
Estimating Vector Fields from Noisy Time Series
Harish S. Bhat

Applied Mathematics
University of California, Merced

Merced, CA USA
hbhat@ucmerced.edu

Majerle Reeves
Applied Mathematics

University of California, Merced
Merced, CA USA

mreeves3@ucmerced.edu

Ramin Raziperchikolaei
Rakuten, Inc.

San Mateo, CA USA
ramin.raziperchikola@rakuten.com

Abstract—While there has been a surge of recent interest in
learning differential equation models from time series, methods in
this area typically cannot cope with highly noisy data. We break
this problem into two parts: (i) approximating the unknown
vector field (or right-hand side) of the differential equation,
and (ii) dealing with noise. To deal with (i), we describe a
neural network architecture consisting of tensor products of one-
dimensional neural shape functions. For (ii), we propose an al-
ternating minimization scheme that switches between vector field
training and filtering steps, together with multiple trajectories of
training data. We find that the neural shape function architecture
retains the approximation properties of dense neural networks,
enables effective computation of vector field error, and allows
for graphical interpretability, all for data/systems in any finite
dimension d. We also study the combination of either our neural
shape function method or existing differential equation learning
methods with alternating minimization and multiple trajectories.
We find that retrofitting any learning method in this way boosts
the method’s robustness to noise. While in their raw form the
methods struggle with 1% Gaussian noise, after retrofitting, they
learn accurate vector fields from data with 10% Gaussian noise.

I. INTRODUCTION

We consider the problem of learning a dynamical system
from multiple, vector-valued time series. Suppose we have N
time series or trajectories, each observed at T discrete times
{ti}Ti=1. We assume this temporal grid is sufficiently fine to
capture the dynamics of the system of interest. Let yji ∈ Rd
denote the observation for trajectory j at time ti. Here d ≥ 1
is arbitrary. Given this data, we compute estimates of (i) the
states x̂ji and (ii) a vector field f̂ : Rd → Rd that determines a
dynamical system model for the time-evolution of the states.

Suppose the true trajectory xj(t) satisfies the nonlinear
system of differential equations given by

ẋj(t) =
dxj(t)

dt
= f(xj(t)). (1)

We model the observation yji as the true state plus noise:

yji = xj(ti) + εj(ti), i = 1, . . . , T. (2)
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acknowledge partial support from NSF DMS-1723272. We also acknowledge
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We seek x̂ji that approximates xj(ti), and f̂ that approximates
f . While there has been much recent interest in learning
differential equations from data, the bulk of the literature
focuses on computing f̂ from relatively clean data; [1] notes
that when Gaussian noise of strength greater than 3% is present
in observed states, estimation becomes unstable and inaccu-
rate. We demonstrate below that leading methods encounter
difficulty even at relatively low noise magnitudes [2], [3].
Our method yields accurate estimates even when the data is
corrupted by 10% noise.

Our prior work [4] established that the block coordinate
descent proximal filtering method yields more accurate and
robust parameter estimates than either iPDA or the extended
Kalman filter. A key element of our filtering approach is its
proximal step [5]. In contrast, other techniques such iPDA and
soft adherence use a penalty term that anchors the filtered
states (at all iterations) to the data y [6], [7]. Our work
shares goals with [8], who are concerned with recovering
the functional form of sufficiently ergodic, chaotic dynamical
systems from highly corrupted measurements. While our pa-
rameterizations of f differ considerably, both the present paper
and [8] develop and apply alternating minimization methods.

The present paper focuses on extending [4] to the setting
where the functional form of f̂ is unknown and must be
estimated. In our prior work, we assumed this vector field was
known up to a finite-dimensional set of parameters. Hence our
prior work contains no mention of neural networks, nor does
it contain comparisons against the methods of [3] and [9].

