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Abstract— Social data outsourcing is an emerging paradigm
for effective and efficient access to the social data. In such
a system, a third-party Social Data Provider (SDP) purchases
social network datasets from Online Social Network (OSN)
operators and then resells them to data consumers who can be
any individuals or entities desiring social data through query
interfaces. The SDP cannot be fully trusted and may return
forged or incomplete query results to data consumers for various
reasons, e.g., in favor of the businesses willing to pay. In this
paper, we initiate the study on verifiable query processing
over outsourced social graph whereby a data consumer can
verify both the integrity and completeness of any query result
returned by an untrusted SDP. We propose three schemes for
single-attribute queries and another scheme for multi-attribute
queries over outsourced social data. The four schemes all require
the OSN provider to generate some cryptographic auxiliary
information, based on which the SDP can construct a verification
object to allow the data consumer to verify the integrity and
completeness of the query result. They, however, differ in how
the auxiliary information is generated and how the verification
object is constructed and verified. Detailed analysis and extensive
experiments using a real Twitter dataset confirm the efficacy and
efficiency of the proposed schemes.

Index Terms— Verifiable query processing, outsourced social
graph, security.

I. INTRODUCTION

ONLINE social networks (OSNs) are pervasive. As three
exemplary popular OSNs, Twitter, Facebook, and Sina

Weibo have 330 million, 2.37 billion, and 465 million monthly
active users as of the first quarter of 2019, respectively. OSN
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users produce information at an unprecedented rate and scale.
For example, there are about 3 million posts per minute on
Facebook and 500 million tweets on Twitter per day. Besides
facilitating social interactions, OSNs are increasingly used
in massive information campaigns, public relations, political
campaigns, pandemic and crisis situations, marketing, and
many other public/private contexts. For instance, over 76%
of businesses used social media to achieve their marketing
objectives in 2014; business retailers have seen 133% increases
in their revenues from social media marketing; about 71% of
the consumers respond to the feedbacks and recommendations
of social users regarding a particular product [2].

The traditional way to access the social network data is
via the public APIs provided by each OSN itself, but the
data obtained in this way are often incomplete, biased, and
even incorrect. For example, Twitter provides the Filter API
and Sample API to access real-time tweets as well as the
Search API to retrieve historical tweets. These public APIs,
however, often have very limited functionalities. For example,
the Filter API and Sample API both return at most 1% random
samples of all the data satisfying the query condition [3];
the data returned by the Filter API have been found strongly
biased [3]; and the crawling process of the Sample API can
be easily manipulated by attackers wishing to promote their
social content [4]. In addition, the Search API searches against
a sampling of recent tweets published in the past 7 days. There
are also rate limits imposed on these public APIs. For instance,
no more than 180 calls per user and 450 calls per application
for the Search API can be made every 15 minutes. While the
Twitter Firehose API yields 100% of all public tweets, it incurs
a prohibitive monetary cost and very high server requirements
to host and process the real-time tweets. The public APIs of
other OSNs such as Facebook have similar constraints as well.

Social data outsourcing is an emerging paradigm for effec-
tive and efficient access to social data. A system built on this
paradigm consists of a third-party Social Data Provider (SDP),
many OSN operators, and numerous data consumers. The
SDP purchases complete social dataset from OSN operators
and offers paid data services to data consumers who can be
any individuals or entities requiring the complete social data
satisfying some criteria. Some popular SDPs include DataSift,
Gnip, NTT Data, Brandwatch, Twazzup, CrowdEye, etc. For
example, DataSift has 20 data sources until now such as
Facebook, Instagram, Youtube, Tumblr, and Google+.

How much trust could a data consumer have in the data
offered by these SDPs? There have been too many stories
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revealing the dark side of the web industry. For instance, Yelp
has “always had a complicated relationship with small busi-
nesses” according to BusinessWeek [5], and there have been
wide allegations that Yelp has manipulated the online reviews
based on the participation in its advertising programs [6].
As another famous example, the “death of Wei Zexi” has
resulted in the official investigation of Baidu—the biggest
search engine in China—which has been notoriously providing
highly skewed search results due to paid placement that are
unaware by the Internet users. In our context, a dishonest SDP
can return incorrect query results to data consumers by adding
fake data and deleting/modifying true data in favor of the
businesses who would like to pay. An honest SDP may also
be hacked to return incorrect query results.

In this paper, we coin the concept of verifiable social
data outsourcing whereby a data consumer can verify the
correctness of any query result returned by an untrusted SDP
before making any critical decision. As the first work along
this line, this paper tackles the following specific problem and
leaves the investigations of other variations to future work.
We view any specific OSN as an undirected social graph,
in which each node corresponds to a unique OSN user and has
a set of attributes (e.g., location, age, gender, and education
level). An edge exists between two nodes if the two users are
mutual friends, e.g., they are following each other on Twitter.
We first study queries over a single attribute, which can be
an equality query (e.g., age = “30”), a range query (e.g.,
age = “[20, 30]”), or a subset query (e.g., age = “20, 25, 30”).
We then investigate queries over multiple attributes, which
ask for nodes with attributes satisfying multiple criteria, e.g.,
age = “[20, 30]” and (or or) location = “Los Angeles”.
The query result is authentic if all the returned user profiles
are present in the OSN operator’s dataset and have not been
tampered with and is complete if it contains all the nodes
satisfying the query condition as well as all the associated
edges among them.

We propose three schemes for verifiable single-attribute
queries over outsourced social graph. The basic scheme
requires each OSN provider to generate some cryptographic
auxiliary information for its dataset, based on which the
SDP can construct a verification object that allows the data
consumer to verify the query-result integrity and completeness.
The enhanced scheme significantly reduces the computation,
storage, and communication overhead of the basic solution by
generating the auxiliary information through grouping nodes
with identical attribute values. The advanced scheme explores
a memory-efficient Bloom filter to further reduce the over-
head. Moreover, we propose a verifiable multi-attribute query
scheme based on Cuckoo filter and verifiable set operations.

We thoroughly evaluate the four schemes on a real Twitter
dataset with 1.6 million nodes and 50 million edges. Our
experiments show that our basic, enhanced, advanced, and
multi-attribute verification schemes can generate the auxil-
iary information with the size 38.85%, 3.23%, 0.14%, and
1.17% of the original social network data in 2954.26 s,
201.22 s, 208.42 s, and 916.63 s, respectively. In addition,
a data consumer can verify a query result in 631.8 ms,
25.3 ms, 29.4 ms, and 114.33 ms under the proposed basic,

enhanced, advanced, and multi-attribute verification schemes,
respectively. Our experiment results confirm the efficacy and
efficiency of the proposed schemes.

The rest of this paper is outlined as follows. Section II
introduces the problem formulation. Section III presents three
single-attribute query schemes. Section IV introduces a novel
multi-attribute query scheme. Section V analyzes the perfor-
mance of the four proposed schemes. Section VI evaluates the
four proposed schemes on a real Twitter dataset. Section VII
discusses related work. Section VIII concludes this paper.

II. PROBLEM FORMULATION

In this section, we introduce the system, query, and adver-
sarial models along with our design goals.

A. System Model

We consider a social data outsourcing system consisting
of an SDP, many OSN operators, and many data consumers.
The SDP acquires the complete social data from each OSN
operator and profits by answering data queries from many data
consumers. For convenience only, our subsequent illustrations
focus on a single OSN operator, but similar operations should
be independently performed on the data of each OSN operator.

We model the social data of the OSN operator as an
undirected graphG = (V,E), where V is a set of n nodes each
of which corresponds to a unique OSN user, and E is the set of
edges. Every edge ei,j ∈ E represents the social relationship,
e.g., friendship in Facebook-like OSNs, between two nodes i
and j. We will use nodes and users interchangeably hereafter.
While this paper focuses on directed social graph, our schemes
can be extended to support directed social graphs such as
Twitter with minimal modification.

