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Abstract 

Optical chaotic system is a central research topic due to its scientific importance and practical 

relevance in key photonic applications such as laser optics and optical communication. Due to the 

ultrafast propagation of light, all previous studies on optical chaos are based on either static 

imaging or spectral measurement, which shows only time-averaged phenomena. The ability to 

reveal real-time optical chaotic dynamics and hence control its behavior is critical to the further 

understanding and engineering of such systems. Here we report the first real-time spatial-temporal 

imaging of an optical chaotic system, utilizing compressed ultrafast photography. The time 

evolvement of the system’s phase map is imaged without repeating measurement. We also 

demonstrate the ability to simultaneously control and monitor optical chaotic systems in real time. 

Our work introduces a new angle to the study of non-repeatable optical chaos, paving the way for 

fully understanding and utilizing chaotic systems in various disciplines. 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

Chaotic behavior is ubiquitous in nature. It has wide and profound influence on many disciplines 

ranging from fundamental sciences including biology, physics, and mathematics to applications 

including communication, cryptography, and robotics(1-7). Optical systems have been proven 

promising for studying chaotic behavior(8-11). Different mechanisms including laser 

instability(11-13), Kerr nonlinearity(9), and irregular cavities(14, 15) have shown strong chaos. 

The understanding of these chaotic phenomena in different optical systems is critical to both 

preventing chaos, when system stability is needed(16), and engineering chaos, when system 

performance is desired(3, 11, 12). Until now, the study of optical chaotic systems still relies on 

static imaging(17) and spectral measurement(11, 18). Consequently, only time-averaged effects 

are revealed, missing critical information about dynamic evolvement and sensitivity of optical 

chaos. The real-time recording of optical chaotic systems has been hindered by the ultra-fast 

movement of photons. Exposure times below picoseconds or imaging speeds above billions frame 

per second are required. In spite of great improvements in the state-of-the-art electronic sensors, 

such speeds are beyond the capability of current CMOS and CCD imaging technologies, due to 

the limited on-chip storage capacity and slow electronic readout speeds(19, 20). Other ultra-fast 

imaging techniques such as Kerr gating have also been developed; however, they normally require 

repeated measurements under the condition that the chaotic events are highly repeatable(21, 22). 

The required precise repeatability is in great contradiction to the essence of chaos, which is ultra-

sensitive to initial conditions and infinitesimal fluctuations, thus non-repeatable. The lack of ultra-

fast single-shot detection also limits the capability to control chaotic optical systems, which is 

highly desired for real applications. 

 



In this Letter, by reporting the first single-shot real-time recording of optical chaotic systems, we 

demonstrate the possible way to control optical chaos and monitor its dynamics at the same time. 

By utilizing our compressed ultrafast photography (CUP) technique(23) (Fig. 1a), snapshots of 

light propagation in two-dimensional irregular optical cavities are taken at a speed up to one billion 

frames per second. Phase maps of irregular optical cavities are directly measured for the first time, 

which reveals full information of the system. Furthermore, we demonstrate the ability to control 

and monitor optical chaotic systems in real time by combining the Kerr-gate and CUP techniques. 

 

Results 

We first study a 2D half-mushroom cavity, which is a typical cavity structure used in both 

theoretical and steady-state experimental studies of optical chaos phenomenon(24-27). Optical 

chaotic systems are built based on the classical billiard chaos theory. Light propagation in closed 

linear 2D cavities with special boundary configurations can show chaotic properties. In order to 

characterize the light propagation dynamics, femto-second laser pulses with 100 fs pulse duration 

and 800 nm center wavelength from a Ti-sapphire laser are fed into the 2D half-mushroom cavity 

at a grazing angle (Fig. 1a). The cavity is placed on the imaging plane of the CUP system(23). The 

CUP system is triggered by the Ti-sapphire laser to record the light propagation in the cavity. The 

total recording time is typically several thousand picoseconds, and the temporal resolution is 10 

ps. Weak optical scattering is introduced so the CUP camera can capture motion of light (see 

Methods for details). 

 

The half-mushroom cavity, shown in Fig. 1b and Fig. s1, is characterized by the radius r of the 

quarter circle, the foot width w and foot height h (Fig. 1c). The overall interior surfaces are light 



reflective and define the half-mushroom cavity boundaries for light propagation. Light propagation 

inside the cavities can be represented by the reflection position and angle on the quarter circle, 

which are the Birkhoff coordinates of optical chaotic systems (Fig. 1b). By plotting the Birkhoff 

coordinates, the Poincaré surface of section (SOS) can be constructed to characterize all system 

features in phase space (see supplementary information section S2). In Fig. 1d, we show the 

simulated SOS of a half-mushroom cavity with r = 2 arbitrary units (a.u.), h = 0.5 a.u., and w = 

1.2 a.u. (also see supplementary information section S3.1). The SOS of the half-mushroom cavity 

is a mixed phase space, which distinctively shows two regimes: regular and chaotic regimes. In 

the regular regime, the trajectory of light propagation (Fig. 1c) has a constant reflection angle, 

showing a horizontal line in SOS. In the chaotic regime, the trajectory of light propagation (Fig. 

