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Abstract

Optical chaotic system is a central research topic due to its scientific importance and practical
relevance in key photonic applications such as laser optics and optical communication. Due to the
ultrafast propagation of light, all previous studies on optical chaos are based on either static
imaging or spectral measurement, which shows only time-averaged phenomena. The ability to
reveal real-time optical chaotic dynamics and hence control its behavior is critical to the further
understanding and engineering of such systems. Here we report the first real-time spatial-temporal
imaging of an optical chaotic system, utilizing compressed ultrafast photography. The time
evolvement of the system’s phase map is imaged without repeating measurement. We also
demonstrate the ability to simultaneously control and monitor optical chaotic systems in real time.
Our work introduces a new angle to the study of non-repeatable optical chaos, paving the way for

fully understanding and utilizing chaotic systems in various disciplines.



Introduction

Chaotic behavior is ubiquitous in nature. It has wide and profound influence on many disciplines
ranging from fundamental sciences including biology, physics, and mathematics to applications
including communication, cryptography, and robotics(/-7). Optical systems have been proven
promising for studying chaotic behavior(§8-/7). Different mechanisms including laser
instability(//-13), Kerr nonlinearity(9), and irregular cavities(/4, 15) have shown strong chaos.
The understanding of these chaotic phenomena in different optical systems is critical to both
preventing chaos, when system stability is needed(/6), and engineering chaos, when system
performance is desired(3, /7, 12). Until now, the study of optical chaotic systems still relies on
static imaging(/7) and spectral measurement(//, /8). Consequently, only time-averaged effects
are revealed, missing critical information about dynamic evolvement and sensitivity of optical
chaos. The real-time recording of optical chaotic systems has been hindered by the ultra-fast
movement of photons. Exposure times below picoseconds or imaging speeds above billions frame
per second are required. In spite of great improvements in the state-of-the-art electronic sensors,
such speeds are beyond the capability of current CMOS and CCD imaging technologies, due to
the limited on-chip storage capacity and slow electronic readout speeds(/9, 20). Other ultra-fast
imaging techniques such as Kerr gating have also been developed; however, they normally require
repeated measurements under the condition that the chaotic events are highly repeatable(21, 22).
The required precise repeatability is in great contradiction to the essence of chaos, which is ultra-
sensitive to initial conditions and infinitesimal fluctuations, thus non-repeatable. The lack of ultra-
fast single-shot detection also limits the capability to control chaotic optical systems, which is

highly desired for real applications.



In this Letter, by reporting the first single-shot real-time recording of optical chaotic systems, we
demonstrate the possible way to control optical chaos and monitor its dynamics at the same time.
By utilizing our compressed ultrafast photography (CUP) technique(23) (Fig. 1a), snapshots of
light propagation in two-dimensional irregular optical cavities are taken at a speed up to one billion
frames per second. Phase maps of irregular optical cavities are directly measured for the first time,
which reveals full information of the system. Furthermore, we demonstrate the ability to control

and monitor optical chaotic systems in real time by combining the Kerr-gate and CUP techniques.

Results

We first study a 2D half-mushroom cavity, which is a typical cavity structure used in both
theoretical and steady-state experimental studies of optical chaos phenomenon(24-27). Optical
chaotic systems are built based on the classical billiard chaos theory. Light propagation in closed
linear 2D cavities with special boundary configurations can show chaotic properties. In order to
characterize the light propagation dynamics, femto-second laser pulses with 100 fs pulse duration
and 800 nm center wavelength from a Ti-sapphire laser are fed into the 2D half-mushroom cavity
at a grazing angle (Fig. 1a). The cavity is placed on the imaging plane of the CUP system(23). The
CUP system is triggered by the Ti-sapphire laser to record the light propagation in the cavity. The
total recording time is typically several thousand picoseconds, and the temporal resolution is 10
ps. Weak optical scattering is introduced so the CUP camera can capture motion of light (see

Methods for details).

The half-mushroom cavity, shown in Fig. 1b and Fig. s1, is characterized by the radius » of the

quarter circle, the foot width w and foot height 4 (Fig. 1c¢). The overall interior surfaces are light



reflective and define the half-mushroom cavity boundaries for light propagation. Light propagation
inside the cavities can be represented by the reflection position and angle on the quarter circle,
which are the Birkhoff coordinates of optical chaotic systems (Fig. 1b). By plotting the Birkhoff
coordinates, the Poincaré surface of section (SOS) can be constructed to characterize all system
features in phase space (see supplementary information section S2). In Fig. 1d, we show the
simulated SOS of a half-mushroom cavity with » = 2 arbitrary units (a.u.), 2 = 0.5 a.u., and w =
1.2 a.u. (also see supplementary information section S3.1). The SOS of the half-mushroom cavity
is a mixed phase space, which distinctively shows two regimes: regular and chaotic regimes. In
the regular regime, the trajectory of light propagation (Fig. 1c¢) has a constant reflection angle,
showing a horizontal line in SOS. In the chaotic regime, the trajectory of light propagation (Fig.
le) is ergodic and shows an exponential dependence on initial conditions: incident position

described by s and incident angle described by 8 (Fig. 1d).