The central finding of this paper is as follows: as the
magnitude of noise increases, computing accurate x̂ji and
f̂ is still possible if one alternates model estimation steps
with filtering steps, and if one trains using a larger number
N of trajectories. Using tests on simulated data, we show
that leading equation discovery methods can be retrofitted
with our filtering approach, greatly enhancing the ability of
these methods to cope with noisy data. These methods differ
in the way they model the estimated vector field f : sparse
linear combinations of prescribed functions [2], neural shape
functions, or dense, feedforward neural networks [3]. We
conduct these tests for both the FitzHugh–Nagumo system and
a nonlinear oscillator chain, showing that we can recover both
the filtered states and the underlying vector field with high
accuracy.

We also apply our method to power grid data recorded by
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micro-phasor measurement units (µPMUs). The units record
synchronized measurements of voltage and phase angle at
the power distribution level [10]. Using data taken on two
different days for which the system’s status has been labeled,
we estimate two vector fields, one for normal operation and
one for anomalous operation. To estimate these vector fields,
we found it essential to both filter the data and increase the
number of trajectories.

II. METHODS

A. Filtering

Let f̂(x,θ) model the true vector field f . For now, we are not
concerned with the actual details of this model except to say
that the model parameters are given by θ. Consider an explicit
Euler time discretization of (1) with time step ∆i = ti+1− ti.
For trajectory j, we have

xji+1 − xji = f(xji ,θ)∆i, i = 1, ..., T − 1 (3)

We use Euler purely for simplicity here; in practice the
method can accommodate higher-order, explicit time integra-
tion schemes. Let X̂ denote the collection {x̂ji}

N,T
j=1,i=1 of all

filtered states over all trajectories. Then define the objective
function

E(X̂, θ̂) =

N∑
j=1

T−1∑
i=1

∥∥∥∥∥ x̂
j
i+1 − x̂ji

∆i
− f̂(x̂ji , θ̂)

∥∥∥∥∥
2

. (4)

Assume that if the true states X were known, that f̂ could be
trained by minimizing E over θ. We thus refer to minimization
over θ as model training.

Let Y denote the collection {yji }
N,T
j=1,i=1 of all observations

over all trajectories. We propose the following alternating
procedure to learn X̂ and θ̂. The states are initialized to be
the data: X̂0 = Y—superscripts denote the iteration number:

train: θ̂k+1 = argmin
θ

E(X̂k,θ) (5a)

filter: X̂k+1 = argmin
X

{
E(X, θ̂k+1) + λ‖X− X̂k‖2

}
.

(5b)

We terminate when the change in (θ̂, X̂) is sufficiently small.

B. Three Parameterizations of f̂

1) SINDy: We first take f̂ to be a linear combination of
prescribed functions. Given a 1 × d input x we let Ξ(x)
denote a 1 × s dictionary of functions. For instance, for
(x1, x2) we can take Ξ(x1, x2) = (x1, x2, x

2
1, x

2
2, x1x2), i.e.,

all polynomials in the components of x, up to degree two.
Using this dictionary, we write

f̂(x) = Ξ(x)θ (6)

where θ is an s × d matrix of coefficients. Throughout this
paper, to extend f̂(x) to a function f̂(X), we apply f̂ to each
1× 1× d slice of X. To solve for θ, we apply an iteratively
thresholded least-squares regression procedure that promotes
a sparse solution θ—for further details, consult [2], [11].
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Fig. 1. We compare the neural shape method with [3], [9], and [2] on
FitzHugh–Nagumo with different noise levels. For each noise level, we create
10 sets of observations, run the methods on each set separately, and report
prediction errors. Each error bar shows the error on one experiment. For all
plots, we train on the time interval [0, T ]. In the upper (resp., lower) set of
plots, we report the prediction error on [0, T ] (resp., [T, 2T ]).

2) Neural Shape Functions: Instead of prescribing Ξ and
learning only θ̂, here we learn both Ξ and θ̂. Let B be the
desired number of one-dimensional shape functions; we model
these using a dense neural network with one-dimensional
input, D − 1 hidden layers, and a final layer with B outputs.
Let h(x) ∈ RB denote the output corresponding to scalar input
x; then hj is the j-th one-dimensional shape function.