Each node has a profile consisting of w attributes specific
to the OSN operator, such as location, age, education level,
and hobbies. The profile of node i is denoted by pi =
(IDi, bi,1, bi,2, . . . , bi,w), where IDi is a unique user ID and
bi,j is the j-th attribute value for all 1 ≤ j ≤ w. An attribute
value can be specified by the user him/herself or inferred
by the OSN operator based on the user’s posts and online
interactions [7], [8]. Some attributes such as age have a
numeric value by nature, while others such as location and
hobbies may have non-numeric values. For the latter case,
we assume that the OSN operator converts any non-numeric
attribute value into a numeric one. For example, a location can
be converted into a sequence of digits like a zipcode. Such
conversions are done by the OSN operator in the background
and totally unaware to the user. For simplicity, we assume
that each attribute value bi,j in the social dataset represents a
unique numeric value (possibly after conversion) in the range
of the particular attribute. Each node is also affiliated with
the data content s/he has ever generated (e.g., original posts,
replies, and comments).

B. Query Model

We consider multiple types of queries over the social graph.
Every query asks for a subgraphG� = (V �, E�), where V � ⊆ V
is the subset of nodes whose attribute values satisfy the query
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condition and E� ⊆ E is the set of the edges among the nodes
in V �. The SDP needs to return all the profiles {pi|i ∈ V �} as
well as the edge set E�.

More specifically, we first consider queries over a single
attribute, which can be an equality query (e.g., age = “30”),
a range query (e.g., age = “[20, 30]”), or a subset query (e.g.,
age ∈ {20, 25, 30}). We then consider general multi-attribute
queries, which can be viewed as multiple single-attribute
queries combined by either logical operators AND (e.g.,
age = “[20, 30]”

∧
location = “Los Angeles”) or logical

operators OR (e.g., age = “25”
∨

location = “New York”).
If any queried attribute (e.g., location) has a non-numeric
value, the same conversion rules used by the OSN operator
are applied to generate the corresponding numeric value. The
data consumer submits a query to the SDP, which specifies
the query condition. An appropriate payment may also need
to be submitted simultaneously or later.

C. Adversary Model

We assume that the OSN operator is trusted to follow all
system operations. In contrast, the SDP cannot be trusted
and may return incorrect query results by adding, deleting,
or modifying user profiles or edges among them for various
motives, e.g., in favor of the businesses which are willing
to pay. We also assume that the communications between
the OSN operator and SDP and those between the SDP and
the data consumer are secured using traditional mechanisms
such as TLS. Therefore, an incorrect query result can only be
attributed to the misbehavior of the SDP. Also note that the
OSN operator is highly motivated to help identify malicious
SDPs, as data consumers who make critical decisions based
on manipulated query results may eventually blame the OSN
operator.

D. Design Goals

Under the above adversary model, we aim to enable the
data consumer to verify the correctness of any query result
returned by the SDP. A query result is considered correct if it
satisfies the following two requirements.

• Query Result Integrity: Any returned user profile should
appear in the OSN operator’s original dataset and have
not been tampered with.

• Query Result Completeness: The query result should con-
tain all the user profiles that satisfy the query condition
as well as all the edges among them.

III. VERIFIABLE SINGLE-ATTRIBUTE QUERY

In this section, we illustrate how to achieve verifiable
single-attribute query over outsourced social graph by pre-
senting three schemes. The three schemes all require the OSN
provider to generate some cryptographic auxiliary information,
based on which the SDP can construct a verification object
for the data consumer to verify the query-result correctness.
They differ in how the auxiliary information is generated and
how the verification object is constructed and verified. Table I
summarizes the key notation used in the paper.

TABLE I

SUMMARY OF NOTATION

A. A Basic Scheme

The basic scheme enables verifiable single-attribute query
by having the OSN operator chain all the nodes with common
attribute value as well as adjacent attribute values using
cryptographic primitives to force the SDP to return all the
nodes and edges that satisfy the query condition. In what
follows, we detail the its three phases: data preprocessing at
the OSN operator, query processing at the SDP, and query
result verification at the data consumer.

1) Data Preprocessing: Assume that the OSN operator has
a dataset, it processes the dataset as follows.

First, the OSN operator signs the every profile to guarantee
its integrity. Specifically, for each node i ∈ [1, n], the OSN
operator first computes hi = H(pi), where H(·) denotes a
good cryptographic hash function, and then signs hi using its
private key to obtain the signature si.

Second, the OSN operator groups nodes based on their
attribute values and chains adjacent attribute values using cryp-
tographic techniques. For each attribute k ∈ [1, w], the OSN
operator sorts the n attribute values {bi,k|1 ≤ i ≤ n} into a list
vk,1, . . . , vk,mk

in ascending order with no repetition, where
mk is the number of unique attribute values and vk,j < vk,j+1

for all 1 ≤ j ≤ mk − 1. Let vk,0 = vk,min and vk,mk+1 =
vk,max be two publicly known values that are smaller and
larger than the minimum and maximum attribute k values,
respectively. Also denote by Ik,j = {i|bi,k = vk,j , 1 ≤ i ≤ n}
the set of nodes whose attribute k equals vk,j for all j ∈
[1,mk]. For each unique attribute value vk,j , 1 ≤ j ≤ mk,
the OSN operator groups all the nodes with attribute k value
vk,j by computing ψk,j with two fields as

ψk,j .val = vk,j−1||vk,j ||vk,j+1,

ψk,j .hash = H(||i∈Ik,j
IDi) , (1)

where IDi is the ID of node i for all 1 ≤ i ≤ n. The
OSN operator then builds a Merkle Hash Tree (MHT) Tψk
[9] over ψk,1, . . . , ψk,mk

. Specifically, a MHT is a binary tree
where every leaf node is the hash of one unique element, and
every internal node is the hash of the concatenation of its two
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children nodes.1 Finally, the OSN operator uses its private key
to sign the root of MHT Tψk .

Third, the OSN operator binds the nodes with their neigh-
bors according to their attribute values to enable completeness
verifications of the edges (i.e., social links) in the query result.
Let Ni be the set of neighbors of each node i and Ni,k,j =
{z|bz,k = vk,j , z ∈ Ni} the subset of node i’s neighbors
whose attribute k values equal vk,j for all 1 ≤ j ≤ mk.
It follows that Ni =

⋃mk

j=1Ni,k,j for all 1 ≤ k ≤ w. For each
1 ≤ i ≤ n, 1 ≤ k ≤ w, and 1 ≤ j ≤ mk, the OSN operator
computes

φi,k,j = �vk,j , H(||i∈Ni,k,j
IDi)� . (2)

The OSN operator then constructs one MHT T φi,k from
{φi,k,1, . . . , φi,k,mk

} for each 1 ≤ i ≤ n and 1 ≤ k ≤ w.
Finally, the OSN operator sends to the SDP its dataset and

all the auxiliary information, which includes {si|1 ≤ i ≤ n},
{Tψk |1 ≤ k ≤ w}, {T φi,k|1 ≤ i ≤ n, 1 ≤ k ≤ w}, and its
signature over every MHT root.

2) Query Processing: We now illustrate how the SDP
processes a query. Since any subset query can be decomposed
into multiple equality queries, each of which can be considered
as a special range query over a single queried attribute
value, our subsequent discussion focuses on a range query
[δmin, δmax] over a particular attribute k ∈ [1, w], where δmin

and δmax are the minimum and maximum attribute values of
interest, respectively.

After receiving a query �k, δmin, δmax� from the consumer,
the SDP searches the social graph G and constructs a
subgraph G� = (V �, E�), where V � consists of all the nodes
whose attribute k value falls into the range [δmin, δmax]
and E� = {ei,j|i, j ∈ V �, ei,j ∈ E} consists of all the
edges among nodes in V �. The query result consists of
{pi|i ∈ V �}, {(IDi, IDj)|ei,j ∈ E�}, and a verification
object constructed according to {Tψk |1 ≤ k ≤ w} and
{T φi,k|1 ≤ i ≤ n, 1 ≤ k ≤ w} as follows.

First, the SDP returns the OSN operator’s signatures
{si|i ∈ V �} to prove the integrity of the returned profiles.

