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ARTICLE INFO ABSTRACT

Keywords: The Sentinel-2 Level 2 Prototype Processor (SL2P) is made available to users for the retrieval of vegetation
GBOV biophysical variables including leaf area index (LAI) from Multispectral Instrument (MSI) data within the
LAI

Sentinel Application Platform (SNAP). A limited number of validation exercises have indicated SL2P LAI re-

x]?(I)N trievals frequently meet user requirements over agricultural environments, but perform comparatively poorly
SL2P over heterogeneous canopies such as forests. Recently, a modified version of SL2P was developed, using the

SL2P-D directional area scattering factor (DASF) to constrain retrievals as an alternative to regularisation (SL2P-D).
Whilst SL2P makes use of prior information on expected canopy conditions, SL2P-D is trained using uniform
distributions of input parameters to define radiative transfer model (RTM) simulations. Using in situ measure-
ments available through the Copernicus Ground Based Observations for Validation (GBOV) service, we per-
formed an extensive validation of SL2P and SL2P-D LAI retrievals over 19 sites throughout the United States. For
effective LAI (LAL), SL2P demonstrated good overall performance (RMSD = 0.50, NRMSD = 31%, bias =
—0.10), with all LAI retrievals meeting the Sentinels for Science (SEN4SCI) uncertainty requirements over ho-
mogeneous canopies (cultivated crops, grasslands, pasture/hay and shrub/scrub), whilst underestimation
occurred over heterogeneous canopies (deciduous forest, evergreen forest, mixed forest, and woody wetlands).
SL2P-D retrievals demonstrated reduced bias, slightly improving overall performance when compared with SL2P
(RMSD = 0.48, NRMSD = 30%, bias = —0.05), indicating its retrieval approach appears to offer some advantages
over regularisation using prior information, especially at LAI. > 3. Additionally, SL2P-D resulted in 32% more
valid retrievals than SL2P, with the largest differences observed at LAl. < 1. Validation against in situ mea-
surements of LAI as opposed to LAL, yielded similar patterns but poorer performance (RMSD = 1.08 to 1.13,
NRMSD = 49% to 52%, bias = —0.64 to —0.68) because the RTM used by SL2P and SL2P-D does not account for
foliage clumping. In addition to the retrievals themselves, we examined the relationship between predicted
uncertainties and observed differences in retrieved and in situ LAI. With respect to LAl, SL2P’s predicted un-
certainties were conservative, underestimating observed differences in only 35% of cases, whilst those for LAI
were unbiased.

1. Introduction in the face of environmental change and an increasing global population
(GCOS, 2019). Offering repeat observations and global coverage, satel-

Timely information on the status of vegetation is a crucial require- lite remote sensing represents a valuable source of such information.
ment in agriculture, forestry and environmental and biodiversity Over the last two decades, several operational products have been

assessment, enabling resources to be monitored and managed effectively developed, making use of radiative transfer model (RTM) inversion,
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Table 1
Comparison of the major similarities and differences between SL2P and SL2P-D.
Algorithm  Retrieval approach Training data Distribution of simulation input parameters References
SL2P Single ANN per biophysical variable PROSPECT and 4SAIL Truncated Gaussian distributions designed to Weiss and Baret
simulations reflect global conditions (2016)
SL2P-D Cascaded retrieval using multiple ANNs per biophysical PROSPECT and 4SAIL Uniform distributions Fernandes and Djamai
variable, selected according to DASF simulations (2019)

statistical approaches, and hybrid techniques to retrieve vegetation
biophysical variables from remotely sensed optical images (Baret and
Buis, 2008; Verrelst et al., 2015). Using data from moderate to coarse
spatial resolution instruments such as the Advanced Very High Resolu-
tion Radiometer (AVHRR) (Garcia-Haro et al., 2018), Moderate Reso-
lution Imaging Spectrometer (MODIS) (Disney et al., 2016; Knyazikhin
et al., 1998; Pinty et al., 2011a; 2011b; Yan et al., 2016a), Ocean and
Land Colour Instrument (OLCI) (Gobron, 2010), Visible Infrared Radi-
ometer Suite (VIIRS) (Yan et al., 2018) and PROBA-V (Lacaze et al.,
2015), current examples of vegetation biophysical products provide
estimates at 300 m to 4.8 km, with a frequency of between four days and
one month.

Whilst the spatial resolution of existing operational products is
adequate for regional and global scale monitoring, increased spatial
resolution is required in precision agriculture, forest management, and
adaptation studies, where within-field and stand-scale information is
necessary (Clevers and Gitelson, 2013; GCOS, 2019; Majasalmi and
Rautiainen, 2016). The Sentinel-2 missions, which form part of the
European Union’s Copernicus programme, provide a unique opportu-
nity in this respect. Comprised of a constellation of two platforms
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orbiting 180° apart, the near-identical Multispectral Instrument (MSI)
sensors carried on-board benefit from both high spatial (10-60 m) and
temporal (<5 days) resolutions (Drusch et al., 2012). The spectral
characteristics of the instrument, which incorporates thirteen visible
near-infrared and shortwave-infrared bands (including three red-edge
bands), are also well-suited to vegetation monitoring (Delegido et al.,
2011; Frampton et al., 2013; Xie et al., 2019).

Currently, estimates of vegetation biophysical variables are not
produced operationally by the Sentinel-2 ground segment. Instead, a
retrieval algorithm has been implemented in the freely available
Sentinel Application Platform (SNAP). Developed by Weiss and Baret
(2016) and known as the Sentinel-2 Level 2 Prototype Processor (SL2P),
the algorithm enables users to generate so-called ‘L2B’ products from
atmospherically corrected L2A MSI data (Miiller-Wilm, 2018). SL2P
adopts artificial neural networks (ANNs) that are trained with RTM
simulations from the coupled Leaf Optical Properties Spectra (PROS-
PECT) (Feret et al., 2008; Jacquemoud and Baret, 1990) and Scattering
by Arbitrarily Inclined Leaves (4SAIL) (Verhoef et al., 2007) models. The
algorithm provides retrievals and predicted uncertainties of leaf area
index (LAI), the fraction of absorbed photosynthetically active radiation
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Fig. 1. Schematic diagram illustrating the cascaded retrieval approach adopted by SL2P-D.
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Study sites throughout the United States used for validating the SL2P and SL2P-D LAI retrievals. Sites characterised by heterogeneous canopies, defined based on

Widlowski et al. (2013), are shown in bold.

Site Modal NLCD land cover of sampled plots Latitude (°) Longitude (°) In situ data availability Valid samples
Bartlett Experimental Forest Deciduous forest 44.0639 —71.2873 2014 to 2018 8
Blandy Experimental Farm Deciduous forest 39.0603 —78.0716 2016 to 2018 29
Central Plains Experimental Range Grassland/herbaceous 40.8155 —104.7460 2014 to 2018 17
Disney Wilderness Preserve Pasture/hay 28.1250 —81.4362 2014 to 2018 22
Harvard Forest Mixed forest 42.5369 —72.1727 2014 to 2018 13
Jones Ecological Research Center Evergreen forest 31.1948 —84.4686 2014 to 2018 53
Jornada Shrub/scrub 32.5907 —106.8430 2015 to 2018 29
Moab Shrub/scrub 38.2483 —109.3880 2015 to 2018 1
Niwot Ridge Mountain Research Station Grassland/herbaceous 40.0543 —105.5820 2015 to 2018 11
Onaqui Shrub/scrub 40.1776 —112.4520 2014 to 2018 26
Oak Ridge Deciduous forest 35.9641 —84.2826 2015 to 2018 49
Ordway-Swisher Biological Station Evergreen forest 29.6893 —81.9934 2013 to 2018 24
Smithsonian Conservation Biology Institute Deciduous forest 38.8929 —78.1395 2015 to 2018 27
Smithsonian Environmental Research Center Deciduous forest 38.8901 —76.5600 2015 to 2018 12
Steigerwaldt Land Services Deciduous forest 45.5089 —89.5864 2016 to 2018 19
North Sterling Cultivated crops 40.4619 —103.0290 2014 to 2018 14
Talladega National Forest Evergreen forest 32.9505 —87.3933 2015 to 2018 14
UNDERC Woody wetlands 46.2339 —89.5373 2015 to 2018 35
Woodworth Grassland/herbaceous 47.1282 —99.2414 2014 to 2018 27

(FAPAR), the fraction of vegetation cover (FCOVER), canopy chloro-
phyll content (CCC), and canopy water content (CWC).

