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Figure 1: Structures generated by decoding different extents of interpolation of the latent variables obtained for PDF-A and
PDF-B. The generated structures start from Structure-A and progressively evolve towards Structure-B. This work uses a Con-
ditional Variational Autoencoder (CVAE) and we compare it with a Deterministic Autoencoder (DAE).

ABSTRACT

The development of new nanomaterials for energy technologies is
dependent on understanding the intricate relation between material
properties and atomic structure. It is, therefore, crucial to be able to
routinely characterise the atomic structure in nanomaterials, and a
promising method for this task is Pair Distribution Function (PDF)
analysis. The PDF can be obtained through Fourier transforma-
tion of x-ray total scattering data, and represents a histogram of
all interatomic distances in the sample. Going from the distance
information in the PDF to a chemical structure is an unassigned
distance geometry problem (uDGP), and solving this is often the
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bottleneck in nanostructure analysis. In this work, we propose to
use a Conditional Variational Autoencoder (CVAE) to automatically
solve the uDGP to obtain valid chemical structures from PDFs. We
use a simple model system of hypothetical mono-metallic nanopar-
ticles containing up to 100 atoms in the face centered cubic (FCC)
structure as a proof of concept. The model is trained to predict the
assigned distance matrix (aDM) from a simulated PDF of the struc-
ture as the conditional input. We introduce a novel representation
of structures by projecting them inside a unit sphere and adding
additional anchor points or satellites to help in the reconstruction
of the chemical structure. The performance of the CVAE model is
compared to a Deterministic Autoencoder (DAE) showing that both
models are able to solve the uDGP reasonably well. We further show
that the CVAE learns a structured and meaningful latent embedding
space which can be used to predict new chemical structures.
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1 INTRODUCTION

The development of nanoscience over the last decades has given
completely new possibilities for material engineering and devel-
opment. [30] Compared to their bulk counterparts, nanomaterials
can, for example, show improved properties in energy technologies
such as catalysis, solar cells, and batteries. [38] In particular, many
new properties arise in ‘ultrasmall’ nanoparticles, where the di-
mensions are smaller than 5 nm. The very large surface-to-volume
ratio in such materials can lead to drastic changes in the material
performance in e.g. catalysis, and a fundamental change in atomic
structure may also take place when going to the nanoscale. [23, 27]

In order to engineer nanomaterials with targeted properties,
the link between atomic structures and properties must be un-
derstood, and it is crucial to be able to routinely characterise the
atomic structure in nanomaterials. [12, 39] However, such materials
challenge many of the conventional methods for structure charac-
terisation. Traditionally, material structure is characterised through
x-ray and neutron diffraction techniques, applying crystallographic
methods. [11] These diffraction techniques rely on the presence of
long-range, periodic atomic order in the samples. Nanomaterials
do not possess this long range-atomic order, and crystallographic
methods cannot directly be applied for characterisation of many
nanomaterials. [5, 6]

A way of overcoming this ‘nanostructure problem’ is through the
use of the Pair Distribution Function (PDF). [18] The PDF of a sam-
ple is obtained through Fourier transformation of total scattering
data, which can be collected using e.g. large scale synchrotron facil-
ities. The PDF represents a histogram of all interatomic distances
in the sample, and is a plot of intensity versus r, i.e. interatomic
distance. Peak positions correspond to atom-atom distances while
the intensity of a peak depends on the number of pairs having that
interatomic distance and the type of atoms in the pair. A simulated
PDF from a gold nanoparticle with the face centered cubic (FCC)
atomic structure can be seen in Figure 2. The 9 black cubes mark
the smallest repeated units, i.e. the FCC unit cells. Each peak in the
PDF corresponds to an interatomic distance in the particle.

