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Abstract— Robots have begun operating and collaborating
with humans in industrial and social settings. This collaboration
introduces challenges: the robot must plan while taking the
human’s actions into account. In prior work, the problem was
posed as a 2-player deterministic game, with a limited number
of human moves. The limit on human moves is unintuitive, and
in many settings determinism is undesirable. In this paper, we
present a novel planning method for collaborative human-robot
manipulation tasks via probabilistic synthesis. We introduce a
probabilistic manipulation domain that captures the interaction
by allowing for both robot and human actions with states that
represent the configurations of the objects in the workspace.
The task is specified using Linear Temporal Logic over finite
traces (LTLf ). We then transform our manipulation domain
into a Markov Decision Process (MDP) and synthesize an
optimal policy to satisfy the specification on this MDP. We
present two novel contributions: a formalization of probabilistic
manipulation domains allowing us to apply existing techniques
and a comparison of different encodings of these domains. Our
framework is validated on a physical UR5 robot.

I. INTRODUCTION

In the near future, robots and humans will collaborate in
complex environments to achieve shared tasks in the factory
or at home. This introduces new challenges in planning. When
humans are present, the robot must take them into account,
not only for safety, but also because humans can intervene,
changing the state of the world. Because these interventions
could result in an undesired state, traditional planning methods
that output a fixed sequence of actions are not sufficient
to achieve the task. This paper focuses on the challenge
of modeling and planning for robotic manipulators in such
scenarios, where a high-level task is given and performance
guarantees are required.

In such scenarios, a common approach is to search for a
strategy or policy rather than a sequential plan. One class
of approaches is based on reactive synthesis [1]–[3]. These
algorithms originate from automatic verification [4], and have
recently been applied in robotics, e.g., [5]–[8]. Here, the task
is specified by a linear temporal logic (LTL) [9] formula and
the robot model is abstracted to a finite discrete structure
called a domain abstraction. Existing methods view human
interference as non-deterministic environment actions. To
find a policy, these algorithms construct a game between the
robot and the environment and compute a winning strategy
for the robot–a strategy that guarantees completion of the
task by choosing the best action for the robot in reaction to
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Fig. 1: Reactive vs Probabilistic Synthesis: Unlike prior
works in synthesis for human-robot collaboration, we consider
probabilistic models of interaction. In reactive synthesis (a)
the robot is conservative, shown as the robot building the arch
away from the human to avoid intervention. In probabilistic
synthesis we can model a cooperative human, allowing the
robot to collaboratively build the arch near the human (b).

a human (environment) action– if one exists. This approach,
however, leads to conservative policies for the robot, and
if the environment is not limited in its choices, a winning
strategy may not exist.

Consider a robot with a construction task and a col-
laborating human as shown in Fig. 1. The robot, whose
plan is computed with reactive synthesis (Fig. 1a), assumes
adversarial moves by the human. If the human is not
adversarial, this pessimistic assumption may lead to inefficient
collaboration. In contrast probabilistic synthesis allows the
robot to rely on the human, taking actions that anticipate
human aid. Furthermore, for the robot to succeed in the face
of an adversarial human, reactive synthesis needs to assume
an upper bound on the number of human actions [10].

In prior work [10]–[12], we introduced a cost-based reactive
synthesis framework for robotic manipulation. The focus in
these works is on tasks that can be accomplished in finite
time, given as LTL over finite traces (LTLf ) [13] formulas. A
symbolic approach [12] is used to mitigate the state explosion
of an increasing number of objects in a manipulation domain.
An upper bound on the number of human actions was,
however, required to compute a winning strategy. Moreover,
these methods could not incorporate probabilistic effects that
we wish to model (e.g., mechanical failure of the robot).

Other works have included probabilistic effects in human-
robot collaboration using Markov Decision Processes
(MDPs) [14]–[16]. These works, however, focus on mobile
robots, where discretizations are relatively simple (e.g., im-
posing a grid on the floor). Our work focuses on manipulation
with arbitrary object placements, and thus has a large state
space where constructing discrete abstractions is difficult.