Second, the SDP returns the information to prove that all
the attribute values within the query range has been returned.
Given the list of attribute values vk,0, . . . , vk,mk+1, the SDP
finds x and y such that vk,x−1 < δmin ≤ vk,x ≤ vk,y ≤
δmax < vk,y+1. It follows that attribute values vk,x, . . . , vk,y
fall into the query range [δmin, δmax]. For each element
ψk,j , x ≤ j ≤ y, the SDP finds the subset of internal
nodes needed to compute the root of MHT Tψk , denoted by
A(Tψk |ψk,j). The SDP returns

⋃y
j=xA(Tψk |ψk,j) and the OSN

operator’s signature on the root of Tψk .
Third, the SDP returns the information to prove that all the

edges among nodes in V � have been returned. Specifically, the
SDP returns {φi,k,j |i ∈ V �, x ≤ j ≤ y}, the subset of internal
nodes needed for computing the root of T φi,k for all i ∈ V �,
i.e.,

⋃
i∈V ′ A(T φi,k|φi,k,j), and the OSN operator’s signature

on the roots of {T φi,k|i ∈ V �}.

1Note that if the number of leaf nodes is not power of two, some dummy
leaf nodes need be introduced.

3) Query-Result Verification: On receiving the query result,
the data consumer verifies its integrity and completeness as
follows.

First, data consumer verifies the integrity of the query result.
For every returned profile pi, i ∈ V �, the data consumer
verifies the OSN operator’s signature si. Moreover, for every
ψk,j received, the data consumer recomputes the root of
the MHT Tψk using A(Tψk |ψk,j). Similarly, for every φi,k,j
received, the data consumer recomputes the root of the MHT
T φi,k using A(T φi,k|φi,k,j). The data consumer then verifies the
OSN operator’s signature over the root of the corresponding
MHT. If all the verifications succeed, the query result is
considered authentic.

Second, the data consumer verifies that for every unique k-
th attribute values in [δmin, δmax], all the profiles have been
returned. Without loss of generality, assume that the SDP has
returned ψk,x′ , . . . , ψk,y′ , where ψk,j .val = v−k,j ||vk,j ||v+

k,j for
all x� ≤ j ≤ y�. The data consumer checks if the following
two conditions hold.

• Condition 1: v−k,x′ < δmin and v+
k,y′ > δmax, i.e., vk,x′

and vk,y′ are the smallest and largest attribute values that
falls into the range, respectively.

• Condition 2: vk,j = v−k,j+1 for all x� ≤ j ≤ y� −
1, i.e., ψk,x′ , . . . , ψk,y′ contains all the attribute values
between vk,x′ and vk,y′ .

Third, the data consumer verifies that all the nodes of which
the attribute k value fall in [δmin, δmax] have been returned.
Specifically, for each returned ψk,j , x ≤ j ≤ y, the data
consumer finds the set of returned profiles I �k,j = {pi|bi,k =
vk,j , i ∈ V �} and verifies if ψk,j .hash = H(||i∈I′

k,j
IDi).

If so, the data consumer is ascertain of I �k,j = Ik,j , i.e., all the
nodes whose attribute k values equal vk,j have been returned.

Finally, the data consumer verifies that all the edges among
nodes in V � have been returned. Specifically, for every φi,k,j
received, the data consumer recovers IDi from the corre-
sponding profile pi and identifies the set of its neighbors
N �
i according to received {(IDi, IDj)|i, j ∈ V �}. For each

j, x� ≤ j ≤ y�, the data consumer finds N �
i,k,j = {z|bz,k =

vk,j , z ∈ N �
i} and verifies if φi,k,j = �vk,j , H(||i∈N ′

i,k,j
IDi)�.

If so, the data consumer is ascertain of N �
i,k,j = Ni,k,j , i.e., all

node i’s neighbors whose attribute k values equal vk,j have
been returned.

The query result is considered authentic and complete if all
the above verifications succeed.

We refer readers to Appendix A of the supplement file for
an example of the basic scheme.

B. An Enhanced Scheme

The basic scheme can effectively detect any incorrect query
results but at the cost of significant computation overhead.
Besides signing n user profiles, it also requires the OSN
operator to construct one MHT for every attribute and every
node, leading to nw MHTs in total. Since n is very large in
practice, the computational overhead for signature generation
can be significant. Motivated by the observation that many
nodes share the same attribute value, we now introduce an
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enhanced scheme that builds one MHT for every unique
attribute value instead of each node.

1) Data Preprocessing: The OSN operator performs the
following steps in sequel to generate the auxiliary information
for its dataset.

First, the OSN operator groups nodes based on their attribute
values. Specifically, for each node i ∈ [1, n], the OSN operator
computes hi = H(pi). Recall that vk,1, . . . , vk,mk

is the list
of unique attribute values, where vk,j < vk,j+1 for all j ∈
[1,mk − 1] and Ik,j = {i|bi,k = vk,j |1 ≤ i ≤ n} is the set of
nodes whose attribute k equals vk,j for all j ∈ [1,mk]. For
each attribute k, 1 ≤ k ≤ w and each unique attribute value
vk,j , 1 ≤ j ≤ mk, the OSN operator computes ψk,j consisting
of two fields as

ψk,j .val = vk,j−1||vk,j ||vk,j+1,

ψk,j .hash = H(||i∈Ik,j
hi), (3)

where vk,0 = vk,min and vk,mk+1 = vk,max. For each attribute
k ∈ [1, w], the OSN operator builds an MHT Tψk over
ψk,1, . . . , ψk,mk

and signs its root.
Second, the OSN operator binds every node with its neigh-

bors according to their attribute values. Let Ni be the set of
neighbors of node i for all 1 ≤ i ≤ n and Ni,k,j = {z|bz,k =
vk,j , z ∈ Ni} the set of neighbors whose attribute k values
equal vk,j for all 1 ≤ k ≤ w and 1 ≤ j ≤ mk. It follows
that Ni =

⋃mk

j=1Ni,k,j for all 1 ≤ k ≤ w. For every node
i ∈ [1, n], every attribute k ∈ [1, w], and every unique attribute
value vk,j , the OSN operator computes

θi,k,j = �IDi, vk,j , {IDz|z ∈ Ni,k,j}� .
In other words, each θi,k,j consists of node i’s ID, its

attribute k value vk,j , and the IDs of its neighbors whose
attribute k’s values equal vk,j . For every attribute k and every
pair of attribute values vk,j and vk,z , 1 ≤ j, z ≤ mk, the OSN
operator further computes

φk,j,z = H(||i∈Ik,j
θi,k,z) . (4)

In other words, each element φk,j,z binds the subset of
nodes with attribute k value vk,j and their neighbors with
attribute k value vk,z .

Finally, the OSN operator builds one MHT T φk,j over
φk,j,1, . . . , φk,j,mk

for all 1 ≤ k ≤ w and 1 ≤ j ≤ mk

and signs the root of each MHT tree.
As in the basic scheme, the auxiliary information includes

the internal nodes of all the MHT trees and all the signatures.

2) Query Processing: Upon receiving a range query
�k, δmin, δmax� from the data consumer, the SDP searches the
social graph G and constructs a subgraph G� = (V �, E�),
where V � consists of all the nodes whose attribute k values fall
into the range [δmin, δmax] and E� = {ei,j|i, j ∈ V �, ei,j ∈ E}
consists of all the edges among all the nodes in V �. The query
result consists of {pi|i ∈ V �}, {(IDi, IDj)|ei,j ∈ E�}, and a
verification object constructed according to {Tψk |1 ≤ k ≤ w}
and {T φk,j|1 ≤ k ≤ w, 1 ≤ j ≤ mk} as follows.

First, the SDP finds x and y such that vk,x−1 < δmin ≤
vk,x ≤ vk,y ≤ δmax < vk,y+1. It follows that attribute values
vk,x, . . . , vk,y fall into the query range [δmin, δmax].

Second, the SDP returns elements ψk,x, . . . , ψk,y as well as
the subset of internal nodes needed to recompute the root of
the MHT Tψk from each of the returned elements, denoted by
A(Tψk |ψk,j).