Recently, a modified version of SL2P, known as SL2P-D, was devel-
oped by Fernandes and Djamai (2019), in which the directional area
scattering factor (DASF) is used to constrain retrievals. DASF is a spectral
index representing an estimate of the fraction of leaf area inside the
canopy visible from a given direction outside the canopy (Knyazikhin
etal., 2013). It is a dimensionless quantity typically ranging from zero to
one, and is monotonically related to LAI and foliage clumping (Adams
et al., 2018; Stenberg and Manninen, 2015). It is equivalent to the
canopy bidirectional reflectance assuming a foliage single scattering
albedo of one (i.e. non-absorbing leaves) and zero boundary reflectance
(i.e. due to dark soils or a sufficiently dense canopy). Provided the
background reflectance is negligible, DASF can, therefore, be deter-
mined directly from measured or simulated reflectance at wavelengths
where foliage is weakly absorbing (i.e. ~800 nm to 850 nm), without
prior knowledge of the foliage single scattering albedo (Knyazikhin
et al., 2013). Unlike other spectral indices, DASF is by definition
invariant to foliage biochemistry but sensitive to canopy structure.

Whilst detailed descriptions of SL2P and SL2P-D are provided in their
respective algorithm theoretical basis documents (Fernandes and Dja-
mai, 2019; Weiss and Baret, 2016), it is instructive to describe their
major similarities and differences (Table 1). Both adopt ANNs trained
with RTM simulations based on joint distributions of leaf, canopy, soil
and acquisition geometry parameters. To regularise retrievals, SL2P uses
prior information in the form of truncated Gaussian distributions of
input parameters, which were designed to reflect global conditions.
However, previous work suggests that such a strategy may lead to
locally-biased retrievals (Combal et al., 2003). In an attempt to address
this issue, SL2P-D uses uniform distributions of input parameters, and
applies partitioning as an alternative to regularisation. This strategy
involves a cascaded retrieval approach. First, a dedicated ANN estimates
DASF. Then, one of 18 ANNs trained using only simulations matching
the retrieved DASF value (+ the expected precision of DASF retrievals) is
selected for retrieving the corresponding biophysical variables (Fig. 1).
Testing against independent simulations indicates that DASF retrievals
are unbiased, and have good precision (Appendix A). DASF is used for
partitioning for two reasons: i) it is sensitive to canopy structure but
invariant to foliage biochemistry (Adams et al., 2018; Stenberg and
Manninen, 2015), and therefore removes the confounding effects of
biochemistry on retrievals of structural variables when partitioning the
simulation database, and ii) it can be estimated without prior knowledge
of the foliage single scattering albedo (Knyazikhin et al., 2013). Further
details on SL2P-D are provided in Appendix A.
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The Land Product Validation (LPV) sub-group of the Committee on
Earth Observation Satellites (CEOS) Working Group on Calibration and
Validation (WGCV) defines a four-stage hierarchy for product validation
(Fernandes et al., 2014). Several moderate spatial resolution products
have reached the second stage of this hierarchy, in which accuracy is
assessed over a significant set of locations and time periods (Brown
et al., 2020; Camacho et al., 2013; Fang et al., 2019; Yan et al., 2016b).
For SL2P, however, validation exercises have been comparatively
limited, reaching only the first stage of the hierarchy, in which accuracy
is assessed over a small (typically < 30) set of locations and time periods.
These exercises have indicated that SL2P LAI retrievals frequently meet
user requirements over agricultural environments, but appear to
demonstrate comparatively poor performance over heterogenous can-
opies such as forests and at higher values (i.e. LAI > 3) (Brown et al.,
2019; Djamai et al., 2019; Hu et al., 2020; Pasqualotto et al., 2019b,
2019a; Upreti et al., 2019; Vanino et al., 2018; Vuolo et al., 2016; Xie
et al., 2019).

Recently, environmental monitoring networks, such as the National
Ecology Observatory Network (NEON) (Kao et al., 2012), Terrestrial
Ecosystem Research Network (TERN) (Karan et al., 2016), and Inte-
grated Carbon Observation System (ICOS) (Gielen et al., 2018) have
been established to collect long-term environmental data over perma-
nent measurement sites, and are planning or performing in situ mea-
surements of vegetation biophysical variables on a routine basis. The
Copernicus Ground Based Observation for Validation (GBOV) service
was initiated to exploit these data for satellite product validation: now in
its third year, 4,178 in situ reference measurements are available
through the GBOV service over 20 NEON sites (https://land.copernicus.
eu/global/gbov/). The GBOV dataset was recently used to evaluate
several moderate (>300 m) spatial resolution LAI products (Brown
et al., 2020). However, the high spatial resolution LAI retrievals pro-
vided by SL2P and SL2P-D were not explicitly addressed. As such, the
objective of the present study is to use the GBOV dataset to perform an
extensive validation of SL2P and SL2P-D LAI retrievals over the United
States of America. Unlike previous local-scale validation efforts, the
multiple sites and time periods incorporated within the dataset provide
substantial progress towards the second stage of the CEOS WGCV LPV
hierarchy. Four specific research questions are addressed:

1. What accuracy can be expected from SL2P and SL2P-D LAI retrievals
over different vegetation types characteristic of biomes found in the
United States?

2. Does SL2P-D result in similar or reduced bias in LAI retrievals,
particularly at higher values (i.e. LAI > 3)?
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Fig. 2. A standard NEON base plot that contains 12 DHP sampling locations.
Figure reproduced with permission from Meier et al. (2018).
3. Do both algorithms perform best over homogeneous as opposed to Table 3
able

heterogenous canopies, as indicated by previous studies?
4. How well do the predicted uncertainties provided by SL2P reflect
observed differences between retrieved and in situ values?

2. Materials and methods
2.1. In situ data collection and processing

In situ measurements provided by the GBOV service at 19 NEON sites
throughout the United States were used to estimate reference LAI and
effective LAI (LAL,), in which a random distribution of leaves is assumed,
for validating SL2P and SL2P-D retrievals (Table 2). Sites included a
wide range of vegetation types as defined by the National Land Cover
Database classification (i.e. cultivated crops, deciduous forest, ever-
green forest, grasslands, mixed forest, pasture/hay, shrub/scrub and
woody wetlands) (Homer et al., 2020). At each site, in situ measure-
ments covered a period ranging between three and six years. All in situ
measurements were derived from estimates of gap fraction obtained
using digital hemispherical photography (DHP) (NEON, 2019). At each
site, a minimum of three plots (nominally 20 m x 20 m) were sampled
every two weeks from leaf emergence until the end of senescence. Each
plot contained 12 samples (Fig. 2), and both upwards- and downwards-
facing images were acquired if understory and overstory vegetation was
present. Meier et al. (2018) provide further information on the NEON
DHP acquisition protocol, whilst Brown et al. (2020) describe the
approach used by the GBOV service to process NEON DHP images,
which includes quality control to reject images meeting any of the
following conditions: plots with less than 12 images, no downward-
facing images at forest sites, images acquired in lossy formats, and im-
ages demonstrating fixed pattern noise, overexposure, colour balance
issues, variable illumination, or foreign objects within the field-of-view.

Because neither SL2P nor SL2P-D account for foliage clumping
(Fernandes and Djamai, 2019; Weiss and Baret, 2016), their LAI re-
trievals correspond to LAlL. Thus, retrievals were primarily validated
against in situ estimates of LAL.. However, since LAI rather than LAL, is
the physical quantity desired by many users, we also validated SL2P and
SL2P-D against estimates of LAI itself (i.e. accounting for the effects of
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Mean and standard deviation of woody-to-total area ratio («) values for each
forest type derived from previously published values (Bréda, 2003; Gower et al.,
1999).

Woody-to-total area ratio («)

Forest type Mean Standard deviation
Deciduous forest 0.24 0.10
Evergreen forest 0.16 0.11
All 0.18 0.11

foliage clumping). The data provided by the GBOV service represent
plant area index (PAI) and effective PAI (PAL) as opposed to LAI and
LAL, as the upwards-facing image classification cannot distinguish be-
tween foliage and woody material (Brown et al., 2020). PAI is deter-
mined according to Warren-Wilson (1963), whilst the derivation of PAI
relies on the clumping correction approach of Lang and Yueqin (1986),
such that

_ —InP(0s; )
PAI, = 0.03 (€8]
~InP(0s:5°)
- 515 ) 2
PAI .93 2

where InP(6s, 50 ) is the natural logarithm of mean gap fraction values

and InP(fs; 5 ) is the mean of the natural logarithm of gap fraction values
at 57.5° (£5°). Following the CEOS WGCV LPV good practices for LAI
validation (Fernandes et al., 2014), in the absence of site- or plot-specific
information on woody area, in this study we applied a first-order
correction for woody material, deriving LAI and LAI. from PAI and
PAI, (assuming no woody area in downward-facing images) as

LAI = PAIL,(1 — &) + PALjpn 3)
where PAI,, and PAly,, are PAI or PAI, values derived from upwards-
and downwards-facing DHP images, respectively, and « is the woody-to-
total area ratio (Baret et al., 2005; Brown et al., 2020; Chen, 1996; Fang
etal., 2019; Woodgate et al., 2016; Yan et al., 2019). The value of o was
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determined for each forest type based on previously published values for
a range of deciduous and evergreen species (Table 3) (Bréda, 2003;
Gower et al., 1999).

