2017, Santa Barbara, CA, USA, August 21-25, 2017.
263-275.

Aleksandar Nikolov. 2014. New computational aspects of discrepancy theory. Ph.D.
Dissertation. Rutgers University-Graduate School-New Brunswick.

Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization (second ed.).
Springer, New York, NY, USA.

Wahbeh Qardaji, Weining Yang, and Ninghui Li. 2013. Differentially private grids
for geospatial data. In 2013 IEEE 29th international conference on data engineering
(ICDE). IEEE, 757-768.

Wahbeh Qardaji, Weining Yang, and Ninghui Li. 2013. Understanding Hierar-
chical Methods for Differentially Private Histograms. Proc. VLDB Endow. 6, 14
(2013).

U.S. Census Bureau. 2020. (Chapter 7) Understanding and Using American
Community Survey Data: What All Data Users Need to Know. https://www.
census.gov/programs-surveys/acs/guidance/handbooks/general. html.

Yue Wang, Daniel Kifer, and Jaewoo Lee. 2019. Differentially Private Confidence
Intervals for Empirical Risk Minimization. Journal of Privacy and Confidentiality
(2019).

S. Wu, A. Roth, K. Ligett, B. Waggoner, and S. Neel. 2019. Accuracy First: Selecting
a Differential Privacy Level for Accuracy-Constrained ERM. 9, 2 (2019).
Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. 2011. Differential Privacy
via Wavelet Transforms. IEEE Transactions on Knowledge and Data Engineering
23,8(2011), 1200-1214.

Yingtai Xiao, Zeyu Ding, Yuxin Wang, Danfeng Zhang, and Daniel Kifer. 2020.
Optimizing Fitness-for-Use of Differentially Private Linear Queries (full verson).
https://arxiv.org/abs/2012.00135.

Grigory Yaroslavtsev, Graham Cormode, Cecilia M Procopiuc, and Divesh Srivas-
tava. 2013. Accurate and efficient private release of datacubes and contingency
tables. In 2013 IEEE 29th International Conference on Data Engineering (ICDE).
IEEE, 745-756.

Ganzhao Yuan, Yin Yang, Zhenjie Zhang, and Zhifeng Hao. 2016. Convex Opti-
mization for Linear Query Processing under Approximate Differential Privacy.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining.

Ganzhao Yuan, Zhenjie Zhang, Marianne Winslett, Xiaokui Xiao, Yin Yang, and
Zhifeng Hao. 2012. Low-Rank Mechanism: Optimizing Batch Queries under
Differential Privacy. Proc. VLDB Endow. 5, 11 (July 2012), 1352-1363. https:
//doi.org/10.14778/2350229.2350252

Ganzhao Yuan, Zhenjie Zhang, Marianne Winslett, Xiaokui Xiao, Yin Yang, and
Zhifeng Hao. 2015. Optimizing batch linear queries under exact and approximate
differential privacy. ACM Transactions on Database Systems (TODS) 40, 2 (2015),
1-47.

https://www.census.gov/mp/www/cat/decennial_census_2010/
https://www.census.gov/mp/www/cat/decennial_census_2010/
https://www.census.gov/programs-surveys/decennial-census/about/rdo/summary-files.html
https://www.census.gov/programs-surveys/decennial-census/about/rdo/summary-files.html
https://www.census.gov/prod/cen2010/doc/gqsf.pdf
https://www.census.gov/prod/cen2010/doc/gqsf.pdf
https://lehd.ces.census.gov/applications/help/onthemap.html#!confidentiality_protection
https://lehd.ces.census.gov/applications/help/onthemap.html#!confidentiality_protection
https://doi.org/10.1561/0400000042
https://www.census.gov/newsroom/blogs/director/2010/03/so-how-do-you-handle-prisons.html
https://www.census.gov/newsroom/blogs/director/2010/03/so-how-do-you-handle-prisons.html
https://doi.org/10.1007/s00778-015-0398-x
https://doi.org/10.1007/s00778-015-0398-x
https://doi.org/10.7910/DVN/TDOAPG
https://doi.org/10.7910/DVN/TDOAPG
https://www.census.gov/programs-surveys/acs/guidance/handbooks/general.html
https://www.census.gov/programs-surveys/acs/guidance/handbooks/general.html
https://arxiv.org/abs/2012.00135
https://doi.org/10.14778/2350229.2350252
https://doi.org/10.14778/2350229.2350252