Third, the SDP returns every element φk,j,z for all x ≤
j, z ≤ y, the SDP also finds the subset of internal nodes
needed to reconstruct the root of the MHTs T φk,j , denoted by

A(T φk,j |φk,j,z).
Finally, the SDP returns the query result and the

verification objects consisting of
⋃y
j=xA(Tψk |ψk,j),

{
⋃y
z=xA(T φk,j |φk,j,z)}yj=x, and the OSN operator’s signatures

on the roots of Tψk |ψk,j and {T φk,j |φk,j,z}yj=x.
3) Query-Result Verification: The data consumer verifies

the integrity and completeness of the query result as follows.
First, data consumer verifies the integrity of the query result.

For every returned profile pi, i ∈ V �, the data consumer
first computes hi = H(pi). It then reconstructs the set of
nodes whose attribute values equal vk,j as I �k,j = {i|bi,k =
vk,j , i ∈ V �} and verifies if ψk,j .hash = H(||i∈I′

k,j
hi). If so,

the data consumer recomputes the root of the MHT Tψk using
A(Tψk |ψk,j) for every ψk,j received. Next, for every φi,k,j
received, the data consumer recomputes the root of the MHT
T φi,k using A(T φi,k|φi,k,j). The data consumer then verifies the
OSN operator’s signatures over the root of each corresponding
MHT. If all the verifications succeed, the query result is
considered authentic.

Second, the data consumer verifies that for every unique
k-th attribute value in [δmin, δmax], the corresponding pro-
files have been returned. Assume that the SDP has returned
ψk,x′ , . . . , ψk,y′ . The data consumer verifies the two conditions
in Section III-A.3 as in the basic scheme.

Finally, the data consumer verifies that all the edges among
nodes in V � have been returned. Specifically, for every profile
pi received, the data consumer finds the set of its neighbors
N �
i based on received edge {(IDi, IDj)|ei,j ∈ E�}. For each

j, x� ≤ j ≤ y�, the data consumer finds N �
i,k,j = {z|bz,k =

vk,j , z ∈ N �
i} and computes θ�i,k,j by �IDi, vk,j , {IDz|z ∈

N �
i,k,j}�. For every pair of attribute values vk,j and vk,z

where x� ≤ j, z ≤ y�, the data consumer verifies if φk,j,z =
H(||i∈I′

k,j
θ�i,k,z). If so, the data consumer is ascertain of

{N �
i,k,z}i∈I′k,j

= {Ni,k,z}i∈Ik,j
, i.e., all the edges among

the subset of nodes with attribute k’s value vk,j with their
neighbors with attribute k’s value vk,z have been returned.

The query result is considered authentic and complete only
if it passes all the verifications above.

We refer readers to Appendix B of the supplement file for
an example of the enhanced scheme.

C. An Advanced Scheme

We now introduce an advanced scheme that further reduces
the communication overhead by using a Bloom filter to
represent each set {φk,j,1, · · · , φk,j,mk

} for all 1 ≤ j ≤ mk.
A Bloom Filter [10] is a classical space-efficient probabilis-

tic data structure that supports membership testing. Assume
that we want to use an α-bit Bloom filter to represent a set
{di}βi=1. Every bit of the Bloom filter is initialized to zero.
Let {hj(·)}τj=1 be τ independent hash functions, each of which
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maps an element to a bit position {0, 1, . . . , α − 1}. We add
each element di into the Bloom filter by setting all the bit
positions {hj(di)}τj=1 to one. To check the membership of an
arbitrary element e, we can verify whether all the bit positions
{hj(e)}τj=1 are one. If at least one bit position is zero, then
e is certainly not in the set; otherwise, we deem element e
in the set. As a probabilistic data structure, Bloom filter may
have false positive, which happens when the element is not in
the set, but all the bit positions corresponding to the element
have been set to one by other elements. The false positive
probability of a Bloom filter is jointly determined by α, β, and
τ . It has been shown in [10] that the false-positive probability
of a Bloom filter is 0.6185α/β when τ = α

β × ln 2.
In the advanced scheme, the OSN operator computes
{ψk,j |1 ≤ k ≤ w, 1 ≤ j ≤ mk} and {φk,j,z|1 ≤ k ≤
w, 1 ≤ j, z ≤ mk} as in the enhanced scheme. For each
1 ≤ k ≤ w and 1 ≤ j ≤ mk, the OSN operator generates
a Bloom filter BFk,j to represent φk,j,1, . . . , φk,j,mk

. Finally,
the OSN operator signs {BFk,j |1 ≤ k ≤ w, 1 ≤ j ≤ mk}.

The auxiliary information is now composed of all the
internal nodes of the MHT Tψk , the Bloom filters {BFk,j |1 ≤
k ≤ w, 1 ≤ j ≤ mk}, and all the related signatures.
In addition, the advanced scheme uses the almost identical
processes for query processing and query-result verification to
those in the basic and enhanced schemes. The only exception
is that the verification object contains the signed Bloom filters
BFk,x, . . . ,BFk,y instead of individual elements φk,j,z for all
x ≤ j, z ≤ y. The data consumer still computes {φk,j,z|1 ≤
j, z ≤ y} from the query result and checks whether every
element φk,j,z is in the corresponding Bloom filter. If any of
the elements is not present in the corresponding Bloom filter,
the query result is considered incomplete.

We refer readers to Appendix C of the supplement file for
an example of the advanced scheme.

IV. VERIFIABLE MULTI-ATTRIBUTE QUERY

In this section, we extend the enhanced scheme to
the multi-attribute verification scheme whereby to support
multi-attribute queries.

Assume that each OSN user has multiple attributes such
as age and followees number. Since the multi-attribute query
is an and/or combination of multiple single-attribute queries,
the query-result of a multi-attribute query can be viewed as the
intersection/union of multiple query-results accordingly, each
satisfying the query condition over a single attribute.

In what follows, we first briefly introduce the partial-key
cuckoo filter (CF) [11] that underpins the scheme and then
describe how to realize verifiable set operations with CF.
Finally, we detail auxiliary information generation, query
processing, and query-results verification.

A. Partial-Key Cuckoo Filter

Partial-key cuckoo filter (CF) [11], [12] is another prob-
abilistic data structure that supports membership checking.
Different from the Bloom filter, it also supports deletion
operation in addition to insertion and lookup, which is key
to realize verifiable set operations. The key idea behind the

CF is to store the fingerprints of a set of elements into a
cuckoo hash dictionary. A cuckoo hash dictionary consists of
multiple buckets, each of which is uniquely identified by the
bucket index. Each bucket contains multiple entries, each of
which is either empty or stores one fingerprint of an element
in the set.

To insert an element a into a CF with f buckets, the inser-
tion algorithm first calculates two candidate bucket indexes by
two functions h1(a) = hash(a) mod f and h2(a) = h1(a)⊕
hash(fingerprint(a)) mod f , where hash(·) denotes a hash
function that maps any element to an bucket index in
{0, 1, . . . , f − 1}, and fingerprint(·) denotes a fingerprint
generation function that maps any element to a fingerprint of
η bits. Both hash function hash(·) and fingerprint function
fingerprint(·) can be realized by any non-cryptographic hash
function suitable for general hash-based lookup such as Mur-
murHash, CityHash, and Jenkins hash. There are three possible
cases.

• Case 1: if both candidate buckets have empty entries,
then randomly choose one bucket and insert a to one of
the empty entries.

• Case 2: if only one of the candidate buckets has empty
entries, then a is inserted to an empty entry of that bucket.

• Case 3: if neither candidate buckets have any empty entry,
then select one of the candidate buckets and kick out one
of the existing fingerprints and re-insert it to its other
candidate bucket. For example, suppose that we want
to kick out a fingerprint fingerprint(e) out of bucket

. The other candidate bucket of element e is given by

 ⊕ hash(fingerprint(e)) even if we cannot recover the
original element e. Such insertion procedure runs until
an empty bucket is found or until a maximum number of
displacement is reached.

If no empty bucket is found, this CF is considered full.
To lookup an element a, we check the corresponding two

candidate buckets and consider a present if either one has an
entry storing fingerprint(a).

Lookup operation may incur false positive, which happens
when element a is not in the CF but one of the candidate buck-
ets contains an entry with a fingerprint same as fingerprint(a).
We abuse the notations to let ξ denote the maximum number of
entries per bucket, η denote the fingerprint size, and β denote
the number of elements in an CF. We have the following
theorem regarding the false positive probability of an CF.