Using uncertainty propagation (Working Group 1 of the Joint Com-
mittee for Guides in Metrology, 2008), we quantified the combined
standard uncertainty in our LAI. and LAI estimates as a result of a) the
uncertainty in DHP-derived PAI, and PAI values, and b) the correction
for woody area, such that

2

2
} + u(PALjpn )

u(LAI) = PAIL,(1 — cx)\/{%]z + Lu(_cxi

€]

where u(PAI,) and u(PAleym) are the standard uncertainties in DHP-
derived PAI. or PAI values provided by the GBOV service, which
incorporate the effects of variability in gap fraction and instrument
levelling (Brown et al., 2018; Origo et al., 2017), whilst u(e) is the
standard deviation of the mean « value for the forest type in question
(Table 3).

2.2. MSI data pre-processing and execution of SL2P and SL2P-D

All MSI L1C top-of-atmosphere reflectance scenes acquired over the
19 sites during the study period were ingested from the Copernicus Open
Access Hub (https://scihub.copernicus.eu/) and processed to L2A
bottom-of-atmosphere reflectance using Sen2Cor 2.5.5 (Miiller-Wilm,
2018). Once processed, the quality scene classification map obtained
using Sen2Cor was used to exclude pixels contaminated by cloud, cloud
shadow, thin cirrus, water, or snow, in addition to dark, saturated, or
defective pixels. Standalone versions of SL2P (https://github.com/d
jamainajib/sl2p_v1/) and SL2P-D (https://github.com/djamainajib/s
12p_dasf/) were used to retrieve LAI from 20 m L2A MSI data. Both
SL2P and SL2P-D provide a quality flag layer (Fernandes and Djamai,
2019; Weiss and Baret, 2016). Invalid retrievals (i.e. those flagged by the
algorithm to indicate inputs/outputs were outside of the domain/range
of the training database) were discarded from further analysis.

The standalone version of SL2P, which is also now implemented in
Google Earth Engine within the Landscape Evolution And Forecasting
(LEAF) Toolbox (https://github.com/rfernand387/leaf-toolbox/), is
equivalent to the version implemented in SNAP 7.0 (http://step.esa.
int/main/toolboxes/sentinel-2-toolbox/sentinel-2-toolbox-features/),
with the exception that it also provides predicted uncertainties as well as
the retrievals themselves, following the approach proposed by Baret
et al. (2010). Using the same inputs as the ANN adopted for LAI
retrieval, a dedicated ANN is trained to estimate the root mean square
difference (RMSD) that could be expected for a given MSI observation.
This is expressed as the RMSD between the LAI value associated with
each simulation and the LAI values associated with similar candidates
within the training database (i.e. those lying within MSI's uncertainty
(assumed 0.02 additive, 4% multiplicative), within +5° of the solar and
viewing zenith angles, and within £10° of the relative azimuth angle of
the simulation in question). It is important to note that the predicted
uncertainties correspond to the expected RMSD over all similar inputs,
and not the actual RMSD (this would imply the ANN used for LAI
retrieval was poorly trained, as in such a case, it would be possible to
simply correct retrievals using the predicted uncertainties themselves).

2.3. Statistical analysis

First, an intercomparison of all valid SL2P and SL2P-D LAI retrievals
over the considered measurement plots was carried out to assess their
consistency. Then, SL2P and SL2P-D LAI retrievals were validated
against in situ measurements made within one day of the associated MSI
scene acquisition. The agreement between LAI retrievals and in situ
measurements was assessed using the coefficient of determination (r%),

75

ISPRS Journal of Photogrammetry and Remote Sensing 175 (2021) 71-87

RMSD, normalised RMSD (NRMSD), bias, uncertainty agreement ratio
(UAR) (Djamai et al., 2019), and slope. The r? and slope were deter-
mined using ordinary least squares regression, whilst the RMSD,
NRMSD, and bias were calculated as

(5)

NRMSD = RMSD /% (©)
. I ¢

Bias = ; ;(p, — O[) (7)

where p; represents the value provided by SL2P or SL2P-D, o; represents
the in situ measurement, and n representes the number of comparisons.
A positive bias corresponded to overestimation of in situ measurements
by SL2P or SL2P-D. Using uncertainty propagation, the standard un-
certainty in the RMSD, NRMSD and bias values resulting from the un-
certainties associated with each in situ measurement (Section 2.1) was
determined.

The UAR corresponds to the percentage of retrievals falling within
the Sentinels for Science (SEN4SCI, 2011) uncertainty requirements (1
unit or 20%; used for both LAl and LA, as specific requirements for LAl
were not available), such that

UAR=%ZI[(|pi—oi| < 1)V (1pi — 0] < 020)] ®

where I[x] is the indicator function. These are less stringent than current
GCOS uncertainty requirements (15%), and so may be considered
‘threshold’ requirements (Djamai et al., 2019). It is worth noting that the
GCOS requirements were originally developed for global moderate
spatial resolution products and are currently under revision (GCOS,
2019), whilst uncertainties reported for in situ LAl measurements often
exceed 15% (Camacho et al., 2013; Fang et al., 2019; Garrigues et al.,
2008), meaning that conformity to the GCOS requirements is difficult to
reliably test. Additionally, by evaluating retrievals against the SEN4SCI
requirements, we could better compare our results to those of previous
SL2P validation efforts (Djamai et al., 2019).

SL2P provided 433 valid retrievals matching the in situ measure-
ments, whilst SL2P-D provided 572 (an increase of 139 or 32.10%), with
the majority of additional valid retrievals occurring at LA, values of less
than 1 (i.e. 131 or 94.24% of additional valid retrievals), and over
cultivated crops, grassland/herbaceous, pasture/hay or shrub/shrub
canopies (i.e. 114 or 82.01% of additional valid retrievals). Our study
concentrated on thematic uncertainty rather than temporal frequency
requirements. However, users require products at a frequency of be-
tween one and 10 days; making it critical to increase the frequency of
valid retrievals (Djamai and Fernandes, 2021). A more comprehensive
assessment of the frequency of valid retrievals of SL2P and SL2P-D will
require global, seasonally representative sampling that is beyond the
scope of our study.

To determine the significance of observed biases, one sample t-tests
were performed, whilst paired t-tests were carried out to identify cases
where SL2P and SL2P-D biases were significantly different from each
other. To ensure they were comparable, only retrievals valid for both
SL2P and SL2P-D were used in the calculation of statistics (n = 430). In
addition to overall values, all statistics were calculated for land cover
type, meteorological season, and LAI, and LAI magnitude subsets. Note
that at deciduous sites, seasonal differences in performance are partly
accounted for by LAI. and LAI magnitude, but this is not the case at
evergreen and cropland sites, where seasonal variations in performance
may occur independent of LAI. and LAI magnitude due to factors such as
snow cover and residual cloud contamination.
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Fig. 3. Intercomparison between valid SL2P and SL2P-D retrievals over the
measurement plots considered within the study. Biases and slopes significantly
different from zero and one, respectively (p < 0.05), are indicated with *

Table 4

Intercomparison statistics for SL2P and SL2P-D LAI retrievals by land cover type.
Biases and slopes significantly different from zero and one, respectively (p <
0.05), are indicated with *.

Land cover n r? RMSD  NRMSD Bias Slope
(%)
Cultivated crops 451 0.97 0.08 20.07 0.02 0.89*
Deciduous forest 3590 096 0.17 8.11 -0.11 0.93*
Evergreen forest 3020 0.96 0.14 7.81 -0.13 0.87*
Grassland/ 1396 0.98 0.08 9.75 —0.04 0.89*
herbaceous

Mixed forest 119 0.95 0.16 7.96 —0.14* 1.00

Pasture/hay 358 0.94  0.09 8.86 —0.06 0.90*
Shrub/scrub 819 0.51 0.11 91.94 0.10 0.74*
Woody wetlands 660 0.97 0.11 5.21 -0.03*  0.96*

Table 5

Intercomparison statistics for SL2P and SL2P-D LAl retrievals by LAI magnitude.
Biases and slopes significantly different from zero and one, respectively (p <
0.05), are indicated with *.