To create multi-dimensional shape functions, we take tensor
products of one-dimensional shape functions. Let a multi-
index denote a collection of integers α = (α1, . . . , αd) such
that 0 ≤ αk ≤ B. Define h0(x) = 1. Then for a given multi-
index α, define the multi-dimensional shape function

Hα(x) =
d∏
k=1

hαk
(xk) ∈ R. (7)

Let A be a collection of multi-indices and |A| its cardinality.
Suppose we compute Hα(x) for each α ∈ A; in this way we
obtain a 1× |A| vector H(x). Here H(x) plays the same role
as Ξ(x) in SINDy above; |A| is analogous to s, the number
of shape functions. Now let B denote an |A| × d matrix of
weights. The neural shape function model is f̂(x) = H(x)B.
Note that there are (B+1)d possible multi-dimensional shape
functions. In practice, we choose A such that |A| � (B+1)d,
thus constraining f̂ to be a small linear combination of multi-
dimensional shape functions. The set of parameters θ consists
of B together with all weights and biases in the h(x) network.

Suppose we work in a compact subset K ⊂ Rd. Given direct
observations of a smooth vector field f in K, it is possible to
achieve arbitrarily small error ‖f − f̂‖ by choosing the neural
shape function hyperparameters sufficiently large. To under-
stand why, note that universal approximation theory guarantees
that (even when D = 1) the space of our one-dimensional
neural shape functions is dense in the space of continuous
functions. Hence tensor products of these shape functions are
dense in the space of tensor products of continuous functions.
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Fig. 2. Ground truth FitzHugh–Nagumo vector field.

By Stone-Weierstrass, we see that any smooth vector field can

be approximated by linear combinations of tensor products

of continuous functions (e.g., univariate polynomials). Putting

the previous two facts together, we conclude that linear com-

binations of our multi-dimensional neural shape functions can

be used to approximate smooth vector fields; the accuracy of

this approximation can be controlled by the number of units

in each hj network together with |A|.
3) Dense Neural Network (DNN): We also consider a

dense, feedforward neural network model f̂(x) with d inputs

and d outputs, the model used by [3].

III. RESULTS

Here we present results from simulated data experiments in

which the ground truth vector field f is known.

A. FitzHugh–Nagumo

In Figure 1, we compare neural shape functions plus filter-

ing (our method) against three published methods [2], [3], [9]

on simulated data from the FitzHugh–Nagumo system:

dx0

dt
= c

(
x0 − x3

0

3
+ x1

)
,

dx1

dt
= −1

c
(x0 − a+ bx1).

To generate simulated data, we set the system parameters a =
0.5, b = 0.2, c = 3 and initial condition x1 = [−1, 1]. We then

numerically solve the system on the interval [0, T ] with T =
20, recording data at a spacing of Δt = 0.05. To these clean

trajectories we add mean-zero Gaussian noise at strengths of

1%, 5%, and 10%. We train using data on [0, T ]; in Figure 1,

we plot prediction errors for both the training interval and an

extrapolatory test interval [T, 2T ].
For this initial comparison, let us define the concept of

prediction error. Suppose we are at iteration k and that we

have trained the model for e epochs. Define the predicted
states X̃k

e to be the numerical solution of (1) that results

from using the filtered initial conditions contained in X̂k (for

the j-th trajectory, x̂j
1) together with the current best vector

field f̂(x, θ̂k). We call the distance between X̃k
e and Xk the

prediction error—we claim this is a good metric to detect

overfitting. If we find that the current prediction error increases

as we increase the number of epochs, we halt the optimization

dimension j = 0 dimension j = 1

f j
(x

)

time t time t

shape 1: h1(xk) shape 2: h2(xk) shape 3: h3(xk)

h
(x

k
)

xk xk xk

shape 4: h4(xk) shape 5: h5(xk) shape 6: h6(xk)

h
(x

k
)

xk xk xk

Fig. 3. We applied algorithm (5), with neural shape function model for ̂f , to
data obtained by simulating the FitzHugh–Nagumo system and then adding
5% noise. First panel: the clean states and predicted states over time. Here the
predicted states are obtained by numerically integrating the neural vector field
̂f forward in time starting at the estimated/filtered initial condition. Second
panel: visualization of the learned one-dimensional shape functions hj(x).

step (5a), set θ̂k to the weights of the network with minimum

current prediction error, and proceed to the filtering step (5b).