Theorem 1: The false positive probability of an CF is given
by

� = 1− 2 Pr(W1) + Pr(W1,W2) , (5)

where

Pr(W1)=
ξ∑

k=0

(
β

k

)
·
(

1
f

)k
·
(

1− 1
f

)β−k
·
(

1− 1
2η

)k
,

(6)

and

Pr(W1,W2) =
ξ∑

k1=0

ξ∑
k2=0

(
β

k1

)
·
(
β − k1

k2

)
·
(

1
f

)k1+k2



YAO et al.: VERIFIABLE QUERY PROCESSING OVER OUTSOURCED SOCIAL GRAPH 2319

·
(

1− 1
f

)2β−2k1−k2
·
(

1− 1
2η

)k1+k2
. (7)

We give the proof in Appendix D of the supplement file.

B. Verifiable Set Operation With Cuckoo Filter

Verifiable set operations [13] are a classical computation
outsourcing problem in which a prover who has two sets X =
{x1, x2, . . . } and Y = {y1, y2, . . . } sends the intersection or
union set E = {e1, e2, . . . } to a verifier who needs to verify
the correctness of the intersection/union. Different from prior
solutions [14]–[16] that incur high computation overhead,
we propose a novel verifiable set-intersection/union scheme
based on the Cuckoo filter.

We realize the verification of set-intersection/union with
the Cuckoo filter. Specifically, we say two CFs CFX and
CFY are homologous if and only if they have the same hash
function, fingerprint generation function, and the number of
buckets. Accordingly, any element a has identical fingerprints
and candidate buckets across two homologous CFs.

Let us first take a look at how to realize verifiable set
intersection. As in [17], we define the conditions for the
correctness of set intersection as follows.

Definition 1: A set E is the intersection of two sets X and
Y if and only if the following two conditions are met.

Subset condition: (E ⊆ X) ∧ (E ⊆ Y );
Completeness condition: (X \ E) ∩ (Y \ E) = ∅.
Suppose that the prover provides two homologous CFs

CFX and CFY representing two sets X and Y , respectively,
along with the intersection set E = X

⋂
Y . First, the verifier

checks the subset condition by testing whether every element
e ∈ E appears in both CFX and CFY . Second, to verify the
completeness condition, we delete each e ∈ E from both CFX
and CFY and then check whether resulting CFX and CFY
have any element in common. Specifically, for each bucket

 ⊆ CFX , we check each fingerprint fp in bucket 
 to see if it
appears in CFY . While we cannot recover the original element
a of fingerprint fp, we can calculate the other candidate bucket
of element a in CFX as


� = 
⊕ hash(fp) mod f

Since CFX and CFY are homologous, element a would
have the same candidate buckets 
 or 
� in CFY . We then
check if either bucket 
 or 
� of CFY contains the fingerprint
fp. If not, we deem the fingerprint fp and its corresponding
element a absent from CFY . If none of the fingerprints in CFX
is found in CFY , we consider the completeness condition is
met. We summarize the procedure in Algorithm 1.

Algorithm 1 may incur false alarm, that is, it returns FALSE
when E = X

⋂
Y . We have the following theorem about the

false alarm probability of Algorithm 1.
Theorem 2: Let X and Y be two sets represented by CFs

CFX and CFY , respectively, and E = X
⋂
Y . The false alarm

probability of Algorithm 1 is upper bounded by

ε ≤ 1− (1− �X)|Y \E| . (8)

where �X is the false positive probability of CFX .
We give the proof in Appendix E of the supplement file.

Algorithm 1: Verifiable Set-Intersection Operation
Input: CFX representing set X , CFY representing set

Y , and set E
Output: Whether E = X

⋂
Y

1 foreach e ∈ E do
2 if e /∈ CFX or e /∈ CFY then
3 return false;
4 end
5 Delete e from CFX and CFY ;
6 end
7 foreach bucket 
 of CFX do
8 foreach fingerprint fp in bucket 
 do
9 
� ← 
⊕ hash(fp) mod f ;

10 foreach fp� ∈ bucket 
 of CFY do
11 if fp = fp� then
12 return false;
13 end
14 end
15 foreach fp� ∈ bucket 
� of CFY do
16 if fp = fp� then
17 return false;
18 end
19 end
20 end
21 end
22 return true;

Now let us take a look at the verifiable set union operation.
We define the conditions for the correctness of set union as
follows.

Definition 2: A set E is the union of two sets X and Y if
and only if the following two conditions are met.

Membership condition: For each e ∈ E, e ∈ X or Y ;
Superset condition: For each e ∈ X or Y , e ∈ E.

Given a set E and two homologous CFs CFX and CFY
representing two sets X and Y , respectively, the verifier first
checks whether every element e ∈ E is in both CFX and CFY .
If so, the verifier deletes all elements in E from both CFX
and CFY and then checks whether the remaining CFs CFX
and CFY are both empty. If so, the membership and superset
conditions are considered met. We summarize the procedure
in Algorithm 2.

Different from Algorithm 1, Algorithm 2 does not incur
any false alarm. In particular, given two sets X and Y and
E = X

⋃
Y , the membership condition check will always pass

because every element e ∈ E must be present in both CFX
and CFY . In addition, since every element in X or Y belongs
to E, so both CFX and CFY will become empty after deleting
every element in E from them. Therefore, Algorithm 2 does
not incur any false alarm.

In what follows, we detail the three phases of the scheme.

C. Data Preprocessing

The OSN operator preprocesses the dataset as follows.
Recall that vk,1, . . . , vk,mk

are the list of unique attribute k
values, where vk,j < vk,j+1 for all 1 ≤ j ≤ mk, and that
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Algorithm 2: Verifiable Set-Union Operation
Input: CFX representing set X , CFY representing set

Y , and set E
Output: Whether E = X

⋃
Y

1 foreach e ∈ E do
2 flag← flase;
3 if e ∈ CFX then
4 flag← true;
5 Delete e from CFX ;
6 end
7 if e ∈ CFY then
8 flag← true;
9 Delete e from CFY ;

10 end
11 if flag = false;
12 then
13 return false;
14 end
15 end
16 if CFX �= empty or CFY �= empty then
17 return false;
18 end
19 return true;

Ik,j = {i|bi,k = vk,j , 1 ≤ i ≤ n} is the set of nodes
whose attribute k values equal vk,j for all 1 ≤ k ≤ w and
1 ≤ j ≤ mk.

First, for each node i ∈ [1, n], the OSN operator computes
hi = H(pi), where pi = (IDi||bi,1|| . . . ||bi,w). Let Ni be the
set of neighbors of each node i. The OSN operator constructs
an CF CFi from the set {H(IDi||IDj)|j ∈ Ni} to encode
its neighbor information. Further let θi = �hi,CFi� for all
1 ≤ i ≤ n. The OSN operator constructs an MHT T θ over
elements θ1, . . . , θn and signs the root.

Second, the OSN operator binds the IDs of nodes that share
the same attribute k value. Specifically, for each attribute k ∈
[1, w] and each unique attribute k value vk,j , 1 ≤ j ≤ mk,
the OSN operator computes ψk,j that consists of two fields as

ψk,j .val = vk,j−1||vk,j ||vk,j+1,

ψk,j .cf = CFk,j , (9)

where vk,0 = vk,min, vk,mk+1 = vk,max, and CFk,j is an CF
constructed from {hi|i ∈ Ik,j}. Note that all CFs {CFk,j |1 ≤
k ≤ w, 1 ≤ j ≤ mk} are homologous. The OSN operator
then builds an MHT Tψk over ψk,1, . . . , ψk,mk

and signs the
root of Tψk for each 1 ≤ k ≤ w.

D. Query Processing

Since any subset or equality query can be converted into a
range query, our subsequent discussions focus on range query
processing. Let R1, . . . ,Rw be the set of query ranges over
attributes 1, . . . , w, respectively, where Rk = [δk,min, δk,max]
for all k ∈ [1, w]. A multi-attribute range query has the form
of

R1 
 R2 
 · · · 
 Rw,

where 
 is either a logical operators AND operator ∧ or a
logical operators OR operator ∨. Without loss of generality,
we take a range query R1

⊙
R2 over attributes 1 and 2 as an

example. Range queries over more than two attributes can be
realized in a similar fashion.

