
Optimizing Fitness-For-Use of Differentially Private Linear
Queries

Yingtai Xiao, Zeyu Ding, Yuxin Wang, Danfeng Zhang, Daniel Kifer
Pennsylvania State University

{yxx5224,dxd437,ykw5163,dbz5017,duk17}@psu.edu

ABSTRACT

In practice, differentially private data releases are designed to sup-

port a variety of applications. A data release is fit for use if it meets

target accuracy requirements for each application. In this paper, we

consider the problem of answering linear queries under differential

privacy subject to per-query accuracy constraints. Existing prac-

tical frameworks like the matrix mechanism do not provide such

fine-grained control (they optimize total error, which allows some

query answers to be more accurate than necessary, at the expense

of other queries that become no longer useful). Thus, we design

a fitness-for-use strategy that adds privacy-preserving Gaussian

noise to query answers. The covariance structure of the noise is

optimized to meet the fine-grained accuracy requirements while

minimizing the cost to privacy.

PVLDB Reference Format:

Yingtai Xiao, Zeyu Ding, Yuxin Wang, Danfeng Zhang, Daniel Kifer.

Optimizing Fitness-For-Use of Differentially Private Linear Queries.

PVLDB, 14(10): 1730 - 1742, 2021.

doi:10.14778/3467861.3467864

1 INTRODUCTION

Differential privacy gives data collectors the ability to publish infor-

mation about sensitive datasets while protecting the confidentiality

of the users who supplied the data. Real-world applications include

OnTheMap [10, 36], Yahoo Password Frequency Lists [4], Facebook

URLs Data [38], and the 2020 Decennial Census of Population and

Housing [2]. Lessons learned from these early applications help

identify deployment challenges that should serve as guides for fu-

ture research. One of these challenges is supporting applications

that end-users care about [21]. It is well-known that no dataset can

support arbitrary applications while providing a meaningful degree

of privacy [15]. Consequently, as shown in theory and in practice,

privacy-preserving data releases must be carefully designed with

intended use-cases in mind. Without such use-cases, a so-called

łgeneral-purposež data release might not provide sufficient accuracy

for any practical purpose.

Ensuring accuracy for pre-specified use-cases has strong prece-

dents and was common practice even before the adoption of differ-

ential privacy. For example, in the 2010 Decennial Census, the U.S.

Census Bureau released data products such as:

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 10 ISSN 2150-8097.
doi:10.14778/3467861.3467864

• PL 94-171 Summary Files [8] designed to support redistricting.

The information was limited to the total number of people, var-

ious race/ethnicity combinations in each Census block, along

with the number of such people with age 18 or higher.

• Advance Group Quarters Summary File [9] containing the num-

ber of people living in group quarters such as correctional in-

stitutions, university housing, and military quarters. One of its

purposes is to help different states comply with their own redis-

tricting laws regarding prisoners [26].

• Summary File 1 [7] provides a fixed set of tables that are com-

monly used to allocate federal funds and to support certain types

of social science research.

Thus we consider a setting where a data publisher must release

differentially private query answers to support a given set of 𝑁

applications. Each application provides measures of accuracy that,

if met, make the differentially private query answers fit for use.

For example, one of the measures used by the American Commu-

nity Survey (ACS) is margin of error [44], an estimated confidence

interval that is a function of variance.

In this paper, we study the case where the workload consists of

linear queriesw1, . . . ,w𝑁 . Differential privacy does not allow exact

query answers to be released, so the data publisher must release

noisy query answers instead. We consider the following fitness-

for-use criteria: each workload query w𝑖 must be answered with

expected squared error ≤ 𝑐𝑖 (where 𝑐1, . . . , 𝑐𝑁 are user-specified

constants that serve as upper bounds on desired error).

Given these fitness-for-use constraints, the data publisher must

determine whether they can be met under a given privacy budget

and, if so, how to correlate the noise in the query answers in order

to meet these constraints.1 We note that earlier applied work on

the matrix mechanism [34, 50, 51] optimized total error rather than

per-query error, and could not guarantee that each query is fit for

use. Theoretical work on the matrix mechanism [20, 40] studied

expected worst-case, instead of per-query, error and, as we discuss

later, it turns out that the same algorithm can optimize them.

We propose a mechanism that adds correlated Gaussian noise to

the query answers. The correlation structure is designed to meet

accuracy constraints while minimizing the privacy cost, and is ob-

tained by solving an optimization problem. We analyze the solution

space and show that although there potentially exist many such

correlation structures, there is a unique solution that allows the

maximal release of additional noisy query answers for free ś that is,

some queries that cannot be derived from the differentially private

workload answers can be noisily answered without affecting the

privacy parameters (this is related to personalized privacy [19]).

Our contributions are:

1If the desired accuracy cannot be met under a given privacy budget, the data collector
could reinterpret the constants 𝑐𝑖 to represent relative priorities, see Section 3.

1730

https://doi.org/10.14778/3467861.3467864
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3467861.3467864

Table 1: Table of Notation

x: Dataset vector

𝑑 : Domain size of the data

W: Workload query matrix.

𝑚: Number of workload queries.

𝑘 : Rank of W.

y: True answers to workload queries (y = Wx).

B: Basis matrix with linearly independent rows.

b𝑖 : The 𝑖th column of B.

L: Representation matrix. Note, LB = W.

c: Vector of accuracy targets (𝑐1, . . . , 𝑐𝑚).

⪯𝑅 : Refined privacy ordering (Definition 5).

prof (Σ,B) : Privacy profile (Definition 4).

Δ𝑀 : Privacy cost (Corollary 1).

• A novel differentially private mechanism for releasing linear

query answers subject to fitness-for-use constraints (to the best

of our knowledge, this is the first such mechanism). It uses non-

trivial algorithms for optimizing the covariance matrix of the

Gaussian noise that is added to the query answers.

• We theoretically study the fitness-for-use problem. Although

there are potentially infinitely many covariance matrices that

can be used to minimize privacy cost while meeting the accu-

racy constraints, we show that there is a unique solution that

allows the data publisher to noisily answer a maximal amount of

additional queries at no extra privacy cost.

• We design experiments motivated by real-world use cases to

show the efficacy of our approach.

The outline of this paper is as follows. In Section 2, we present

notation and background material. We formalize the problem in

Section 3. We discuss related work in Section 4. We present theo-

retical results of the solution space in Section 5. We present our

optimization algorithms for the fitness-for-use problem in Section

6. We present experiments in Section 7 and conclusions in Section

8. All proofs can be found in the full version [48] of this paper.

2 NOTATION AND BACKGROUND

We denote vectors as bold lower-case letters (e.g., x), matrices as

bold upper-case (e.g.,W), scalars as non-bold lower-case (e.g., 𝑐).

Following earlier work on differentially private linear queries

[34, 50, 51], we work with a table whose attributes are categorical

(or have been discretized). As in prior work, we represent such a

table as a vector x of counts. That is, letting {𝑡0, 𝑡1, . . . 𝑡𝑑−1} be the
set of possible tuples, x[𝑖] is the number of times tuple 𝑡𝑖 appears

in the table. For example, consider a table on two attributes, adult

(yes/no) and Hispanic (yes/no). We set 𝑡0 =łnot adult, not Hispanicž,

𝑡1 =ładult, not Hispanicž, 𝑡2 =łnot adult, Hipanicž, 𝑡3 =ładult,

Hispanicž. Then x[3] is the number of Hispanic adults in the dataset.

We refer to x as a dataset vector and we say that two dataset

vectors x and x′ are neighboring (denoted as x ∼ x′) if x can be

obtained from x′ by adding or subtracting 1 from some component

of x′ (this means | |x − x′ | |1 = 1) ś this is the same as adding or

removing 1 person from the underlying table.

A single linear query w is a vector, whose answer is w · x. A set

of𝑚 linear queries is represented by an𝑚 × 𝑑 matrix W, where

each row corresponds to a single linear query. The answers to those

queries are obtained by matrix multiplication: Wx. For example,

for the query matrix𝑊 =

(
0 1 0 1
0 0 1 1
1 1 1 1

)
, the first row is the query for

number of adults in the table (since 0x[0] + 1x[1] + 0x[2] + 1x[3]
sums up over the tuples corresponding to adults); the second row

is the query for number of Hispanic individuals; and the last row is

the query for the total number of people. We summarize notation

in Table 1.

Our privacy mechanisms are compatible with many variations of

differential privacy, including concentrated differential privacy [6]

and Renyi differential privacy [39]. As these are complex definitions,

for simplicity we focus on approximate differential privacy [16, 17],

defined as follows.

Definition 1 ((𝜖, 𝛿)-Differential Privacy [16]). Given privacy pa-

rameters 𝜖 > 0 and 𝛿 ∈ (0, 1), a randomized algorithm 𝑀 satisfies

(𝜖, 𝛿)-differential privacy if for all pairs of neighboring dataset vectors
x and x′ and all sets 𝑆 , the following equations hold:

𝑃 (𝑀 (x) ∈ 𝑆) ≤ 𝑒𝜖𝑃 (𝑀 (x′) ∈ 𝑆) + 𝛿

Intuitively, differential privacy guarantees that the output distri-

bution of a randomized algorithm is barely affected by any person’s

record being included in the data.

In the case of privacy-preserving linear queries, this version of

differential privacy is commonly achieved by adding independent

Gaussian noise to the query answers Wx. The scale of the noise

depends on the 𝐿2 sensitivity of the queries.

Definition 2 (𝐿2 sensitivity). The 𝐿2 sensitivity of a function 𝑓 ,

denoted by Δ2 (𝑓) is defined as supx∼x′ | |𝑓 (x) − 𝑓 (x′) | |2.

If 𝑓 computes linear query answers (i.e., 𝑓 (x) = Wx) then we

slightly abuse notation and denote the 𝐿2 sensitivity as Δ2 (𝑊). It
follows [50] that Δ2 (𝑊) is equal to max𝑖 | |𝑊 [:, 𝑖] | |2, where𝑊 [:, 𝑖]
is the 𝑖th column of𝑊 .

The Gaussian Mechanism adds independent noise with variance

𝜎2 to 𝑓 (x) and releases the resulting noisy query answers. Its dif-

ferential privacy properties are provided by the following theorem.

Theorem 1 (Exact Gaussian Mechanism [3]). Let Φ be the cumula-

tive distribution function of the standard Gaussian distribution. Let 𝑓

be a (vector-valued) function. Let𝑀 be the algorithm that, on input

x, outputs 𝑓 (x) + z, where z is an𝑚-dimensional vector of indepen-

dent 𝑁 (0, 𝜎2) random variables. Then𝑀 satisfies (𝜖, 𝛿)-differential
privacy if and only if

𝛿 ≥ Φ

(
Δ2 (𝑓)
2𝜎

− 𝜖𝜎

Δ2 (𝑓)

)
− 𝑒𝜖Φ

(
−Δ2 (𝑓)

2𝜎
− 𝜖𝜎

Δ2 (𝑓)

)

Furthermore, this is an increasing function of Δ2 (𝑓)/𝜎 .