In Figure 3, we plot the predicted and true states for the

neural shape function model of f̂ learned from data with 5%
Gaussian noise. We also plot the learned one-dimensional neu-

ral shape functions hj(x). An advantage of this method is the

ability to graphically interpret these shape functions, regardless

of the dimension d of the vector field being modeled.

Among the methods studied in Figure 1, only our method

and that of [9] attempt to deal with noise during training.

Instead of using a proximal term of the form ‖X − X̂k‖2 as

in (5b), [9] use a penalty term of the form ‖X−Y‖2; filtered

states are always anchored to the data. While our method

outperforms this penalty-based method, both are more robust

to noise than approaches that do not incorporate filtering at

all. Clearly SINDy [2] has issues with even small amounts

of noise, while the dense neural network approach of [3]

encounters problems starting at 5% noise.

We have carried out tests similar to that of Figure 1 for

nonlinear, chaotic systems such as the Lorenz, Rössler, and

double pendulum systems. For such systems, if we perturb the

vector field or initial conditions slightly, sensitive dependence

implies that over time, trajectories will diverge exponentially.

For such systems, the prediction error on [T, 2T ] can seem

large even if we estimate the vector field and filtered states

with a reasonable degree of accuracy. These tests motivate us



Noise Trajectories Filter SINDy Neural Shape
Functions Filter DNN

1 1.77× 10−4 0.8467 0.8157
1 % 25 3.15× 10−4 0.2722 0.3274

400 3.15× 10−4 0.2623 0.2034
1 0.2647 0.7773 0.8667

5 % 25 1.69× 10−4 0.4481 0.2580
400 1.51× 10−4 0.2790 0.2186

1 1.4100 0.8168 1.7879
10% 25 7.30× 10−3 0.4107 0.2276

400 1.13× 10−3 0.3028 0.2128
TABLE I

FOR EACH OF THREE ODE LEARNING METHODS, ALL COMBINED WITH
FILTERING, WE RECORD THE ERROR IN THE ESTIMATED VECTOR FIELD AS

A FUNCTION OF BOTH NOISE STRENGTH AND THE NUMBER OF
TRAJECTORIES. FOR EACH METHOD AND EACH NOISE STRENGTH,

INCREASING THE NUMBER OF TRAJECTORIES DECREASES THE VECTOR
FIELD ERROR. NOTE THAT RETROFITTING SINDY WITH FILTERING

DRAMATICALLY IMPROVES ITS ABILITY TO ESTIMATE THE VECTOR FIELD
ACCURATELY, AS COMPARED TO THE RESULTS IN FIGURE 1.

to measure the vector field error ‖f̂ − f‖2, which provides
insight into how well the estimated vector field captures the
global behavior of f .

We now retrofit both [3] (the dense neural network model
for f̂ ) and [2] (SINDy) with our filtering procedure. To be
clear, both retrofitted methods follow (5); the only difference
is in how f̂ is modeled.

As all the results shown in Figure 1 are for one trajectory, we
now move to the setting where we have multiple trajectories.
We numerically integrate the FitzHugh–Nagumo system with
400 initial conditions taken from an equispaced 20× 20 grid
on the square [−4, 4], producing a set of 400 trajectories. We
then apply each retrofitted procedure to either 1, 25 (randomly
chosen), or all 400 trajectories from the collection. In each
case, we obtain an estimated vector field f̂(x). We compute
the vector field error ‖f̂ − f‖2 using elementary quadrature
on the square [−4, 4]. Here f(x) is the right-hand side of the
FitzHugh–Nagumo system; see the ground truth vector field
plotted in Figure 2.