After receiving the query, the SDP first finds the nodes
whose attribute 1 and 2 values fall into the respective queried
ranges. Let V1 = {i|bi,1 ∈ R1, 1 ≤ i ≤ n} and V2 =
{i|bi,2 ∈ R2, 1 ≤ i ≤ n} be the two subsets of nodes
whose attribute 1 and 2 values fall into the ranges R1 and R2,
respectively. The query result is the subgraph G� = (V �, E�),
where V � = V1
V2 and E� = {ei,j |ei,j ∈ E, i ∈ V �, j ∈ V �}.
More specifically, the query result consists of the set of
profiles and CFs {θi = �pi,CFi�|i ∈ V �}, the set of edges
{(IDi, IDj)|ei,j ∈ E�}, and an verification object constructed
from T θ and {Tψk |k ∈ {1, 2}} as follows.

First, the SDP returns elements {θi|i ∈ V �} as well as
the subsets of internal nodes

⋃
i∈V ′ A(T θ|θi) of the MHT

T θ to ensure the integrity of the returned profiles and the
completeness of the returned edges.

Second, the SDP finds x1, x2, y1 and y2 such that v1,x1−1 <
δ1,min ≤ v1,x1 ≤ v1,y1 ≤ δ1,max < v1,y1+1 and v2,x2−1 <
δ2,min ≤ v2,x2 ≤ v2,y2 ≤ δ2,max < v2,y2+1. It follows that
attribute values {v1,x1 , . . . , v1,y1} and {v2,x2 , . . . , v2,y2} fall
into the query ranges R1 and R2, respectively.

Third, the SDP returns elements ψ1,x1 , . . . , ψ1,y1 and
ψ2,x2 , . . . , ψ2,y2 as well as the subsets of internal nodes⋃y1
j=x1

A(Tψ1 |ψ1,j) of the MHT Tψ1 and
⋃y2
j=x2

A(Tψ2 |ψ2,j)
of the MHT Tψ2 , which are needed for recomputing the roots
of Tψ1 and Tψ2 from {ψ1,j|x1 ≤ j ≤ y1} and {ψ2,j|x2 ≤ j ≤
y2}, respectively.

In summary, the query result consists of {θi =
�pi,CFi�|i ∈ V �}, {(IDi, IDj)|ei,j ∈ E�}, ⋃

i∈V ′ A(T θ|θi),⋃y1
j=x1

A(Tψ1 |ψ1,j),
⋃y2
j=x2

A(Tψ2 |ψ2,j), and the OSN opera-

tor’s signatures on the roots of the MHTs T θ, Tψ1 and Tψ2 .

E. Query-Result Verification

On receiving the query result, the data consumer verifies its
integrity and completeness as follows.

First, the data consumer verifies the integrity of the query
result through received MHTs and the OSN operator’s sig-
nature. For each node i ∈ V �, the data consumer computes
hi = H(pi) and the root of MHT T θ from θi = �hi,CFi�
using A(T θ|θi). Similarly, for each ψ1,j , x1 ≤ j ≤ y1 and
each ψ2,j , x2 ≤ j ≤ y2, the data consumer recomputes
the roots of Tψ1 and Tψ2 using A(Tψ1 |ψ1,j) and A(Tψ2 |ψ2,j),
respectively. If the correct MHT root can be constructed from
every received element, the data consumer further verifies the
OSN operator’s signatures on all the MHT roots. If all the
verifications succeed, the data consumer considers the query
result authentic.

Second, the data consumer verifies the completeness of
the query result using the received CFs. Let V1 and V2

be the sets of nodes whose attribute 1 value falls into the
range R1 and R2, respectively. The data consumer needs
to verify whether V � = V1 
 V2. The attribute 1 val-
ues that fall into the range R1 are v1,x1 , . . . , v1,y1 . Recall
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that I1,j is the set of nodes with attribute 1 value being
v1,j and that ψ1,j .cf = CF1,j for all x1 ≤ j ≤ y1.
It follows that V1 =

⋃y1
j=x1

I1,j and that I1,x1 , . . . , I1,y1
are represented by CF1,x1 , . . . ,CF1,y1 , respectively. Similarly,
we have V2 =

⋃y2
j=x2

I2,j and I2,x1 , . . . , I2,y1 represented by
CF2,x2 , . . . ,CF2,y2 , respectively. Further denote by Vl

�
m =

{i|bi,1 = v1,l, bi,2 = v2,m, i ∈ V �} and Vl
�
m = {i|bi,1 =

v1,l
∨
bi,2 = v2,m, i ∈ V �} for all x1 ≤ l ≤ y1 and

x2 ≤ m ≤ y2.
There are two cases. Let us first consider the case of

 =

∧
. It follows that V � =

⋃y1
l=x1

⋃y2
m=x2

Vl
�
m. To ver-

ify whether V � = V1

⋂
V2, i.e.,

⋃y1
l=x1

⋃y2
m=x2

Vl
�
m =⋃y1

l=x1
I1,l 


⋃y2
m=x2

I2,m, it is equivalent to verify whether
Vl
�
m = I1,l

⋂
I2,m with I1,l and I2,m being represented

by CF1,l and CF2,m, respectively, for all x1 ≤ l ≤ y1 and
x2 ≤ m ≤ y2. In particular, given Vl

�
m,CF1,l, and CF2,m,

the data consumer can verify whether Vw� z = I1,l
⋃
I2,m

using Algorithm 1. If every call to Algorithm 1 returns TRUE,
the data consumer considers all the profiles that satisfy the
query condition have been returned. In the second case where

 =

∨
, we have V � =

⋃y1
l=x1

⋃y2
m=x2

Vw
�
z . The user

needs to verify whether Vl�m = I1,l
⋃
I2,m with I1,l and

I2,m being represented by CF1,l and CF2,m, respectively,
for all x1 ≤ l ≤ y1 and x2 ≤ m ≤ y2. In particular,
given Vl�m,CF1,l, and CF2,m, the data consumer can verify
whether Vw� z = I1,l

⋃
I2,m using Algorithm 2. If every call

to Algorithm 2 returns TRUE, the data consumer considers all
the profiles that satisfy the query condition have been returned.

Finally, the data consumer verifies whether all the edges
among the nodes in V � have been returned. Specifically, given
the received edges {(IDi, IDj)|ei,j ∈ E�}, the data consumer
first verifies whether H(IDi||IDj) and H(IDj ||IDi) are in
CFi and CFj , respectively, for all ei,j ∈ E�. In addition,
for each (IDi, IDj), ei,j /∈ E�, the data consumer verifies
whether H(IDi||IDj) and H(IDj ||IDi) are not in CFi and
CFj , respectively. If all the verifications succeed, the data
consumer considers that all the edges among the nodes in V �

have been returned.
The query result is considered complete and correct if all

the verifications above succeed.

V. PERFORMANCE ANALYSIS

In this section, we analyze the performance of the proposed
schemes.

A. Security Analysis

1) Basic, Enhanced, and Advanced Schemes: The basic
and enhanced schemes both allow a data consumer to detect
any forged or incomplete query result. The reason is that
the auxiliary information amounts to chaining profiles and
edges grouped by their attribute values with cryptographic
techniques. As long as the cryptographic hash function and
digital signature scheme are secure, the SDP cannot return a
forged and/or incomplete query result without being detected.