The importance of this result is that the privacy properties of

the Gaussian mechanism are completely determined by Δ2 (𝑓)/𝜎
(in fact, this is true for (𝜖, 𝛿)-differential privacy, Renyi differen-
tial privacy and concentrated differential privacy). In particular,

decreasing Δ2 (𝑓)/𝜎 increases the amount of privacy [3].

Personalized differential privacy [19] refines differential privacy

by letting each domain element have its own privacy parameter.

1731

For example, a domain element 𝑟 has privacy parameters (𝜖, 𝛿) if
𝑃 (𝑀 (x) ∈ 𝑆) ≤ 𝑒𝜖𝑃 (𝑀 (x′) ∈ 𝑆) + 𝛿 for all 𝑆 and neighbors x and

x′ that differ by 1 in the count of record 𝑟 .

3 THE FITNESS-FOR-USE PROBLEM

In this section, we start with an intuitive problem statement and

thenmathematically formalize it, while justifying our design choices

along the way. We consider two problems: one that prioritizes accu-

racy and a second that prioritizes privacy. Later we will show that

they are equivalent (the same method yields a solution to both).

When prioritizing accuracy, the workload consists of𝑚 linear

queries w1, . . . ,w𝑛 . Given a vector c of accuracy targets, we seek

to find a mechanism 𝑀 that produces (𝜖, 𝛿)-differentially private

answers to these queries such that the expected squared error for

each query w𝑖 is less than or equal to c[𝑖]. The mechanism should

maximize privacy subject to these accuracy constraints. Maximiz-

ing privacy turns out to be a surprisingly subtle and nontrivial

concept involving (1) the minimization of the privacy parameters 𝜖

and 𝛿 and (2) enabling the data publisher to noisily answer extra

queries at a later point in time at no additional privacy cost; it is dis-

cussed in detail in Section 3.2. When prioritizing privacy, again

we have a workload of𝑚 linear queries w1, . . . ,w𝑛 and a vector c.

Given target privacy parameters 𝜖 and 𝛿 , the goal is to find a mech-

anism𝑀 that (1) satisfies (𝜖, 𝛿)-differential privacy and (2) finds the
smallest number 𝑘 > 0 such that each query w𝑖 can be privately

answered with accuracy at most 𝑘c[𝑖]. Thus c[𝑖] represents the
relative importance of query w𝑖 and the goal is to obtain the most

accurate query answers while respecting the privacy constraints

and relative accuracy preferences.

We next discuss additional accuracy-related desiderata (Section

3.1), formalize the maximization of privacy (Section 3.2), and then

fully formalize the fitness-for-use problem (Section 3.3).

3.1 Additional Accuracy Desiderata

We first require that the differentially private mechanism 𝑀 pro-

duces unbiased noisy query answers (i.e., the expected value of

the noisy query answers equals the true value). Unbiased query

answers allow end-users to compute the expected error of derived

queries. This property is best explained with an example. Suppose

a mechanism 𝑀 provides noisy counts (with independent noise)

for (1) 𝑦1: the number of adults with cancer, and (2) 𝑦2: the number

of children with cancer. From these two queries, we can derive an

estimate for the total number of cancer patients as 𝑦1 +𝑦2. Suppose
𝑦1 has expected squared error 𝑐1 and 𝑦2 has expected squared error

𝑐2. What can we say about the expected squared error of 𝑦1 + 𝑦2?
If both 𝑦1 and 𝑦2 are unbiased, then the expected squared error of

𝑦1 + 𝑦2 equals 𝑐1 + 𝑐2. However, if 𝑦1 and 𝑦2 are biased, then the

expected squared error of 𝑦1 + 𝑦2 cannot be accurately determined

from the expected errors of 𝑦1 and 𝑦2.

Since statistical end-users need to be able to estimate the errors

of quantities they derive from noisy workload query answers, we

thus require our mechanism to produce unbiased query answers.

We next require that the noise added to query answers should

be correlated multivariate Gaussian noise 𝑁 (0,Σ). Gaussian noise

is familiar to statisticians and simplifies their calculations for tasks

such as performing hypothesis tests and computing confidence

intervals [45]. Furthermore, Gaussian noise is often a preferred

distribution for various versions of approximate differential privacy

[1, 6, 18, 39].

For readers familiar with the matrix mechanism [34, 50, 51]

(which optimizes total squared error, not per-query error), it is

important to note that we add correlated noise in a different way.

The matrix mechanism starts with a workload of linear queries W

and solves an optimization problem to get a different collection S of

linear queries, called the strategy matrix. Noisy strategy answers ỹ𝑠
are obtained by adding independent noise z to the strategy queries

(̃y𝑠 = Sx+ z) and the workload query answers ỹ𝑤 are reconstructed

as follows ỹ𝑤 = WS+ỹ𝑠 (where S+ is the Moore-Penrose pseudo-

inverse of S [25]). Instead of optimizing for a matrix S and adding

independent Gaussian noise, we fix the matrix and optimize the

correlation structure of the noise (as in [40]). This turns out to be a

more convenient formulation for our problem. Formally,2

Definition 3 (Linear Query Mechanism [20]). Let W be a linear

query workload matrix. Let B and L be matrices such thatW = LB

and B has linearly independent rows with the same rank as W (we

call B the basismatrix and L the representationmatrix). Let 𝑁 (0,Σ)
be the multivariate Gaussian distribution with covariance matrix Σ.

Then the mechanism𝑀 , on input x, outputs L(Bx + 𝑁 (0,Σ)).
Note that 𝐸 [L(Bx +𝑁 (0,Σ))] = LBx = Wx so the mechanism is

indeed unbiased. The basis matrix B is chosen to be any convenient

matrix after theworkload is known (but before the dataset is seen). It

is there for computational convenience ś a linear query mechanism

can be represented using any basis matrix we want, as shown in

Theorem 2. Hence we can choose the basis B (and corresponding L)

for which we can speed up matrix operations in our optimization

algorithms. In our work, we typically set B to be the identity matrix

or a linearly independent subset of the workload matrix.

Theorem 2. Given a workloadW and two possible decompositions:

W = L1B1 and W = L2B2, where the rows of B1 are linearly inde-

pendent with the same rank as W (and same for B2). Let 𝑀1 (x) =
L1 (B1x + 𝑁 (0,Σ1)). There exists a Σ2 such that the mechanism

𝑀2 (x) = L2 (B2x + 𝑁 (0,Σ2)) has the same output distribution as

𝑀1 for all x.

3.2 Maximizing Privacy

In this section we explain how to compare the privacy properties

of the basic mechanisms from Definition 3, based on their privacy

parameters and additional noisy query answers they can release

for free. We first generalize Theorem 1 to allow correlated noise.

Theorem 3 (Exact Correlated GaussianMechanism). Let 𝑓 be a func-

tion that returns a vector of query answers. Let𝑀 be the mechanism

that, on input x, outputs 𝑓 (x) + 𝑁 (0,Σ). Define the quantity

ΔΣ (𝑓) = max
x1∼x2

√��(𝑓 (x1) − 𝑓 (x2))𝑇Σ−1 (𝑓 (x1) − 𝑓 (x2))
�� (1)

where the max is over all pairs of neighboring datasets x1 and x2.

Then𝑀 satisfies (𝜖, 𝛿)-differential privacy if and only if:

𝛿 ≥ Φ

(
ΔΣ (𝑓)

2
− 𝜖

ΔΣ (𝑓)

)
− 𝑒𝜖Φ

(
−ΔΣ (𝑓)

2
− 𝜖

ΔΣ (𝑓)

)
(2)

2In [20], this is called the factorization mechanism. For their metric, they propose
setting Σ = I while optimizing B and L. In our work, it is easier to optimize Σ instead.

1732

0.0 0.5 1.0 1.5 2.0 2.5 3.0

10 47

10 40

10 33

10 26

10 19

10 12

10 5

, curves.

= 0.2
= 0.4
= 0.6

Figure 1: 𝜖, 𝛿 curves for different values of Δ. A Gaussian

Mechanism with Δ = 0.2 satisfies (𝜖, 𝛿)-differential privacy
for all pairs (𝜖, 𝛿) that lie on or above the red curve.

where Φ is the CDF of the standard Gaussian 𝑁 (0, 1). Furthermore,

this quantity is an increasing function of ΔΣ (𝑓).

Applying Theorem 3 to the linear query mechanisms, we get:

Corollary 1. Let 𝑀 be a linear query mechanism (Definition 3)

with basis matrix B and Gaussian covariance Σ. Let b1, . . . , b𝑑 be

the columns of B and denote the privacy cost Δ𝑀 = max𝑖=1,...,𝑑√
b𝑇𝑖 Σ

−1b𝑖 . Then𝑀 satisfies (𝜖, 𝛿)-differential privacy if and only if

𝛿 ≥ Φ

(
Δ𝑀

2 −
𝜖
Δ𝑀

)
− 𝑒𝜖Φ

(
−Δ𝑀

2 −
𝜖
Δ𝑀

)
. Furthermore, this quantity

is increasing in Δ𝑀 .

Any given mechanism 𝑀 typically satisfies (𝜖, 𝛿)-differential
privacy for infinitely many 𝜖, 𝛿 pairs, which defines a curve in

space [39] (see Figure 1). The importance of Corollary 1 is that this

curve for a linear query mechanism 𝑀 is completely determined

by the single number Δ𝑀 (as defined in Corollary 1). Furthermore,

for any two linear query mechanism𝑀1 (x) = L1 (B1x + 𝑁 (0,Σ1))
and 𝑀2 (x) = L2 (B2x + 𝑁 (0,Σ2)), if Δ𝑀1

< Δ𝑀2
then the (𝜖, 𝛿)

curve for 𝑀1 is strictly below the curve for 𝑀2. This means that

the set of pairs (𝜖, 𝛿) for which𝑀1 satisfies differential privacy is a

strict superset of the pairs for which𝑀2 satisfies differential privacy

(while if Δ𝑀1
= Δ𝑀2

then the (𝜖, 𝛿) curves are exactly the same).

For this reason, we call Δ𝑀 the privacy cost.3

Thus one goal for maximizing privacy is to choose mechanisms

𝑀 with as small Δ𝑀 as possible as this will result in the mechanism

satisfying differential privacy with the smallest choices 𝜖 and 𝛿

parameters.

3.2.1 Query answers for Free. Even for twomechanisms that satisfy

differential privacy with exactly the same 𝜖, 𝛿 parameters, it is

still possible to say that one provides more privacy than the other

by comparing them in terms of personalized differential privacy

[19]. To see why, consider the matrices B1 =

(
1 1 0
0 1 1

)
and B2 =(

1 1 0
0 1 1
1 0 1

)
, and the two mechanisms 𝑀1 (x) = B1x + 𝑁 (0,Σ1) and

𝑀2 = B2x + 𝑁 (0,Σ2), where Σ1 and Σ2 are identity matrices. Note

3Readers familiar with 𝜌-zCDP [6] should note that privacy cost is the same as
√
2𝜌 .

that the difference between𝑀1 and𝑀2 is that𝑀2 answers the same

queries as𝑀1 plus an additional query (corresponding to the third

row of B2). However, from Corollary 1, Δ𝑀1
= Δ𝑀2

which means

that they satisfy differential privacy for exactly the same privacy

parameters. But, in terms of personalized differential privacy, the

personalized privacy cost of domain element 𝑥 [𝑖] under mechanism

𝑀1 is the square root of the 𝑖
th diagonal element of B𝑇1 Σ

−1
1 B1 (and

similarly for𝑀2), while the overall non-personalized privacy cost is

the max of these (as in Corollary 1). The personalized privacy costs

of 𝑥 [0] and 𝑥 [2] under 𝑀1 are smaller than under 𝑀2, while the

privacy cost of 𝑥 [1] is the same under𝑀1 and𝑀2. Thus it makes

sense to say that𝑀2 is also less private.4 At the same time, we can

say that𝑀1 provides more flexibility to the data publisher than𝑀2.