LAI range n r? RMSD NRMSD (%) Bias Slope
Otol 3594 0.92 0.08 22.58 0.01 0.82*
1to2 3178 0.87 0.10 6.52 -0.07 0.96*
2t03 2631 0.62 0.18 7.26 -0.13 0.93*
3to4 862 0.35 0.30 9.00 —0.24 0.85*
4to5 132 0.18 0.44 10.09 —0.41 0.62*
5to6 13 0.63 0.69 12.78 —0.66 2.01*
3. Results

3.1. Intercomparison of SL2P and SL2P-D LAI retrievals

Intercomparison of SL2P and SL2P-D LAI retrievals revealed good
agreement, with a strong linear relationship (% = 0.97) and low RMSD
and NRMSD values (0.13 and 10.23%) overall (Fig. 3). A bias of —0.08
and slope of 0.91 was observed, indicating that, on average, SL2P LAI
retrievals were lower than those of SL2P-D. Note, however, that the
observed bias was not significantly different from zero (p > 0.05). When
analysed by land cover type (Table 4), the greatest differences in LAI
retrievals were observed for deciduous forest (RMSD = 0.17, NRMSD =
8.11%, bias = —0.11) and evergreen forest (RMSD = 0.14, NRMSD =
7.81%, bias = —0.13). Having said this, biases were significantly
different from zero for mixed forest and woody wetlands, but not for
deciduous forest or evergreen forest. As expected, when analysed by
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Table 6

Intercomparison statistics for SL2P and SL2P-D LAI retrievals by meteorological
season. Biases and slopes significantly different from zero and one, respectively
(p < 0.05), are indicated with *.

Season n r? RMSD NRMSD (%) Bias Slope
Spring 1929 0.98 0.12 8.55 —-0.05 0.89*
Summer 4013 0.97 0.15 7.76 —-0.09 0.93*
Autumn 3288 0.97 0.13 9.36 —-0.08 0.88*
Winter 1183 0.98 0.12 10.11 —0.09 0.90*

magnitude (Table 5), RMSD values and biases increased as LAl increased
from LAl = 0 to 1 (RMSD = 0.08, bias = 0.01) to LAI = 5 to 6 (RMSD =
0.69, bias = —0.66). In terms of seasonal variations, RMSD values were
lowest in the spring, autumn and winter (RMSD = 0.12 to 0.13, bias =
—0.09 to —0.05), and highest in the summer (RMSD = 0.15, bias =
—0.09) (Table 6).

When time series of LAI retrievals were analysed, both SL2P and
SL2P-D were able to realistically resolve seasonal variations in vegeta-
tion status over all of the considered land cover types (Fig. 4). As also
demonstrated by the intercomparison statistics (Tables 4 and 5), SL2P-D
provided notably higher retrievals than SL2P over deciduous forest and
at higher LAI (i.e. > 3). This was reflected in the spatial distribution of
differences between SL2P and SL2P-D LAI retrievals. At lower LAI
values, SL2P-D tended to provide similar or slightly lower retrievals than
SL2P. As discussed in Section 2.3, at those sites with lower LAI values
(such as those characterised by cultivated crops and shrub/scrub vege-
tation), SL2P-D provided fewer invalid retrievals than SL2P; many re-
trievals for the latter were flagged due to inputs/outputs being outside of
the domain/range of the training database, resulting in substantial areas
of no data (Fig. 4).

3.2. Validation of SL2P and SL2P-D LAI retrievals against in situ data

Both SL2P and SL2P-D LAI retrievals were in better agreement with
in situ estimates of LAl than LAI (Fig. 5). Retrievals appeared linearly
biased with respect to LAIL Regardless of whether they were validated
against in situ estimates of LAl. or LAI, SL2P-D LAI retrievals were
subject to reduced bias when compared with SL2P LAI retrievals (-0.05
as opposed to —0.10 for LAI, and —0.64 as opposed to —0.68 for LAI),
demonstrating slopes closer to one (0.82 as opposed to 0.77 for LAI. and
0.58 as opposed to 0.54 for LAI). Additionally, the paired t-tests indi-
cated that SL2P and SL2P-D biases were significantly different from each
other in both cases. This led to slightly reduced RMSD values (0.48 as
opposed to 0.50 for LAI. and 1.08 as opposed to 1.13 for LAI) and a
slightly greater proportion of LAI retrievals compliant with the SEN4SCI
uncertainty requirements (UAR = 95.35% as opposed to 94.42% for LAl
and 66.51% as opposed to 61.63% for LAI).

In terms of performance by land cover type, the best agreement was
achieved for cultivated crops, grassland/herbaceous, pasture/hay and
shrub/scrub canopies, for which all SL2P and SL2P-D LAl retrievals were
compliant with the SEN4SCI uncertainty requirements when validated
against in situ estimates of LAI. (Table 7). It is worth noting that culti-
vated crops and grassland/herbaceous cover types had substantially
fewer samples than the other considered land cover types, and lower LAI
values might be expected over these sites when compared to forests. LAI
retrievals not meeting the SEN4SCI uncertainty requirements were
restricted to deciduous forest, evergreen forest, mixed forest and woody
wetlands. An increased proportion of SEN4SCI compliant LAI retrievals
was observed in the case of SL2P-D when compared with SL2P, with the
exception of deciduous forest.

For both algorithms, biases were significantly different from zero
over all land cover types except cultivated crops. A reduction in bias was
evident for SL2P-D LAI retrievals when compared with SL2P LAI re-
trievals in most cases, although the paired t-tests indicated that SL2P and
SL2P-D biases were significantly different from each other only over
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SL2P-D Difference
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-2 0 2

Fig. 4. Time series of SL2P and SL2P-D LAI retrievals and in situ LAI. measurements at sites representative of each land cover type (left), in addition to maps of SL2P
and SL2P-D LAI retrievals and their differences (right). Error bars represent the combined standard uncertainty associated with each in situ measurement. Maps are
from cloud-free MSI scenes acquired between 29th June and 16th July 2018, and cover 5 km x 5 km.
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Fig. 5. Validation of SL2P and SL2P-D LAI retrievals against in situ estimates of LAl (a-b) and LAI (c-d). The dashed line represents a 1:1 relationship, whilst the
shaded grey area represents the SEN4SCI uncertainty requirements. Error bars represent the combined standard uncertainty associated with each in situ mea-
surement. Biases and slopes significantly different from zero and one, respectively (p < 0.05), are indicated with *, whilst SL2P and SL2P-D biases significantly
different from each other (p < 0.05) according to a paired t-test are shown in bold.

Table 7

Validation statistics for SL2P and SL2P-D LAI retrievals when compared against in situ estimates of LAI,, by land cover type. Biases and slopes significantly different
from zero and one, respectively (p < 0.05), are indicated with *, whilst SL2P and SL2P-D biases significantly different from each other (p < 0.05) according to a paired t-
test are shown in bold.

SL2P SL2P-D
Land cover n r? RMSD NRMSD (%)  Bias UAR Slope  1? RMSD NRMSD (%)  Bias UAR Slope
(%) (%)

Cultivated crops 26 078 032+ 42.21+2.46 0.04£0.02 10000 071* 0.80 0.31+ 40.96+2.46  0.07 £0.02  100.00  0.75*
0.02 0.02

Deciduous forest 143 0.64  0.61 + 21.94+0.88 —0.33* + 90.21 093 061 060+ 21.62+0.94 —0.23* + 89.51 0.96
0.03 0.03 0.03 0.03

Evergreen forest 95  0.73  0.40 + 25.68+1.35 —0.08* + 96.84 0.68* 077 0.36 + 23.32+1.26  0.00* + 97.89 0.75%
0.02 0.02 0.02 0.02

Grassland/ 55  0.65 0.36+ 83.69+1.51  0.19* + 100.00  0.58* 0.62 0.37 + 86.52+1.50  0.20* + 100.00  0.65*

herbaceous 0.01 0.01 0.01 0.01

Mixed forest 20 077 061+ 22.31+2.64 —0.48* £ 90.00 0.81  0.82 055+ 20.39+2.64 —0.44* £ 95.00 0.87
0.08 0.08 0.08 0.08

Pasture/hay 21 0.52  0.49 + 110.76 + 0.35* + 100.00  0.42* 039 054+ 122,61 + 0.39* + 100.00  0.39%
0.01 3.33 0.01 0.01 3.60 0.01

Shrub/scrub 56 010 0.24+ 873.83 + 0.23* + 100.00 070 015 0.16+ 595.98 + 0.13* + 100.00  1.54
0.00 36.73 0.00 0.00 26.15 0.00

Woody wetlands 14  0.60  0.95 + 33.324+227 —0.80% + 64.29 079  0.65 0.88+ 30.82+2.31 —0.73* + 85.71 0.87
0.09 0.08 0.09 0.08
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Table 8

Validation statistics for SL2P and SL2P-D LAI retrievals when compared against in situ estimates of LAI, by land cover type. Biases and slopes significantly different
from zero and one, respectively (p < 0.05), are indicated with *, whilst SL2P and SL2P-D biases significantly different from each other (p < 0.05) according to a paired t-
test are shown in bold.