The results, shown in Figure 9 and Table I, clearly show
the benefit of combining any method with filtering and in-
creasing the number of trajectories used for training, even
if those trajectories are all corrupted with 10% noise. The
improvement is particularly striking for the SINDy method;
in fact, after incorporating SINDy into (5), it outperforms the
other methods.

B. Nonlinear Oscillator Network

Consider a ring of M masses connected by identical
springs, each with potential energy V (x) and force F (x) =
−V ′(x). Here x denotes displacement from equilibrium. Then
the equations of motion for the mass-spring system are

ẍi = F (xi − xi−1)− F (xi+1 − xi) (8)

for i = 1, . . . ,M, with the understanding that x0 ≡ xM and
x1 ≡ xM+1. For our tests, we choose the double-well potential
V (x) = −8x2 + (1/4)x4, so that F (x) = 16x− x3.

Noise Trajectories ‖f − f̂‖ ‖X− X̂‖ prediction error
10 5.43× 10−3 2.53× 10−2 1.86

1 % 100 5.38× 10−3 1.70× 10−2 0.868
400 8.23× 10−3 2.83× 10−2 0.975
10 8.26× 10−3 2.53× 10−2 1.86

5 % 100 8.56× 10−3 2.80× 10−2 1.27
400 8.20× 10−3 2.81× 10−2 0.984
10 1.77× 10−1 6.67× 10−2 3.89

10% 100 1.78× 10−2 4.84× 10−2 1.57
400 1.70× 10−2 4.69× 10−2 1.17

TABLE II
WE APPLY THE RETROFITTED SINDY ALGORITHM (9) TO NOISY

OBSERVATIONS OF THE MASS-SPRING SYSTEM (8). RETROFITTING THE
SINDY ALGORITHM ENABLES IT TO HANDLE NOISY DATA. THE RESULTS
ALSO SHOW THAT, AT EACH NOISE LEVEL, INCREASING THE NUMBER OF

TRAJECTORIES CLEARLY REDUCES PREDICTION ERRORS. FOR
EXPLANATIONS OF THE DIFFERENT TYPES OF ERRORS, PLEASE SEE THE

MAIN TEXT.

We focus on the system withM = 3 masses; when we write
the system in first-order form, the system has 2M = 6 degrees
of freedom corresponding to xi and ẋi for each i = 1, . . . ,M.
To generate data for our tests, we simulate (8) using the 8th-
order Dormand-Prince integrator in scipy.integrate, with abso-
lute and relative tolerances tuned to 10−14. We generate 400
trajectories, each with an initial condition sampled uniformly
from the hypercube [−1/2, 1/2]6. Each trajectory is saved at
401 equispaced time steps from t = 0 to a final time of t = 4,
i.e., ∆t = 0.01. To these clean trajectories X, we add mean-
zero Gaussian noise with strengths of 1%, 5%, and 10% as
before, resulting in noisy data Y.

We focus our attention on a retrofitted SINDy method
with f̂ modeled using a dictionary of polynomials. In this
method, we use a variant of (5) theoretically analyzed in
our previous work [4]. In this method, we incorporate the
SINDy model (6), which has the benefit of being linear in the
parameters θ. This linearity implies that the objective function
(4) is convex in θ. Suppose we split the decision variables
X̂ into two halves, the first half X̂+ consisting of time steps
j = 1, . . . , bM/2c, and the second half X̂− consisting of time
steps j = bM/2c + 1, . . . ,M. Then X̂ = (X̂+, X̂−). This
leads us to the following block coordinate descent algorithm:

train: θ̂k+1 = argmin
θ

E(X̂k
+, X̂

k
−,θ) (9a)

filter: X̂k+1
− = argmin

X−

{
X̂k

+,X−, θ̂
k+1) + λ‖X− − X̂k

−‖2
}

(9b)

filter: X̂k+1
+ = argmin

X+

{
X+, X̂

k+1
− , θ̂k+1) + λ‖X+ − X̂k

+‖2
}
.