In this work, we move from reactive synthesis to proba-
bilistic synthesis in a fully-observable manipulation domain.
This shifts the focus from the worst case to the expected case.



That is, instead of focusing on a winning strategy that can
counter the worst human actions, we look for a policy that
optimizes for the best expected performance. In this approach,
the human is viewed as a probabilistic agent to enable more
efficient collaboration (Fig. 1b). We assume the domain can
be represented as a turn-based interaction (see Def. III-A).

This leads to a probabilistic manipulation domain that
has received little attention in the literature. There are two
main challenges in this problem domain: (i) representing the
probabilistic manipulation domain in the form of an MDP
is non-trivial; (ii) the state-explosion problem is inherited
from both manipulation domain and LTL synthesis, leading
to computational tractability issues.

The contributions of this work are threefold. First, we
introduce a formalization of probabilistic manipulation do-
mains that allows us to apply existing techniques. Specifically,
we show how a human-robot collaborative manipulation
domain can be modeled as an MDP and synthesize policies
to maximize the probability of satisfying an LTLf formula.
Second, we remove the assumed limit on human actions
required in previous works [10]–[12] and allow an arbitrary
finite number of actions for the human. Third, we empirically
compare different modeling techniques and provide a series of
complex pick-and-place human-robot experiments on a UR5
robot to illustrate the power and scalability of the synthesis
framework.

II. PRELIMINARIES

We are interested in manipulation domains with a high-
degree-of-freedom robot manipulator and multiple objects.
This problem is inherently continuous, but we can simplify the
problem considerably, while capturing its essential features
by considering discrete abstractions [11]. In this section, we
first define such an abstraction based on prior work. Then
we present Linear Temporal Logic over finite traces (LTLf )
and Markov Decision Processes (MDPs), which we use to
formally model our problem in the next section.

A. Discrete Abstraction of Manipulation Domain

The most common tool for defining discrete planning do-
mains is the Planning Domain Definition Language (PDDL)
[17]. We can use PDDL to define states and actions,
along with preconditions and effects of these actions. The
description essentially encodes what actions are possible in
order to prevent the human or robot from moving objects
in ways that are not physically feasible (e.g., removing a
support out from under an object to reach an illegal state with
a floating object). Many existing techniques can reason about
domains described in this way [18]. We augment standard
PDDL by allowing a partition of the set of actions into human
actions and robot actions.

A consideration of manipulation domains must respect
the physical constraints described by PDDL. Underlying the
PDDL definition of the domain, there is some geometric do-
main consisting of the robot and the robot’s workspace. Prior
work [11] showed an automated procedure for constructing

a discrete manipulation abstraction from this manipulation
domain. We build on this abstraction in our work.

Definition 1 (Abstraction of a Manipulation Domain).
An abstract manipulation domain is a tuple: Gdet =
(S, s0, As, Ae, T, AP,L) where,
• S is a finite set of states,
• s0 ∈ S is the initial state,
• As is the finite set of system (robot) actions,
• Ae is the finite set of environment (human) actions,
• T : S × (As ∪Ae) 7→ S is the transition function,
• AP is the set of task-related atomic propositions,
• L : S 7→ 2AP is the labeling function that maps each

state to a set of atomic propositions.

Manipulation domain Gdet extends the classical PDDL by
incorporating the set of environment (human) actions Ae as
well as the system (robot) actions As.

Each action transitions to some reachable state according
to PDDL semantics. Because we focus on interaction rather
than interference (e.g., the human’s hand blocking the robot’s
path), we follow [10]–[12] and discretize the manipulation
domain by considering each change in the discrete state as
the beginning of a new time step.

Example 1. As a concrete example, consider the robot in
Fig. 2 whose goal is to build an arch out of three blocks.
There are five locations of interest, including the Robot end-
effector (Loc0) and the Else region (Loc1), which contains
all regions not otherwise specified (c.f., blue block in Fig. 2).
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Fig. 2: Manipulation example: (left) the locations of interest,
where the Else location (Loc1) contains all objects not
otherwise shown. (right) Initial state with red and yellow
blocks at Loc2 and Loc3 and the blue block at Loc1.