There are many possible choices of additional rows (queries) to add

toB1 without affectingΔ𝑀1
. In fact, these queries can be determined

(and noisily answered) at a later date after noisy answers to the

first two queries in B1 are released.

This discussion leads to the concept of a privacy profile (which

captures the personalized privacy costs of the domain elements)

and refined privacy ordering for linear query mechanisms.

Definition 4 (Privacy Profile). Given a Linear Query Mechanism

𝑀 (x) = L(Bx+𝑁 (0,Σ)), the privacy profile of𝑀 is the𝑑-dimensional

vector [b𝑇1 Σ
−1b1, . . . , b𝑇𝑑Σ

−1b𝑑] (where b𝑖 is the 𝑖th column of B) and

is denoted by prof (Σ,B) or by prof (𝑀) (a slight abuse of notation).
For example, the privacy profile of𝑀1 above is [1, 2, 1] while the

profile for𝑀2 is [2, 2, 2]. Note that for any linear query mechanism

𝑀 , Δ2
𝑀

is equal to the largest entry in the privacy profile of𝑀 .

The privacy profile is invariant to the choice of basis matrix B

as shown in Theorem 4. Thus the privacy profile is an intrinsic

privacy property of a linear query mechanism rather than a specific

parameterization.

Theorem 4. Let𝑀1 (x) = L1 (B1x+𝑁 (0,Σ1)) and𝑀2 (x) = L2 (B2x+
𝑁 (0,Σ2)) be two mechanisms that have the same output distribution

for each x (i.e., they add noise to different basis matrices but achieve

the same results). Then prof (𝑀1) = prof (𝑀2).
Given this invariance, we can use the privacy profile to define

a more refined ordering that compares the privacy properties of

linear query mechanisms.

Definition 5 (Refined Privacy Ordering). Given two Linear Query

Mechanisms 𝑀1 (with basis B1 and covariance matrix Σ1) and 𝑀2

(with basis B2 and covariance matrix Σ2), let 𝑝1 be the privacy profile

of𝑀1 when sorted in decreasing order and let 𝑝2 be the sorted privacy

profile of𝑀2. We say that𝑀1 is at least as private as𝑀2, denoted by

𝑀1 ⪯𝑅 𝑀2 if 𝑝1 is less than or equal to 𝑝2 according to the dictionary

(lexicographic) order. We also denote this as (Σ1,B1) ⪯𝑅 (Σ2,B2). If
the dictionary ordering inequality is strict, we use the notation ≺𝑅 .

Note that if𝑀 has sorted privacy profile 𝑝 , then the first element

of 𝑝 is equal to Δ
2
𝑀1

. Therefore if Δ𝑀1
< Δ𝑀2

then also𝑀1 ≺𝑅 𝑀2,

but if Δ𝑀1
= Δ𝑀2

, it is still possible that 𝑀1 ≺𝑅 𝑀 (hence ≺𝑅
4Note that with uncorrelated noise, the personalized cost of domain element 𝑥 [𝑖]
degenerates to the 𝐿2 norm of the 𝑖th column of the basis matrix. If different columns
had different norms, prior work on the matrix mechanism added additional queries
until the norms were the same (e.g., using𝑀2 instead of𝑀1 in our example above).
We believe this practice should be re-examined ś if𝑀1 satisfies the utility goals, why
force the analyst to commit to an extra query and limiting their future options?

1733

refines our privacy comparisons of mechanisms). Thus, our goal

is to satisfy fitness-for-use constraints while finding the𝑀 that is

minimal according to ⪯𝑅 . This is equivalent to finding an𝑀 that

minimizes Δ𝑀 (a continuous optimization) and then, among all the

mechanisms that fit this criteria, wewant to select a mechanism that

is minimal according to ⪯𝑅 (a combinatorial optimization because

of the sorting performed in the privacy profile).

We note that ⪯ is a weak ordering ś that is, we can have two

distinctmechanisms𝑀1 and𝑀2 such that𝑀1 ⪯𝑅 𝑀2 and𝑀2 ⪯𝑅 𝑀1

(i.e., they are two different mechanisms with the same privacy

properties). Nevertheless, we will show in Section 5 that in fact,

there exists a unique solution to the fitness-for-use problem.

3.3 The Formal Fitness-for-use Problem

Given a workloadW = LB and a linear query mechanism𝑀 (x) =
L(Bx+𝑁 (0,Σ)) = Wx+L𝑁 (0,Σ), the variance of the noisy answer
to the 𝑖th query of the workload is the 𝑖th diagonal element of LΣL𝑇 .

Thus, we can formalize the łprioritizing accuracyž and łprioritizing

privacyž problems as follows.

Problem 1 (Prioritizing Accuracy). Let W be an 𝑚 × 𝑑 workload

matrix representing𝑚 linear queries. Let c = [𝑐1, . . . , 𝑐𝑚] be accuracy
constraints (such that the noisy answer to the 𝑖th query is required to

be unbiased with variance at most 𝑐𝑖). Let B and L be matrices such

that W = LB and B has linearly independent rows. Select the covari-

ance Σ of the Gaussian noise by solving the following constrained

optimization problem:

𝛼,Σ← argmin
𝛼,Σ

𝛼 (3)

s.t. b𝑇𝑖 Σ
−1b𝑖 ≤ 𝛼 for all 𝑖 = 1, . . . , 𝑑

and (𝑑𝑖𝑎𝑔(LΣL𝑇)) [𝑗] ≤ 𝑐 𝑗 for 𝑗 = 1, . . . ,𝑚

and Σ is symmetric positive definite.

In case of multiple solutions to Equation 3, choose a Σ that is min-

imal under the privacy ordering ⪯𝑅 . Then release the output of the

mechanism𝑀 (x) = L(Bx + 𝑁 (0,Σ)).

Note that in Problem 1, 𝛼 is going to equal the maximum of

max𝑖=1,...,𝑑 b
𝑇
𝑖 Σ
−1b𝑖 and hence will equal the squared privacy cost,

Δ
2
𝑀
, for the resulting mechanism (and hence minimizing it will

minimize the 𝜖, 𝛿 privacy parameters).

We can also prioritize privacy, following the intuition at the

beginning of Section 3, as finding the smallest 𝑘 such that the

variance of query 𝑖 is at most 𝑘𝑐𝑖 given a target privacy level.

Problem 2 (Prioritizing Privacy). Under the same setting as Problem

1, given a target value 𝛼∗ for Δ2
𝑀

(which uniquely defines the 𝜖, 𝛿

curve), solve the following optimization for Σ:

𝑘,Σ← argmin
k,Σ

𝑘 (4)

s.t. b𝑇𝑖 Σ
−1b𝑖 ≤ 𝛼∗ for all 𝑖 = 1, . . . , 𝑑

and (𝑑𝑖𝑎𝑔(LΣL𝑇)) [𝑗] ≤ 𝑘𝑐 𝑗 for 𝑗 = 1, . . . ,𝑚

and Σ is symmetric positive definite.

In case of multiple solutions to Equation 4, choose a Σ that is minimal

under the refined privacy ordering ⪯𝑅 .

It is interesting to note that we arrived at Problem 2 by trying to

find a mechanism that minimizes per-query error, which mathemat-

ically is the same as minimizing | | 𝐸 [(Wx−𝑀 (x))2 ./c] | |∞ (where

./ is pointwise division of vectors). Edmonds et al. [20] and Nikolov

[40] studied mechanisms that minimize outlier error (also known

as joint error): 𝐸 [| |Wx − 𝑀 (x))2 ./c| |∞]. Their nearly-optimal

algorithm for this metric can also be obtained by solving Equation

4 (which computes an ellipsoid infinity norm [40]) but they did not

study the tie-breaking condition in Problem 2.

The following result shows that a solution to Problem 1 can be

converted into a solution for Problem 2, so for the rest of this paper,

we focus on solving the optimization defined in Problem 1.

Theorem 5. Let Σ be a solution to Problem 1. Define the quantities

𝛼 = max𝑖=1,...,𝑑 b
𝑇
𝑖 Σ
−1b𝑖 and Σ2 =

𝛼
𝛼∗ Σ. Then Σ2 is a solution to

Problem 2.

Our mechanism in Section 6 approximates Problem 1 with an

optimization problem that has fewer constraints and avoids discrete

optimization when breaking ties.

4 RELATED WORK

Developing differentially private algorithms under accuracy con-

straints is an underdeveloped area of research. Wu et al. [46] con-

sidered the problem of setting privacy parameters to achieve the

desired level of accuracy in a certain machine learning task like

logistic regression. Our work focuses on linear queries and has

multiple (not just one) accuracy constraints. We consider this to

be the difference between fitness-for-use (optimizing to support

multiple applications within a desired accuracy level) vs. accuracy

constrained differential privacy (optimizing for a single overall

measure of quality).

The Matrix Mechanism [34, 37, 50] answers linear queries while

trying to minimize the sum squared error of the queries (rather

than per-query fitness for use error). Instead of answering the work-

load matrix directly, it solves an optimization problem to find a

different set of queries, called the strategy matrix. It adds indepen-

dent noise to query answers obtained from the strategy matrix

and then recovers the answer to workload queries from the noisy

strategy queries. The major challenge of Matrix Mechanism is that

the optimization problem is hard to solve. Multiple mechanisms

[33, 37, 51, 52] have been proposed to reformulate or approximate

the Matrix Mechanism optimization problem. For pure differential

privacy (i.e., 𝛿 = 0), the solution is often sub-optimal because of

non-convexity. Yuan et al. [50] propose a convex problem formu-

lation for (𝜖, 𝛿)-differential privacy and provided the first known

optimal instance of the matrix mechanism. Although their work

solves the total error minimization problem, the strategy may fail

to satisfy accuracy constraints for every query. Prior to the matrix

mechanism, the search for query strategies was done by hand, often

using hierarchical/lattice-based queries (e.g., [14, 29, 43, 47]) and

later by selecting an optimal strategy from a limited set of choices

(e.g., [33, 43, 49]). The Matrix-Variate Gaussian (MVG) Mechanism

[12] is an extension in a different direction that is used to answer

matrix-valued queries, such as computing the covariance matrix

of the data. It does not perform optimization to decide how to best

answer a workload query.

1734

Work related to the factorization mechanism [20, 40], is most

closely related to ours. Starting from a different error metric, they

arrived at a similar optimization to Problem 2. They focus on the-

oretical optimality properties, while we focus on special-purpose

algorithms for the optimziation problems, hence approximately

optimizing our fitness-for-use and their joint error criteria.