To evaluate how the geometry of the cavity affects and controls its chaotic behavior, a standard
half-mushroom cavity (Fig. 2a) and a deformed half-mushroom cavity (Fig. 2b) are built with only
difference being the tilted angle. One trajectory of light propagation inside the standard half-
mushroom cavity is shown as time-lapse frames in Fig. 2¢ and as the movie in supplementary
video 1. The complete SOS phase map of the half-mushroom cavities is recorded by imaging light
propagations under different light incident conditions with the CUP system. As the first use of
CUP for studying optical chaos, the SOS phase map helps us confirm its suitability for the study.
After all light trajectories are recorded, the reflection positions and angles on the arc mirror are
extracted to form the SOS phase map. For the standard half-mushroom cavity, the SOS phase map

is shown in Fig. 2d. Compared to the simulated phase map of a perfect half-mushroom billiard



shown in Fig. 1d (also see supplementary information section S3.1), the sharp boundary between
the regular and chaotic regimes disappears. Instead, we observe three types of light propagation in
the SOS phase map: (i) trajectories with |p| > 0.8 show small variances in |p|, and are similar to
those in the regular regime in the perfect half-mushroom cavity (Fig. 1d, red lines); (ii) stable
periodic orbits with 0.5 < [p| < 0.8 are surrounded by invariant curves, which form small islands;
and (iii) chaotic trajectories with |p| < 0.5 forming the chaotic sea are similar to those in the
perfect half-mushroom cavity (Fig. 1d, blue dots). Based on the Kolmogorov-Arnol’d-Moser
(KAM) theorem(28, 29), such an SOS phase map indicates that the geometry of the standard half-
mushroom cavity used in the experiment deviates from the geometry of a perfect half-mushroom
cavity (see supplementary information section S3.2 for the simulated phase map of a half-
mushroom cavity with minor deformations). This observation is further confirmed in the deformed
half-mushroom cavity by intentionally tilting one mirror to a large angle (Fig. 2b). According to
the KAM theorem, larger deformation leads to the disappearance of more invariant curves and to
an increase of the chaotic regime. As shown in Fig. 2e, the regular trajectories with large |p| cannot
be observed. The SOS phase map mainly consists of chaotic seas with small islands surrounded
by invariant curves. The key features in the experimentally obtained phase map in Fig. 2e match
well with those in the simulated phase map for this severely tilted half-mushroom cavity (see
supplementary information section S3.3). The above result reveals that cavity geometry is an

essential parameter in controlling optical chaos.

Small perturbation in a system can lead to drastically different results, which is the iconic feature
of chaotic behavior. In the standard half-mushroom cavity (Fig. 2a), two light trajectories are

recorded consecutively with a 1 ms time interval under the same experimental condition. Two such



trajectories are shown as time-lapse frames in Fig. 3a and 3b respectively (see supplementary video
2). Ideally, these two trajectories should be exactly the same due to the same experimental
conditions. Experimental results from Fig. 3a and Fig. 3b show that the two trajectories nearly
coincide at the beginning but start to diverge substantially after 900 ps. Time evolution of two
trajectories are plotted in SOS phase space in Fig. 3¢, which clearly reveals the divergence of two
trajectories as time elapses. Fig. 3d shows how these two trajectories propagate in the phase space.
Though the same experiment conditions are applied to the two light trajectories, the large
divergence is due to the infinitesimal drift of the experiment setup over 1 ms. The sensitivity to
the initial condition clearly indicates the chaotic behavior of the light propagation. In chaos theory,
this behavior belongs to the category of deterministic chaos(30, 37), where due to the extreme
sensitivity of the system to the initial condition, small fluctuations in the initial condition make it
impossible to predict long-term behavior in general. Any environmental disturbance may drift the
experimental setup sufficiently to make the experiment non-repeatable. This reveals that
controlling small perturbation to chaotic system is also key factor in order to control optical chaos.
Comparing to traditional simulation methods or steady-state experimental methods which cannot
capture the sensitivity of optical chaos, the unique “one-shot” advantage of CUP becomes critical

to studying the chaotic behavior.