Locations may have a maximum capacity. The Robot end-
effector (Loc0) has a limit of one and Else has no limit on
the number of objects placed therein.

The set As consists of robot pick and place actions in
standard PDDL. These actions have preconditions (e.g.,
you cannot pick a block from Loc3 if Loc4 is occupied).
Ae consists of actions that transition to reachable states
according to PDDL semantics. From state s with act ∈
(As ∪ Ae), transition function T gives the result si+1. We
assume actions in (As ∪ Ae) are atomic, since our focus
here is on interaction between robot and human and not on
interference. Fig. 3 shows a portion of the transition system
for a deterministic manipulation domain. Here, the double-
edged state indicates a goal (accepting) state (see Example 2).

B. Linear Temporal Logic over finite traces

While regular languages are typically specified using tools
such as regular expressions, many tasks can be expressed
more naturally in a temporal logic [12]. Linear temporal
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Fig. 3: Example portion of abstraction of manipulation
domain Gdet for a deterministic pick-and-place domain.

logic (LTL) is a popular formalism used to specify temporal
properties. Here, we are interested in LTL interpreted over
finite traces (LTLf ) [13].

Definition 2 (LTLf Syntax). An LTLf formula is built from
a set of atomic propositions AP and is closed under the
Boolean connectives as well as the “next” operator X and
the “until” operator U :

φ ::= > | p | (¬φ) | (φ1 ∧ φ2) | (Xφ) | (φ1Uφ2)

where p ∈ AP , > is “true” or a tautology, and ¬ and ∧
are the “negation” and “and” operators in Boolean logic
respectively.

The common temporal operators “eventually” (F ) and “glob-
ally” (G) are defined as: F φ = >U φ and Gφ = ¬F ¬φ.

The semantics of LTLf are defined as follows.

Definition 3 (LTLf Semantics). The semantics of an LTLf
formula are defined over finite traces. A trace ρ is a word in
(2AP )∗. Let |ρ| denote the length of trace ρ and ρ[i] be the
ith symbol of ρ. Further, ρ, i |= φ is read as: “the ith step
of trace ρ is a model of φ.”:
• ρ, i |= >;
• ρ, i |= p iff p ∈ ρ[i];
• ρ, i |= ¬φ iff ρ, i 6|= φ;
• ρ, i |= φ1 ∧ φ2, iff, ρ, i |= φ1 and ρ, i |= φ2;
• ρ, i |= Xφ iff |ρ| > i+ 1 and ρ, i+ 1 |= φ;
• ρ, i |= φ1Uφ2 iff ∃j s.t. i ≤ j < |ρ| and ρ, j |= φ2 and
∀k, i ≤ k < j, ρ, k |= φ1,

Finite trace ρ satisfies φ, denoted by ρ |= φ, if ρ, 0 |=
φ. An LTLf formula φ defines a language L(φ) over the
alphabet 2AP . L(φ) is a regular language, more specifically,
L(φ) = {ρ ∈ (2AP )∗ | ρ |= φ}.

Example 2 (LTLf Example). Continuing Example 1, suppose
our task is: “Eventually complete an arch and Globally,
when the top of the arch is placed, the supports must also be
placed.” We use loci as shorthand for (blueblock at loci ∨
yellowblock at loci ∨ redblock at loci). Then our
task is:(F (loc4) ∧ G(loc4 → (loc3 ∧ loc2))) A
satisfying path from s0 in Example 1 would be:
(〈s0, pick(blue,Else), no op〉, 〈s1, place(blue, Loc4), no op〉).
This path is only satisfying if both actions succeed.

C. Markov Decision Processes
Markov Decision Processes (MDPs) are commonly used

to model stochastic systems with action choices. As such,

they are a good fit for modeling our problem. In Sec. III,
we introduce a probabilistic manipulation domain and show
how to model it as an MDP. Then we apply existing tools to
solve an LTLf synthesis problem on this MDP.