The Laplace and Gaussian mechanisms [17, 18] are the most

common building blocks for differential privacy algorithms, adding

noise from the Laplace or Gaussian noise to provide (𝜖, 0)-differential
privacy and (𝜖, 𝛿)-differential privacy, respectively. Other distribu-
tions are also possible (e.g., [11, 22ś24, 35]) and their usage depends

on application requirements (specific privacy definition and mea-

sure of error).

Our work and the matrix/factorization mechanism work are ex-

amples of data-independent mechanisms ś the queries and noise

structure does not depend on the data. There are many other works

that focus on data-dependent mechanisms [13, 27, 30ś32, 42], where

the queries receiving the noise depend on the data. These mech-

anisms reserve some privacy budget for estimating properties of

the data that help choose which queries to ask. For example, the

DAWA Algorithm [32] first privately learns a partitioning of the

domain into buckets that suits the input data well and then pri-

vately estimates counts for each bucket. While these algorithm may

perform well on certain dataset, they can often be outperformed on

other datasets by data-independent mechanisms [28]. A significant

disadvantage of data-dependent algorithms is that they cannot pro-

vide closed-form error estimates for query answers (in many cases,

they cannot provide any accurate error estimates). Furthermore,

data-dependent methods also often produce biased query answers,

which can be undesirable for subsequent analysis, as discussed in

Section 3.1.

5 THEORETICAL ANALYSIS

In this section, we theoretically analyze the solution to Problem

1. We prove uniqueness results for the solution and derive results

that simplify the algorithm construction (for Section 6). We first

show that optimizing per-query error targets is a fundamentally

different problem than optimizing for total squared error, as was

done in prior work (e.g., [34, 43, 50, 51]). Our results show that there

are natural problems where algorithms that optimize for sum of

squared errors can have maximum per-query errors that are𝑂 (
√
𝑑)

times larger than optimal (𝑑 is the domain size).

5.1 Analytical Case Study

Suppose the dataset is represented by an 𝑑-dimensional vector

x = [𝑥1, . . . , 𝑥𝑑]𝑇 . Let the workload matrix consists of identity

queries (i.e., for each 𝑖 , what is the value of 𝑥𝑖) and the total sum

query. Its matrix representation is:

W =



1 0 0 . . . 0

0 1 0 . . . 0
...

...
...

...
...

0 0 0 . . . 1

1 1 1 . . . 1



We compare closed-form solutions for sum-squared-error and fitness-

for-use optimizations for the case where all per-query variance

targets are set to 𝛾 . Solutions to both problems can be interpreted

as adding correlated noise to x as follows: z = x + 𝑁 (0,Σ) and
then releasingWz. By convexity of the sum-squared-error [50] and

fitness-for-use (Section 5.2) problems, and since all 𝑥 [𝑖] are treated
symmetrically by W, the covariance matrices for both problems

should treat the domain elements symmetrically. That is, the corre-

lation between the noise added to 𝑥 [𝑖] and 𝑥 [𝑗] (i.e., Σ[𝑖, 𝑗]) should
be the same as the correlation between the noise added to 𝑥 [𝑖 ′] and
𝑥 [𝑗 ′]. Thus Σ (and consequently Σ−1) should have the form:

Σ = 𝑎I + 𝑏11𝑇 Σ−1 =
1

𝑎
I − 𝑏

𝑎2 + 𝑑𝑎𝑏
11𝑇

where a and b are scalars and 1 is the column vector of ones. The

eigenvalues are 𝑎 + 𝑏𝑑 (with eigenvector 1) and 𝑎 (for all vectors

orthogonal to the vector 1). Hence positive definiteness requires

𝑎 > 0 and 𝑎 + 𝑏𝑑 > 0. The variance for each of the first 𝑑 queries is

𝑎 +𝑏. For the sum query it is 1𝑇 Σ1 = 𝑑𝑎 +𝑑2𝑏. The squared privacy
cost is Σ−1𝑖,𝑖 =

𝑎+(𝑑−1)𝑏
𝑎2+𝑑𝑎𝑏 .

5.1.1 Sum-squared-error Optimization. Thus, the optimization prob-

lem for sum squared error given a privacy cost 𝛽 is:

argmin
𝑎,𝑏

𝑑 (𝑎 + 𝑏) + (𝑑𝑎 + 𝑑2𝑏) (5)

𝑠 .𝑡 .
𝑎 + (𝑑 − 1)𝑏
𝑎2 + 𝑑𝑎𝑏

= 𝛽2 and 𝑎 > 0 and 𝑎 + 𝑏𝑑 > 0

Theorem 6. For 𝑑 ≥ 5, the solution to Equation 5 is:

𝑎 =

−3 + d
(−1 + d) −

√
1 + d

1

𝛽2

𝑏 =

(−3 + d)
(
2 −
√
1 + d

)
(
(−1 + d) −

√
1 + d

) (
−1 − d + (−1 + d)

√
1 + d

) 1

𝛽2

5.1.2 Fitness-for-use Optimization. Fitness-for-use optimization

with target variance 𝛾 for all queries can be written as:

argmin
𝑎,𝑏

𝑎 + (𝑑 − 1)𝑏
𝑎2 + 𝑑𝑎𝑏

(6)

𝑠 .𝑡 . 𝑎 + 𝑏 ≤ 𝛾 and 𝑎𝑑 + 𝑏𝑑2 ≤ 𝛾 and 𝑎 > 0 and 𝑎 + 𝑏𝑑 > 0

Theorem 7.When 𝑑 ≥ 5, the solution to Equation 6 is 𝑎 = (𝑑+1
𝑑
)𝛾 ,

𝑏 = −(1
𝑑
)𝛾 , with squared privacy cost 2𝑑

1+𝑑
1
𝛾 .

5.1.3 Comparison. To compare the two mechanisms, we can make

their privacy costs equal by setting 𝛽2 = 2𝑑
1+𝑑

1
𝛾 .

Theorem 8.When the two mechanisms have the same privacy cost,

the maximum ratio of query variance to its desired variance bound 𝛾

is 𝑂 (
√
𝑑) for sum-squared-error and 1 for fitness-for-use.

This result shows that sum-squared-error optimization and fitness-

for-use optimization produce very different solutions, hence fitness-

for-use optimization is needed for applications that demand per-

query accuracy constraints.

1735

5.2 Properties of the Problem and Solution

We next theoretically analyze the problem and its solution space.

The first result is convexity of the optimization problem.

Theorem 9. The optimization problem in Equation 3 is convex.

Some convex optimization problems have no solutions because

they are not closed. As a simple example, consider argmin𝑥3+𝑥 s.t.,

𝑥 > 0. The value 𝑥 = 0 is ruled out by the constraint and no positive

value of 𝑥 can be optimal (i.e. dividing a candidate solution by 2

always improves the objective function). A similar concern holds

for positive definite matrices ś the set of positive definite matrices

is not closed, but the set of positive semi-definite matrices is closed.

The next result shows that even if we allowed Σ to be positive semi-

definite (hence guaranteeing an optimal solution exists), optimal

solutions will still be positive definite.

Theorem 10. If the fitness-for-use variance targets 𝑐𝑖 are all positive

then optimization problem in Equation 3 (Problem 1) is feasible and

all optimal solutions for Σ have smallest eigenvalue ≥ 𝜒 for some

fixed 𝜒 > 0 (i.e., they are symmetric positive definite).

Problem 1 asks us to solve the optimization problem in Equation

3 and if there are multiple optimal solutions, pick one such Σ† that
is minimal under the refined privacy ordering ≺𝑅 . In principle, since
this is a weak ordering (i.e., two distinct mechanisms can have the

same exact privacy properties), one can expect there to exist many

such minimal solutions with equivalent privacy properties.

Surprisingly, it turns out that there is a unique solution. The

main idea of the proof is to first show that all solutions to Equation

3 that are minimal under ⪯𝑅 have the same exact privacy profile

(the refined privacy ordering guarantees that the sorted privacy

profiles are the same, but we show that for solutions of Equation 3,

the entire privacy profiles are exactly the same). This places at least

𝑘 constraints on the covariance matrix Σ for such solutions. Note

that Σ has 𝑘 (𝑘 + 1)/2 parameters in all, so, in general, two matrices

with the same privacy profile do not have to be identical. However,

our proof then shows that if two matrices have the same privacy

profile and are solutions to Equation 3, then they must in fact be

the same matrix.

Theorem 11. In Problem 1, there exists a unique minimal (under the

privacy ordering ⪯𝑅) solution.

6 ALGORITHMS

In this section, we present an algorithm to solve the fitness-for-

use problem (Problem 1). Since a major component of Problem 1

includes a constrained convex optimization problem, a reasonable

choice is to implement an interior point method [41]. However,

given the number of constraints involved, we found that such an

algorithm would require a significant amount of complexity to

ensure scalability, numerical stability, and a feasible initialization

for the algorithm to start at. Instead, we closely approximate it

with a series of unconstrained optimization problems that are much

easier to implement and initialize. For low-dimensional problems,

both the interior point method and our approximation returned

nearly identical results.

In Section 6.1, we present our reformulation/approximation of

the problem. Then, in Section 6.2, we provide a Newton-based algo-

rithm with line search for solving it. We use a trick from the matrix

mechanism optimization [34] to avoid computing a large Hessian

matrix. Then in Section 6.3 we present initialization strategies that

help speed up convergence.

6.1 Problem Reformulation

Two of the main features of Problem 1 are optimizing the max of

the privacy cost while dealing with the variance constraints. Our

first step towards converting this to an unconstrained optimiza-

tion problem is to bring the variance constraints into the objective

function. We do this by noting that our variance constraints can be

rephrased as a max constraint:

∀𝑗, v𝑗Σv𝑇𝑗 ≤ 𝑐 𝑗 ⇐⇒ ∀𝑗,
v𝑗Σv

𝑇
𝑗

𝑐 𝑗
≤ 1 ⇐⇒ max

𝑗

v𝑗Σv
𝑇
𝑗

𝑐 𝑗
≤ 1

where v𝑗 is the 𝑗 th row of the matrix L (recall W = LB) and

c = [𝑐1, . . . , 𝑐𝑚] are the desired variance upper bounds. This obser-

vation raises the following question: instead of optimizing privacy

cost subject to variance constraints, what if we optimize privacy

cost plus max variance in the objective function (and then rescale

Σ so that the accuracy constraints are met)? This results in the

following problem, which we show is equivalent to Problem 1.

Problem 3. Under the same setting as Problem 1, let v𝑗 be the 𝑗
th row

of the representation matrix L. Solve the following optimization:

Σ← argmin
Σ

max
𝑖

(
b𝑇𝑖 Σ

−1b𝑖
)
+max

𝑗

(
v𝑗Σv

𝑇
𝑗

𝑐 𝑗

)
(7)

s.t. Σ is symmetric positive definite.

Among all optimal solutions, choose a Σ∗ that is minimal accord-

ing to the privacy ordering ≺𝑅 , and then output Σ∗/𝛾 , where 𝛾 =

max𝑗
v𝑗Σ

∗v𝑇
𝑗

𝑐 𝑗
.