The PDF thus contains information on the atoms present in a
structure and their relative interatomic distances, as is also the case
for methods like solid-state Nuclear Magnetic Resonance (NMR)
and Extended X-ray Absorption Fine Spectroscopy (EXAFS). In a
PDF, these relative interatomic distances are not linked to their cor-
responding atomic identity. Going from this distance information
to a structure can be described as an unassigned distance geometry
problem (uDGP), compared to the assigned distance geometry prob-
lem (aDGP), where the assignment of atoms is known. [3, 4, 17]
Obtaining physical structures from the unassigned distance matrix
(uDM) is a combinatorial problem whereas it is straightforward to
reconstruct the structure once the atoms are assigned to obtain the
assigned distance matrix (aDM). This makes it challenging to go
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Figure 2: Illustration of an FCC gold particle and its corre-
sponding PDF. The 9 black cubes show the smallest repeated
units, i.e. the FCC unit cells.
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Figure 3: Illustration of the structure of a mono-metallic
nanoparticle (green) represented using the unit sphere
along with eleven satellites (blue).

directly from PDF to structure, and analysing the PDF to extract a
structure model is often a bottleneck in material characterisation.

In this paper, we propose to use a deep latent variable model for
structure characterisation from simulated PDF data. We address
the task of going from the uDGP to the aDGP using a Conditional
Variational Autoencoder (CVAE). [29, 42] As a proof of concept we
use a CVAE based approach to predict atomic structures from PDFs
of mono-metallic nanoparticles of sizes up to 100 atoms. We focus
on a simple, hypothetical system, where the nanoparticles all are
made to take the FCC structure (Figure 2), but are made of different
elements, and are of different sizes. We demonstrate that a CVAE
model followed by an trilateration algorithm can be used to go from
a PDF to the particle structure in a matter of seconds (Figure 5).

We use a novel graph representation of structures by projecting
them inside a unit sphere such that one of the atoms is at the ori-
gin of the sphere, and the farthest atom is on the sphere surface.
This allows us to capture relative distances between atoms as node
features across different structures in a consistent manner. Fur-
thermore, to improve the reconstruction of the structures, several
satellites or anchor points are introduced on the surface of the unit
sphere inspired by trilateration techniques used in satellite based
geo-localisation. [40] A sample structure in this representation is
shown in Figure 3.

The CVAE receives the input structure (aDM) and the PDF (uDM)
as input. We treat the PDF as the conditional input to the CVAE
which is trained to predict both the aDM and the distances between
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each atom and the satellites. The final location of atoms are deter-
mined by trilateration. We also study the influence of the number of
satellites on the quality of reconstructed structures. We compare the
ability of the CVAE with a Deterministic Autoencoder (DAE) which
also receives the PDF as the conditional input and predicts the aDM.
Additionally, we explore the latent embedding space learnt by the
two models by interpolating between latent vector points to predict
novel structural motifs as depicted in Figure 1.

2 BACKGROUND

2.1 Related work

In PDF analysis, the uDGP is currently addressed through mod-
elling. A PDF can be calculated from a structure model, and the
model is refined until a good agreement between the experimental
and calculated PDF is obtained. Multiple programs [9, 26, 34] pro-
vide a framework for assigning the distances through refinement of
one or more structure models to the data. Minimizing the difference
between model and data during refinement can be a complex prob-
lem, and for nanomaterials [6, 23] in particular, identifying good
starting models for the atomic structure is difficult. To overcome
this bottleneck, both model-based and data-driven approaches are
currently being developed. For model-based classification of PDF
data, cluster-mining [2] and structure-mining [43] approaches have
been proposed to automate refinements of large numbers of struc-
ture models to the data. These methods can help scientists expand
their view of possible structure solutions, as thousands of structures
can be tested. However, model-based algorithms are computation-
ally heavy and are limited to already known starting structures that
can be mined from databases.

Recently, machine learning (ML) methods have started surfacing
in the field of structure characterisation with PDF. A Convolu-
tional Neural Network (CNN) has been used to determine the space
group of a structure from an experimental PDF. [32] A few pa-
pers have also shown the use of dimensionality reduction tools
such as Principal Component Analysis (PCA) and Non-negative
Matrix Factorization (NMF) on PDF data. Such methods are useful
in particular when dealing with PDFs from multiphase systems,
as the contributions from e.g. different chemical species can be
resolved. [10, 14, 20] Both the space-group classification and the di-
mensionality reduction methods do not directly characterise atomic
structure, but help constrain the number of structural possibilities
for further analysis.