SL2P SL2P-D
Land cover n ? RMSD NRMSD (%) Bias UAR Slope r? RMSD NRMSD (%) Bias UAR Slope
(%) (%)
Cultivated crops 26 0.77 0.54 + 55.85+2.78 —0.17 + 92.31 0.51* 0.77 052+ 53.82+277 —0.14 + 92.31 0.54*
0.04 0.03 0.04 0.03
Deciduous forest 143 058 1.48+ 39.08£0.68 —1.33* £+ 26.57 0.67* 055 1.40 + 37.20+£0.72 —1.23* £ 36.36 0.68*
0.04 0.04 0.04 0.04
Evergreen forest 95 0.74 0.88 + 41.40+1.36  —0.65* + 71.58 0.50* 0.77 0.79 + 37.21+£1.39  —0.57* + 78.95 0.56*
0.04 0.03 0.04 0.03
Grassland/ 55 0.63 0.38 + 83.40+£1.87 0.16* + 98.18 0.52*  0.60 0.39 + 84.85+1.80 0.16* + 98.18 0.58*
herbaceous 0.01 0.01 0.01 0.01
Mixed forest 20 0.79 1.83+ 46.30+£1.83 —1.71* + 25.00 0.54* 083 1.78 + 45.16 £1.86  —1.68* + 20.00 0.57*
0.12 0.11 0.12 0.11
Pasture/hay 21 0.52 0.50 + 102.87 + 0.31*% + 95.24 0.37* 038 0.55+ 113.33 + 0.34* + 95.24 0.34*
0.02 3.57 0.01 0.02 3.80 0.01
Shrub/scrub 56 0.10 0.24 + 833.61 + 0.23* + 100.00 0.67 0.15 0.16 + 567.15 + 0.13* + 100.00 1.45
0.00 39.86 0.00 0.00 28.20 0.00
Woody wetlands 14 0.64 230+ 54.11+1.67 —2.19%+ 0.00 0.54* 067 221+ 5220+1.71 —2.12*+ 7.14 0.59*
0.14 0.13 0.14 0.13
Table 9

Validation statistics for SL2P and SL2P-D LAI retrievals when compared against in situ estimates of LAI,, by magnitude. Biases and slopes significantly different from
zero and one, respectively (p < 0.05), are indicated with *, whilst SL2P and SL2P-D biases significantly different from each other (p < 0.05) according to a paired t-test
are shown in bold.

SL2P SL2P-D
LAI, n r? RMSD NRMSD (%) Bias UAR Slope  7? RMSD NRMSD (%) Bias UAR Slope
range (%) (%)
0to1l 172 0.62 031+ 114.03 + 0.24%* £0.00  100.00 0.86* 0.60 0.31 + 116.07 + 0.21* £0.00  100.00 1.00
0.00 2.33 0.00 2.42
1to2 76 031 037+ 2529+ 0.98 —0.14* + 100.00 0.72¢ 029 0.39+ 26.35+1.06 —0.09% + 98.68 0.75
0.02 0.02 0.02 0.02
2to3 96 025 057+ 22.28 +1.08  —0.34* + 88.54 0.95 028 0.50 + 19.53 +1.16  —0.20* + 92.71 1.03
0.03 0.03 0.03 0.03
3to4 85 011 073+ 2214 +0.98  —0.46* + 85.88 089 010 072+ 21.66 +1.03  —0.38* £ 87.06 0.91
0.04 0.04 0.04 0.04
Table 10

Validation statistics for SL2P and SL2P-D LAI retrievals when compared against in situ estimates of LAI, by magnitude. Biases and slopes significantly different from
zero and one, respectively (p < 0.05), are indicated with *, whilst SL2P and SL2P-D biases significantly different from each other (p < 0.05) according to a paired t-test
are shown in bold.

SL2P SL2P-D

LAI n r RMSD NRMSD (%) Bias UAR Slope r RMSD NRMSD (%) Bias UAR Slope

range (%) (%)

Otol 155 053 031+ 124.14 + 0.22* + 0.00 100.00 0.73* 0.52 031+ 125.16 + 0.19* + 0.00 100.00 0.87
0.01 2.66 0.01 2.79

1to2 57 0.07 0.58 + 39.04+1.49 —0.41% + 89.47 0.36* 0.08 0.58 + 38.75+1.56 —0.38% + 89.47 0.40%
0.03 0.02 0.03 0.02

2to3 47 0.19 095+ 38.01 +1.14 —0.89* + 59.57 0.47* 0.25 0.89 + 35.67 +1.16 —0.83* + 72.34 0.62*
0.04 0.04 0.04 0.04

3to4 79 0.11 1.37 + 38.46 +0.90 —1.29* + 26.58 0.67 0.13  1.24 + 34.77 £ 096  —1.13* + 37.97 0.78
0.05 0.05 0.05 0.05

4to5 84 0.00 1.81+ 40.40 £ 0.79  —1.68* + 11.90 -0.08* 0.01 176 + 39.14+0.81 —1.61* + 19.05 —0.16*
0.05 0.05 0.05 0.05

5to6 8 0.06 247 + 45.52+1.86 —2.40% + 0.00 —-0.51 0.07 2.38+ 43.90+1.91  —-2.32% + 0.00 -0.52
0.18 0.19 0.18 0.19

deciduous forest and shrub/scrub canopies. Woody wetlands were
characterised by the greatest biases (-0.80 for SL2P and —0.73 for SL2P-
D), followed by mixed forest (-0.48 for SL2P and —0.44 for SL2P-D),
pasture/hay (0.35 for SL2P and 0.39 for SL2P-D) and deciduous forest
(-0.33 for SL2P and —0.23 for SL2P-D). When compared to SL2P, SL2P-D
yielded slopes closer to one for all land cover types except pasture/hay
and shrub/scrub (Table 7). Results for in situ estimates of LAI as opposed

to LAI. revealed similar patterns but poorer performance statistics
overall (Table 8).

When analysed by magnitude, the best agreement was observed for
LAI, values of less than 2, at which between 98.68% and 100% of SL2P
and SL2P-D retrievals were within the SEN4SCI uncertainty re-
quirements, and RMSD values were between 0.31 and 0.39 (Table 9),
though relative performance was poor for LAI. values of less than 1
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Table 11
Validation statistics for SL2P and SL2P-D LAI retrievals when compared against in situ estimates of LAl,, by meteorological season. Biases and slopes significantly
different from zero and one, respectively (p < 0.05), are indicated with *, whilst SL2P and SL2P-D biases significantly different from each other (p < 0.05) according to

a paired t-test are shown in bold.

SL2P SL2P-D
Season n r? RMSD NRMSD (%)  Bias UAR (%) Slope r? RMSD NRMSD (%)  Bias UAR (%)  Slope
Spring 89 0.89 0.39 + 27.70+1.61  —0.10* +0.02  98.88 0.81* 0.89 0.39 & 27.86+1.65 —0.11*£0.02 97.75 0.84*
0.03 0.03
Summer 211 0.86 0.53 + 28.58+1.01 —0.10* + 92.89 0.78* 0.86 052+ 28.09+1.08  —0.05* + 94.31 0.83*
0.02 0.02 0.02 0.02
Autumn 120 0.83 0.51 + 36.43+1.50 —0.12* + 93.33 0.65* 0.83 0.46 + 33.02+1.47 —0.04* + 95.00 0.72*
0.03 0.02 0.02 0.02
Winter 10 0.37 036 + 62.67 +4.97  0.10 + 0.03 100.00 0.37 043 035+ 59.924+4.92  0.10 £ 0.03 100.00 0.42*
0.03 0.03
Table 12

Validation statistics for SL2P and SL2P-D LAI retrievals when compared against in situ estimates of LAI, by meteorological season. Biases and slopes significantly
different from zero and one, respectively (p < 0.05), are indicated with *, whilst SL2P and SL2P-D biases significantly different from each other (p < 0.05) according to

a paired t-test are shown in bold.