In contrast, the advanced scheme can detect any forged
or incomplete query result with high probability. While the
signed MHT can effectively prevent the SDP from inserting,

deleting, or modifying profiles in the query result while escap-
ing the detection, the Bloom filter BFk,j used for encoding
φk,j,1, . . . , φk,j,mk

may not be able to detect the deletion
of some φk,j,z due to the false positive of Bloom filter.
In particular, since φk,j,z = H(||i∈Ik,j

θi,k,z), we have φk,j,z =
φk,z,j for all 1 ≤ z, j ≤ mk. Therefore, each φk,j,z is inserted
into two Bloom filters BFk,j and BFk,z . Since the signed MHT
can guarantee the integrity of all the profiles in the query
result, it can also detect omission of any attribute values bk,j
and bk,z as well as φk,j,z in the query result. Assume that the
SDP deletes (or adds) one edge between node i with attribute
k’s value bk,j and node l with attribute k’s value bk,z from
the query result. In the query-result verification phase, the data
consumer derives φ�k,j,z and φ�k,z,j and checks whether they
are indeed in the corresponding Bloom filters. The insertion
or deletion of an edge would result in φ�k,j,z �= φk,j,z and
φ�k,z,j �= φk,z,j . The SDP can escape the detection if and only
if φ�k,j,z is found in BFk,j and φ�k,z,j is found in BFk,z at
the same time. Since the false positive probability of a Bloom
filter is 0.6185α/β, the SDP can escape the detection with
probability (0.6185α/β)2χ for adding (or deleting) χ ≥ 1
edges from the query result.

2) Verifiable Multi-Attribute Query Scheme: The verifiable
multi-attribute query scheme can detect any modified or forged
profile in a deterministic way. In particular, the OSN operator
builds one MHT T θ over θ1, . . . , θn, where each θi contains
the hash of the profile pi. The signed T θ ensures that any
modified or forged profile in the query result can be detected.
Moreover, if the SDP inserts any authentic profile that does
not satisfy the query condition, the user can easily detect it
by checking the profile against the query condition. Therefore,
the remaining options left for the SDP are (1) omitting one
or more profiles (2) inserting or deleting one or more edges.
We discuss these two attacks below by considering query
R1

⊙
R2 over attributes 1 and 2 as an example.

Let us first take a look at the case of
⊙

=
∧

, that is,
the user asks for the set of nodes V � = V1

⋂
V2, where V1

and V2 are the subsets of nodes with the attribute 1 value
that falling in R1 and the attribute 2 value falling in R2,
respectively. We have the following theorem regarding the
detection probability with respect to the deletion of profiles.

Theorem 3: The deletion of any node from the query result
can always be detected if

⊙
=

∧
.

We give the proof in Appendix F of the supplement file.
In addition, since query result verification relies on Algo-

rithm 1 that may incur false alarm, we have the following theo-
rem regarding the false alarm probability of the multi-attribute
verification scheme.

Theorem 4: Suppose that the data consumer issues a query
R1

⋂
R2. Assume that the attribute 1 values fall into R1

are v1,x1 , . . . , v1,y1 and that the attribute 2 values fall into
R2 are v2,x2 , . . . , v2,y2 . the false alarm probability of the
multi-attribute verification scheme is upper bounded by

PFA ≤ 1−
y1∏
l=x1

y2∏
m=x2

(1 − �1,l)|Im,2\I1,l| , (10)

where �1,l is the false positive probability of CF CF1,l for all
x1 ≤ l ≤ y1.
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We give the proof in Appendix G of the supplement file.
Now we consider the case of

⊙
=

∨
, that is, the user asks

for the set of nodes V � = V1

⋃
V2. We have the following

theorem regarding the detection probability of deletion of any
single node from the query result.

Theorem 5: Suppose that the data consumer issues a query
R1

⋃
R2. Assume that the attribute 1 values fall into R1 are

v1,x1 , . . . , v1,y1 and that the attribute 2 values fall into R2

are v2,x2 , . . . , v2,y2 . The deletion of any single node s with
bs,1 = v1,x and bs,2 = v2,y from the query result can be
detected with probability

Pdet ≥ min(�1,x + (1 − �1,x)
y2∏

m=x2

�2,m, �2,y

+ (1− �1,l)
y2∏
l=x1

�1,l) , (11)

where �1,x and �2,y are the false positive probabilities of CF2,y

and CF2,y , respectively, �1,l is the false positive probability of
CF1,l for all x1 ≤ l ≤ y1, and nd �2,m is the false positive
probability of CF2,m for all x2 ≤ m ≤ y2.

We give the proof in Appendix H of the supplement file.
In addition, since Algorithm 2 does not incur any false

alarm, the multi-attribute verification scheme does not incur
any false alarm when

⊙
=

∨
.

We now analyze the detection probability over the attacks
of inserting or deleting one or more edges. Since the data
consumer will check each possible edge between any two
nodes in the returned result, the cases of

⊙
=

∧
and

⊙
=

∨
follow a similar analysis.

Theorem 6: The insertion of an edge between two nodes i
and j into the query result can be detected with probability

Pdet = 1− �i�j, (12)

where �i and �j are the false positive probabilities of CFi and
CFj , respectively.

We give the proof in Appendix I of the supplement file.
Theorem 7: The deletion of any edge from the query result

can always be detected.
We give the proof in Appendix J of the supplement file.

We also refer readers to Appendix K of the supplement file for
the analysis of the computation, storage, and communication
overhead of the four proposed schemes.

VI. EXPERIMENTAL RESULTS

In this section, we experimentally evaluate the four proposed
schemes using real OSN datasets. We implement all four
schemes using Python 2.7 with about 1800 lines of code.
All the experiments are carried out on a commodity PC
equipped with a 3.4 GHz Intel-i7 3770 CPU, 16 GB memory,
a 7200 RPM hard disk, and Windows 10 OS. The false positive
probability of the Bloom filter in the advanced scheme is
set to 0.001 unless mentioned otherwise. We follow the prior
work [11] to configure two candidate buckets for each item
and four entries for each bucket of the partial-key cuckoo
filter as such setting can achieve good space efficiency for
the false positive probabilities suitable for most practical
applications [18]. In addition, we adopt MurmurHash3 as both

the hash function and the fingerprint generation function for
partial-key cuckoo filter in our experiments.

A. Datasets

We use a real-world Twitter dataset that we collected in
March 2016. Specifically, we randomly selected 100,000 Twit-
ter users as seeds. For each seed user, we crawled his
attribute, followers, and friends, and obtained nearly 4M users’
attributes to construct the corresponding social graph. Our
subsequent experiments focus on location and fans attributes.
For verifiable single-attribute queries, we extracted the location
with city-level labels in the form of “cityName,stateName” or
“cityName,stateAbbreviation”, where we considered all cities
in the “List of Valid U.S. cities”.2 Among all the crawled users,
we found 1.6M users with valid location and fans attributes
and more than 50M edges among them. Besides, we further
considered the fans number of these users as the second
attribute for multi-attribute queries.

To evaluate the performance of our schemes for datasets
with different sizes, we randomly sampled three groups
of users (S-100K, S-1M, S-1.5M) from the above dataset,
i.e., 100K, 1M, 1.5M users and their corresponding social
graphs. The sizes of three datasets S-100K, S-1M and S-1.5M
are 315.58 MB (10.95 MB users’ attribute, 304.63 MB social
network), 3.13 GB (109.57 MB users’ attribute, 3.02 GB social
network), and 4.71 GB (164.36 MB users’ attribute, 4.54 GB
social network), respectively.

B. Data Preprocessing

We first evaluate the computation and storage overhead
incurred by data preprocessing in the basic, enhanced,
advanced, and multi-attribute query schemes.

1) Computation Overhead: We compare the four schemes
in terms of the numbers of hash and signature operations,
and computation time. Table II shows the numbers of hash
and signature operations for all four schemes and all three
datasets. We can see from Table II that (1) the basic scheme
incurs the highest number of hash operations, followed by
the enhanced scheme and the advanced scheme; (2) the
number of signature operations in the advanced scheme and
enhanced schemes are significantly lower than that of the
basic scheme; and (3) the number of signature operations
in the multi-attribute query scheme is higher than that of
the other three single-attribute query schemes. For example,
the numbers of signature operations in the advanced and
enhanced schemes are both only 0.13% of that in the basic
scheme for S-1.5M. This is expected, as the numbers of
signature operations in the three schemes are O(n), O(mk)
and O(mk) for each attribute, respectively, where mk is the
number of unique attribute k values. Besides, the number
of signature operations in the multi-attribute query scheme
is only 3 (i.e., O(w)) for S-1.5M. Finally, Table III shows
the total computation time incurred by data preprocessing for
three datasets. We can see that the advanced scheme and the

2https://www.whitehouse.gov/sites/default/files/omb/
assets/procurement_fair/usps_city_state_list.xls
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TABLE II

COMPUTATION OVERHEAD

Fig. 1. Comparison of query processing time.