Definition 4 (MDP). A labeled Markov Decision Process
(MDP) is a tuple: M = (S,A, P, sinit, AP, L), where:
• S is a finite set of states;
• A is a finite set of actions, and A(s) ⊆ A denotes the

set of actions enabled at state s ∈ S;
• P : S × A × S → [0, 1] is the transition probability

function where
∑
s′∈S P (s, a, s′) = 1 for all s ∈ S and

a ∈ A(s).
• sinit ∈ S is the initial state;
• AP is the set of atomic propositions;
• L : S → 2AP is the labeling function.

Now, following [19], we define finite satisfaction (of an
LTLf formula) as follows.

Definition 5 (Path satisfying LTLf ). Given an MDP M,
and an LTLf formula φ where the alphabet of the labeling
function of M matches the propositions of φ, we say that a
(possibly finite) path w through M satisfies specification φ
if some prefix of w is in the language of φ, i.e.,

L(w) |= φ ⇔ ∃w′ ∈ pre(w) s.t. L(w′) ∈ L(φ),

where L(w) ∈ (2AP )∗ is the word obtained by applying the
labeling function to the states of w and pre(w) is the set of
prefixes of w.

Let pathsfin denote the set of finite paths of M. Then a
policy is defined as:

Definition 6 (Policy). A policy π : pathsfin 7→ A is a
function that given a finite path throughM, assigns an action
to the current state. Mπ denotes M under policy π.

A policy π induces a Markov chain over the paths in M,
with a well-defined probability measure [20]. LetMπ denote
the Markov chain induced by π. Following Def. 5, we write
Pr(Mπ |= φ) for the probability that a path satisfies φ.

Informally, we want to compute the best actions for the
robot to take in any state to maximize the probability of
satisfying the goal. Based on the preliminaries presented
here, in Sec. III we introduce a probabilistic manipulation
domain and formally define MDPmanip to model this problem.
We then solve the problem using existing tools.

III. PROBLEM MODELING

We begin by extending Def. 1 to consider the probabilistic
abstraction of a manipulation domain. We simplify the
problem considerably, while capturing its essential features
by considering discrete, turn-based, abstractions [11].

A. Probabilistic Abstraction of Manipulation Domain

We extend our manipulation domain abstraction Gdet by
introducing probabilities to capture stochastic events, such as
failed robot execution or to capture human behaviors.



We introduce two probability distributions. Ps(si+1 |
acts, si) is a probability distribution giving the probability of
transitioning from state si to state si+1 on robot action acts ∈
As, assuming no human action is taken. This corresponds
to a probability distribution that describes the likelihood of
different possible outcomes when the robot attempts action
acts in state si. This can be used to model, e.g., robot actions
that might fail to execute properly or mechanical imprecision
(the trembling-hand phenomenon).

We consider another probability distribution, Pe, to model
human behaviors. Modeling humans probabilistically is
challenging and is not the focus of our work. Nevertheless,
we need some model for our experiments. We assume we are
given a human model that gives Pe(acte | si), the probability
that the human performs an action acte at some state si.
Each human action transitions to some reachable state si+1.

We now define the probabilistic abstraction of a manip-
ulation domain, adding probability distributions Ps, Pe to
Gdet.

Definition 7 (Probabilistic Abstraction of a Manipulation
Domain). The probabilistic abstraction of a manipulation
domain is a tuple: Gprob = (S, s0, As, Ae, Te, AP, L, Ps, Pe)
where S, s0, As, Ae, AP and L are defined as in Def. 1 and

• Ps is a probability function Ps : S × As × S → [0, 1]
that gives the probability distribution of effects of system
(robot) actions as the probability Ps(si+1 | acts, si),

• Pe is a probability function Pe : S × Ae → [0, 1] that
gives the probability of an environment (human) action
being applied at the current state Pe(acte ∈ Ae | si).

• Te : S × Ae × S → {0, 1} gives the result of applying
human action acte ∈ Ae at state s ∈ S.