We further developed the technique to control and monitor light propagation simultaneously in
real time. It is realized with a special cavity design shown in Fig. 4a, which is a quarter Bunimovich
stadium(32, 33). A successive single-shot light trajectory in Bunimovich stadium is shown in Fig.
4a-c (see the corresponding video data in supplementary video 3). A Kerr gate, consisting of a thin

BGO crystal and a plate polarizing beam splitter (PBS), is placed at the boundary between the



rectangle and quarter-circle parts of the cavity. A Kerr gate can switch the light between regular
or chaotic mode. When the Kerr gate is open, light propagation in the quarter Bunimovich stadium
always shows chaotic behavior(32, 33). When the Kerr gate is closed, light pathways in both the
rectangular and quarter circle cavities separated by the Kerr gate are always non-chaotic(29) (see
supplementary information section S3 and S4). The femto-second laser at 800 nm center
wavelength is first sent into a bulk lithium niobate crystal for frequency doubling to 400 nm center
wavelength with 10% efficiency. A dichroic mirror is used to separate the 400 nm and 800 nm
optical pulses. The 400 nm pulses are used to probe the light propagation dynamics in the cavity,
and the 800 nm pulses are used to control the Kerr gate. A short-pass filter is placed before the
CUP system to eliminate the scattered 800 nm light. The polarization of 400 nm probe light is
adjusted to be S-polarized, so that light is reflected by the PBS. Therefore, light is confined in the
rectangular cavity, instead of the quarter Bunimovich stadium (Fig. 4a). The trajectory of light
propagation is an invariant curve with constant reflection angles (Fig. 4a). With the 800 nm control
light, the 400 nm probe light is changed to P-polarization, thus, transmitting the PBS (from t =
380 ps in Fig. 4b). The cavity is changed from a rectangle to a quarter Bunimovich stadium, and
the light propagation follows a chaotic trajectory instead of the original regular trajectory (Fig. 4b).
Att = 470 ps, the Kerr gate is activated again to change the polarization of the 400 nm probe
light back to S-polarization (Fig. 4c). Therefore, the probe light is confined in the rectangular
cavity again (Fig. 4c). However, the light now propagates in a different regular mode instead of
the original regular mode when t < 380 ps. This is also shown in the SOS phase space (Fig. 4d).
If the Kerr gate never opened, the light would follow the imaginary trajectory (Fig. 4d, light cyan

dots). Instead, due to the switching of the Kerr gate, light trajectory transitioned to the chaotic



mode at 390 ps (purple dots), and then transitioned back to a different regular mode after 470ps

(cyan dots).

Discussion

By comparing with traditional time-integrating imaging methods, CUP has great advantages in
studying chaos in optical cavities, providing more insights into optical chaos. As chaotic light
traverses all spatial points inside the cavity(25, 29), a long-time exposure would overlap the images
of the light paths, making it challenging to sort out individual light paths precisely, not to mention
quantifying the time sequence of these light paths. The true value of CUP lies in its capability to
obtain complete temporal information along with spatial information. One prominent example is
to extract the distribution of the Poincaré recurrence time(34), which is critical for studying many
chaotic cavities(35, 36). In addition, the temporal SOS phase map can reveal the real property of
optical cavities if compared with the traditional SOS phase map. It has been found that the
traditional SOS phase map may generate wrong light survival probability in a leaky chaotic
limagon-like cavity as a function of the physical time if compared with the result from a true-time
SOS phase map, because a traditional SOS phase map may associate each collision with the same
time and may overestimate the collisions that happened within a short period(37). Another
example is the dynamic tunneling between regular modes and chaotic modes(27, 38), which can
possibly be directly visualized by CUP. It facilitates the study of the dynamic tunneling effect in

chaotic cavities and helps in engineering the applications using the tunneling effect(39).

The capability to directly observe and control the optical chaotic behavior in real-time in both the

spatial and temporal domains opens the door to new research paradigms for optical chaotic systems



beyond the traditional theoretical and static experimental approaches. The first-generation CUP
system operates at an imaging speed of 100-billion-frames-per-second, with the ability to resolve
light dynamics in centimeter-sized optical cavities. CUP systems with an imaging speed of 10-
trillion-frames-per-second have already been demonstrated(40), which may allow the ability to
resolve light dynamics in integrated nanophotonic cavities. Moreover, by integrating diffraction
gratings into CUP systems, the spectral information can also be obtained, which is critical for

chaotic systems induced by nonlinear optical processes.