TABLE III

COMPUTATION TIME

TABLE IV

STORAGE OVERHEAD

TABLE V

COMMUNICATION OVERHEAD OF MULTI-ATTRIBUTE QUERY

TABLE VI

VERIFICATION TIME OF MULTI-ATTRIBUTE QUERY

enhanced scheme take the almost same amount of time for
data preprocessing which are shorter than that of the basic
scheme, and the multi-attribute query scheme takes longer time
for data preprocessing than the enhanced advanced schemes.
For example, the computation time in the basic scheme is
14.04 times of that in the advanced scheme for S-1.5M, and
the computation time of the multi-attribute query scheme is
more than the enhanced and advanced schemes.

2) Storage Overhead: Table V shows the storage overhead
incurred by the auxiliary information, i.e., the total size of
signatures, internal nodes of MHTs, Bloom filters, and Cuckoo
filters, in the basic, enhanced, advanced, and multi-attribute

query schemes in bits, respectively. We can see from Table V
that the basic scheme incurs the highest storage overhead,
followed by the enhanced scheme, the multi-attribute query
scheme, and the advanced scheme. Consider S-1.5M as
an example. The storage overhead of the basic, enhanced,
advanced, and multi-attribute query scheme are 1.83 GB,
155.8 MB, 6.76 MB or 56.35 MB, respectively. This is of
no surprise, as the storage overhead for signatures and hash
values in the basic and enhanced schemes are �O(n), O(mk)�,
�O(mk), O(nmk)�, respectively, and the advanced scheme uti-
lizes space-efficient data structure (Bloom filter) to reduce the
storage overhead. Furthermore, the storage overhead for signa-
tures in the multi-attribute query scheme is O(w+

∑w
k=1mk).

Table V also shows the ratio between the size of the auxiliary
information and that of original user data. It is clear that
the advanced scheme incurs very small additional storage
overhead for auxiliary information, and the multi-attribute
query scheme has less additional storage overhead than the
enhanced scheme.

C. Query Processing

To evaluate the computation and communication overhead
incurred by single-attribute query processing, we generate
three types of queries: Q̃10, Q̃50, and Q̃100, where the query
Q̃x means randomly choosing x cities as the query condition
for x = 10, 50 and 100. Figs. 1a, 1b and 1c show the query
processing times of three schemes for the three types of queries
for all three datasets, respectively, where each point represents
the average of 100 runs, each with a random seed. We can
see that the query processing time of the basic scheme is
the longest and those of the enhanced and advanced schemes
are similar. For S-1.5M, it takes only 807 ms to process
100 queries under the advanced scheme. In addition, we also
evaluate the communication overhead incurred by transmitting
verification objects as shown in Figs. 2a, 2b and 2c. We can
see that the communication overhead incurred by verification
objects under the advanced scheme is slightly lower than that
of the enhanced scheme and significantly lower than that
of the basic scheme. For S-1.5M, transmitting verification
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Fig. 2. Comparison of communication overhead.

Fig. 3. Comparison of query-result verification time.

objects incurs only 19.43 KB of communication overhead for
100 queries under the advanced scheme.

To evaluate the computation and storage overhead of
the multi-attribute query scheme, we take two typical
multi-attribute queries into account, i.e., the AND query and
the OR query. We run the query processing 100 times and ran-
domly select one attribute value for each attribute each time.
The computation overhead of the query processing is tiny, e.g.,
10−5 s, so we omit it here. In addition, Table V shows the
communication overhead incurred by verification objects in
multi-attribute query scheme. We can see that the communica-
tion overhead for AND queries is smaller than that for the OR
queries. It is reasonable that the result of an OR query includes
more nodes than an AND query, which results in more CFs
being returned and thus higher communication overhead.

D. Query-Result Verification

Figs. 3a to 3c compare the computation time for
single-attribute query-result verification under three proposed
schemes for three datasets. We can see that the verification
time in the advanced and enhanced schemes are almost the
same, followed by the basic schemes. This is expected, as the
computation complexities of signature verification in three
schemes are O(zm�

k), O(m�
k), andO(m�

k), respectively, where
z and m�

k are the number of nodes and the number of unique
attribute k values in the query result, respectively. Moreover,
the average verification time in the advanced scheme is
29.4 ms for the dataset S-1.5M, which clearly shows its high
efficiency. In addition, Table VI shows the average verification
time of two queries. The verification overhead of the AND
query is higher than that of the OR query and increases with
the scale of the datasets.

E. Impact of Bloom Filter on the Advanced Scheme

Fig. 4a shows the false-positive probability of a Bloom
filter varying with its length, where the number of elements

Fig. 4. Impact of bloom filter size on false positive probability and storage
overhead.

β = 100, 300, 500, and 1, 000. We can see that the lower
the false positive probability we desire, the larger the Bloom
filter needs to be. In addition, the more elements inserted
into a Bloom filter, the higher the false positive probability,
and vice versa. These results coincide with the property of
Bloom filter. Fig. 4b shows the storage overhead incurred
by all the Bloom filters for S-100K, S-1M and S-1.5M with
false positive probability varying from 10−1 to 10−4. We can
see that if we reduce false positive probability from 10−3 to
10−4, the storage overhead incurred by all the Bloom filters
for S-1.5M increases by only 2 MB. Recall that Table V that
the total storage overhead of the advanced scheme is 6.76 MB
for S-1.5M when f = 10−3, so the total storage overhead is
8.76 MB for S-1.5M when f = 10−4, which is still significant
lower than that of the basic and the enhanced schemes.

F. Impact of CF on the Multi-Attribute Query Scheme

Figs. 5a to 5c show the false-positive probability of a cuckoo
filter varying with the number of non-empty entries per bucket
ξ, the fingerprint size η, and the number of items β. We can see
that the more entries per bucket, the larger the fingerprint size,
the lower the false positive probability of the CF. In addition,
the more items inserted into the memory-optimized cuckoo
filter, the higher the false positive probability, and vice versa.
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Fig. 5. Maximum number of non-empty entries per bucket ξ.

These results coincide with the properties of the cuckoo filter.
Fig. 5d shows the false alarm probability of Algorithm 1
varying with the false positive probability. We can see that
the more items in the cuckoo filter, the higher the false alarm
probability, and vice versa.

VII. RELATED WORK

Several efforts have been made to ensure the integrity
of outsourced query over graph data. Goodrich et al. [19]
proposed a query scheme to enable verification of the con-
nectivity of two nodes in an outsourced graph. Yiu et al. [20]
introduced a scheme for authenticating outsourced shortest
path queries.Moreover, Fan et al. [21] proposed a technique
for authenticating outsourced subgraph queries, which ask for
all the graphs that contain a given subgraph. Since these
works consider different types of queries we consider different
queries, none of them can be applied to our problem.

Authenticating outsourced queries have been studied exten-
sively in the past. Narasimha et al. [22] proposed an approach
based on signature chain to verify the integrity of dynamic
databases, which was subsequently improved by Pang et al.
[23]. In [24], the authors proposed efficient authentication
schemes for single- and multi-attribute range queries. Authen-
ticating GET queries over outsourced multi-version key-value
stores were studied in [25], [26]. In addition, Zhang et al.
[27] presented several techniques to enable efficient verifica-
tion of outsourced location-based top-k queries. Bajaj et al.
[28] proposed ConcurDB to extend query authentication to
multiple clients and presented a novel protocol to eliminate the
inefficiency of authenticated data structures on updates. Other
types of queries that have been studied include aggregation
queries [29], kNN queries [30], [31], top-k spatial keyword
queries [32], [33], Boolean queries [34], SQL queries [35],
[36], skyline queries [37]–[40], and probabilistic queries over
uncertain data [41]. None of these schemes target query over
graph data, so they cannot be applied to our problem.

VIII. CONCLUSION

In this paper, we initiated the study of verifiable social
data outsourcing and proposed four solutions to allow the data
consumer to verify the social-graph correctness, social-graph
completeness, and content authenticity of any query result
returned by an untrusted SDP. The efficacy and efficiency of
our solutions have been confirmed by extensive experiments
based on real Twitter dataset.
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