Theorem 12. The optimal solution to Problem 1 is the same as the

optimal solution to Problem 3.

Next, we can use a common trick [51] for continuous approxima-

tion of themax function, known as the soft max: sm𝑡 (𝑎1, , 𝑎𝑚) =
1
𝑡 log(

∑
𝑖 𝑒

𝑡𝑎𝑖), where 𝑡 is a smoothing parameter. As 𝑡 → ∞, the
soft max converges to the max function. We can apply this trick to

both maxes in Problem 3. Now, the nice thing about the soft max

function is that it also approximates the refined privacy ordering.

Specifically, if Σ1 ≺𝑅 Σ2, then clearly when 𝑡 is large enough,

1

𝑡
log(

∑
𝑖

exp(𝑡 ∗ b𝑇𝑖 Σ
−1
1 b𝑖)) <

1

𝑡
log(

∑
𝑖

exp(𝑡 ∗ b𝑇𝑖 Σ
−1
2 b𝑖))

Plugging the soft max function in place of the max in Problem 3,

we finally arrive at our approximation problem:

Problem 4. Given parameters 𝑡1 and 𝑡2, under the same setting as

Problem 1, solve the following optimization problem:

Σ∗ ← argmin
Σ

1

𝑡1
log

(∑
𝑖

exp(𝑡1 ∗ b𝑇𝑖 Σ
−1b𝑖)

)
(8)

+ 1

𝑡2
log

©­«
∑
𝑗

𝑡2 ∗
v𝑗Σv

𝑇
𝑗

𝑐 𝑗

ª®¬
s.t. Σ is symmetric positive definite.

1736

and then output Σ∗/𝛾 , where 𝛾 = max𝑗
v𝑗Σ

∗v𝑇
𝑗

𝑐 𝑗
.

Our algorithm solves Equation 8 as a sequence of optimization

problems that gradually increase 𝑡1 and 𝑡2.

Theorem 13. The optimization Problem 4 is convex.

Although we focus on controlling per-query error, we note that

some data publishers may wish to strike a balance between achiev-

ing the per-query error targets and minimizing total squared error.

This is easy to achieve by adding a +𝜆∑
𝑗 v𝑗Σv

𝑇
𝑗 term to the objec-

tive function of Problem 4, where 𝜆 is a weight indicating relative

importance of total squared error. This modification changes the

objective function gradient by +𝜆∑
𝑗 v𝑗v

𝑇
𝑗 . This modification to the

gradient computation is the only change needed by our algorithm

(in Section 6.2) to handle this hybrid setting.

6.2 The Optimization Algorithm

We use Newton’s Method with Conjugate Gradient approximation

to the Hessian to solve Problem 4 (Algorithm 1). For a given value

of 𝑡1 and 𝑡2, we use an iterative algorithm to solve the optimization

problem in Equation 8 to convergence to get an intermediate value

Z𝑡1,𝑡2 . Then, starting from Z𝑡1,𝑡2 , we again iteratively solve Equa-

tion 8 but with a larger value of 𝑡1 and 𝑡2. We repeat this process

until convergence. Each sub-problem uses Conjugate Gradient [41]

to find an update direction for Σ without materializing the large

Hessian matrix. We then use backtracking line search to find a step

size for this direction that ensures that the updated Σ improves

over the previous iteration and is still positive definite.

Algorithm 1: Optimize(B, L, c)

Input: Basis matrix B, reconstruction matrix L, accuracy

constraints c;

Output: Solution Σ;

1 Initialize Σ = Σ0, 𝑡1 = 1, 𝑡2 = 1;

2 for 𝑖𝑡𝑒𝑟 = 1 to MAXITER do

3 s = ConjugateGradient(Σ,B, L, c);

4 𝛿 = ⟨s,∇𝐹 (Σ)⟩;
// Stopping Criteria

5 if |𝛿 | < NTTOL then

6 𝑔𝑎𝑝 = (𝑑 +𝑚)/𝑡1;
7 if 𝑔𝑎𝑝 < TOL then

8 break;

9 𝑡1 = 𝑀𝑈 ∗ 𝑡1, 𝑡2 = 𝑀𝑈 ∗ 𝑡2;
10 𝛼 = LineSearch(Σ, v);

11 Σ = Σ + 𝛼 ∗ s;
12 Return Σ

In Algorithm 1, MAXITER is the maximum number of iterations

to use, while NTTOL, TOL are tolerance parameters. Larger toler-

ance values make the program stop faster at a slightly less accurate

solution.𝑀𝑈 is the factor we use to rescale 𝑡1 and 𝑡2. Typical values

we used are 𝑀𝑈 ∈ {2, 5, 10}. In Line 3, we get an approximate

Newton direction and then we use Line 4 to see if this direction can

provide sufficient decrease (here ∇𝐹 is the gradient of the objective

function). If not, the sub-problem is over and we update 𝑡1 and 𝑡2
(Line 9) to continue with the next sub-problem. Otherwise, we find

a good step size for the search direction (Line 10) and then update

Σ (Line 11).

6.2.1 Gradient and Hessian Computation. The gradient and Hes-

sian of the objective function 𝐹 can be derived in closed form. Let

𝑔𝑖 (Σ) = b𝑇𝑖 Σ
−1b𝑖 , 𝐺𝑖 (𝑡1,Σ) = exp

(
𝑡1 ∗ b𝑇𝑖 Σ

−1b𝑖
)
, ℎ 𝑗 (Σ) =

v𝑗Σv
𝑇
𝑗

c𝑗
,

𝐻 𝑗 (𝑡2,Σ) = exp

(
𝑡2 ∗

v𝑗Σv
𝑇
𝑗

c𝑗

)
. Noting that the matrix Σ is symmet-

ric, we can calculate the gradient and Hessian of the functions 𝑓𝑖
and 𝑔𝑖 as follows:

∇𝑔𝑖 (Σ) = −Σ−1b𝑖b𝑇𝑖 Σ
−1 (9)

∇2𝑔𝑖 (Σ) = −∇𝑔𝑖 (Σ) ⊗ Σ−1 − Σ−1 ⊗ ∇𝑔𝑖 (Σ) (10)

∇ℎ 𝑗 (Σ) =
v𝑇𝑗 v𝑗

𝑐 𝑗
(11)

∇2ℎ 𝑗 (Σ) = 0 (12)

Then the gradient and Hessian of the objective function 𝐹 (Σ) can
be calculated as follows.

∇𝐹 (Σ) =
∑
𝑖 (𝐺𝑖 (𝑡,Σ)∇𝑔𝑖 (Σ))∑

𝑖 𝐺𝑖 (𝑡,Σ)
+

∑
𝑗

(
𝐻 𝑗 (𝑡2,Σ)∇ℎ 𝑗 (Σ)

)
∑

𝑗 𝐻 𝑗 (𝑡2,Σ)
(13)

∇2𝐹 (Σ) =
𝑡1

∑
𝑖

(
𝐺𝑖 (𝑡1,Σ)

(
∇2𝑔𝑖 (Σ) + ∇𝑔𝑖 (Σ) ⊗ ∇𝑔𝑖 (Σ)

))
∑
𝑖 𝐺𝑖 (𝑡1,Σ)

− 𝑡1
∑
𝑖 (𝐺𝑖 (𝑡1,Σ)∇𝑔𝑖 (Σ)) ⊗

∑
𝑖 (𝐺𝑖 (𝑡1,Σ)∇𝑔𝑖 (Σ))

(∑𝑖 𝐺𝑖 (𝑡1,Σ))2

+
𝑡2

∑
𝑗

(
𝐻 𝑗 (𝑡2,Σ)

(
∇ℎ 𝑗 (Σ) ⊗ ∇ℎ 𝑗 (Σ)

))
∑

𝑗 𝐻 𝑗 (𝑡2,Σ)

−
𝑡2

∑
𝑗

(
𝐻 𝑗 (𝑡2,Σ)∇ℎ 𝑗 (Σ)

)
⊗ ∑

𝑗

(
𝐻 𝑗 (𝑡2,Σ)∇ℎ 𝑗 (Σ)

)
(∑

𝑗 𝐻 𝑗 (𝑡2,Σ)
)2

(14)

Here ⊗ is the Kronecker product. Because of the Kronecker product,

multiplication of the Hessian by a search direction can be done

without materializing the Hessian itself. Specifically, we use the

well-known property (A ⊗ B) 𝑣𝑒𝑐 (C) = 𝑣𝑒𝑐
(
BCA𝑇

)
that is fre-

quently exploited in the matrix mechanism literature [37, 52]. We

let HessTimesVec denote the function that exploits this trick to effi-

ciently compute the multiplication Hp of the Hessian (of objective

function 𝐹) by a search direction without explicitly computing H.

6.2.2 Conjugate Gradient. Algorithm 1 finds a search direction

using the Conjugate Gradient algorithm, which is commonly used

for large scale optimization [41]. The main idea is that Newton’s

method uses second-order Taylor expansion to approximate 𝐹 (Σ)
and would like to compute the search direction by solving

s = argmin
s

1

2
s𝑇∇2𝐹 (Σ)s + s𝑇∇𝐹 (Σ) (15)

whose solution is −H𝑇∇𝐹 , where𝐻 = ∇2𝐹 is the Hessian. However,

the size of Hessian matrix is 𝑑2 × 𝑑2 (where 𝑑 is the size of the

domain of possible tuples in our case). This is intractably large,

but fortunately, only approximate solutions to Equation 15 are

1737

Algorithm 2: ConjugateGradient(Σ,B, L, c)

Input: Variable Σ, basis matrix B, index matrix L, accuracy

constraints c;

Output: Search direction s;

1 Initialize s = 0, r = −∇𝐹 (Σ), p = r, 𝑟𝑠𝑜𝑙𝑑 = ⟨r, r⟩ ;
2 for 𝑖 = 1 to MAXCG do

3 Hp = HessTimesVec(p) ;

4 𝑎 =
𝑟𝑠𝑜𝑙𝑑
p𝑇 ∗Hp , s = s + 𝑎 ∗ p, r = r − 𝑎 ∗ Hp, 𝑟𝑠𝑛𝑒𝑤 = ⟨r, r⟩ ;

5 if 𝑟𝑠𝑛𝑒𝑤 ≤TOL2 then
6 break;

7 𝑏 =
𝑟𝑠𝑛𝑒𝑤
𝑟𝑠𝑜𝑙𝑑

, p = r + 𝑏 ∗ p, 𝑟𝑠𝑜𝑙𝑑 = 𝑟𝑠𝑛𝑒𝑤 ;

8 Return s

necessary for optimization, and this is what conjugate gradient

does [41]. Algorithm 2 provides the pseudocode for our application

(recall that HessTimesVec is the function that efficiently computes

the product of the Hessian times a vector by taking advantage of

the Kronecker products in Equation 14). We note that Yuan et al.

[52] used 5 conjugate gradient iterations in their matrix mechanism

application. Similarly we use 5 iterations (MAXCG = 5) in Line

2. We also terminate the loop early if there is very little change,

checked in Line 5 (we use TOL2 = 10−10).