Variational Autoencoders (VAE) [29] have shown great promise
as a method for generating new and/or targeted organic molecules.
These data-driven models use the SMILES [7, 22, 41] string repre-
sentation of graphs to generate structures. VAEs have been used to
generate new and valid chemical structures for a diverse class of
molecules. [22, 31] CVAEs can be trained to generate structures that
respect targeted properties by conditioning the model on additional
data. This allows organic molecules to be generated rapidly without
having to explore all structural possibilities through theoretical com-
putations. [7, 41] The contributions mentioned here are only a frac-
tion of the work done applying ML to chemistry. [8, 15, 16, 19, 21]
Within inorganic chemistry, CNN have shown promise in charac-
terising microstructures from scattering data [8]. Unsupervised ML
methods have also been used to discover structural relationships
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and link them to microscopic properties on experimentally char-
acterised structures from chemical databases. [36] However, work
focusing on applying ML methods to characterise atomic structures
from x-ray data is still very sparse.

2.2 X-ray total scattering and Pair Distribution
Function (PDF) for structural analysis

A PDF can be obtained by Fourier transforming experimental x-
ray total scattering data. In an x-ray scattering experiment, one
measures the angle-dependent interference pattern that arises when
monochromatic x-rays scatter off a sample, as this scattering pattern
contains information on the sample structure. X-ray total scattering
experiments are best done at large scale synchrotron facilities where
high energy x-rays are available, as scattering data must be collected
to high values of the scattering vector Q:

Q =4nsin(0) /A (1)

Here, A is the radiation wavelength, and 6 is the scattering angle.
For PDF analysis, high quality scattering data are generally needed
in the range ca. 0.5 — 25 A™1.

The measured x-ray total scattering data is corrected and nor-
malized to obtain the structure function S(Q). This function is then
Fourier transformed over the available Q-range yielding the PDF,
G(r): [18]

Qmax
o =7 [ als@ - 1sim@-nd0. @

The Fourier transform of the scattering data in Q thus yields a
function in r, which represents a histogram of interatomic distances
or the uDM. [13, 24, 25]

In the current work, all scattering data and PDFs have been
simulated from structure models. This has been done using the
Diffpy-CMI software. [26] Details are given in Section 4.3 and sim-
ulation parameters are shown in Appendix C, Table 3.

3 METHODS

We are interested in reconstructing structures of mono-metallic
nanoparticles, s € S, from their corresponding PDFs, x € X. Each
structure, s € RN*F, comprises N nodes with F node attributes. The
node attributes are the atomic number, interatomic distances and
distance to the satellites. The corresponding PDFs are represented
as the sequence x € RP. The data used in this work are detailed in
Section 4.3.

Reconstructing structures from PDFs or the task of going from
uDGP to aDGP can be formulated as the learning task: f(:) : X —
S. Seen from a density point of view, we are interested in estimating
p(s|x). In this work, we take up a latent variable approach to capture
the dependencies between s and x. This is done by introducing the
latent variable z € RF, where H is the latent (hidden) dimension.
Specifically, we use the CVAE framework to derive a model and to
access a meaningful latent space that can be used for conditional
generative sampling. [29, 42]

The CVAE extends the VAE framework to incorporate condition-
ing inputs to the encoder-decoder structure. The CVAE objective
minimizes the Kullback-Leibler (KL) divergence between the true
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Figure 4: CVAE utilized to predict the aDM used to reconstruct the mono-metallic nanoparticle structure with conditional
input provided in the form of the PDF. The encoder gets the structure, s, and its PDF, x, as input. The PDF is also input to the
prior network. The decoder network predicts the aDM, §, from a latent sample, z, which is used to reconstruct the structure.

posterior distribution p(z|s, x) and its variational approximation
q¢(z]s, x) resulting in an objective of the form: [42]

Lcvak = Lrec + Lreg (3
= ~Eq, [ log po(slz.x)| + KL[gg (zls,0)lIpy (z1x)]  (4)
This objective is derived in Appendix A.