SL2P SL2P-D
Season n r? RMSD NRMSD (%) Bias UAR Slope  r? RMSD NRMSD (%) Bias UAR (%)  Slope
(%)

Spring 89 0.88 095+ 49.45+1.58 -0.61*+0.03 7191 0.58*  0.88  0.96 + 49.57 £1.62 —0.63*+0.03  69.66 0.59*
0.04 0.04

Summer 211 0.84 1.24 + 49.32+0.92 —0.76* + 58.77 0.55* 0.83 1.18 + 46.95+0.96 —0.70% + 63.98 0.58*
0.03 0.02 0.03 0.02

Autumn 120 0.83 1.08 = 56.08£1.31 —0.65* + 56.67 0.46* 0.83 0.99 + 51.44+1.38 —0.58* + 65.83 0.52*
0.04 0.03 0.04 0.03

Winter 10 0.35 0.53+ 66.69 +5.67 —0.11 + 0.05 90.00 0.25* 0.41 051+ 64.29 £5.66  —0.12 + 0.05 100.00 0.29*
0.07 0.07

(NRMSD = 114.03% to 116.07%). As expected, RMSD values increased
with magnitude in the case of both algorithms, as did biases between
LAI, values of 1 and 4. Notably, the paired t-tests indicated that SL2P and
SL2P-D biases were significantly different from each other over all
magnitude ranges, with SL2P-D providing less biased retrievals (and
slopes closer to one) in all cases. The reduction in bias with respect to
SL2P was greatest at LAl values of greater than 2, where biases were
reduced by between 0.08 and 0.14. Nevertheless, for both algorithms,
biases were significantly different from zero over all magnitude ranges
(Table 9). Results for in situ estimates of LAI as opposed to LAI, are
provided in Table 10, which revealed similar patterns but poorer

performance statistics.

With respect to seasonal variations, the best compliance occurred
during the winter and spring, when between 97.75% and 100% of SL2P
and SL2P-D retrievals met the SEN4SCI uncertainty requirements and
RMSD values were between 0.35 and 0.39, though because of the lower
magnitude of values experienced during the winter, relative perfor-
mance was in fact poorer (NRMSD = 59.92% to 62.67%). Additionally,
due to their small sample size, the winter statistics should be treated
with caution (Table 11). Increased RMSD values (0.46 to 0.53) were
experienced during the summer and autumn, as were a reduced pro-
portion of SEN4SCI compliant retrievals (92.89% to 95.00%). Biases

4.0 7 4.0 7]
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Fig. 6. Comparison of SL2P predicted uncertainties against the observed absolute difference in LAl retrievals when compared against in situ estimates of LAL (a) and
LAI (b). The dashed line represents a 1:1 relationship, whilst error bars represent the combined standard uncertainty associated with each in situ measurement. Biases
significantly different from zero (p < 0.05) are indicated with *. ‘Underestimated’ refers to the proportion of predicted uncertainties that underestimated the observed

absolute difference.
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were significantly different from zero for both algorithms over all sea-
sons except winter, whilst the paired t-tests indicated that SL2P and
SL2P-D biases were significantly different from each other only during
the summer and autumn, when SL2P-D reduced biases by between 0.05
and 0.08. Nevertheless, over all seasons, SL2P-D provided slopes closer
to one (Table 11). Once again, results for in situ estimates of LAI as
opposed to LAI, revealed similar patterns but poorer performance sta-
tistics (Table 12).

3.3. Relationship between predicted uncertainties and observed
differences in retrieved and in situ LAI

In terms of the relationship between the predicted uncertainties
provided by SL2P and observed differences between SL2P retrievals and
in situ data, little association was observed in the case of LAI, (r2 =0.01)
(Fig. 6a). The RMSD between the predicted uncertainty and the absolute
difference in LAI with respect to in situ LAl was 0.70, whilst on average
predicted uncertainties overestimated the observed absolute difference
(bias = 0.40). This was reflected by relatively few points lying below the
1:1 line (35.12%), indicating predicted uncertainties are typically con-
servative. An increased association was observed in the case of LAI (r2 =
0.33), whilst a reduced RMSD of 0.61 was demonstrated. In this case, a
greater proportion of predicted uncertainties underestimated the
observed absolute difference (59.53%), although the bias was low
(—0.10) (Fig. 6b).

4. Discussion
4.1. Differences in retrieval accuracy between SL2P and SL2P-D

Previous validation exercises have demonstrated that SL2P retrievals
frequently meet user requirements over agricultural environments, but
underestimate higher LAI values such as those observed over forests
(Brown et al., 2019; Djamai et al., 2019; Hu et al., 2020; Pasqualotto
etal., 2019b, 2019a; Upreti et al., 2019; Vanino et al., 2018; Vuolo et al.,
2016; Xie et al., 2019). When validated against in situ measurements of
LAL, the fact that 100% of SL2P retrievals over cultivated crops,
grassland/herbaceous, pasture/hay and shrub/scrub canopies met the
SEN4SCI uncertainty requirements in our study is consistent with these
previous findings, as is the fact that negative biases were observed over
deciduous forest, evergreen forest, mixed forest and woody wetlands.
Our results reveal that SL2P-D tends to provide higher retrievals over
forest environments and at LAI > 3, indicating that it is somewhat
effective in counteracting SL2P’s issue of underestimation. When vali-
dated against in situ data, the increased retrieval accuracies, reduced
biases, and greater proportion of retrievals compliant with the SEN4SCI
uncertainty requirements lend further support to this conclusion.

In addition to reducing biases over forest environments and at higher
LAI values, SL2P-D resulted in lower biases during the autumn season.
Whilst the prior distributions of leaf chlorophyll and brown pigment
concentrations used to train SL2P were optimised for sensitivity to green
leaves (leading to underestimation of total LAI during senescence), such
constraints are not imposed by the uniform distributions adopted by
SL2P-D. An additional advantage of SL2P-D was that, for several sites
characterised by lower LAI values, it produced substantially fewer
invalid retrievals than SL2P. The uniform distributions of RTM input
parameters adopted by SL2P-D mean a greater diversity of reflectance
spectra are incorporated in its training database, and so fewer observed
reflectance values are likely to be flagged as having an out of range
input. This is an important consideration, since Xie et al. (2019) found
that SL2P produced flagged retrievals over 37% of their winter wheat
measurement plots, substantially reducing the utility of the algorithm
when compared to other investigated retrieval approaches.

It should be noted that when validated against in situ measurements
of LAI rather than LAl reduced retrieval accuracies and increased
biases were observed in the case of both SL2P and SL2P-D. These
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findings are consistent with the results of Hu et al. (2020), who report an
RMSD of 1.14 and 1.06 when validating SL2P retrievals against in situ
measurements LAI and LAI, respectively. We hypothesise this is caused
by both algorithms being trained using the 4SAIL RTM, which represents
the canopy as a horizontally homogeneous turbid medium, and thus
does not incorporate foliage clumping. For more homogeneous canopies
with relatively low foliage clumping such as cultivated crops, grassland/
herbaceous vegetation, and pasture/hay, SL2P and SL2P-D retrievals
provide relatively accurate estimates of LAIL as the difference between
LAI and LAI, over these canopies is relatively small (Richter et al., 2009;
Verger et al., 2011). On the other hand, for heterogeneous and highly
clumped canopies such as forests, both SL2P and SL2P-D underestimate
LAL Indeed, for forests, Brown et al. (2019) found that using a hetero-
geneous RTM improved retrieval accuracy. An important finding of this
study is that SL2P retrievals appear linearly biased with respect to LAL If
LAI rather than LAl is the desired quantity, it may, therefore, be
possible to derive and apply a bias correction (Brown et al., 2020).

4.2. In situ measurement uncertainties

Whilst the in situ measurements used in this study provide a useful
reference for evaluating SL2P and SL2P-D retrievals, it is worth noting
that DHP provides an indirect estimate of LAI. Previous work has
demonstrated that DHP can underestimate LAI in tall, complex canopies
when compared to direct (i.e. destructive) measurements (Bréda, 2003;
Chianucci and Cutini, 2012; Dufréne and Bréda, 1995; Fassnacht et al.,
1994; Jonckheere et al., 2004; Liu et al., 2016). In our analysis, we
mitigated such effects to some extent by accounting for foliage clumping
in the derivation of LAI (Brown et al., 2020). However, uncertainties
related to the choice of clumping correction method remain (Leblanc
and Fournier, 2014; Macfarlane et al.,, 2007; Walter et al., 2003;
Woodgate et al., 2017; Yan et al., 2019). These factors should be borne
in mind when interpreting observed biases.