6.2.3 Step Size. Once the conjugate graident algorithm returns a

search direction, we need to find a step size 𝛼 to use to update Σ in

Algorithm 1. For this we use the standard backtracking line search

[41], whose application to our problem is shown in Algorithm 3. It

makes sure that the step size is small enough (but not too small) so

that it will (1) result in a positive definite matrix and (2) the objective

function will decrease sufficiently. We use Cholesky decomposition

to check for positive definiteness. The parameter 𝜎 determines how

much the objective function need to decrease before breaking the

iteration, a typical setting is 𝜎 = 0.01.

Algorithm 3: LineSearch(Σ, s)

Input: Variable Σ, search direction s;

Output: Step size 𝛼 ;

1 𝑓 𝑐𝑢𝑟𝑟 = 𝐹 (Σ), 𝑓 𝑙𝑎𝑠𝑡 = 𝑓 𝑐𝑢𝑟𝑟 , Σ𝑜𝑙𝑑 = Σ, 𝑗 = 1, 𝛽 = 0.5;

2 while true do

3 𝛼 = 𝛽 𝑗−1, 𝑗 = 𝑗 + 1, Σ𝑛𝑒𝑤 = Σ𝑜𝑙𝑑 + 𝛼 ∗ s,
𝑓 𝑐𝑢𝑟𝑟 = 𝐹 (Σ𝑛𝑒𝑤) ;

4 if Σ𝑛𝑒𝑤 ⪯ 0 then

5 continue;

6 if 𝑓 𝑐𝑢𝑟𝑟 ≤ 𝑓 𝑙𝑎𝑠𝑡 + 𝛼 ∗ 𝜎 ∗ ⟨s,∇F(Σ)⟩ then
7 break;

8 Return 𝛼

6.3 Initialization

Optimization algorithms need a good initialization in order to con-

verge reasonably well. However, specifying a correlation structure

for Gaussian noise is typically not an intuitive approach for data

publishers. Instead, data publishers may feel more comfortable

specifying a query matrix Q (with linearly independent rows) to

which it may be reasonable (as a first approximation) to add inde-

pendent noise. That would result in an initial suboptimal mecha-

nism𝑀0 (x) = WQ+ (Qx + 𝑁 (0, 𝜎2I)) [34], where Q+ is the Moore-

Penrose pseudo-inverse of Q [25] ś that is, this suggested mecha-

nismwould add independent noise toQx and then recoverworkload

query answers by multiplying the result byWQ+.
We do not run this mechanism, instead we derive a Gaussian cor-

relation Σ from it. The covariance matrix for that mechanism would

be 𝜎2WQ+ (WQ+)𝑇 . Noting that W = LB, this can be written as

𝜎2LBQ+ (LBQ+)𝑇 . This is equivalent to adding 𝑁 (0, 𝜎2Q+ (Q+)𝑇)
noise to Bx and hence we can set the initial Σ to be 𝜎2Q+ (Q+)𝑇 .

Next we need to choose a small enough value for 𝜎2 so that

the initial covariance matrix Σ = 𝜎2Q+ (Q+)𝑇 would satisfy the

fitness-for-use constraints. We do this by choosing

𝜎2 = min
𝑗=1· · ·𝑑

𝑐 𝑗

𝑗 th element of 𝑑𝑖𝑎𝑔
(
LQ+ (Q+)𝑇 L𝑇

) ∗ 0.99
Our optimizer (Algorithm 1) starts with this Σ and iteratively im-

proves it.

We can also offer guidance about the setting for Q in cases

where the data publisher does not have a good guess. A simple

strategy is to set Q = I; in fact, this is the setting we use for our

experiments (to show that our algorithms can succeed without

specialized knowledge about the problem). It is also possible to set

Q to be the result of Matrix Mechanism algorithms such as [52].

7 EXPERIMENTS

In these experiments, our proposed algorithm is referred to as SM-

II (for the two applications of soft max). We compare against the

following algorithms. Input Perturbation (IP) adds independent

Gaussian noise directly to the data vector. The optimal Matrix

Mechanism Convex Optimization Algorithm (CA) [50] minimizes

sum-squared error under (𝜖, 𝛿)-differential privacy. Since queries
can have different relative importance, we also consider two varia-

tions of CA. wCA-I weights each query by the inverse of its target

variance (so queries that need low variance have higher weight

in the objective function) and wCA-II weights each query by the

inverse of the square root of the variance. We also consider the

Hierarchical Mechanism (HM) [29, 43] as it is good for some work-

loads. Specifically, HM uses a strategy matrix H which represents

a tree structure with optimal branching factor [43]. We also con-

sidered the Gaussian Mechanism (GM), which adds independent

Gaussian noise to the workload query answers. However, it gener-

ally performed worse than IP and always significantly worse than

CA, so we dropped it from the tables to save space. We do not

compare with alternative Matrix Mechanism algorithms like Low-

Rank Mechanism [51], Adaptive Mechanism [33] and Exponential

Smoothing Mechanism [51] because the CA baseline is optimal for

Matrix Mechanism [50] under (𝜖, 𝛿)-differential privacy.
We compare these algorithms on a variety of workloads based

on their performance at the same privacy cost. Our algorithm SM-

II finds the minimal privacy cost needed to satisfy the accuracy

constraints. We then set the other algorithms to use this privacy

1738

Table 2: Privacy cost comparison between SM-II and interior

point method. Note that IP did not scale well, thus limiting

the size of 𝑑 .

d 2 4 8 16 64

Interior Point 1.33 1.76 2.28 2.91 4.46

SM-II 1.33 1.76 2.28 2.91 4.46

cost and we check by how much they exceed the pre-specified

variance requirements (i.e., to what degree are they sub-optimal

for the fitness-for-use problem). Note that these algorithms are all

data-independent, so the variance can be computed in closed form

and will be the same for any pair of datasets that have the same

dimensionality and domain size. One can also compare privacy cost

needed to reach the target variance as follows. If, given the same

privacy cost, Method 1 exceeds its target variance by a factor of

𝑥1 and Method 2 exceeds it by 𝑥2 (which is what our experiments

show), then if they were both given enough privacy cost to meet

their target variance goals, the ratio of privacy cost for Method 1

to that of Method 2 is
√
𝑥1/𝑥2 (this follows from Theorem 5).

We follow Section 6.3 to initialize our algorithm by setting the

initialization parameter Q = I (the 𝑑 × 𝑑 identity matrix). For basis

matrices B, we use two choices: B = I or B = U, whereU is an upper

triangle matrix (U[𝑖, 𝑗] = 1 if 𝑖 ≤ 𝑗 and U[𝑖, 𝑗] = 0 otherwise).

All experiments are performed on a machine with an Intel i7-

9750H 2.60GHz CPU and 16GBytes RAM.

7.1 Evaluating Design Choices

We made two key design choices for our algorithm. The first was

to approximate the constrained optimization in Problem 1 with

the soft max optimization in Problem 4. Then we used a Newton-

style method to solve it instead of something simpler like gradient

descent. We evaluate the effect of these choices here.

7.1.1 The Soft Max Approximation. For small problems, we can

directly solve Problem 1 by implementing an interior point method

[5] and so we can compare the resulting privacy cost with the one

returned by our soft max approximation SM-II. For this experiment,

we considered prefix-range queries over an ordered domain of size𝑑 .

These are one-sided range queries (i.e., the sum of the first 2 records,

the sum of the first 3 records) fromwhich all one-dimensional range

query answers can be computed by subtraction of two one-sided

range queries. Thus the workloadW is a lower triangular matrix

where the lower triangle consists of ones. The result is shown in

Table 2 and shows excellent agreement. Note that 𝑑 = 64 is the limit

for our interior point solver, while with SM-II we can easily scale

to 𝑑 = 1024 on a relatively weak machine (using a server-grade

machine or a GPU can improve scalability even more). We note that

extreme scalability, like in the high-dimensional matrix mechanism

[37], is an area of future work and we believe that a combination

of the ideas from [37] and our work can make this possible, by

breaking a large optimizaton problem into smaller pieces and using

our SM-II method to optimize each smaller piece.

7.1.2 SM-II vs. Gradient Descent. As far as optimizers go, SM-II is

relatively simple, but not as simple as the very popular gradient

descent (GD). To justify the added complexity, we compared these

Table 3: Convergence time for SM-II vs. Gradient Descent

(GD) in seconds. Even at small scales, gradient descent is

vastly inferior.

d 2 4 8 16

GD 7.02 44.90 198.52 264.36

SM-II 0.027 0.055 0.053 0.058

0

5

10

15

20

25

30

d=100 d=200 d=300 d=400 d=500 d=600 d=700 d=800 d=900 d=1000

M
a

x
 R

a
ti

o

k=4

CA wCA-I wCA-II SM-II

Figure 2: Comparison for different 𝑑 when 𝑘 = 4.

two optimizers for solving Problem 4. We used the same setup as

in Section 7.1.1 and the results are shown in Table 3. Clearly the

use of SM-II is justified as gradient descent does not converge fast

enough even at small problem sizes.

7.2 The Identity-SumWorkload

In Section 5.1, we considered the workload consisting of the identity

query and the sum query, with equal target variance. We further

explore this example to illustrate further surprising behavior of

algorithms that optimize for sum-squared-error (so for just this

experiment we focus on CA, wCA-I, wCA-II). Specifically, it is be-

lieved that in sum-squared error optimization, weighting queries by

the inverse of their desired variance helps improve their individual

accuracy. We show that this is not always the case.

In these experiments, the identity query has target variance 1,

but we will vary the sum query’s target variance, which we denote

by the variable 𝑘 .

In Figure 2, we set 𝑘 = 4 and vary the domain size 𝑑 . As expected,

SM-II outperforms the others. What is surprising is that wCA-I

and wCA-II perform worse than CA because this means that the

typical recommended weighting strategy actually makes things

worse (the sum query exceeds its target variance by a larger ratio).

For reference, we derive the optimal analytical solutions for these

methods on this workload in the appendix of the full version of our

paper [48].

Figure 3 fixes 𝑑 at 256 and varies 𝑘 (starting from 𝑘 = 1). Again

we see the same qualitative effects as in Figure 2.

7.3 PL-94

PL94-171 [8] is a Census dataset used for redistricting. In 2010, it

contained the following variables:

• voting-age: a binary variable where 0 indicates someone is 17

years old and under, while 1 indicates 18 or over.

1739

0

2

4

6

8

10

12

14

k=1 k=2 k=4 k=6 k=8 k=10 k=12 k=14 k=16

M
a

x

R
a

ti
o

d=256

CA wCA-I wCA-II SM-II

Figure 3: Comparison for different 𝑘 when 𝑑 = 256.

Table 4: Max variance ratio on PL94 with uniform targets.

Mechanism IP HM CA wCA-I wCA-II SM-II

PL94 36.56 13.93 3.99 3.99 3.99 1.00

• ethnicity: a binary variable used to indicate if someone is His-

panic (value 1) or not (value 0).

• race: this is a variable with 63 possible values. The OMB race

categories in this file in 2010 wereWhite, Black or African Ameri-

can, American Indian and Alaska Native, Asian, Native Hawaiian

and Other Pacific Islander, and Some Other Race. An individual is

able to select any non-empty subset of races, giving a total of 63

possible values.