The first term in the objective in Eq. (4) can be interpreted as
the reconstruction loss, Lec. More formally, it is the expected
conditional log-likelihood under the approximate posterior density
predicted by the encoder. The expectation is with respect to the
variational density, g4 (zls, x) = N'(z; g > aé), which is constrained
to be a Gaussian with mean u P and variance 2. The mean and

variance of the posterior density are predicted by the encoder neural
network parameterised by ¢. The encoder maps the input structure,

s, and the corresponding PDF, x, to a latent random variable z € RHE,

The term inside the expectation is the conditional log likelihood,
po(s|z, x), predicted by the decoder neural network parameterised
by 6. The decoder predicts the aDM of interest, §, from the latent
representation, z, and the conditioning input, x. The reconstruction
loss in practice is computed as the mean-squared error between
the input aDM s and the predicted aDM §, i.e.,

Lrec = ||s_§||2~ (5

The second term in Eq. (4), Lyeg, acts as the regularisation term
forcing the posterior density to match the conditional prior density
py(zlx) = N(z; By 0'21//) which is also constrained to be Gaussian

with mean p and variance azl//. The prior network is parameterised

by .

The CVAE model used in this work is illustrated in Figure 4
and the network architecture details are described in Section 4.1.
The details of the training and generative (inference) processes are
described below:

Training process: The encoder gets a structure in the form of
an aDM and its corresponding PDF as input to predict the latent
density parameters. The prior network predicts the parameters of
the prior density from the PDF. The KL divergence is computed
between the posterior and the prior densities, resulting in the Lyg

term. A sample from the latent posterior density is then decoded
in the decoder network. The decoder’s output is the aDM which is
compared with the input structure to obtain the reconstruction loss
Lrec- The combined loss is backpropagated through the network,
training the model to reconstruct the aDM from the latent space.
Generative process: During the inference time, only the trained
prior and decoder networks are used. The PDF is input to the prior
network and a sample from the resulting prior density is decoded
by the decoder, generating a new aDM. The final location of atoms
are determined by trilateration from the predicted distances, as
described in Section 4.2.

4 EXPERIMENTS

4.1 Network Architecture

The CVAE model used in this work has three high level components
that are implemented using neural networks.

The encoder, g4(-), consists of 4 fully connected layers with
rectified linear unit activation’s except for the last layer. These
encoder layers use [F, 384, 256,128, 2H] hidden units where F is
the input feature dimension and H is the latent dimension. The
PDF which is the conditional input, x, is concatenated to the input
structure, s, by upsampling it to match the node feature dimensions.
The upsampling operation is performed with 3 layers of gated 1-
D transpose convolution layers. The encoder predicts the mean,
By 0'(2;5 € RH of the encoder density. Latent vectors, z € RH  are

sampled from the predicted density: z ~ N(p(/,, aé).

The prior, py (-), comprises 3 gated 1-D convolution layers with
rectified linear unit except for the last layer with [D, 48, 24, 2H] hid-
den nodes where D is the input PDF dimension. The prior network

predicts the mean, By 021// e RH, of the prior density.

The decoder, pg(-), predicts § from the latent variable, z. The
decoder is implemented with 5 fully connected layers with rectified
linear unit except for the last layer. These decoder layers have
[H, 128, 256, 384, 512] hidden units and outputs § € RNXF which
are the relative distance between the atoms and the atoms distances
to the satellites.
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4.2 Post-processing

The CVAE model reduces the uDGP to aDGP. The prediction from
the CVAE model, 8, is a combination of the aDM and atom-satellite
distances. From this prediction, one can reconstruct the structures
using trilateration. We start with the first atom in the distance list
as the origin and add subsequent atoms with respect to the previous
ones based on the relative distances between atoms and the satel-
lites, which were introduced for the purpose of trilateration. The
reconstruction can be seen as solving the aDGP but with help from
the atom-satellite distances, thereby minimizing the uncertainty
on the placed atoms. If the predicted distances are accurate there
is a unique solution. As the predicted distances are not exact, we
pose the trilateration task as an optimization problem and use an
L-BFGS-B optimizer to solve for the reconstructed structure. [44]