We assume that human actions always succeed (i.e., they
are deterministic). It is rather the choice of the human action
that is probabilistic. Once a human action acte is chosen,
the transition function Te(si, acte, si+1) = 1 if si+1 is the
result of applying acte at s and 0 otherwise. Additionally, we
assume the human moves faster than the robot. Because the
robot should react to new information as soon as it is available,
this means the human can “interrupt” the robot. This allows
us to model human-robot interaction as a sequential, turn-
based game. More complex models that consider arbitrary
overlaps of concurrent human and robot actions and e.g.,
Timed Game Automata [21] are left to future work.

B. Combining Human and Robot Transitions

To build MDPmanip from Gprob, we need to combine Ps,
Pe and Te into a single distribution. The resulting MDP is
MDPmanip = (S,A, P, sinit, AP, L), where S, sinit,AP , and L
are as in Def. 1, A = As, and P is the combined probability
distribution based on Ps, Pe and Te. Consider Example 3:

Example 3 (Probabilistic Manipulation MDP I). Let us return
to Example 1. Ps and Pe are described in Fig. 4 and Fig. 5.

First consider a simplified MDP with only the robot actions:
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Fig. 4: Partial MDP for pick-and-place domain with no human
actions. Action names are shown in italics.

Next consider a simplified MDP with only the human
actions. Note the human cannot alter the robot’s end-effector:
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Fig. 5: Example portion of the MDP with only human actions.
In the top row, the human has moved two blocks. In the
remaining states, the human has moved one or no blocks.

The challenge comes in combining Ps and Pe. We assume
the robot halts execution during human actions, except during
the visual servoing stage of grasping/ungrasping, which we
treat as atomic, since our focus here is on interaction. In
MDPmanip, the robot actions are strategic, while the human
actions are probabilistic. Thus, we define the transition
probability P of MDPmanip as follows:

Let I(acte) = 1 if acte = no op and 0 otherwise. Then:

P (si, acts, si+1) =
∑

acte∈Ae

Pe(si, acte)·(
I(acte)Ps(si, acts, si+1) + Te(si, acte, si+1)

)
(1)

The reasoning behind this follows [12]. We would like the
robot to incorporate new information as soon as possible.
This means that whenever the robot observes that the state has
changed, the robot should halt its current execution and re-
query the optimal policy. On the other hand, if the human has
not changed the state, then the robot will continue its current
execution. Below, we give an example of our combined MDP.

Example 4 (Probabilistic Manipulation MDP II). Here we
complete the example started above Example 3. The combined
MDP has probability distribution P defined according to
Equation 1. To simplify the figure, assume that the robot
action chosen is “pick blue”. See Fig. 6.
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Fig. 6: Example portion of the MDP for our pick-and-place
domain with both human and robot actions. The robot action
is “pick blue.” There is a 36% chance that this succeeds, a
4% chance that it is attempted without interruption but fails.
The remaining states are the results of human actions.

By transforming our probabilistic manipulation domain
to an MDPmanip, we reduce the problem to a probabilistic
synthesis problem that can be solved with existing tools [22].
Note that this problem is not only theoretically complex (it
is 2-EXPTIME complete [23]), but also practically complex
as planning in a high-dimensional manipulation domain is
itself PSPACE-complete [24] and the state space grows
exponentially in the number of objects. In this paper, we
are concerned with the practical complexity of probabilistic
manipulation domains, where building a tractable model
is extremely challenging. In the next section, we present
techniques for constructing a tractable MDPmanip in Sec. IV-A
and compare their performance in Sec. V.

IV. SOLVING THE PROBLEM

Once we have constructed MDPmanip from Gprob, we use
[22] to synthesize an optimal policy using a Deterministic
Finite Automaton (DFA).

1) LTLf to DFA: In [19], Zhu et al. showed that a
symbolic approach to DFA construction based on this direct
translation to Monadic Second-order Logic worked well for
LTLf synthesis. In [12], we showed a similar approach applied
to reactive synthesis for robotics.