These variables create a (2, 2, 63) histogram which can be flattened

into a 252-dimension vector.

For this experiment, we created a workload consisting of mul-

tiple marginals. These were a) voting-age marginal (i.e., number

of voting-age people and number of non-voting-age people); b)

ethnicity marginal; c) the number of people in each OMB category

who selected only one race; d) for each combination of 2 or more

races, the number of people who selected that combination; e) the

identity query (i.e., for each demographic combination, how many

people fit into it). As we are not aware of any public error targets,

we will assume all queries are equally important and set all variance

targets to 1. The basis matrix is B = U (upper triangular matrix).

We found the minimal privacy cost needed to match these vari-

ance bounds using SM-II and set that as the privacy cost for all

algorithms. Then we measured the maximum ratio of query vari-

ance to target variance for each method. The results are shown in

Table 4. We see that input perturbation performs the worst. The

matrix mechanism optimized for total error (CA) is much better,

but it still has a maximum variance ratio of 3.99 times larger than

optimal. This means that the matrix mechanism is more accurate

than necessary for some queries at the expense of missing the target

bound for other queries. Meanwhile, SM-II can match the desired

bounds for each query, which is what it is designed to do. In terms

of sum squared error, which is what CA is optimized for, the error

for SM-II is 2.07 times that of CA.

7.4 Range Queries

We next consider one-dimensional range queries. Here we follow

a similar setting to [51]. We vary 𝑑 , the number of items in an

Table 5: Maximum ratio of achieved variance to target vari-

ance on Range Queries with uniform accuracy targets.

Mechanism IP HM CA wCA-I wCA-II SM-II

d = 64 10.63 2.84 1.27 1.27 1.27 1.00

d = 128 17.45 3.48 1.25 1.25 1.25 1.00

d = 256 28.43 3.90 1.29 1.29 1.29 1.00

d = 512 47.36 4.68 1.23 1.23 1.23 1.00

d = 1024 77.26 5.42 1.24 1.24 1.24 1.00

Table 6: Maximum ratio of achieved variance to target vari-

ance on Range Queries with random accuracy targets.

Mechanism IP HM CA wCA-I wCA-II SM-II

d = 64 16.04 4.63 2.53 1.62 1.98 1.00

d = 128 21.28 5.87 2.14 1.49 1.75 1.00

d = 256 41.76 6.05 1.91 1.45 1.69 1.00

d = 512 71.51 7.35 1.80 1.46 1.52 1.00

d = 1024 109.34 7.68 1.69 1.43 1.49 1.00

Table 7:Maximumachieved variance to target variance ratio

on Random Queries with a Uniform target variance.

Mechanism IP HM CA wCA-I wCA-II SM-II

d = 64 1.14 2.29 1.14 1.14 1.14 1.00

d = 128 1.14 2.29 1.07 1.07 1.07 1.00

d = 256 1.14 3.39 1.06 1.06 1.06 1.00

d = 512 1.15 3.40 1.05 1.05 1.05 1.00

d = 1024 1.15 3.41 1.04 1.04 1.04 1.00

ordered domain. The workload is composed of 2 ∗ 𝑑 random range

queries, where the end-points of each query are sampled uniformly

at random. We compare two settings, (1) the uniform cases where

the target variance bound is equal to 1 for each query, and (2)

the random case where the target variance bound for each query

is randomly sampled from a uniform(1, 10) distribution. In the

experiments we vary the domain size 𝑑 ∈ {64, 128, 256, 512, 1024},
and use the basis matrix B = U (upper triangular matrix).

Again, we find the minimum privacy cost using SM-II, set each

algorithm to use that privacy cost and then compute the maximum

variance to target variance ratio for each method. The results for

the uniform targets are shown in Table 5, with SM-II achieving

≈ 25% improvement over the best competitor. The results for the

random targets are shown in Table 6, with SM-II improving by at

least 40% over competitors. In the uniform case, the sum squared

error of SM-II ranges from 1.04 to 1.09 times that of CA, depending

on the value of 𝑑 .

7.5 Random Queries

We next consider a random query workload similar to the setting

in [51]. Here for each entry in each 𝑑-dimensional query vector,

we flip a coin with 𝑃 (heads) = 0.2. If it lands heads, the entry is

set to 1, otherwise it is set to −1. Again we consider two scenarios.

(1) the uniform cases where the target variance bound is equal to 1

1740

Table 8:Maximumachieved variance to target variance ratio

on Random Queries with a Random target variance.

Mechanism IP HM CA wCA-I wCA-II SM-II

d = 64 2.58 7.44 2.43 1.15 1.61 1.00

d = 128 2.82 8.28 2.58 1.18 1.72 1.00

d = 256 2.82 8.36 2.58 1.17 1.70 1.00

d = 512 2.79 8.27 2.51 1.16 1.68 1.00

d = 1024 2.76 8.17 2.49 1.16 1.67 1.00

Table 9:Maximumachieved variance to target variance ratio

for Age pyramids with uniform accuracy targets.

Mechanism IP HM CA wCA-I wCA-II SM-II

AGE 32.49 6.2 1.58 1.58 1.58 1.00

for each query, and (2) the random case where the target variance

bound for each query is randomly sampled from a uniform(1, 10)
distribution. We vary 𝑑 ∈ {64, 128, 256, 512, 1024}, and the number

of queries is𝑚 = 2 ∗ 𝑑 . The basis matrix is B = I.

Table 7 lists the maximum variance ratio among all queries under

the same privacy cost for different methods for the uniform scenario.

Table 8 shows the corresponding results for random targets. In

both cases, the best competitor is not much worse than SM-II. We

speculate that this is because the queries do not havemuch structure

that can be exploited to reduce privacy cost. In terms of sum squared

error, for the case of uniform target variances, the total error of

SM-II was at most 1.005 times that of CA.

7.6 Age Pyramids

Demographers often study the distribution of ages in a population

by gender. We consider a dataset schema similar to the Census,

where gender is a binary attribute and there are 116 ages (0-115).

The range queries we consider are prefix queries (i.e., age ∈ [0, 𝑥] for
all 𝑥) and age ∈ [18, 115] (the voting age population). The workload
consists of (1) range queries for males, (2) range queries for females,

(3) range queries for all. We set uniform target variance bounds of

1. We use the basis matrix B = U (upper triangular). Table 9 shows

the maximum ratio of achieved variance to target variance for each

algorithm, with SM-II clearly outperforming the competitors by at

least 58%. Meanwhile the sum squared error of SM-II is 1.07 times

that of CA.

7.7 Marginals

We next consider histograms 𝐻 on 𝑟 variables, where each variable

can take on one of 𝑡 values, resulting in a domain size of 𝑑 =

𝑡𝑟 . We consider the workload consisting of all one-way and two-

way marginals with uniform target variance of 1. For this set of

experiments, we set 𝑟 = 3 and varied the values of 𝑡 . We used

the basis matrix is B = I for SM-II. Table 10 shows the maximum

target variance ratio of different algorithms. SM-II outperforms the

competitors, especially as 𝑡 increases. The ratio of sum squared

error of SM-II to CA ranged from 1.1 (𝑡 = 2) to 1.34 (𝑡 = 16).

Table 10: Maximum achieved variance to target variance ra-

tio on Marginal Queries when 𝑟 = 3

Mechanism IP HM CA wCA-I wCA-II SM-II

t = 2 1.82 3.02 1.14 1.14 1.14 1.00

t = 4 4.55 10.28 1.42 1.42 1.42 1.00

t = 6 8.6 21.38 1.66 1.66 1.66 1.00

t = 8 14.03 36.72 1.88 1.88 1.88 1.00

t = 10 20.84 56.23 2.08 2.08 2.08 1.00

t = 12 28.76 78.96 2.25 2.25 2.25 1.00

t = 14 38.17 106.22 2.41 2.41 2.41 1.00

t = 16 48.85 137.41 2.57 2.57 2.57 1.00

Table 11: Maximum achieved variance to target variance ra-

tio on WRelated Queries with a Uniform target variance.

Mechanism IP HM CA wCA-I wCA-II SM-II

d = 64 3.51 9.59 1.31 1.31 1.31 1.00

d = 128 4.16 11.16 1.31 1.31 1.31 1.00

d = 256 4.28 12.60 1.19 1.19 1.19 1.00

d = 512 3.62 10.46 1.12 1.12 1.12 1.00

d = 1024 3.50 10.05 1.07 1.07 1.07 1.00

7.8 WRelated Queries

We next consider the one-dimensional WRelated workload of [51].

The workload matrix is𝑊 = 𝐶𝐴. Here matrix 𝐶 has size𝑚 × 𝑠 and
matrix 𝐴 has size 𝑠 ×𝑑 , each follows the Gaussian(0, 1) distribution.

In the experiment we set𝑚 = 𝑑/2, 𝑠 = 𝑑/2. Due to space constraints,
we only show results for the uniform target variance bound of 1. We

vary the domain size 𝑑 ∈ {64, 128, 256, 512, 1024}, and use the basis

matrix B = I. The results in Table 11 shows SM-II outperforming

competitors by around 31% on the smaller domain sizes. The ratio

of total squared error for SM-II to that of CA was at most 1.08

8 CONCLUSIONS AND FUTUREWORK

In this work we introduce the fitness-for-use problem, where the

goal is to calculate minimal privacy cost under accuracy constraints

for each query. After theoretical analysis of the problem, we pro-

posed an algorithm named SM-II to solve it. While our algorithm

used variance as the accuracy measure for each query, other ap-

plications may require their own specific accuracy measures. This

consideration leads to two important directions for future work.

The first is to create optimized differentially private algorithms

that meet fitness-for-use goals under measures other than squared

error. The second direction is to achieve the same kind of extreme

scalability as the high-dimensional matrix mechanism [37] that

provided a tradeoff between optimality and scalability.

ACKNOWLEDGMENTS

This work was supported by NSF Awards CNS-1702760 and CNS-

1931686. We are grateful to Aleksandar Nikolov for discussions

about factorization mechanisms.

1741

REFERENCES
[1] Martín Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy. In
CCS.

[2] John Abowd. 2018. The U.S. Census Bureau Adopts Differential Privacy. KDD
Invited Talk.

[3] Borja Balle and Yu-Xiang Wang. 2018. Improving the Gaussian Mechanism for
Differential Privacy: Analytical Calibration and Optimal Denoising. In Interna-
tional Conference on Machine Learning, ICML.

[4] Jeremiah Blocki, Anupam Datta, and Joseph Bonneau. 2016. Differentially Private
Password Frequency Lists. In 23rd Annual Network and Distributed System Security
Symposium, NDSS 2016, San Diego, California, USA, February 21-24, 2016. The
Internet Society.

[5] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. 2004. Convex opti-
mization. Cambridge university press.

[6] Mark Bun and Thomas Steinke. 2016. Concentrated Differential Privacy: Sim-
plifications, Extensions, and Lower Bounds. In Proceedings, Part I, of the 14th
International Conference on Theory of Cryptography - Volume 9985.