1e) is ergodic and shows an exponential dependence on initial conditions: incident position 

described by 𝑠 and incident angle described by 𝜃 (Fig. 1d).  

 

To evaluate how the geometry of the cavity affects and controls its chaotic behavior, a standard 

half-mushroom cavity (Fig. 2a) and a deformed half-mushroom cavity (Fig. 2b) are built with only 

difference being the tilted angle. One trajectory of light propagation inside the standard half-

mushroom cavity is shown as time-lapse frames in Fig. 2c and as the movie in supplementary 

video 1. The complete SOS phase map of the half-mushroom cavities is recorded by imaging light 

propagations under different light incident conditions with the CUP system. As the first use of 

CUP for studying optical chaos, the SOS phase map helps us confirm its suitability for the study. 

After all light trajectories are recorded, the reflection positions and angles on the arc mirror are 

extracted to form the SOS phase map. For the standard half-mushroom cavity, the SOS phase map 

is shown in Fig. 2d. Compared to the simulated phase map of a perfect half-mushroom billiard 



shown in Fig. 1d (also see supplementary information section S3.1), the sharp boundary between 

the regular and chaotic regimes disappears. Instead, we observe three types of light propagation in 

the SOS phase map: (i) trajectories with |𝑝| > 0.8 show small variances in |𝑝|, and are similar to 

those in the regular regime in the perfect half-mushroom cavity (Fig. 1d, red lines); (ii) stable 

periodic orbits with 0.5 < |𝑝| < 0.8  are surrounded by invariant curves, which form small islands; 

and (iii) chaotic trajectories with |𝑝| < 0.5 forming the chaotic sea are similar to those in the 

perfect half-mushroom cavity (Fig. 1d, blue dots). Based on the Kolmogorov-Arnol’d-Moser 

(KAM) theorem(28, 29), such an SOS phase map indicates that the geometry of the standard half-

mushroom cavity used in the experiment deviates from the geometry of a perfect half-mushroom 

cavity (see supplementary information section S3.2 for the simulated phase map of a half-

mushroom cavity with minor deformations). This observation is further confirmed in the deformed 

half-mushroom cavity by intentionally tilting one mirror to a large angle (Fig. 2b). According to 

the KAM theorem, larger deformation leads to the disappearance of more invariant curves and to 

an increase of the chaotic regime. As shown in Fig. 2e, the regular trajectories with large |𝑝| cannot 

be observed. The SOS phase map mainly consists of chaotic seas with small islands surrounded 

by invariant curves. The key features in the experimentally obtained phase map in Fig. 2e match 

well with those in the simulated phase map for this severely tilted half-mushroom cavity (see 

supplementary information section S3.3). The above result reveals that cavity geometry is an 

essential parameter in controlling optical chaos. 

 

Small perturbation in a system can lead to drastically different results, which is the iconic feature 

of chaotic behavior. In the standard half-mushroom cavity (Fig. 2a), two light trajectories are 

recorded consecutively with a 1 ms time interval under the same experimental condition. Two such 



trajectories are shown as time-lapse frames in Fig. 3a and 3b respectively (see supplementary video 

2). Ideally, these two trajectories should be exactly the same due to the same experimental 

conditions. Experimental results from Fig. 3a and Fig. 3b show that the two trajectories nearly 

coincide at the beginning but start to diverge substantially after 900 ps. Time evolution of two 

trajectories are plotted in SOS phase space in Fig. 3c, which clearly reveals the divergence of two 

trajectories as time elapses. Fig. 3d shows how these two trajectories propagate in the phase space.  

Though the same experiment conditions are applied to the two light trajectories, the large 

divergence is due to the infinitesimal drift of the experiment setup over 1 ms. The sensitivity to 

the initial condition clearly indicates the chaotic behavior of the light propagation. In chaos theory, 

this behavior belongs to the category of deterministic chaos(30, 31), where due to the extreme 

sensitivity of the system to the initial condition, small fluctuations in the initial condition make it 

impossible to predict long-term behavior in general. Any environmental disturbance may drift the 

experimental setup sufficiently to make the experiment non-repeatable. This reveals that 

controlling small perturbation to chaotic system is also key factor in order to control optical chaos. 

Comparing to traditional simulation methods or steady-state experimental methods which cannot 

capture the sensitivity of optical chaos, the unique “one-shot” advantage of CUP becomes critical 

to studying the chaotic behavior.  