(9c)

Splitting X̂ and formulating the algorithm in this way gives
us block convexity. That is, when we hold two of the three
variables in {X̂k

+, X̂
k
−, θ̂} fixed and minimize over the remain-

ing variable, we obtain in each case a convex subproblem [4].
Note that this property would not hold if we were to instead
use either of the neural network approaches to model f̂ , as in
this case (9a) would be non-convex.
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Fig. 4. We monitor and plot the magnitudes of the change in filtered states,

‖̂Xk+1 − ̂Xk‖, as a function of iteration number k. We have done this for
each of three training sets, each containing the indicated level of noise. In all
cases, we find that this quantity decreases rapidly and monotonically.

When we train, we restrict Y to consist of only the first 301
steps of each trajectory. Starting with noisy data X̂0 = Y, we

run algorithm (9) with λ = 10−8. Note that λ multiplies the

squared Frobenius error between two large matrices; hence

this value of λ is still consequential. We terminate if the norm

difference between X̂k+1 and X̂k is less than 10−4, or if we

have already completed 50 iterations.

To solve (9b) and (9c), we use 1000 steps of gradient

descent with a learning rate of 3 × 10−2. To solve (9a),

we use the iteratively thresholded least squares procedure

from [2], [11] with a threshold of 0.4. For the dictionary

Ξ defined in (6), we include all polynomials up to degree

3 in 6 variables, not including an intercept or constant term,

resulting in s = 63 columns. We have uploaded our code to

https://github.com/hbhat4000/filtersindy/

An interesting property of algorithm (9) is the way in which

‖X̂k+1 − X̂k‖ behaves as a function of k. In Figure 4, we

have plotted this quantity as a function of iteration k. We have

recorded these magnitudes of the change in filtered states while

running algorithm (9) on the full 400-trajectory training set,

contaminated with either 1%, 5%, or 10% noise. In all cases,

we see monotonic convergence. Note that the vertical scale on

this plot is logarithmic, further indicating the rapid decrease

in ‖X̂k+1−X̂k‖ as a function of k. As a practical matter, this

means that we do not need to run (9) for many iterations, and

that the results are robust to the number of iterations.

After running algorithm (9) on either 10, 100, or 400
trajectories with either 1%, 5%, or 10% noise, we quantify

errors in three ways—see Table II. The vector field error

‖f − f̂‖ measures the mean absolute error between ground

truth and estimated vector fields. The quantity ‖X − X̂‖ is

the mean absolute error between true and filtered states. After

training on the first 301 steps of each trajectory, we compute

predicted trajectories by numerically integrating the estimated

Fig. 5. We present the results of applying (9) to 10 (top), 100 (middle), or
400 (bottom) trajectories worth of data for the nonlinear mass-spring system
(8), all contaminated with 10% Gaussian noise. In each of these training sets,
we have singled out one common trajectory for the purposes of illustration.
In each plot, for this common trajectory, we have plotted the final estimate of

the filtered states ̂X in red, and ground truth trajectories X in black. A close
inspection of the plots reveals errors with 10 trajectories; for the purposes of
plotting, these errors disappear with 400 trajectories. For more details, see
the main text.

vector field forward in time, starting from the filtered initial

conditions. The prediction error is the mean absolute error

between these predicted trajectories and the true states X.

When we numerically integrate the estimated vector field, we

use a standard fourth-order explicit Runge-Kutta method.

The first thing to notice from the results in Table II is

that they confirm that combining SINDy with our alternating

minimization filtering approach allows SINDy to estimate the



mass-spring system’s vector field accurately. Even with 10%

noise in the original data, the vector field error when we train

on 400 trajectories is 1.70×10−2. To get a sense for what this

number means, note that the ground truth vector field is highly

sparse—across the entire ground truth coefficient matrix θ, out

of 63 · 6 possible entries, only 33 are nonzero. The retrofitted

SINDy algorithm gets this sparsity pattern 100% correct; if

we round the coefficients obtained by SINDy, we obtain the

ground truth vector field.