2) MDP × DFA Product: Once we have obtained the DFA
corresponding to our LTLf formula φ, we take the product
with the MDP M in the following way:

The product of MDPM = (S,A, P, sinit, AP, L) and DFA
Aφ = (Q,Σ, q0, δ, F ) is an MDP

M×Aφ = (S ×Q,A, PM×Aφ , (sinit, qinit)),

where qinit = δ(q0, L(sinit)), and

PM×Aφ((s, q), a, (s′, q′)) =

{
P (s, a, s′) if q′ = δ(q, L(s))

0 otherwise

Using this MDP, we now compute an optimal policy using
existing tools. Specifically, we use PRISM [25] with an
specialized LTLf pipeline [22] to improve scalability.

A. Encoding a Scalable MDPmanip

Existing tools such as PRISM [25] that solve the LTLf syn-
thesis problem on MDPmanip rely on symbolic computations

using binary decision diagrams (BDD’s) and arithmetic deci-
sion diagrams (ADD’s) to improve scalability, which means
our specific encoding of the model impacts the scalability. We
now discuss the details of our method for building a tractable
MDPmanip. We compare the default modeling of [22] as well
as two models we developed for robot manipulation.

The first question we face in encoding the problem is what
elements to include in MDPmanip and what elements to include
in the LTLf specification. Note that while the specification in
Example 2 allows redblock at loc4 ∧ redblock at loc3, we
can prevent this by adding LTLf clauses or by using the PDDL
specification to construct a model with only valid transitions,
ensuring no block is in two places at once. Because, [12]
showed that limiting the model rather than the specification
leads to better scalability, we follow the latter approach.

Previous works have shown that using symbolic structures
for probabilistic synthesis frequently leads to more scalable
tools, both in terms of runtime and memory usage. We use
a mature tool for MDP synthesis [25], where numerous
heuristics are used to make computation more efficient.
Specifically relevant to our work, PRISM utilizes symbolic
computations using BDDs and ADDs [26], [27]. BDDs are
sensitive to variable ordering, but finding an optimal variable
ordering is NP-hard. Thus, PRISM heuristically guesses an
effective variable ordering. Specifically, variable ordering is
based on the order of modules declared within PRISM and on
the order of variables declared within modules. This motivates
our choice of models.

In the integer encoding, states of MDPmanip are enumerated
by breadth-first search, defining a mapping from S to N,
which we use to model the problem within PRISM.

In the object encoding, we use a tuple mapping each object
to its location. We represent our states as tuples of object
locations (i.e., (1, 2, 0) shows that objecta is at Loc1, objectb
is at Loc2 and the human is at humanLocation0). Because
BDDs (and ADDs) are sensitive to variable ordering, we
attempt to represent our states in such a way as to keep
elements of the tuple that are essential to general problem
(e.g., whether the robot is grasping an object) well positioned
in the BDD. Specifically, we always use 0 as the end-effector
location as this is the most important location. We use 1 as
the else region, as this is the most common. The choice of
other locations is not significant.

In the location encoding, we use a tuple mapping each
location to the number of objects therein. (i.e., (0, 1, 1, 0),
from the previous example, indicates that one block is in
Loc1 and one block is in Loc2. The human location is
again represented by the final number). Here, we optimize by
observing that the number of blocks remains constant. This
allows us to omit the counter for the “else” region (which is
the most common, but least task-relevant), without affecting
the state, as it can be inferred from the remaining variables.
In Sec. V, we compare these three encodings.

V. EMPIRICAL EVALUATION

We implement our MDP generation in Python and test on
scenarios inspired by [12] as well as on other domains. The



Fig. 7: At state (a), we anticipate human cooperation (b-d) leading to faster expected task completion (e-f).