 

We further developed the technique to control and monitor light propagation simultaneously in 

real time. It is realized with a special cavity design shown in Fig. 4a, which is a quarter Bunimovich 

stadium(32, 33). A successive single-shot light trajectory in Bunimovich stadium is shown in Fig. 

4a-c (see the corresponding video data in supplementary video 3). A Kerr gate, consisting of a thin 

BGO crystal and a plate polarizing beam splitter (PBS), is placed at the boundary between the 



rectangle and quarter-circle parts of the cavity. A Kerr gate can switch the light between regular 

or chaotic mode. When the Kerr gate is open, light propagation in the quarter Bunimovich stadium 

always shows chaotic behavior(32, 33). When the Kerr gate is closed, light pathways in both the 

rectangular and quarter circle cavities separated by the Kerr gate are always non-chaotic(29) (see 

supplementary information section S3 and S4). The femto-second laser at 800 nm center 

wavelength is first sent into a bulk lithium niobate crystal for frequency doubling to 400 nm center 

wavelength with 10% efficiency. A dichroic mirror is used to separate the 400 nm and 800 nm 

optical pulses. The 400 nm pulses are used to probe the light propagation dynamics in the cavity, 

and the 800 nm pulses are used to control the Kerr gate. A short-pass filter is placed before the 

CUP system to eliminate the scattered 800 nm light. The polarization of 400 nm probe light is 

adjusted to be S-polarized, so that light is reflected by the PBS. Therefore, light is confined in the 

rectangular cavity, instead of the quarter Bunimovich stadium (Fig. 4a). The trajectory of light 

propagation is an invariant curve with constant reflection angles (Fig. 4a). With the 800 nm control 

light, the 400 nm probe light is changed to P-polarization, thus, transmitting the PBS (from 𝑡 =

380 ps in Fig. 4b). The cavity is changed from a rectangle to a quarter Bunimovich stadium, and 

the light propagation follows a chaotic trajectory instead of the original regular trajectory (Fig. 4b). 

At 𝑡 = 470 ps, the Kerr gate is activated again to change the polarization of the 400 nm probe 

light back to S-polarization (Fig. 4c). Therefore, the probe light is confined in the rectangular 

cavity again (Fig. 4c). However, the light now propagates in a different regular mode instead of 

the original regular mode when 𝑡 < 380 ps. This is also shown in the SOS phase space (Fig. 4d). 

If the Kerr gate never opened, the light would follow the imaginary trajectory (Fig. 4d, light cyan 

dots). Instead, due to the switching of the Kerr gate, light trajectory transitioned to the chaotic 



mode at 390 ps (purple dots), and then transitioned back to a different regular mode after 470ps 

(cyan dots).  

 

Discussion 

By comparing with traditional time-integrating imaging methods, CUP has great advantages in 

studying chaos in optical cavities, providing more insights into optical chaos. As chaotic light 

traverses all spatial points inside the cavity(25, 29), a long-time exposure would overlap the images 

of the light paths, making it challenging to sort out individual light paths precisely, not to mention 

quantifying the time sequence of these light paths. The true value of CUP lies in its capability to 

obtain complete temporal information along with spatial information. One prominent example is 

to extract the distribution of the Poincaré recurrence time(34), which is critical for studying many 

chaotic cavities(35, 36). In addition, the temporal SOS phase map can reveal the real property of 

optical cavities if compared with the traditional SOS phase map. It has been found that the 

traditional SOS phase map may generate wrong light survival probability in a leaky chaotic 

limaçon-like cavity as a function of the physical time if compared with the result from a true-time 

SOS phase map, because a traditional SOS phase map may associate each collision with the same 

time and may overestimate the collisions that happened within a short period(37). Another 

example is the dynamic tunneling between regular modes and chaotic modes(27, 38), which can 

possibly be directly visualized by CUP. It facilitates the study of the dynamic tunneling effect in 

chaotic cavities and helps in engineering the applications using the tunneling effect(39). 

 

The capability to directly observe and control the optical chaotic behavior in real-time in both the 

spatial and temporal domains opens the door to new research paradigms for optical chaotic systems 



beyond the traditional theoretical and static experimental approaches. The first-generation CUP 

system operates at an imaging speed of 100-billion-frames-per-second, with the ability to resolve 

light dynamics in centimeter-sized optical cavities. CUP systems with an imaging speed of 10-

trillion-frames-per-second have already been demonstrated(40), which may allow the ability to 

resolve light dynamics in integrated nanophotonic cavities. Moreover, by integrating diffraction 

gratings into CUP systems, the spectral information can also be obtained, which is critical for 

chaotic systems induced by nonlinear optical processes.  