A further source of uncertainty is related to the incorporation of
senescent foliage within the DHP-derived estimates. For upwards-facing
images, the classification approach used to provide the GBOV in situ
reference measurements incorporates both green leaves and senescent
foliage, whilst for downwards-facing images, the classification is most
sensitive to green leaves only (Brown et al., 2020). When both upwards-
and downwards-facing images are combined (i.e. at forest sites), these
effects may be partly compensatory. Finally, although we applied a first-
order correction for the effects of woody area, site- or plot-specific in-
formation on woody area is ideally required. In the case of deciduous
species, x may vary depending on the amount of foliage present at any
given time, making measurements throughout the growing season
highly desirable. These could be obtained in future work by, for
example, capturing images at multiple exposures to better discriminate
between foliage and woody material throughout the phenological cycle
(Woodgate et al., 2016), or by making use of techniques such as near-
infrared imaging (Baret et al., 1993; Milton, 2002; Osmond, 2009)
and terrestrial laser scanning (Calders et al., 2018; Li et al., 2018).

4.3. Utility of the cascaded retrieval approach adopted by SL2P-D

The retrieval of vegetation biophysical variables such as LAI is
considered ill-posed, as different combinations of biophysical and
biochemical properties may lead to similar reflectance spectra, whilst
confounding factors such as measurement and model uncertainties may
introduce error in the retrieved value (Combal et al., 2003; Gobron et al.,
1997; Verger et al., 2011; Verrelst et al., 2015). To overcome ill-
posedness and achieve robust retrievals, regularisation techniques
have been proposed to constrain the potential solution space, the most
popular of which is the use of prior information on expected canopy
conditions (Bacour et al., 2006; Baret et al., 2007; Combal et al., 2003;
Verger et al., 2011; Verrelst et al., 2015). Such information may be
provided on the basis of land cover or local in situ measurements of leaf
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and canopy biophysical/biochemical properties. In SL2P, prior infor-
mation is based on a compilation of previously published experimental
data available at the time the algorithm was developed (Weiss and Baret,
2016).

The prior distributions of input parameters adopted in SL2P were
designed to reflect global conditions insofar as possible, given the
available experimental data (Weiss and Baret, 2016). Nevertheless, it is
likely that these distributions do not perfectly reflect reality, and that
they are even less representative of local canopy conditions over
particular sites or vegetation types (Fernandes and Djamai, 2019). For
example, in the case of LAI, SL2P uses a truncated Gaussian prior dis-
tribution with a mean = 2 and standard deviation = 3. As retrievals will
tend towards the mean of the adopted prior distribution, this may lead to
locally (and globally) biased outputs, as observed here and in previous
studies (Brown et al., 2019; Djamai et al., 2019). Our results suggest that
the alternative strategy adopted by SL2P-D, which is based on cascaded
retrieval for different partitions of DASF, appears to offer some advan-
tages over regularisation using prior information (as demonstrated by
slightly improved retrieval accuracies and reduced biases). These results
rely on the fact that DASF is sensitive to canopy structure but invariant
to foliage biochemistry (Adams et al., 2018; Stenberg and Manninen,
2015), enabling the confounding effects of biochemistry on retrievals of
structural variables such as LAI to be removed. However, to achieve
further improvements in performance, it is likely that RTMs better able
to represent heterogeneous canopies are required.

4.4. Perspectives on product uncertainty estimates

As users look to incorporate vegetation biophysical variables such as
those provided by SL2P within data assimilation schemes (Chernetskiy
et al., 2017; Lewis et al., 2012; Mathieu and O’Niell, 2008), there is an
increasing need for accurate estimates of their associated uncertainty.
Such information enables individual observations to be appropriately
weighted based on our confidence in their quality (Demarty et al., 2007;
Raupach et al., 2005; Richardson et al., 2011). Several operational LAI
products are now providing some form of uncertainty estimate (Garcia-
Haro et al., 2019, 2018; Yan et al., 2016a), although few incorporate all
relevant sources of uncertainty (such as those related to sensor radi-
ometry, atmospheric correction, RTM assumptions, and the retrieval
scheme itself) (Chernetskiy et al., 2017; Lewis et al., 2012; Pinty et al.,
2011a; 2011b). It should be noted that SL2P-D also provides predicted
uncertainties using the same approach as SL2P. However, because its
training database is comprised of uniform distributions, it contains
many cases that are unlikely to be encountered in reality, causing pre-
dicted uncertainties to be overly pessimistic. For SL2P-D to provide
useful predicted uncertainties, they should instead be determined using
a locally representative database. As such a strategy was beyond the
scope of our study, only SL2P’s uncertainty estimates were considered.

Despite the fact that predicted uncertainties are provided by SL2P,
there has been little investigation into how well they reflect observed
differences between retrieved and in situ LAl.. To our knowledge, our
study is the first to investigate this relationship. As previously
mentioned, we do not expect a strong linear correlation between pre-
dicted uncertainties and observed differences, as this would imply SL2P
was poorly trained (in such a case it would be possible to simply correct
retrievals using the predicted uncertainties themselves). Nevertheless, it
is desirable that the predicted uncertainties are unbiased over a large
range of samples. For LAL, the low bias is encouraging, as it suggests that
SL2P’s predicted uncertainties can be used when mapping over large
spatial and temporal domains with surface conditions similar to the
investigated sites (when aggregating over time and space, random errors
are supressed, making bias the most important factor). For LAL, the
observed bias is not ideal, but at least conservative, enabling outer
bounds to be determined that will in most cases contain the observed
difference between retrieved and in situ LAI. Both results indicate that
SL2P’s prediceted uncertainites may be applicable to data assimilation
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schemes (Demarty et al., 2007; Raupach et al., 2005; Richardson et al.,
2011).

Though SL2P’s predicted uncertainties should prove useful, it is
possible that advances in retrieval techniques will provide more realistic
uncertainty estimates. For example, as opposed to training separate
ANNs to derive predicted uncertainties, recent work has successfully
applied probabilistic non-parametric machine learning approaches that
intrinsically provide uncertainty estimates. Of particular promise is
Gaussian process regression (GPR), which has been shown to provide
similar or improved retrieval accuracy to ANNs, in addition to faster
computation times (Garcia-Haro et al., 2019, 2018; Upreti et al., 2019;
Verrelst et al., 2015; 2013). By adopting a Bayesian approach to the
regression problem, GPR delivers predictions in the form of a posterior
probability distribution, such that the mean of the distribution repre-
sents the predicted value, and the standard deviation its uncertainty.
Another promising technique, also based on Bayesian inference, is
optimal estimation, as implemented in the Joint Research Centre Two-
Stream Inversion Package (JRC-TIP) (Clerici et al., 2010; Disney et al.,
2016; Kaminski et al., 2017; Pinty et al., 2011a; 2011b; 2007), and the
Earth Observation Land Data Assimilation Scheme (EO-LDAS) (Cher-
netskiy et al., 2017; Lewis et al., 2012).

5. Conclusions

Whilst previous validation efforts have provided useful information
on the performance of SL2P, their spatial and temporal coverage have
been limited. Using in situ reference measurements available through
the GBOV service, we performed an extensive validation of SL2P LAI
retrievals over 19 sites throughout the United States. We also investi-
gated the performance of a modified retrieval approach (SL2P-D). When
validated against in situ measurements of LAl,, uncertainty re-
quirements were met by SL2P over homogeneous canopies (cultivated
crops, grasslands, pasture/hay and shrub/scrub), consistent with the
results of previous validation exercises. However, over heterogeneous
canopies (deciduous forest, evergreen forest, mixed forest, and woody
wetlands) SL2P retrievals were subject to underestimation. SL2P-D
reduced biases over these canopies, slightly improving overall perfor-
mance. At lower LAI values, SL2P-D also resulted in substantially fewer
invalid retrievals than SL2P. Based on our results, the retrieval approach
adopted by SL2P-D appears to offer some advantages over regularisation
using prior information, but RTMs better suited to heterogeneous en-
vironments are likely required to further improve performance. In
addition to the retrievals themselves, we investigated the relationship
between predicted uncertainties and observed differences in retrieved
and in situ LAI and LAI. For LAl our results revealed that SL2P’s
predicted uncertainties were conservative, indicating they should prove
useful in determining outer bounds of uncertainty that typically contain
the reasonable worst-case error, though improved uncertainty estimates
may be provided by adopting more advanced machine learning ap-
proaches in future work.
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Appendix A

SL2P-D is a modification of SL2P (Weiss and Baret, 2016) in an
attempt to improve its retrieval accuracy for vegetation biophysical
variables including LAI. This appendix provides a description of the
training and application of SL2P-D to MSI data. Additional details, such
as the theoretical basis for the retrieval algorithm and cross-validation
results are found in Fernandes and Djamai (2019).