4.3 Data and model hyperparameters

Data: The nanoparticle structures were simulated using the Atomic
Simulation Environment (ASE). [1] All nanoparticles were made
to take the FCC structure, but multiple particles were obtained by
varying the type of atoms, exposed surfaces, layers of atoms and
lattice constant. This simulation procedure yielded 3137 unique
nanoparticle structures consisting of fewer than 100 atoms. From
each of the 3137 structures, a PDF was simulated using Diffpy-
CML [26]. Details of the simulation procedure and the parameters
used which reflect typical values for synchrotron experiments are
described in Appendix C, Table 3.

Baseline model: There are no established baseline models to com-
pare with for the tasks considered in this work. We compare the
CVAE with a DAE model which has exactly the same architecture
as the CVAE model except for the stochasticity. The DAE has been
chosen as a baseline as it can perform the regression task of going
from uDM to aDM and it also learns a (deterministic) latent rep-
resentation of the input. The latent variable, z, in the DAE model
is treated as a deterministic variable. And instead of the KL diver-
gence based regularisation inherent to CVAE, L2 regularisation is
introduced between the latent vectors predicted by the encoder
network and the prior networks during training.

Performance metric: Comparing generative models for the task
under consideration is not straightforward as there are no estab-
lished metrics or measures to quantify the validity of these nanopar-
ticle structures. One surrogate measure that could signify the qual-
ity of structures can be derived by obtaining the PDFs of the gen-
erated structures, X, and comparing them to the input PDFs. Note
that going from structure to PDF is easier than the converse task.
The difference in PDFs is quantified using a Mean-Squared Error
(MSE) term, Ry, = ||x — %||2 and the Pearson correlation coefficient.
Hyperparameters: The CVAE and DAE models were trained with
2400, validated on 600 and tested on 137 structures. The models
were implemented in PyTorch. [37] Training was performed with a
batch size of 20. Adam optimizer with a learning rate of 5e~> was
used to optimize the loss in Eq. (4) for all the experiments. [28] The
models were assumed to have converged if there was no improve-
ment in validation loss for 50 epochs. The latent space dimension
was set to 2 and the number of satellites 11. All the parameters
were tuned based on experiments on the training set performance.
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Table 1: Mean-squared error E, and average Pearson corre-
lation between the input PDFs and the PDFs reconstructed
from the generated structures for the the DAE and CVAE
models. Significant differences (p < 0.001) based on two-
tailed paired sample t-tests are shown in bold.

Model Rp Pearson

DAE 0.4548 £+ 0.30 0.7482 +0.17

CVAE 0.4823 +£0.34 0.7321 +£0.19
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Figure 5: Visualisation of the PDF of the ground truth and
the reconstructed PDF of the reconstructed mono-metallic
nanoparticle for two typical cases from the validation set.
Both cases show reasonable reconstructions, but the top ex-
ample has broader peaks than the ground truth due to dis-
order in the structure. For the bottom example, the PDF is
shifted due to incorrect distance between the atoms. The dif-
ference curve is scaled by 0.2 for better visualisation.

5 RESULTS AND DISCUSSION

The two models were trained on the same training/validation/test
splits and the performance metrics are reported in Table 1 where
we observe that the DAE model is better at the reported metrics.
This is expected as there are no stochastic elements in the DAE
model. However, an important feature of the CVAE model is the
access to a meaningful latent space which can be used to explore
and obtain new structural motifs. This is clearly demonstrated in
Figure 1. The CVAE model can not only reasonably reconstruct
structure A and structure B from their PDFs, but it can also gen-
erate reasonable mono-metallic nanoparticle structures from the
interpolated latent vectors. As we move from left to right, we are
traversing between the latent points for the two structures and we
see a clear evolution of structures. This is not the case for the DAE
model, which produces invalid structures when decoding from the
interpolated latent vectors.