 

Materials and Methods 

CUP systems: The operation of the CUP imaging system can be divided into two operational steps: 

(1) the real-time image acquisition, and (2) the subsequent image reconstruction. In the first step 

of the measurement, each two-dimensional image frame of the input object video is first projected 

onto a digital micro-mirror device (DMD), which encrypts each image with a two-dimensional 

pseudo-random binary pattern. The encrypted image is then projected onto a stream camera with 

a widened entrance slit. Within the stream camera, the image is temporally sheared by a sweeping 

electric field. The resulting sheared image is temporally integrated by a CCD detector array. In the 

image reconstruction step, the captured data are used to reconstruct the object video based on the 

encrypted information using compressive sensing algorithms.  

The experimental setup is shown schematically in Fig. 1a. The optical cavity is placed at the object 

plane of the CUP system. In order to image light propagation, water vapor is used to scatter light 

into the CUP system. As the streak camera is highly sensitive (single photon sensitivity in 

principle), only weak scattering is needed. Therefore, the effects to chaos from such scattering 

events can be neglected compared with the effects from the deformation of the cavities and 

opening/closing Kerr gates. The light propagation is first imaged by a 4f system consisting of two 

lenses with focal lengths of 150 mm and 25.4 mm respectively. The intermediate image is then 

passed to a DMD by another 4f imaging system consisting of a tube lens (focal length 150 mm) 

and a microscope objective (focal length 50 mm, numerical aperture 0.16). To encode the input 

image, a pseudo-random binary pattern is generated and displayed on the DMD, with a binned 



pixel size of 21.6 m by 21.6 m (3 3 3 binning). The light reflected from the DMD is collected 

by the same microscope objective and another tube lens with a focal length of 200 mm, and imaged 

onto the entrance slit of the streak camera. To allow 2D imaging, this entrance slit is opened to its 

maximal width (~5 mm). Inside the streak camera, a sweeping voltage is applied, deflecting the 

encoded image frames according to their times of arrival. The final temporally dispersed image is 

captured by a CCD with a single exposure.  
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Figure 1. Schematic of the CUP system and the half-mushroom cavity. (a) Schematic setup of 

the CUP system. Light motions in the half-mushroom cavity are recorded by the CUP system in 

real time. (b) Half-mushroom cavity built from reflective mirrors. The definitions of s and p (=

𝑠𝑖𝑛𝜃 ) are illustrated. (c) Simulated light trajectories in the regular mode. (d) The simulated 

Poincaré SOS phase space of the half-mushroom cavity showing both the regular modes (red lines) 

and the chaotic modes (blue dots). (e) Light trajectories in the chaotic mode. 

 

 

 

 

 



 

Figure 2. Single-shot real-time imaging observation of controlling optical chaos by tuning 

geometry of optical cavities. As-constructed (a) regular half-mushroom and (b) tilted half-

mushroom cavities built from reflective mirrors. (c) Time-lapse images showing the light trajectory 

inside the regular half mushroom cavity (see corresponding video in supplementary video 1). (d) 

Experimentally obtained Poincaré SOS phase map of the light modes inside the regular half-

mushroom cavity in (a). (e) Experimentally obtained Poincaré SOS phase map of the light modes 

inside the tilted half-mushroom cavity in (b).  

 

 

 

 

 

 

 

 

 

 



 

Figure 3. Single-shot real-time imaging of two light trajectories with the same initial incident 

conditions. (a) Time-lapse images showing the light trajectory inside the half-mushroom cavity. 

(b) Second light trajectory with the same initial incident conditions as that in (a). The 

corresponding video data showing the temporal evolution of the light pathways in (a) and (b) are 

provided in the left and middle panels of supplementary video 2, respectively. The right panel of 

supplementary video 2 shows the combined movie overlaying both light pathways. Infinitesimal 

differences in the initial condition due to system shift propagates into vastly different light paths 

as compared to (a). (c) Evolution of the light paths in the Poincaré SOS phase spaces over time for 

the light trajectories in (a) and (b). (d) Poincaré SOS phase space shows full trajectories of the two 

light. 

 

 



 

Figure 4. Real-time control of regular and chaotic optical modes in the quarter Bunimovich 

stadium using a Kerr gate. Using a Kerr gate and a second control light pulse, the light modes 

can be controlled in real-time to transition between regular modes and chaotic modes. Schematic 

and successive real-time recording of light trajectories inside the quarter Bunimovich stadium 

when (a) the Kerr gate remain closed (b) the Kerr gate remains open from 380 ps to 470 ps and (c) 



the Kerr gate remain closed. The corresponding video data showing the temporal evolution of the 

light pathway in this measurement is provided in supplementary video 3. (d) The definitions of s 

and p (= 𝑠𝑖𝑛𝜃) and the experimentally obtained Poincaré SOS phase map corresponding to the 

light dynamics in (a-c) are shown. The regular mode (cyan dot), chaotic mode (purple dot) and 

predictions of light trajectories if the Kerr gate never opens (light cyan dot) are shown.  
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