Both SL2P and SL2P-D use a library of non-linear regression models
based on a multi-layer ANN architecture to predict the variables defined
in Table A1 and their associated prediction uncertainties, given the in-
puts defined in Table A2. The training data for each ANN corresponds to
MSI surface reflectance and associated viewing and illumination ge-
ometry as simulated by the coupled PROSPECT and 4SAIL RTMs,
hereafter referred to as PROSAIL (Jacquemoud et al., 2009), based on
sampling a joint distribution of model parameters (Table A3), and one
output corresponding to the target variable or the target prediction
uncertainty. The target variable is determined from the PROSAIL
simulation. The target prediction uncertainty is determined by first
assessing predictions against a testing database of PROSAIL simulations
and then computing the RMSD of all simulations whose reflectance
differs from a given input by less than measurement uncertainty
(‘binning’), whose solar and viewing zenith angles differ by less than 5°,
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and whose relative azimuth angle differs by less than 10°. Since per-
pixel uncertainties are not provided in the L2A products derived using
Sen2Cor, fixed additive and multiplicative uncertainties are assumed
(Table A2). These values are considered representative of typical un-
certainties in L2A MSI data (Li et al., 2015; Upreti et al., 2019), as
demonstrated by previous surface reflectance intercomparison exercises
(Djamai and Fernandes, 2018; Doxani et al., 2018).

Both SL2P and SL2P-D share the same ranges and copulas (covaria-
tion relations) for PROSAIL parameters using a single parameterisation
for all land cover types, the same architecture for each ANN, and the
same ANN training algorithm. The range of each parameter and copula
between each parameter and LAI is specified based on the empirical
range over a global data survey conducted by Weiss and Baret (2016).
Further details on the survey are provided in Section 3.3.2 of their al-
gorithm theoretical basis document. Each ANN corresponds to a three
layer network with 11 inputs for the first layer (Table A2), standardised
to have zero mean and unit standard deviation, each with weighted
connections to the same five nodes in a hidden layer corresponding to a
tangent sigmoid function with associated bias, and a final linear output
layer also with a bias term. Each ANN is initialised with random weights
and biases drawn from a standardised normal distribution. Back-
propagation using the Levenberg-Marquardt minimiser implemented
in MATBLAB is used to minimise the mean square error (MSE) of pre-
dictions over the training data as a function of ANN weights and biases
using parameters indicated in Table A4. Training is halted if the MSE
over an independent cross-validation dataset falls below 1% relative
error, or if six iterations of training over the training database do not
reduce the MSE (‘early stopping’). In all cases, the ANNs were found by
early stopping, which is encouraging, as this is an indication that they
are not overfitting the training data.

In contrast to SL2P, SL2P-D uses multiple ANNSs to retrieve a target
variable in a two-stage manner. The first network, shared with all

Table Al
SL2P-D output variables. Variables in bold are not standard outputs of SL2P.
Variable Abbreviation ~ Units Description Range
Fraction of vegetation cover FCOVER Oto1l Fraction of horizontal ground area covered by vegetation Oto1l
Fraction of absorbed photosynthetically FAPAR Otol Fraction of photosynthetically active radiation absorbed by vegetation Otol
active radiation
Leaf area index LAI Dimensionless Half the total live foliage area per unit horizontal ground area 0to 15
Canopy chlorophyll content CcCcC ug em 2 Mass of chlorophyll a + b per unit horizontal ground area 0 to
100
Canopy water content CWC gm™2 Mass of water per unit horizontal ground area 0to
100
Albedo (black-sky) A Dimensionless  Ratio of top-of-canopy upper hemispherical upwelling radiance to top-of- Oto1l
canopy incident direct irradiance
Directional area scattering factor DASF Dimensionless  Canopy scattering coefficient for a foliage single scattering albedo of oneunder 0to 1

direct irradiance

Table A2

Inputs and associated assumed additive and multiplicative noise for SL2P-D. Note that noise consists of both
wavelength dependent and independent components (Weiss and Baret, 2016).

Noise model

Input Additive noise Multiplicative noise (%)
Band 2 0.02 4
Band 3 0.02 4
Band 4 0.02 4
Band 5 0.02 4
Band 6 0.02 4
Band 7 0.02 4
Band 8A 0.02 4
Band 11 0.02 4
Band 12 0.02 4

Solar zenith angle (°) _
Viewing zenith angle (°) _
Relative azimuth angle (°) _
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Table A3
PROSAIL simulation parameter marginal distributions adopted by SL2P-D. For uniform distributions, P1 and P2 correspond to the minimum and maximum values. For
normal distributions, P1 and P2 correspond to the mean and standard deviation.

Variable Lower bound Upper bound P1 P2 Classes Distribution

Canopy LAIL 0.0 15 0.0 15.0 8 Uniform
Average leaf angle (°) 30 80 30 80 8 Uniform
Crown cover 1.0 1.0 1.0 1.0 1 Uniform
Hot spot parameter 0.1 0.5 0.1 0.5 1 Uniform

Leaf Structural parameter (N) 1.20 2.20 1.20 2.20 8 Uniform
Chlorophyll a + b (ug cm™2) 20 920 20 90 8 Uniform
Dry matter (g cm™2) 0.0030 0.0110 0.0030 0.0110 8 Uniform
Relative water content 0.60 0.85 0.60 0.85 4 Uniform
Brown pigments 0.00 0.20 0.00 0.30 3 Normal

Soil Soil brightness factor 0.50 3.50 1.20 2.00 4 Normal

Table A4
ANN parameters.

Parameter Description Nominal value

Number of networks Number of replicate networks 10

Number of hidden layers Number of hidden layers per network 1

Transfer function L1 Node transfer function for layer 1 Tangent sigmoid

Number of neurons L1 Number of neurons for layer 1 5

Transfer function L2 Node transfer function for layer 2 Linear

Number of neurons L2 Number of neurons for layer 2 1

Tolerance Limits for considering out of range retrievals still possible 0.2

Time of instantaneous FAPAR (HH.MM) Used to document time of the FAPAR used during training 10:00

Performance regularisation Additional error contribution from mean square magnitudes of weights 0.1

Epochs Maximum number of sweeps through training database 250

Performance function Objective function metric used Mean square error

Goal Stopping error level le-3

Update Algorithm used to update network Levenberg-Marquardt

Samples (x 10%)

1.0 1.0
0.9
0.8 0.8
0.7
)
0.6
g 0.6
= 0.5
>
2 0.4 04
@
14 0.3
0.2 0.2
0.1
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0

DASF

Fig. Al. Density plot of DASF retrievals (as used for partitioning) vs. reference DASF values from the
testing database.
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Fig. A2. Bias (red line), RMSD (sold black line and black circles), and box plots of differences in DASF retrievals (as used
for partitioning) vs. reference DASF values from the testing database. Boxes indicate + one standard deviation, dot
symbols span the 98th percentile, and asterisk symbols correspond to residuals exceeding the 98th percentile.

variables, corresponds to a prediction of DASF as the target variable. The
retrieved DASF is then used to select from a library of ANNs, each
trained using simulations falling within a range of DASF values. The
ranges are based on the expected precision of DASF retrievals (i.e. 0.05,
quantified as the standard deviation of differences with respect to the
testing database), giving 18 networks with DASF ranges of (0.100,
0.125], (0.125, 0.175], ..., (0.875, 1.050], (1.050, 1.200].

SL2P-D also differs from SL2P in the simulation databases used.
Firstly, each simulation also includes DASF as an output variable, cor-
responding to a PROSAIL simulation using the same input parameters
except for a canopy single scattering albedo of one and soil reflectance of
zero. DASF varies with the ratio of leaf reflectance to transmittance. As
this ratio is wavelength dependent, we select the value at 800 nm, where
it is relatively insensitive to biochemistry (Adams et al., 2018). SL2P-D
uses uniform marginal distributions for input parameters (Table A3)
when producing the training, cross-validation and testing databases, in
contrast to empirical distributions used in SL2P. SL2P-D uses Sobol
rather than orthogonal sampling, as the former allows for a linear rather
than geometric increase in samples as the number of parameters and
parameter levels sampled increases. SL2P-D uses 1,572,864 samples
across all databases rather than the 42,472 used in SL2P, to allow for
sufficient sample sizes (at least 10,000) for each second stage ANN used
for prediction of target variables.

Both training and testing databases demonstrate relatively high
values of DASF with the majority exceeding 0.8 (Fig. Al). This is a
consequence of the homogeneous canopy assumption of PROSAIL,
resulting in no view of the underlying zero reflectance boundary. Whilst
the in situ dispersion of DASF is likely broader, we note that here, DASF
retrievals are used as a relative partitioning variable, and not an unbi-
ased estimator of DASF for heterogeneous canopies. As a consequence,
DASF retrievals are required to have high precision and a bias that is
either small or relatively monotonic with respect to reference DASF
values. For the testing database, the precision of DASF retrievals
(quantified as the standard deviation of differences) is better than 0.05,
whilst the magnitude of the bias is less than 0.03 or 3% (Fig. A2).
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