[7] U.S. Census Bureau. [n.d.]. Decennial Census: 2010 Summary Files. https:
//www.census.gov/mp/www/cat/decennial_census_2010/.

[8] U.S. Census Bureau. 2010. PL 94-171 Redistricting Data. https://www.census.gov/
programs-surveys/decennial-census/about/rdo/summary-files.html.

[9] U.S. Census Bureau. 2011. Advance Group Quarters Summary File. https://www.
census.gov/prod/cen2010/doc/gqsf.pdf.

[10] U. S. Census Bureau. [n.d.]. On The Map: Longitudinal Employer-
Household Dynamics. https://lehd.ces.census.gov/applications/help/onthemap.
html#!confidentiality_protection.

[11] Clement L Canonne, Gautam Kamath, and Thomas Steinke. 2020. The Discrete
Gaussian for Differential Privacy. In NeurIPS.

[12] Thee Chanyaswad, Alex Dytso, H Vincent Poor, and Prateek Mittal. 2018. Mvg
mechanism: Differential privacy under matrix-valued query. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security.
230ś246.

[13] Graham Cormode, Cecilia Procopiuc, Divesh Srivastava, Entong Shen, and Ting
Yu. 2012. Differentially private spatial decompositions. In 2012 IEEE 28th Interna-
tional Conference on Data Engineering. IEEE, 20ś31.

[14] Bolin Ding, Marianne Winslett, Jiawei Han, and Zhenhui Li. 2011. Differentially
Private Data Cubes: Optimizing Noise Sources and Consistency. In Proceedings
of the 2011 ACM SIGMOD International Conference on Management of Data.

[15] Irit Dinur and Kobbi Nissim. 2003. Revealing information while preserving
privacy. In PODS.

[16] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. 2006. Our Data, Ourselves: Privacy via Distributed Noise Generation.
In EUROCRYPT. 486ś503.

[17] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Calibrat-
ing Noise to Sensitivity in Private Data Analysis.. In TCC.

[18] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations of Differen-
tial Privacy. Foundations and Trends in Theoretical Computer Science 9, 3ś4 (2014),
211ś407. https://doi.org/10.1561/0400000042

[19] Hamid Ebadi, David Sands, and Gerardo Schneider. 2015. Differential Privacy:
Now It’s Getting Personal. In POPL.

[20] Alexander Edmonds, Aleksandar Nikolov, and Jonathan Ullman. 2020. The
power of factorization mechanisms in local and central differential privacy. In
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing.
425ś438.

[21] Simson L. Garfinkel, John M. Abowd, and Sarah Powazek. 2018. Issues Encoun-
tered Deploying Differential Privacy. In Proceedings of the 2018 Workshop on
Privacy in the Electronic Society.

[22] Quan Geng, Wei Ding, Ruiqi Guo, and Sanjiv Kumar. 2020. Tight analysis of
privacy and utility tradeoff in approximate differential privacy. In International
Conference on Artificial Intelligence and Statistics. 89ś99.

[23] Quan Geng and Pramod Viswanath. 2015. The optimal noise-adding mechanism
in differential privacy. IEEE Transactions on Information Theory 62, 2 (2015),
925ś951.

[24] Arpita Ghosh, Tim Roughgarden, and Mukund Sundararajan. 2009. Universally
Utility-Maximizing Privacy Mechanisms. In Proceedings of the Forty-First Annual
ACM Symposium on Theory of Computing.

[25] Gene H. Golub and Charles F. Van Loan. 1996. Matrix Computations (third ed.).
The Johns Hopkins University Press.

[26] Robert Groves. 2010. So, How do You Handle Prisons? https://www.census.gov/
newsroom/blogs/director/2010/03/so-how-do-you-handle-prisons.html.

[27] Moritz Hardt, Katrina Ligett, and Frank Mcsherry. 2012. A Simple and Prac-
tical Algorithm for Differentially Private Data Release. In Advances in Neural
Information Processing Systems.

[28] Michael Hay, Ashwin Machanavajjhala, Gerome Miklau, Yan Chen, Dan Zhang,
and George Bissias. 2016. Exploring Privacy-Accuracy Tradeoffs Using DPComp.
In Proceedings of the 2016 International Conference on Management of Data.

[29] Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu. 2010. Boosting the
Accuracy of Differentially Private Histograms Through Consistency. Proceedings
of the VLDB Endowment 3, 1 (2010).

[30] Georgios Kellaris and Stavros Papadopoulos. 2013. Practical differential privacy
via grouping and smoothing. Proceedings of the VLDB Endowment 6, 5 (2013),
301ś312.

[31] Ios Kotsogiannis, Ashwin Machanavajjhala, Michael Hay, and Gerome Mik-
lau. 2017. Pythia: Data dependent differentially private algorithm selection. In
Proceedings of the 2017 ACM International Conference on Management of Data.
1323ś1337.

[32] Chao Li, Michael Hay, Gerome Miklau, and Yue Wang. 2014. A Data-and
Workload-Aware Algorithm for Range Queries Under Differential Privacy. Pro-
ceedings of the VLDB Endowment 7, 5 (2014).

[33] Chao Li and Gerome Miklau. 2012. An Adaptive Mechanism for Accurate Query
Answering under Differential Privacy. Proceedings of the VLDB Endowment 5, 6
(2012).

[34] Chao Li, Gerome Miklau, Michael Hay, Andrew Mcgregor, and Vibhor Ras-
togi. 2015. The Matrix Mechanism: Optimizing Linear Counting Queries un-
der Differential Privacy. The VLDB Journal 24, 6 (Dec. 2015), 757ś781. https:
//doi.org/10.1007/s00778-015-0398-x

[35] Fang Liu. 2018. Generalized gaussian mechanism for differential privacy. IEEE
Transactions on Knowledge and Data Engineering 31, 4 (2018), 747ś756.

[36] Ashwin Machanavajjhala, Daniel Kifer, John Abowd, Johannes Gehrke, and Lars
Vilhuber. 2008. Privacy: From Theory to Practice On the Map. In Proceedings of
the IEEE International Conference on Data Engineering (ICDE). 277ś286.

[37] Ryan McKenna, Gerome Miklau, Michael Hay, and Ashwin Machanavajjhala.
2018. Optimizing error of high-dimensional statistical queries under differential
privacy. Proceedings of the VLDB Endowment 11, 10 (2018).

[38] SolomonMessing, Christina DeGregorio, Bennett Hillenbrand, Gary King, Saurav
Mahanti, Zagreb Mukerjee, Chaya Nayak, Nate Persily, Bogdan State, and Arjun
Wilkins. 2020. Facebook Privacy-Protected Full URLs Data Set. https://doi.org/
10.7910/DVN/TDOAPG

[39] Ilya Mironov. 2017. Rényi Differential Privacy. In 30th IEEE Computer Security
Foundations Symposium, CSF 2017, Santa Barbara, CA, USA, August 21-25, 2017.
263ś275.

[40] Aleksandar Nikolov. 2014. New computational aspects of discrepancy theory. Ph.D.
Dissertation. Rutgers University-Graduate School-New Brunswick.

[41] Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization (second ed.).
Springer, New York, NY, USA.

[42] Wahbeh Qardaji, Weining Yang, and Ninghui Li. 2013. Differentially private grids
for geospatial data. In 2013 IEEE 29th international conference on data engineering
(ICDE). IEEE, 757ś768.

[43] Wahbeh Qardaji, Weining Yang, and Ninghui Li. 2013. Understanding Hierar-
chical Methods for Differentially Private Histograms. Proc. VLDB Endow. 6, 14
(2013).

[44] U.S. Census Bureau. 2020. (Chapter 7) Understanding and Using American
Community Survey Data: What All Data Users Need to Know. https://www.
census.gov/programs-surveys/acs/guidance/handbooks/general.html.

[45] Yue Wang, Daniel Kifer, and Jaewoo Lee. 2019. Differentially Private Confidence
Intervals for Empirical Risk Minimization. Journal of Privacy and Confidentiality
(2019).

[46] S. Wu, A. Roth, K. Ligett, B. Waggoner, and S. Neel. 2019. Accuracy First: Selecting
a Differential Privacy Level for Accuracy-Constrained ERM. 9, 2 (2019).

[47] Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. 2011. Differential Privacy
via Wavelet Transforms. IEEE Transactions on Knowledge and Data Engineering
23, 8 (2011), 1200ś1214.

[48] Yingtai Xiao, Zeyu Ding, Yuxin Wang, Danfeng Zhang, and Daniel Kifer. 2020.
Optimizing Fitness-for-Use of Differentially Private Linear Queries (full verson).
https://arxiv.org/abs/2012.00135.

[49] Grigory Yaroslavtsev, Graham Cormode, Cecilia M Procopiuc, and Divesh Srivas-
tava. 2013. Accurate and efficient private release of datacubes and contingency
tables. In 2013 IEEE 29th International Conference on Data Engineering (ICDE).
IEEE, 745ś756.

[50] Ganzhao Yuan, Yin Yang, Zhenjie Zhang, and Zhifeng Hao. 2016. Convex Opti-
mization for Linear Query Processing under Approximate Differential Privacy.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining.

[51] Ganzhao Yuan, Zhenjie Zhang, Marianne Winslett, Xiaokui Xiao, Yin Yang, and
Zhifeng Hao. 2012. Low-Rank Mechanism: Optimizing Batch Queries under
Differential Privacy. Proc. VLDB Endow. 5, 11 (July 2012), 1352ś1363. https:
//doi.org/10.14778/2350229.2350252

[52] Ganzhao Yuan, Zhenjie Zhang, Marianne Winslett, Xiaokui Xiao, Yin Yang, and
Zhifeng Hao. 2015. Optimizing batch linear queries under exact and approximate
differential privacy. ACM Transactions on Database Systems (TODS) 40, 2 (2015),
1ś47.

1742

https://www.census.gov/mp/www/cat/decennial_census_2010/
https://www.census.gov/mp/www/cat/decennial_census_2010/
https://www.census.gov/programs-surveys/decennial-census/about/rdo/summary-files.html
https://www.census.gov/programs-surveys/decennial-census/about/rdo/summary-files.html
https://www.census.gov/prod/cen2010/doc/gqsf.pdf
https://www.census.gov/prod/cen2010/doc/gqsf.pdf
https://lehd.ces.census.gov/applications/help/onthemap.html#!confidentiality_protection
https://lehd.ces.census.gov/applications/help/onthemap.html#!confidentiality_protection
https://doi.org/10.1561/0400000042
https://www.census.gov/newsroom/blogs/director/2010/03/so-how-do-you-handle-prisons.html
https://www.census.gov/newsroom/blogs/director/2010/03/so-how-do-you-handle-prisons.html
https://doi.org/10.1007/s00778-015-0398-x
https://doi.org/10.1007/s00778-015-0398-x
https://doi.org/10.7910/DVN/TDOAPG
https://doi.org/10.7910/DVN/TDOAPG
https://www.census.gov/programs-surveys/acs/guidance/handbooks/general.html
https://www.census.gov/programs-surveys/acs/guidance/handbooks/general.html
https://arxiv.org/abs/2012.00135
https://doi.org/10.14778/2350229.2350252
https://doi.org/10.14778/2350229.2350252