Let us now interpret the filtering errors (or second column)

of Table II. At the 10% noise level, increasing the number of

trajectories appears to decrease the filtering error from 6.67×
10−2 (with 10 trajectories) only slightly to 4.69 × 10−2. To

visualize this, we present Figure 5. From top to bottom, we

present the results of training with 10 (top), 100 (middle), or

400 (bottom) trajectories worth of data, all contaminated with

10% Gaussian noise. For the purposes of illustration, we have

singled out one trajectory {xi(t), ẋi(t)}i=1:3 that is a member

of all three training sets. Each plot contains 6 black curves,

corresponding to {xi(t), ẋi(t)} for i = 1, 2, 3, together with

the filtered (or hatted) versions, for a total of 12 curves per

plot. When there are only 10 trajectories (top panel), one can

discern differences between red and black curves; as we go to

400 trajectories (bottom panel), these errors mostly disappear.

Overall, Figure 5 supports the notion that it is indeed

possible to estimate filtered states even when the equations

of motion (i.e., the vector field) for the underlying system are

themselves unknown and must be simultaneously estimated.

However, there is a difference between filtered trajectories and

predicted trajectories of the dynamical system. One will notice

from Figure 5 that the time axis ends at t = 3; we have used

301 steps of training data with Δt = 0.01, so there is no noisy

training data to filter beyond t = 3.

To obtain solutions of the estimated dynamical system be-

yond t = 3, we must numerically integrate, as in the predicted

trajectories whose errors are quantified in the third column of

Table II. When we compute the predicted trajectories in this

table, we integrate all the way up to t = 4 and then compare

against the ground truth (clean) states of the system X. We

view predictions on t ∈ (3, 4] as a true test set, i.e., a test of

the estimated vector field’s ability to extrapolate beyond the

training set.

We again single out the same trajectory common to our

training sets with 10, 100, or 400 total trajectories. Starting

with the estimated/filtered initial conditions, we numerically

integrate the estimated vector field forward in time using a

standard fourth-order explicit Runge-Kutta method, from t = 0
to t = 4. In Figure 6, we compare the results of these numeri-

cal integrations (in green) against the ground truth trajectories

(in black). When the number of trajectories is small (top),

the predicted dynamics are qualitatively wrong. As we train

on more trajectories (middle, bottom), the dynamics begin to

qualitatively match the true mass-spring system’s dynamics.

Note that we obtain much better quantitative accuracy for

t ∈ [0, 3], the training interval.

For the bottom panel (trained on 400 trajectories), by the

Fig. 6. We present the results of applying (9) to 10 (top), 100 (middle),
or 400 (bottom) trajectories worth of data from the nonlinear mass-spring
system (8), all contaminated with 10% Gaussian noise. In each of these
training sets, we have singled out one common trajectory for the purposes
of illustration. In each plot, for this common trajectory, we have plotted
predicted trajectories (the results of numerically integrating the estimated
vector field forward in time from the estimated initial conditions) in green, and
ground truth trajectories X in black. The estimated vector field and filtered
initial conditions are inaccurate when we use only 10 trajectories, leading to
qualitatively incorrect dynamics. As we increase the number of trajectories,
we recover the qualitatively correct behavior of the mass-spring system. The
dynamics for t ∈ [0, 3] are more accurate because that is the interval covered
by the training data; for t ∈ (3, 4], we are seeing the results of propagating
beyond the training interval.

time we reach t = 3, the predicted state has drifted noticeably

away from the ground truth. We can improve upon this

situation by resetting the state of the system, at t = 3, to

equal our estimate x̂(3) of the true state at that time and then



Fig. 7. We continue with results for algorithm (9) applied to noisy data from
the nonlinear mass-spring system (8). We redo the numerical integration from
the bottom panel of Figure 6, this time resetting the state of the system at
t = 3 to equal our estimate x̂(3) of the true state of the system at that time.
This improves the quantitative accuracy of our predicted trajectory on the
extrapolation/test interval t ∈ (3, 4].

continuing the numerical integration until t = 4. In Figure

7, we see that this procedure leads to improved quantitative

agreement between predicted and ground truth trajectories on

the test interval t ∈ (3, 4].