One common feature of both DAE and CVAE models is that they
can generate structures comprising the right amount of atoms, as
illustrated on the test set for the CVAE model in Figure 8. When
interpolating in latent space, the number of atoms take discrete
steps.

This behaviour is probably due to the discrete nature of the
training set. A more diverse training set can be achieved by adding
additional structure geometries or facets of the nanoparticles.
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In Figure 5, two structures obtained from PDFs with the CVAE
model are visualised along with the ground truth structures. Apart
from the reconstructed structures, the PDFs reconstructed from
the generated structure are shown. The reconstructed structure
in the top row has some disorder which is also reflected in the
reconstructed PDF. The reconstructed PDF in the top row has over-
lapping and broader peaks when compared to the ground truth.
The structure in the bottom row has longer distances between the
atoms than the ground truth, which results in a slight offset in the
reconstructed PDF. Currently, we do not explicitly optimize for the
PDFs to be aligned. These inconsistencies in the PDFs can also be
incorporated into the training process by introducing an additional
loss term that is dependent on the PDFs which we expect could
improve the quality of generated structures.

The satellites were introduced to help with the trilateration. The
effect of using [4, 11, 100] satellites is shown in Figure 6. It can be
seen that the reconstructed structures improve with the number
of satellites. There is a small improvement in the reconstructed
structures when using 100 satellites compared to 11 but it comes at
a large increase in computation time as shown in Table 2, where
the computer time is calculated as how long time it takes to solve
the trilateration problem. This might be a factor to consider if this
method is to be used to get instantaneous results. A reasonable
trade-off between performance and computation time was found
to be with 11 satellites.

6 CONCLUSION AND FUTURE WORK

Deep learning based methods have proven to be extremely powerful

at embedding complex data into low dimensions, while still learning

complex and useful features. In this work, we have demonstrated a

proof of concept on embedding structures of mono-metallic nanopar-
ticles while conditioning each structure on their corresponding sim-
ulated PDF. Both DAE and CVAE models show that valid structures

can be obtained from the PDFs. Furthermore, the models show that

they are not constrained to reconstruct a fixed number of atoms.
These methods could allow for fast analysis of PDF data, which

can prove extremely potent e.g. for real-time data analysis during

synchrotron experiments.

Furthermore, we have shown that the latent space learnt by the
CVAE model is highly structured (Figure 7). This latent space can
be used to obtain novel structural motifs as illustrated in Figure 1
where interpolated latent vectors resulted in valid structures when
compared to the DAE model.

By normalizing the structures to reside inside a unit sphere we
show how trilateration can be used to reconstruct a chemical struc-
ture from an aDM. We investigated a range of fixed satellite points
for structure reconstruction showing that using 11 satellites was
a reasonable trade-off between structure reconstruction accuracy
and computation time.

This work has shown great promise which calls for future in-
vestigations. The data used for this model only consist of a small
number of mono-metallic structures, all with the FCC structure.
For the model to be useful for chemists the chemical-space must
be massively expanded, for instance by including structure types
other than FCC. In addition, the model could benefit from having a
PDF difference regularization term implemented in its loss function.

Anker and Kjer, et al.

Table 2: Average reconstruction time with varying number
of satellites on a standard laptop with 8 CPU cores. The
mean and deviation are calculated based on 50 reconstruc-
tions.

# of satellites Time (s)
4 8.6 +5.4
11 9.6 5.9
100 23.5+12.0
Ground Truth Predictions
4 satellites 11 satellites 100 satellites
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Figure 6: Influence of the number of satellites used for trilat-
eration, on the quality of reconstructed structures for two
types of mono-metallic nanoparticles with: 19 atoms (top
row) and 87 atoms (bottom row).