Materials and Methods

CUP systems: The operation of the CUP imaging system can be divided into two operational steps:
(1) the real-time image acquisition, and (2) the subsequent image reconstruction. In the first step
of the measurement, each two-dimensional image frame of the input object video is first projected
onto a digital micro-mirror device (DMD), which encrypts each image with a two-dimensional
pseudo-random binary pattern. The encrypted image is then projected onto a stream camera with
a widened entrance slit. Within the stream camera, the image is temporally sheared by a sweeping
electric field. The resulting sheared image is temporally integrated by a CCD detector array. In the
image reconstruction step, the captured data are used to reconstruct the object video based on the

encrypted information using compressive sensing algorithms.

The experimental setup is shown schematically in Fig. 1a. The optical cavity is placed at the object
plane of the CUP system. In order to image light propagation, water vapor is used to scatter light
into the CUP system. As the streak camera is highly sensitive (single photon sensitivity in
principle), only weak scattering is needed. Therefore, the effects to chaos from such scattering
events can be neglected compared with the effects from the deformation of the cavities and
opening/closing Kerr gates. The light propagation is first imaged by a 4f system consisting of two
lenses with focal lengths of 150 mm and 25.4 mm respectively. The intermediate image is then
passed to a DMD by another 4f imaging system consisting of a tube lens (focal length 150 mm)
and a microscope objective (focal length 50 mm, numerical aperture 0.16). To encode the input

image, a pseudo-random binary pattern is generated and displayed on the DMD, with a binned



pixel size of 21.6 pum by 21.6 um (3 3 3 binning). The light reflected from the DMD is collected
by the same microscope objective and another tube lens with a focal length of 200 mm, and imaged
onto the entrance slit of the streak camera. To allow 2D imaging, this entrance slit is opened to its
maximal width (~5 mm). Inside the streak camera, a sweeping voltage is applied, deflecting the
encoded image frames according to their times of arrival. The final temporally dispersed image is

captured by a CCD with a single exposure.
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Figure 1. Schematic of the CUP system and the half-mushroom cavity. (a) Schematic setup of
the CUP system. Light motions in the half-mushroom cavity are recorded by the CUP system in
real time. (b) Half-mushroom cavity built from reflective mirrors. The definitions of s and p (=
sin@) are illustrated. (c) Simulated light trajectories in the regular mode. (d) The simulated
Poincaré SOS phase space of the half-mushroom cavity showing both the regular modes (red lines)

and the chaotic modes (blue dots). (e) Light trajectories in the chaotic mode.



Figure 2. Single-shot real-time imaging observation of controlling optical chaos by tuning
geometry of optical cavities. As-constructed (a) regular half-mushroom and (b) tilted half-
mushroom cavities built from reflective mirrors. (¢) Time-lapse images showing the light trajectory
inside the regular half mushroom cavity (see corresponding video in supplementary video 1). (d)
Experimentally obtained Poincaré SOS phase map of the light modes inside the regular half-
mushroom cavity in (a). (¢) Experimentally obtained Poincaré SOS phase map of the light modes

inside the tilted half-mushroom cavity in (b).
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Figure 3. Single-shot real-time imaging of two light trajectories with the same initial incident
conditions. (a) Time-lapse images showing the light trajectory inside the half-mushroom cavity.
(b) Second light trajectory with the same initial incident conditions as that in (a). The
corresponding video data showing the temporal evolution of the light pathways in (a) and (b) are
provided in the left and middle panels of supplementary video 2, respectively. The right panel of
supplementary video 2 shows the combined movie overlaying both light pathways. Infinitesimal
differences in the initial condition due to system shift propagates into vastly different light paths
as compared to (a). (¢) Evolution of the light paths in the Poincaré SOS phase spaces over time for
the light trajectories in (a) and (b). (d) Poincaré SOS phase space shows full trajectories of the two
light.
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Figure 4. Real-time control of regular and chaotic optical modes in the quarter Bunimovich
stadium using a Kerr gate. Using a Kerr gate and a second control light pulse, the light modes
can be controlled in real-time to transition between regular modes and chaotic modes. Schematic
and successive real-time recording of light trajectories inside the quarter Bunimovich stadium

when (a) the Kerr gate remain closed (b) the Kerr gate remains open from 380 ps to 470 ps and (c)



the Kerr gate remain closed. The corresponding video data showing the temporal evolution of the
light pathway in this measurement is provided in supplementary video 3. (d) The definitions of s
and p (= sinf) and the experimentally obtained Poincaré SOS phase map corresponding to the
light dynamics in (a-c) are shown. The regular mode (cyan dot), chaotic mode (purple dot) and

predictions of light trajectories if the Kerr gate never opens (light cyan dot) are shown.
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