C. MicroPMU Data

We apply the neural shape function plus filtering method

to μPMU data taken from a Mountain View substation near

Riverside, CA. We use one hour’s worth of data from both

Aug. 9 and Aug. 1, 2017. We use measurements aggregated

at a spacing of Δt = 0.01. In prior work, these dates have been

identified as corresponding to normal (Aug. 9) and anomalous

(Aug. 1) system operation. Our idea is to learn two vector

fields, one for normal and one for anomalous behavior.

To begin, we prefiltered the data using a wavelet low-pass

filter. This was to remove high-frequency noise prevalent in

the raw data. Next, we focused our modeling efforts on two

phase angle variables, θ1 and θ2. This means that we did

not use 10 components of the full 12-dimensional signal. To

implement the multiple trajectory idea, we reshaped the single

hour’s trajectory from its original length of T = 360000 to

N = 3600 trajectories each consisting of T = 100 points. To

implement (5a) we use 100 epochs of the Adam optimizer with

a learning rate of 0.002; to implement (5b), we use L-BFGS-

B from scipy.optimize with default tolerances and λ = 1000.

The network itself consists of B = 3 shape functions with

a depth of D = 2 and U = 16 units per layer. The results

are robust to increasing λ, B, D, or U . However, note that

training on one prefiltered trajectory of length T = 360000,

without alternating filtering, does not yield usable models.

In Figure 8, we plot the phase portraits for the learned

systems. Interestingly, the main difference between the learned

vector fields for the normal (left) and anomalous (right)

settings has to do with stability. In short, we see that normal

Fig. 8. μPMU phase plots for normal (left) and anomalous (right) system
behavior. Note that the fixed point is stable (eigenvalues −4.5014× 10−4 ±
1.01i) on the left and unstable (eigenvalues 4.7166× 10−5 ± 1.01i) on the
right.

(respectively, anomalous) system operation corresponds to

stable (respectively, unstable) oscillations. We have confirmed

this by numerically finding the fixed points of the vector fields

and checking the eigenvalues of the Jacobians at these fixed

points.

IV. DISCUSSION

We find that we can compensate for noisy training data

by increasing its volume (the number of trajectories) and by

applying simultaneous filtering. Filtering, in the form of the

proximal step (5b), reestimates the states X̂ based on the best

model at the current iteration, f̂(X; θ̂k). When Y is heavily

contaminated by noise, several iterations of (5b) allow X̂ to

step away from Y as needed. While we have focused on the

FitzHugh–Nagumo and nonlinear mass-spring systems in the

paper, we are currently running additional tests for higher-

dimensional physical systems. Preliminary results confirm the

same trends we have observed for the FitzHugh–Nagumo

system.

SINDy uses polynomial shape functions and the FitzHugh–

Nagumo vector field consists of polynomials. Yet unless we

include filtering and multiple trajectories, SINDy performs

poorly on noisy data. For non-polynomial vector fields, the

neural network approaches allow for greater model flexibil-

ity. We hypothesize that on non-polynomial systems, neural

network-based approaches will prove superior. With the neural

shape function approach, one can plot and visualize the one-

dimensional shape functions hj : R → R, analogous to

visualizing the components of Ξ in SINDy. However, due to

its special form and construction, the neural shape function

model is more difficult to train than a standard dense neural

network.

In future work, we seek to replace these dense neural

networks with sparsely connected neural networks that have

optimal approximation properties [12]. We will also combine

these methods with dimensionality reduction techniques to

obtain reduced-order models from the full 12-dimensional

μPMU time series. Ultimately, our goal is to uncover global

phenomena, such as instabilities, attractors, and periodic or-

bits, that go beyond single trajectory forecasts.
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Fig. 9. We compare the estimated vector fields for data consisting of FitzHugh–Nagumo trajectories corrupted by 10% Gaussian noise. We combine the three
ODE learning methods from Section II-B with the filtering procedure from Section II-A. Note the improvement in the quality of the phase portrait as we
increase the number of trajectories used for training.
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