3 blocks 4 blocks 5 blocks 6 blocks 3 temporal 3 diagonal 5 compound
Time Integer 0.7s 121.89s TO TO 513.19s 316.97s TO
Time Object 0.44s 1.38s 14.56s 520.64s 191.6s 7.83s 20.61s
Time Location 0.42s 1.09s 7.81s 227.72s 154.66s 9.88s 14.7s
Size Integer 8MB + 19MB 64MB + 115MB TO TO 1GB + 1.67GB 1GB + .39GB TO
Size Object 16MB + 19MB 128MB + 95MB 2GB + .47GB 24GB + 1.09GB 1GB + .98GB 1GB + .37GB 3GB + .84GB
Size Location 16MB + 18MB 256MB + 48MB 2GB + .33GB 28GB + .81GB 3GB + .78GB 3GB + .32GB 3GB + .65GB

TABLE I: Average runtimes and memory usage of our three encodings. Memory is reported as JVM usage + CUDD usage.

MDP is input into PRISM [25], where synthesis is performed
using an external automata tool for LTLf [28]. We aim to
answer three questions: 1) Which encoding is most efficient?
2) What benefit do we get from encoding information in
the model as opposed to the specification? 3) How does
probabilistic synthesis compare to reactive synthesis?

We consider stacking scenarios for 3 through 6 blocks
(goals shown in Fig. 8a-d), based on [12]. We additionally
consider grid-based problems (see Fig. 8e): temporal with a
complex goal based on wiping each part of table and diagonal
where blocks are placed along diagonals. Finally, we consider
the original 5 blocks, but using a compound specification,
rather than the model, to enforce pick and place constraints.

(a) 3 block (b) 4 block (c) 5 block (d) 6 block (e) Grid

Fig. 8: Scenes used in our experiments

Table I shows the relative scalability of our three encodings.
A timeout of 20hrs is used. Note that while the integer
encoding uses less memory on some domains, its runtime is
significantly worse than the other approaches. The location
encoding typically has the best runtime, but uses slightly
more memory than the object encoding. In Table I, comparing
“5 compound” to “5 blocks” shows that we get significant
speedup and memory reduction by encoding constraints in
the model rather than the specification. This was expected
following the results in [12].

In reactive synthesis [12], the robot assumes an adversarial
human and chooses its policy accordingly. In our experiments,
the human is modeled probabilistically. If the human is
adversarial, the robot will compute a conservative plan;
however, if the human model is cooperative, the robot will
be less conservative. In the best case, the robot may rely
on the human to help, taking actions that anticipate human
aid. In Fig. 7, the robot anticipates human cooperation at

the initial state and thus chooses to grasp the black block,
which must be the top of the arch. If the human was not
helpful, the robot would need to replace the black block,
place the white block, then place the black block at the top
of the arch. Here the robot has an 80% chance of success,
due to the possibility that human actions or stochastic robot
executions may violate the specification. In reactive synthesis,
any scenario with probability less than 1 would merely be
unrealizable.

In terms of runtime, the complexity of Ps, Pe, and [12]’s
k, which limits the number of human actions, affect the
comparison. In our 3-6 block experiments, which parallel
Fig. 2.b of [12], probabilistic synthesis is more efficient than
reactive synthesis, though the runtimes are within an order of
magnitude. Note that [12] uses the object encoding. 6 blocks
with k = 3 takes approximately 660s in reactive synthesis
vs 520s for probabilistic synthesis with the same encoding.

A. Physical Validation
We validate out method on a physical UR5 robot. We use

Vicon cameras to track the locations of several objects and
one human around the robot’s workspace. We then extract the
semantic meaning of the scene, and identify the corresponding
state in our MDP. We use online motion planning with
Robowflex [29] to follow the optimal policy computed by
PRISM. A video is available [30].

VI. CONCLUSION
We formalized the problem of probabilistic synthesis for

robotic manipulation. Based on this formalism, we presented
a method to construct an MDP, which allows us to solve the
problem using existing tools. We examined the scalability of
three encodings of our model. Compared to reactive synthesis,
probabilistic synthesis is less pessimistic, and can model
different properties about the world. Additionally, it allows us
to remove the limit on the number of human actions and to
synthesize policies for problems that would be unrealizable
for reactive synthesis. For future work, we will combine
models of reactive synthesis and of the current probabilistic
synthesis into a stochastic game.
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