Currently the model only predicts the positions of the atoms for
mono-metallic nanoparticles as the composition is assumed to be
known. To expand the use cases of the model, the atom labels need
also be predicted. These are directions we look forward to pursuing.
In conclusion, the results reported in this work have been en-
couraging and the proposed model can be used as a generative
model for characterisation of mono-metallic FCC nanoparticles.
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A DERIVING THE CVAE OBJECTIVE

We start with the motivation of approximating the latent posterior
distribution with a variational density that minimizing the reverse
KL divergence,

q(z|s, x)]
p(z|s, x)

q(zls, x) p(s|x)
p(s|z. %) p(zlx))] 6)

KL[g(zls, %) l|p(2ls, 9| = Bg(ajon | log

= Eq(z|s,x) [1Og (

The last equality is due to Bayes’ Rule. Some algebraic manipula-
tions yield,

q(z[s, X)] @

KL{g(els 9 llp(els, 0| = Bgiapn [ log T 205
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Figure 7: Comparison of embedded latent space for latent dimensions H = 2 and H = 8. 600 PDFs are converted to the latent
variables through the prior network. The points are colored with respect to the number of atoms in the structure in the same

color as the ground truth structures shown in the legend.
Table 3: Simulation parameters for the PDF data.
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Figure 8: Ten sample reconstructions from the test set pre-
dicted by the CVAE model with latent space dimension H = 2
and 11 satellites.

Note the first term is KL [q(z|s, x)|| p(z|x)] and the first two terms

form a lower bound on the conditional likelihood. Thus,

KL|q(zls. 0)llp(zls. x)| = = Lb[p(s10)] +logp(si0) (8)

where
Lb[p(s13)] = Eg(aisio | log p(slz.x)| - KL|q(zls 0lp(zx0)] ©)

The bound Lb(p(s[x)) is equal to the conditional likelihood when
the KL divergence between the variational density and the true
posterior density is zero. This is essentially the reason why we can
maximize a surrogate objective such as the bound on the conditional
likelihood to indirectly minimize the KL divergence we set to in
Eq. (6).

The bound in Eq. (9) is a maximization objective. We choose to
minimize the negative of this bound in the CVAE objective. In (4),
each of the densities are parameterised by neural networks reflected
in the subscripts {¢, 0, /}, resulting in the final objective:

Levag = ~Eqy [ log po(slz, x) | +KL[ gy (zls. x)[Ipy (z1%)].

B LATENT SPACE COMPARISON

In order to test the effect of the latent space dimension, two CVAE
models using latent space dimensions of 2 and 8 were trained. Fig-
ure 7 shows the latent space of the trained models with H = [2, 8].
For both latent space dimensions, 600 PDFs were input to the trained
prior network to obtain 600 latent variables. The 8-dimensional
space was reduced to 2 dimensions by the use of t-SNE dimension-
ality reduction method. [33] The points were colored according to
the number of atoms in the structure, to visually emphasize how
the latent space clusters the structures. The reconstructions from
the model using latent space dimension 8 is slightly better than of a
model with latent space dimension 2. Figure 7 shows that the latent
space is equally compact with latent space dimension 2 and 8, but
t-SNE makes it challenging to directly compare the compactness of
the two latent spaces. Also, it is possible that the latent space with
dimension 8 captures some chemical details that is not present in
the 2-dimensional space, however, we have not been able to identify
it. In the end, we choose to use a smaller latent space dimension
of 2 which could be beneficial when interpolating in the latent
space as demonstrated in Figure 1. However, if the goal is simply
to reconstruct structures from the PDF a larger latent space or the
DAE model can be utilized.

C SIMULATION PARAMETERS FOR PDF

Mono-metallic nanoparticle structures for each of the atoms in
the d-block of the periodic table (period 4-6) were generated. All
nanoparticles were built to have the FCC structure. The size and
shape of each nanoparticle were controlled by parameters used
in the ASE framework: [1] The number of atoms is given by the
number of layers, as counted from the center of the particles. The
shape is defined by specifying Miller indices for the exposed facets
of the particles. Each structure was generated with layers ranging
from 2 to 8 and with exposed (100), (110) and (111) facets on the
surface. For each configuration of metal, layers and surfaces, 10
structures were obtained using lattice constants equally spaced in
the range of 99% to 101% of the ideal lattice constant based on the
atomic metallic radius’s which were obtained from the mendeleev
python package. [35] This process yielded 3137 unique structures
consisting of fewer than 100 atoms.
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